首页

> 学术论文知识库

首页 学术论文知识库 问题

电气论文题目英语

发布时间:

电气论文题目英语

基于价格预测(预期价值与风险)的能源受限时期。理由:based on 后面紧跟的Price Forecasts Including Expected Values and Risk是限定前面的Energy Constrained Generation Dispatch。即Based on 后面的是条件状语

什么意思?要英文的?题目要汉语翻译?

用于分布式在线UPS中的并联逆变器的一种无线控制器已经发送。

我有一篇我本科毕设的小论文,英文中文都有,而且是我人工翻译的,8000字左右。你要的话PM我。我是电气工程及其自动化专业的。《Analysis of thyristor-controlled phase shifter applied in damping power system oscillations》

电气专业英语论文

这个不能复制过来的啊,你在百度知道搜索一下就知道了啊

我可以给你 +471903103 专业论文及翻译,还有CAD图形。

Electric Automation 电气自动化ELECTRIC AUTOMATION DEVICE AND METHOD FOR ADJUSTING THE FUNCTIONS OF THE ELECTRIC AUTOMATION DEVICE The invention relates to an electric automation device comprising a control unit that is controlled by a computer. In order to create an automation device that can be set to predefined functions in a particularly flexible manner while requiring less testing, a computer hardware component (2) is provided with control software comprising a basic functional area which includes an operating system (3), a device driver (4), and communication modules (5) so as to form a basic automation device (1) while the basic automation device (1) is complemented with any application modules (7a, 7b, 7c, 8, 9) that can be connected to the basic functional area via a software interface (6) in order to obtain the automation device. The invention also relates to a method for producing or adjusting the functions of such an electric automation device. 电气自动化专业介绍一、专业概况 随着高新技术的发展和生产自动化程度的提高,我国国民经济发展,正在和继续需要大批技术应用型实用人才。电气自动化技术是现代制造技术中不可缺少的重要技术门类,也是一个国家科技实力乃至综合竞争力的综合反映,在工业发展中具有前导地位。电气自动化技术,集机、电、计算机、信息处理等多学科于一体,是多学科相互交叉、渗透、结系淖酆涎Э疲�诠�窬�媒ㄉ柚姓加兄匾�牡匚弧R虼耍�梢运档缙�远��际跏嵌ヌ炝⒌氐氖乱担�枪�窬�梅⒄购腿嗣裆�钏�教岣叩奈镏侍跫�� ?br> (一)、培养目标本专业培养德、智、体、美、劳全面发展,具有良好职业道德和综合业务素质,具备较强的创新意识和创业能力,掌握电气自动化技术、计算机控制技术的基础理论,能在生产、建设、管理、服务第一线从事常用电气自动化设备、常用电气设备、供配电系统和装置、计算机控制系统、PLC控制系统的安装、调试、运行和维护的实用型高技能专门人才。 (二)、培养要求及职业能力分析 1、培养要求:本专业主要学习电气自动化的专业技术知识,应具有较强的本专业技术应用能力。 2、职业能力分析 (1)具有良好的身体素质、职业道德和人文素质,较强的语言文字表达能力和一定的社会交往能力及继续学习能力。 (2)具有较强的用英语进行人际和人机交流能力,具有阅读和翻译本专业有关英文资料的能力。 (3)具有较强的在信息化社会中工作、学习、生活所必备的计算机应用能力;熟练使用电子电气CAD软件;掌握一门程序设计语言。 (4)具有分析和测试常见的电工电子线路,能设计一般电工电子应用线路,能熟练使用常规电工电子仪器、仪表,具有熟练的电工基本操作技能。 (5)熟悉常用低压电器的基本原理及使用;能熟练阅读电气控制线路的原理图与接线图;具有对常规电气设备、供配电设备等电气控制系统进行安装、调试、维护能力。 (6)具有正确选用、安装、调试、维护电力电子装置和典型交、直流调速系统的能力。 (7)具有熟练的可编程控制器应用能力。 (8)具有以嵌入式计算机数字控制技术为核心的新技术基本应用能力,对相应控制系统具有调试维护能力。 (9)具有对一般的机械零件图、产品装配图与机械、液压和气压传动系统回路的识读能力,了解常用机械设备的结构特点及工艺过程,了解常见的机械和电气的配合关系。 (10)了解企业管理的基本知识,具有一定的质量意识。 (三)、课程设置 课程设置共分五部分:公共必修课、专业必修课、专业限定选修课、专业选修课及公共选修课。 1、公共必修课包括:思想道德修养、法律基础、邓小平理论、马克思主义哲学、体育、英语、高等数学、计算机操作基础等。 2、专业必修课包括:电工基础、模拟电子技术、数字电子技术、电机及拖动基础、机械制图及公差、机械工程基础、嵌入式计算机原理及应用、C语言程序设计、自动检测与转换技术、现代电力电子技术、可编程序控制器应用、自动控制原理与系统、C语言、工厂电气控制技术、电子电气CAD、变配电技术、变频调速原理与应用、工业控制网络、DSP原理与应用及专业英语等。其中主干课程为:电工基础、模拟电子技术、数字电子技术、电机及拖动基础、嵌入式计算机原理及应用、自动检测与转换技术、现代电力电子技术、可编程序控制器应用、自动控制原理与系统等。 3、专业限选课包括:计算机控制技术、工业自动化仪表、控制电机、智能控制等。 4专业任选课包括:电工电子工艺、多媒体技术、楼宇自动化、计算机系统仿真、计算机维修、程序设计(VB)等。 5、公共选修课包括:包括两个能力模块:经济管理科学类和人文与社会科学类。 (四)、实践教学环节 1、专业主要实践教学包括:电工实验、模拟电子技术实验、数字电子技术实验、电机与电力拖动实验、可编程序控制器应用实验、嵌入式计算机原理实验、现代电力电子技术实验、电工基础课程设计、电子技术课程设计、嵌入式计算机原理课程设计、可编程序控制器应用课程设计、自控系统课程设计、综合系统实训、金工实习、电工电子实习、专业参观、综合生产实习、毕业设计等。 2、非专业实践教学包括:入学教育、军训、暑期社会实践、社团活动、体育活动、文艺活动等。 (五)、职业技能证书 本专业证书包含三个方面: 1、公共必修证书:PET、计算机一级证书。 2、专业必修证书:CAD初级、维修电工中级。 3、任选证书:CET四级证书、计算机三级证书(单片机方向)、CAD中级证书、维修电工高级证书、气液电控制技术。 (六)、本专业师资力量 学院拥有一支学术造诣高、教学经验丰富、实践能力强的师资队伍。电气自动化技术专业现有师资26人,其中副高职称以上有17人,“双师型”教师10人。能够满足公共基础课、专业基础课和专业课的理论及实践教学的需要。 二、职业前景 1、对口行业 电气自动化技术是传统而具有新内涵的专业,本专业培养拥护党的基本路线,德、智、体、美等全面发展,具备从事电气自动化技术所需要的理论知识和职业技术能力,主要在生产、建设、服务和管理等第一线工作的高级技术应用性专门人才。本专业的毕业生可就职于国防、航天、航空、航海、铁道、机械、轻工、化工、电子、电力、电信、钢铁、石油、矿山、煤炭、地质、勘测等广泛的工业、农业、科学研究领域,也可就职于现代物流及现代服务业。 2、就业前景 在上海市经济委员会的《上海制造业战略升级的行动纲要》中指出:加快推动制造业的战略升级是贯彻党的十六大精神,坚定地走新型工业化道路,实现向制造业强国转变的国家战略需要,也是上海建立新型产业体系,提高城市综合竞争力,坚持“四个中心”的客观要求。上海制造业战略升级的重点包括:高新技术产业重点发展电子信息和现代生物与现代医药制造业;交通运输设备制造业重点发展汽车、轨道交通、船舶、民用飞机;装备制造业重点发展大型成套设备、电站设备、新能源和新型环保设备制造业;原材料制造业重点发展石油化工和精细化工、精品钢材制造业;生产性服务业重点发展制造业物流、技术服务等产业;大力发展就业广、清洁型的都市型工业。根据电气自动化的内涵,上述产业无不包含电气自动化技术,同时也对电气自动化技术专业的人才提出了更高的要求。据上海市政府组织的《面向新世纪上海紧缺人才需求趋势与开发研究对策》的报告显示,复合型技术人才是紧缺的专业人才,而电气自动化技术专业是培养复合型技术人才的有效载体。可以预见在未来数年内,电气自动化专业毕业生就业前景良好。

Electric Power Systems 电力系统 The modern society depends on the electricity supply more heavily than ever before. 现代社会的电力供应依赖于更多地比以往任何时候。 It can not be imagined what the world should be if the electricity supply were interrupted all over the world. 它无法想象的世界应该是什么,如果电力供应中断了世界各地。 Electric power systems (or electric energy systems), providing electricity to the modern society, have become indispensable components of the industrial world. 电力系统(或电力能源系统),提供电力到现代社会,已成为不可缺少的组成部分产业界的。 The first complete electric power system (comprising a generator, cable, fuse, meter, and loads) was built by Thomas Edison – the historic Pearl Street Station in New York City which began operation in September 1882. 第一个完整的电力系统(包括发电机,电缆,熔断器,计量,并加载)的托马斯爱迪生所建-站纽约市珍珠街的历史始于1882年9月运作。 This was a DC system consisting of a steam-engine-driven DC generator supplying power to 59 customers within an area roughly km in radius. The load, which consisted entirely of incandescent lamps, was supplied at 110 V through an underground cable system. 这是一个半径直流系统组成的一个蒸汽发动机驱动的直流发电机面积约公里至59供电范围内的客户。负载,其中包括完全的白炽灯,为V提供110通过地下电缆系统。 Within a few years similar systems were in operation in most large cities throughout the world. With the development of motors by Frank Sprague in 1884, motor loads were added to such systems. This was the beginning of what would develop into one of the largest industries in the world. In spite of the initial widespread use of DC systems, they were almost completely superseded by AC systems. By 1886, the limitations of DC systems were becoming increasingly apparent. They could deliver power only a short distance from generators. 在一个类似的系统在大多数大城市在世界各地运行数年。随着马达的弗兰克斯普拉格发展在1884年,电机负载被添加到这些系统。这是什么开始发展成为世界上最大的产业之一。在最初的直流系统广泛使用尽管如此,他们几乎完全被空调系统所取代。到1886年,直流系统的局限性也日益明显。他们可以提供功率只有很短的距离从发电机。To keep transmission power losses ( I 2 R ) and voltage drops to acceptable levels, voltage levels had to be high for long-distance power transmission. Such high voltages were not acceptable for generation and consumption of power; therefore, a convenient means for voltage transformation became a necessity. 为了保持发射功率损失(我2 R)和电压下降到可接受的水平,电压等级,必须长途输电高。如此高的电压不发电和电力消耗可以接受的,因此,电压转换成为一个方便的手段的必要性。 The development of the transformer and AC transmission by L. Gaulard and JD Gibbs of Paris, France, led to AC electric power systems. 在发展的变压器,法国和交流输电由L.巴黎戈拉尔和JD吉布斯导致交流电力系统。 In 1889, the first AC transmission line in North America was put into operation in Oregon between Willamette Falls and Portland. 1889年,第一次在北美交流传输线将在俄勒冈州波特兰之间威拉梅特大瀑布和实施。It was a single-phase line transmitting power at 4,000 V over a distance of 21 km. With the development of polyphase systems by Nikola Tesla, the AC system became even more attractive. By 1888, Tesla held several patents on AC motors, generators, transformers, and transmission systems. Westinghouse bought the patents to these early inventions, and they formed the basis of the present-day AC systems.这是一个单相线路传输功率为4,000公里,超过21 V系统的距离。随着交流的发展多相系统由尼古拉特斯拉,成为更具吸引力的。通过1888年,特斯拉举行交流多项专利电动机,发电机,变压器和输电系统。西屋公司购买了这些早期的发明专利,并形成了系统的基础,现在的交流。 In the 1890s, there was considerable controversy over whether the electric utility industry should be standardized on DC or AC. By the turn of the century, the AC system had won out over the DC system for the following reasons: 在19世纪90年代,有很大的争议或交流电力行业是否应该统一于直流。到了世纪之交的,在交流系统赢得了原因出在下面的直流系统为: (1)Voltage levels can be easily transformed in AC systems, thus providing the flexibility for use of different voltages for generation, transmission, and consumption. (1)电压水平可以很容易地改变了空调系统,从而提供了传输的灵活性,发电用不同的电压和消费。 (2)AC generators are much simpler than DC generators. (2)交流发电机简单得多比直流发电机。 (3)AC motors are much simpler and cheaper than DC motors. (三)交流电机和电机便宜简单得多,比直流。 The first three-phase line in North America went into operation in 1893——a 2,300 V, 12 km line in southern California. 前三个阶段的美国北线投产于1893年- 1 2300五,南加州12公里路线研究。 In the early period of AC power transmission, frequency was not standardized. 在电力传输初期交流,频率不规范。 Many different frequencies were in use: 25, 50, 60, 125, and 133 Hz. 有许多不同频率的使用:25,50,60,125,和133赫兹。 This poses a problem for interconnection. Eventually 60 Hz was adopted as standard in North America, although 50 Hz was used in many other countries. 这对互连的问题。最后60赫兹标准获得通过,成为美国在北美,虽然是50赫兹在许多其他国家使用。 The increasing need for transmitting large amounts of power over longer distance created an incentive to use progressively high voltage levels. To avoid the proliferation of an unlimited number of voltages, the industry has standardized voltage levels. In USA, the standards are 115, 138, 161, and 230 kV for the high voltage (HV) class, and 345, 500 and 765 kV for the extra-high voltage (EHV) class. In China, the voltage levels in use are 10, 35, 110 for HV class, and 220, 330 (only in Northwest China) and 500 kV for EHV class . 较长的距离越来越需要大量的电力传输多激励他们逐步使用高压的水平。为了避免电压增殖数量无限,业界标准电压水平。在美国,标准是115,138, 161,和230千伏的高电压(高压)类,345,500和765千伏级的特高电压(超高压)。在中国,各级使用电压为10,35,110级高压, 220,中国330(仅在西北)和500千伏超高压类。The first 750 kVtransmission line will be built in the near future in Northwest China. 第一个750 kVtransmission线将建在不久的将来在中国西北地区。With the development of the AC/DC converting equipment, high voltage DC (HVDC) transmission systems have become more attractive and economical in special situations. 随着交流的发展/直流转换设备,高压直流高压直流(HVDC)传输系统已经成为更具吸引力的经济和情况特殊。 The HVDC transmission can be used for transmission of large blocks of power over long distance, and providing an asynchronous link between systems where AC interconnection would be impractical because of system stability consideration or because nominal frequencies of the systems are different. 在高压直流输电可用于输电块以上的大长途电话,并提供不同系统间的异步连接在AC联网系统将是不切实际的,因为稳定考虑,或因标称频率的系统。 The basic requirement to a power system is to provide an uninterrupted energy supply to customers with acceptable voltages and frequency. 基本要求到电源系统是提供一个不间断的能源供应,以客户可接受的电压和频率。 Because electricity can not be massively stored under a simple and economic way, the production and consumption of electricity must be done simultaneously. A fault or misoperation in any stages of a power system may possibly result in interruption of electricity supply to the customers. 由于电力无法大量储存在一个简单的方法和经济,电力的生产和消费必须同时进行。系统的故障或误操作的权力在任何阶段可能导致电力供应中断给客户。 Therefore, a normal continuous operation of the power system to provide a reliable power supply to the customers is of paramount importance. 因此,一个正常的电力系统连续运行的,提供可靠的电力供应给客户的重要性是至关重要的。 Power system stability may be broadly defined as the property of a power system that enables it to remain in a state of operating equilibrium under normal operating conditions and to regain an acceptable state of equilibrium after being subjected to a disturbance. 电力系统稳定,可广泛定义为干扰财产的权力系统,可继续经营的状态下正常运行的平衡条件和后向遭受恢复一个可以接受的平衡状态。 Instability in a power system may be manifested in many different ways depending on the system configuration and operating mode. 在电力系统的不稳定可能会表现在经营方式和多种不同的方式取决于系统配置。 Traditionally, the stability problem has been one of maintaining synchronous operation. Since power systems rely on synchronous machines for generation of electrical power, a necessary condition for satisfactory system operation is that all synchronous machines remain in synchronism or, colloquially "in step". This aspect of stability is influenced by the dynamics of generator rotor angles and power-angle relationships, and then referred to " rotor angle stability ". 传统上,稳定性问题一直是一个保持同步运行。由于电力系统的发电电力,一个令人满意的系统运行的必要条件是,依靠同步电机同步电机都留在同步或通俗的“步骤”。这一方面是受稳定的发电机转子的动态角度和功角的关系,然后提到“转子角稳定”。

电气自动化英语论文

用于分布式在线UPS中的并联逆变器的一种无线控制器A Wireless Controller for Parallel Inverters in Distributed Online UPS SystemsJosep M. Guerrero', Luis Garcia de Vicufia", Jose Matas'*, Jaume Miret", and Miguel Castilla". Departament #Enginyeria de Sistemes, Automatica i Informhtica Industrial. Universitat Polithica de CatalunyaC. Comte d'Urgell, -Barcelona. Spain. Email: .. Departament #Enginyeria Electrbnica. Universitat Polit6cnica de CatalunyaAV. Victor BaLguer s/n. 08800I - Vilanova i la Geltrh. SpainAbsiract - In this paper, a novel controller for parallelconnectedonline-UPS inverters without control wireinterconnections is presented. The wireless control technique isbased on the well-known droop method, which consists inintroducing P-oand Q-V schemes into the inverters, in order toshare properly the power drawn to the loads. The droop methodhas been widely used in applications of load sharing betweendifferent parallel-connected inverters. However, this methodhas several drawbacks that limited its application, such as atrade-off between output-voltage regulation and power sharingaccuracy, slow transient response, and frequency and phasedeviation. This last disadvantage makes impracticable themethod in online-UPS systems, since in this case every modulemust be in phase with the utility ac mains. To overcome theselimitations, we propose a novel control scheme, endowing to theparalleled-UPS system a proper transient response, strictlyfrequency and phase synchronization with the ac mains, andexcellent power sharing. Simulation and experimental resultsare reported confirming the validity of the proposed . INTRODUCTIONThe parallel operation of distributed Uninterruptible PowerSupplies (UPS) is presented as a suitable solution to supplycritical and sensitive loads, when high reliability and poweravailability are required. In the last years, many controlschemes for parallel-connected inverters has been raised,which are derived from parallel-schemes of dc-dc converters[I], such as the master-slave control [2], or the democraticcontrol [3]. In contrast, novel control schemes have beenappeared recently, such as the chain-structure control [4], orthe distributed control [ 5 ] . However, all these schemes needcontrol interconnections between modules and, hence, thereliability of the system is reduced since they can be a sourceof noise and failures. Moreover, these communication wireslimited the physical situation ofthe modules [6].In this sense, several control techniques has been proposedwithout control interconnections, such as the droop this method, the control loop achieves good power sharingmaking tight adjustments over the output voltage frequencyand amplitude of the inverter, with the objective tocompensate the active and reactive power unbalances [7].This concept is derived from the power system theory, inwhich the frequency of a generator drops when the powerdrawn to the utility line increases [8].0-7803-7906-3/03/$ 02003 IEEE. 1637However, this control approach has an inherent trade-offbetween voltage regulation and power sharing. In addition,this method exhibits slow dynamic-response, since it requireslow-pass filters to calculate the average value of the activeand reactive power. Hence, the stability and the dynamics ofthe whole system are hardly influenced by the characteristicsof these filters and by the value of the droop coefficients,which are bounded by the maximum allowed deviations ofthe output voltage amplitude and , when active power increases, the droopcharacteristic causes a frequency deviation from the nominalvalue and, consequently, it results in a variable phasedifference between the mains and the inverter output fact can be a problem when the bypass switch mustconnect the utility line directly to the critical bus in stead ofits phase difference. In [9], two possibilities are presented inorder to achieve phase synchronization for parallel lineinteractiveUPS systems. The first one is to locate a particularmodule near the bypass switch, which must to synchronizethe output voltage to the mains while supporting overloadcondition before switch on. The second possibility is to waitfor the instant when phase matching is produced to connectthe , the mentioned two folds cannot be applied to aparallel online-UPS system, since maximum transfer timeought to be less than a % of line period, and all the modulesmust be always synchronized with the mains when it ispresent. Hence, the modules should be prepared to transferdirectly the energy from the mains to the critical bus in caseof overload or failure [lo].In our previous works [11][12], we proposed differentcontrol schemes to overcome several limitations of theconventional droop method. However, these controllers bythemselves are inappropriate to apply to a parallel online-UPS system. In this paper, a novel wireless control scheme isproposed to parallel different online UPS modules with highperformance and restricted requirements. The controllerprovides: 1) proper transient response; 2) power sharingaccuracy; 3) stable frequency operation; and 4) good phasematching between the output-voltage and the utility , this new approach is especially suitable for paralleled-UPS systems with true redundancy, high reliability andpower availability. Simulation and experimental results arereported, confirming the validity of this control . 1. Equivalenl cimuif ofan invener connecled 10 a bust"Fig. 2. P-odraop . REVlEW OF THE CONVENTIONAL DROOP METHODFig. 1 shows the equivalent circuit of an inverter connectedto a common bus through coupled impedance. When thisimpedance is inductive, the active and reactive powers drawnto the load can be expressed asEVcosQ - V2 Q=where Xis the output reactance of an inverter; Q is the phaseangle between the output voltage of the inverter and thevoltage of the common bus; E and V are the amplitude of theoutput voltage of the inverter and the bus voltage, the above equations it can be derived that the activepower P is predominately dependent on the power angle Q,while the reactive power Q mostly depends on the outputvoltageamplitude. Consequently, most of wireless-control ofparalleled-inverters uses the conventional droop method,which introduces the following droops in the amplitude Eand the frequency U of the inverter output voltageu = w -mP (3)E = E ' - n Q , (4)being W* and E' the output voltage frequency and amplitudeat no load, respectively; m and n are the droop coefficientsfor the frequency and amplitude, , a coupled inductance is needed between theinverter output and the critical bus that fixes the outputimpedance, in order to ensure a proper power flow. However,it is bulky and increase:; the size and the cost of the UPSmodules. In addition, tho output voltage is highly distortedwhen supplying nonlinezr loads since the output impedanceis a pure is well known that if droop coefficients are increased,then good power sharing is achieved at the expense ofdegrading the voltage regulation (see Fig. 2).The inherent trade-off of this scheme restricts thementioned coefficients, which can be a serious limitation interms of transient response, power sharing accuracy, andsystem the other hand, lo carry out the droop functions,expressed by (3) and (4), it is necessary to calculate theaverage value over one line-cycle of the output active andreactive instantaneous power. This can be implemented bymeans of low pass filters with a smaller bandwidth than thatof the closed-loop inverter. Consequently, the powercalculation filters and droop coefficients determine, to a largeextent, the dynamics and the stability of the paralleledinvertersystem [ conclusion, the droop method has several intrinsicproblems to be applied a wireless paralleled-system ofonline UPS, which can he summed-up as follows:Static trade-off between the output-voltage regulation(frequency and amplitude) and the power-sharingaccuracy (active an4d reactive).2) Limited transient response. The system dynamicsdepends on the power-calculation filter characteristics,the droop coefficients, and the output of ac mains synchronization. The frequency andphase deviations, due to the frequency droop, makeimpracticable this method to a parallel-connectedonline UPS system, in which every UPS should becontinuously synchronized to the public ac )3)111. PROPOSED CONTROL FOR PARALLEL ONLINE UPSINVERTERSIn this work, we will try to overcome the above limitationsand to synthesize a novel control strategy withoutcommunication wires that could be appropriate to highperformanceparalleled industrial UPS. The objective is toconnect online UPS inverters in parallel without usingcontrol interconnections. This kind of systems, also namedinverter-preferred, should be continuously synchronized tothe utility line. When an overload or an inverter failureoccurs, a static bypass switch may connect the input line tothe load, bypassing the inve:rter [14][15].Fig. 3 shows the general diagram of a distributed onlineUPS system. This system consists of two buses: the utilitybus, which is connected lo the public ac mains; and thesecure bus, connected to the distributed critical loads. Theinterface between these buses is based on a number of onlineUPS modules connected in parallel, which providescontinuously power to the: loads [16]. The UPS modulesinclude a rectifier, a set of batteries, an inverter, and a staticbypass ac mainsutility busI I Ij distributed loads !Fig. 3. Online distributed UPS /I 4(4Fig. 4. Operation modes of an online UPS.(a) Normal operation. (b) Bypass operation. (c) Mains failureThe main operation modes of a distributed online UPS1) Normal operation: The power flows to the load, fromthe utility through the distributed UPS ) Mains failure: When the public ac mains fails, theUPS inverters supply the power to the loads, from thebatteries, without operation: When an overload situation occurs,the bypass switch must connect the critical busdirectly to the ac mains, in order to guarantee thecontinuous supply of the loads, avoiding the damageof the UPS this reason, the output-voltage waveform should besynchronized to the mains, when this last is are listed below (see Fig. 5):3)Nevertheless, as we state before, the conventional droopmethod can not satisfy the need for synchronization with theutility, due to the frequency variation of the inverters, whichprovokes a phase obtain the required performance, we present a transientP-w droop without frequency-deviation in steady-state,proposed previously by OUT in [ 111w=o -mP (5)where is the active power signal without the dccomponent,which is done by. -I t -1sP= p ,( s + t - ' ) ( s + o , )being zthe time constant of the transient droop transient droop function ensures a stable frequencyregulation under steady-state conditions, and 'at the sametime, achieves active power balance by adjusting thefrequency of the modules during a load transient. Besides, toadjust the phase of the modules we propose an additionalsynchronizing loop, yieldingo=w'-m%k,A$, (7)where A$ is the phase difference between the inverter and themains; and k, is the proportional constant of the frequencyadjust. The steady-state frequency reference w* can beobtained by measuring the utility line second term of the previous equality trends to zero insteady state, leading tow = w' - k4($ -@'), (8)being $and $* the phase angles of the output voltage inverterand the utility mains, into account that w = d $ / d t , we can obtain thenext differential equation, which is stable fork, positived$ *dt dt- + km$ = - + k,$' . (9)Thus, when phase difference increases, frequency willdecrease slightly and, hence, all :he UPS modules will besynchronized with the utility, while sharing the power drawnto the . CONTROLLIEMRP LEMENTATIONFig. 5 depicts the block diagram of the proposedcontroller. The average active power P , without the dccomponent, can be obtained by means of multiplying theoutput voltage by the output current, and filtering the product........................................................................................io",.LSj'nchronirorion loop.......................................................................................Fig. 5. Block diagram of the proposed a band-pass filter. In a similar way, the averagereactive power is obtained, hut in this case the output-voltagemust be delayed 90 degrees, and using a low-pass order to adjust the output voltage frequency, equation(7) is implemented, which corresponds to the frequencymains drooped by two transient-terms: the transient activepower signal term; and the phase difference term, whichis added in order to synchronize the output voltage with theac mains, in a phase-locked loop (PLL) fashion. The outputvoltageamplitude is regulated by using the conventionaldroop method (4).Finally, the physical coupled inductance can be avoided byusing a virtual inductor [17]. This concept consists inemulated an inductance behavior, by drooping the outputvoltage proportionally to the time derivative of the outputcurrent. However, when supplying nonlinear loads, the highordercurrent-harmonics can increase too much the outputvoltageTHD. This can be easily solved by using a high-passfilter instead of a pure-derivative term of the output current,which is useful to share linear and nonlinear loads [I 1][12].Furthermore, the proper design of this output inductance canreduce, to a large extent, the unbalance line-impedanceimpact over the power sharing . SIMULATION AND EXPERIMENTARELS ULTSThe proposed control scheme, (4) and (7), was simulatedwith the parameters listed in Table 1 and the scheme shownin Fig. 6, for a two paralleled inverters system. Thecoefficients m, n, T, and kv were chosen to ensure stability,proper transient response and good phase matching. Fig. 7shows the waveforms of the frequency, circulating currents,phase difference between the modules and the utility line,and the evolution of the active and reactive powers. Note theexcellent synchronization between the modules and theACmiiinr 4 j. ...L...... ..........................B...u...n...... ................................... iFig. 6. Parallel operation oftwa online UPS modules,mains, and, at the same time, the good power sharingobtained. This characteristik let us to apply the controller tothe online UPS paralleled I-kVA UPS modules were built and tested in order toshow the validity of the proposed approach. Each UPSinverter consisted of a single-phase IGBT full-bridge with aswitching frequency of 20 kHz and an LC output filter, withthe following parameters: 1. = 1 mH, C = 20 WF, Vi" = 400V,v, = 220 V, I50 Hz. The controllers of these inverters werebased on three loops: an inner current-loop, an outer PIcontroller that ensures voltage regulation, and the loadsharingcontroller, based on (4) and (7). The last controllerwas implemented by means of a TMS320LF2407A, fixedpoint40 MHz digital sigrial processor (DSP) from TexasInstruments (see Fig. 8), using the parameters listed in TableI. The DSP-controller also includes a PLL block in order tosynchronize the inverter with the common bus. When thisoccurs, the static bypass switch is tumed on, and the droopbasedcontrol is 7 Wa\cfc)rms for , ;mnectcd in parallel. rpchrontred io Ihc ac mdnl.(a) Frequencics ufhoth UPS (b) Clrculattng currcni among modulcs. (CJ Phmc d!Nercn;: betucen ihc UPS a#>dth e ai mum(d) Ikiril uf the phze diNmncc (e) md (0 Activc and rcactlw pouerr "I ooih UPSNote that the iimc-acs arc deliheratcly JiNercni due in thc disiinct timuion*uni) ofthe \ THE PARALLELESDYS Order I IFilter Cut-off Frequency I 0, I 10 I ragsFig. 8 shows the output-current transient response of theUPS inverters. First, the two UPS are operating in parallelwithout load. Notice that a small reactive current is circlingbetween the modules, due to the measurement , a nonlinear load, with a crest factor of 3, is connectedsuddenly. This result shows the good dynamics and loadsharingof the paralleled system when sharing a . 8. Output current for the two paralleled UPS, during the connection of Bcommon nonlinear load with a crest factor of 3. (Axis-x: 20 mddiv. Axis-y:5 Mdiv.).VI. CONCLUSIONSIn this paper, a novel load-sharing controller for parallelconnectedonline UPS systems, was proposed. The controlleris based on the droop method, which avoids the use ofcontrol interconnections. In a sharp contrast with theconventional droop method, the controller presented is ableto keep the output-voltage frequency and phase strictlysynchronized with the utility ac mains, while maintaininggood load sharing for linear and nonlinear loads. This fact letus to extend the droop method to paralleled online the other hand, the proposed controller emulates aspecial kind of impedance, avoiding the use of a physicalcoupled inductance. results reported here show theeffectiveness of the proposed approach.

Control of Parallel Inverters in Distributed AC Power Systems with Consideration of Line Impedance Effect在分布式交流电力系统中考虑连线阻抗影响时的并联逆变器控制 论文发到你的邮箱了

电气工程:1Electrical Engineering My decision to pursue graduate study in the United States is underscored by my desire to be a part of the graduate program at your institution. Purdue University offers the flexibility needed for such a vast and rapidly changing field. The research facilities and the faculty at the university are par excellent. Communications is an industry that has changed our lives. In a very short period it has changed the way we have looked at things since centuries. It is one industry that is going to shape our future for centuries to come. Hence my desire to do masters in electrical engineering with communications as my major. My interest in electronics blossomed during my high school years. It was the time when technology had begun to make an impact on the lives of people in India. Hence engineering with electronics as my major was the first choice for my undergraduate studies. Right since the beginning of my undergraduate study electronics is a subject that has fascinated me with its power of applications. The subjects that I have studied include Linear Electronics, Digital Electronics. These laid the foundation for my courses in Electronic Communication & Communication Systems at a later stage. My undergraduate studies already focus on the communications aspect of electronics. A masters degree in electrical engineering with communications as major field is the next logical step. For the past four months I have been working as a project trainee at the Indian Institute for Advanced Electronics. I am working on the design and development of a "PC Controlled Digital Serial Data Generator". This short stint has given me invaluable practical experience. It has given me the confidence to pursue a masters degree and also kindled a desire to do research. During the course of my work at IIAE, I have come across several scientists. Most of them work in different areas of communications. Interactions with them have made me realize the vastness and the scope of communications. My discussions with them convinced me that specializing in communications will suit me very well. The subject of research which interests me very much is spread spectrum communication systems. Coding theory and combinations is another research subject which arouses my curiosity. The subject Communication Theory which I am studying at present introduces these topics in theory. I am eager to find out more about the applications of coding theory to spread spectrum communication systems. In addition I have been a student member of the IEEE (Institute of Electrical and Electronics Engineers, Inc.) for the past three years. Through its workshops/seminars and publications like the 'The Spectrum' it has exposed me to a lot of emerging technologies in the field of communications. It is a strong belief in my family that the American education system has the best to offer in the whole world. This belief arises out of the experience that my parents had when they did their Masters of Science in the University of Pennsylvania during the years 1967-69. If I can get an opportunity to be a part of that intellectually stimulating environment, I am sure my talents will be put to optimal use. India is a developing country with an enormous potential in the information technology business. To serve the needs of this developing industry and more important its vast population, communications is going to become of utmost importance. Thus conditions here are very conducive to supplement my aspirations when I return after completing my graduate studies. 2Electrical Engineering As a graduate student, I will undertake research and coursework in Electrical Engineering to enhance my competencies in this field. I intend to complete my master's degree in order to pursue my doctorate. The research that I am most interested in pursuing at Northeastern University surrounds the optical properties of MEMS devices, and the development of substrate-based fast electro-optical interfaces. My interest in this area stems from my undergraduate study in MEMs development for tri-axial accelerometers. Engineering has been a key interest of mine since childhood. While still in grade school I enjoyed listening to my father, an electrical engineer, teach me about advances in technology, and was always eager to hear more. I was introduced to my first computer at the age of five, and have loved interacting with them ever since. My decision to study engineering as a career was no surprise to those who knew me. In college I found that I was always studying something I enjoyed. I believe it is because I enjoy my life and my work that I have been successful. Spending hours in the laboratory is not something that I dread, but instead I take pride in my work and its successful completion. One example of this that is still fresh in my mind is the successful design of a fully functional microprocessor in the Xilinx environment. All told, the project took over 150 hours of each design-team member's time. However, I did not look on it as a drain, but an experience for learning and a focus for my professional and technical development. When we finished the project we felt the sense of worth and pride in completion of a task that was once above our level of knowledge. Pursuing a graduate degree in the research field I have chosen also feels like a challenge, and I know that study will frustrate me at times. However, I feel that my commitment to learning will not be swayed. I feel confident in my ability to be creative in my perspective, and to persevere. My ultimate goal is to be an innovator in the field I have chosen to study. Professionalism and creativity are my most valued strengths. At the heart of my interest is the advancement of man in concert with his environment. My personal philosophy of life will matter greatly during my study and after its completion. That is why I devote time to reflection on my goals and their implications. Money has never been a motivator for my work, nor do I think it will be in the future. However, as a professional and a graduate, I realize that my earning potential will be significant. That is why I also commit myself to charity and fairness. In the past I have been a member of the Boy Scouts of America, and have achieved the rank of Eagle Scout. In the course of my experience in that organization, I learned respect and moral value. Now, as a member of the IEEE, I value my professional standing and its commensurate moral implications. Ethics in engineering is as important as technical skill, and as such I intend to uphold my own ethical obligations to the best of my ability. As a Northeastern University student, I would commit all that I have to offer to my study. I intend to pursue research in MEMS technology. At Rowan University as an undergraduate student I have already conducted some research and development of MEMS sensors for military applications, resulting in publication. An article, written by myself and my project member David Bowen and edited by our advisor Dr. Robert Krchnavek, was published in the NAVSEA Intelligent Ships Symposium Proceedings of 2001. The paper was titled "Designing a 3-Axis, Monolithic, MEMS-Based Accelerometer" and was under review for endorsement by the US Navy's NAVSEA facility in Philadelphia during that year. Building on my past success in MEMs design, I hope to advance my understanding. Through research at the graduate level, it is my hope to become familiar with, and innovate the design of MEMs Optics in hopes of creating a reliable and practical MEMs Electro-Optical Interface for use in consumer electronics. It is my hope, that through my research, optical waveguides for intradevice communication might be realized. Finally, my intent to pursue graduate study is laid plain. Study of MEMs optics is my intended focus, and I am committed to my goal. In pursuing a doctoral degree, I have closely analyzed myself to determine the reasons for my previous successes and my goals for the future. I have found that I do and have always enjoyed engineering, and that I have a strong desire to pursue my study further. I am prepared to commit myself to that study, and achieve what I have set out to do. 3I Wish to Pursue an MS Degree in Electrical Engineering During my senior year at Purdue University, I made a decision that has impacted the entire course of my education. While my classmates were making definite decisions about their career paths, I chose to implement a five-year plan of development and growth for myself. I designed this plan in order to examine various careers that I thought might interest me, as well as to expand upon my abilities at the time. As I was attaining a BS degree in Electrical Engineering, I decided to focus primarily on fields related to the VLSI (Very Large-Scale Integrated) circuits area. My main goals were either to gain work experience or to further my education by pursuing an MS degree in Electrical Engineering (MSEE). I saw an opportunity to both work and learn through employment at Xilinx Inc. Operating as a product engineer at a successful, high-tech semiconductor company has enabled me to utilize my technical and interpersonal skills in new and challenging ways. The position has also allowed me to interact with a multitude of departments including marketing, integrated circuit (IC) design, software/CAD development, manufacturing, reliability, accounting, and sales. I thus have gained an array of experience that extended beyond the parameters of my own responsibilities. In the workplace, I rely heavily upon the interpersonal techniques I developed as a counselor in a Purdue residence hall, as well as the organizational skills I had acquired through holding various leadership positions in cultural and engineering societies. I have also cultivated an interest in high-technology marketing that has continued to grow throughout my career. My experiences with Xilinx have heightened my hunger for knowledge in the VLSI field. Two months after joining the corporation, I applied to several part-time programs in the vicinity that would allow me to acquire an MSEE degree within two to three years. San Jose State seemed an ideal choice, for its evening MSEE courses would allow me to pursue two independent, full-time positions concurrently. The San Jose program has complimented my Xilinx duties well; both demand large levels of energy and enthusiasm while guiding me to my ultimate goal a high degree of education in VLSI sciences. The resources that I poured into both endeavors have reaped many gains. I have been promoted to a Product-Yield Engineering position within Xilinx's Coarse Grain Static Memory (CGSM) Product Engineering division. My extensive coursework plays a key role in my continued success at Xilinx. Relevant classes in advanced digital and analog VLSI design, as well as sub-micron ULSI technology, have allowed me to understand more completely the workings of Xilinx, a fab-less semiconductor company that also functions as a software and hardware design, testing, and marketing center. The gains in knowledge I have made through the combination of work experience and education have indeed been exponential. The academic records of my senior year at Purdue, coupled with my MSEE coursework, are ample proof of my dedication to learning. I feel I have overcome through hard work and dedication the brief "dry phase" I underwent at Purdue during the close of my sophomore and the first semester of my junior years. My performance at that time is in no way indicative of my usual achievements; they are instead the result of urgent family difficulties that required much foreign travel and serious attention to resolve. In May, I shall graduate with an MSEE degree from San Jose well ahead of my original estimates. This early graduation with Dean's Honors is the result of my firm belief in the value of diligence, as well as my renewed determination to strive for perfection in both work and school. I am now embarking on another five-year plan, during which I hope to fulfill several specific career goals. For instance, being part of a very dynamic and results-oriented Yield team at Xilinx calls for continuous development of computational and statistical techniques. The Yield team is divided to focus on specific process/fabrication issues and process (manufacturing) optimization. My own position is an integral part of the optimization group. Speed and cost issues continue to press high technology atmospheres towards optimization, probability and stochastic processes and systems, and rigorous simulations of mathematical models. The MS in EES&OR offered at your university will grant me the statistical knowledge that is crucial for process and production optimization in a fab-less environment. In addition, product engineering requires fundamental research on mathematical models for linear and non-linear programming, as well as the utilization of efficient computer software. I continuously employ the knowledge I gained at Purdue in Operations Research and advanced mathematics courses. Yet despite the value of these classes and my high performance in them, I now require further education to best fulfill my duties. An MS in the EES&OR field, will give me knowledge that is invaluable to a career in product development, project management and strategic planning. The program will allow me to improve decision-making skills in operations, strategy, and policy issues. I will strengthen my theory and application in countless areas:continuous, discrete, numerical optimization; probabilistic and stochastic processes; dynamic systems and simulation; economics, finance, and investment; decision analysis; dynamic programming and planning under uncertainty; operations and service; corporate and individual strategy; and private and public policy , the EES&OR program will not only help me to excel at Xilinx but will also further any future career. My commitment to work and education over the last three years proves that I will pursue this MS with enthusiasm and technical edge that the MS would provide is I will be working while attending Stanford, I shall mingle education with practical application, and bring to the table interesting problems from my experience and past education. Technical challenges encountered through projects in the EES&OR program will provide motivation and opportunity for methodological data collection, processing and presentation issues presented are integral to my future goals, and the management challenges raised will provide invaluable experience for professional practice. This will in turn build a solid foundation for a life-long career that can overcome any problem in decision-making. In addition, taking courses in economics, finance, and investment analysis will allow much growth of knowledge in investment issues in different industries. The EES&OR program thus appeals not only to my engineering, economics, science and mathematical background, but will compliment my technical abilities with the conceptual frameworks needed to analyze problems in operations, production, strategic planning, and marketing in the realm of emiconductor/IC/engineering systems. I feel that I am prepared to meet the challenges of the curriculum. My coursework in intermediate microeconomics and macroeconomics, international trade, operations research, linear algebra, and probabilistic methods, along with my extensive calculus background, will allow me to function well within the program. My long-term career goals include a move into marketing and product management. I believe that attaining this MS degree is the cornerstone to achieving my goals. It will give me the academic background necessary to succeed in product development, project management, and strategic planning. It will improve decision-making skills necessary for optimizing performance. The integration of two excellent programs in Economics Systems and Operations Research thus suits my current position and ties in with future goals perfectly by improving decision making in operations, strategy and policy. At present I desire to continue at Xilinx; attending a program that provides the flexibility and convenience of the SITN, is therefore imperative. Hence, being at Stanford as an HCP student alsoattracts me. I believe that Stanford is the best environment for me to achieve my goals while gaining exposure to and experience with a diverse student body and faculty. It is my belief that one continues to learn throughout one's life, and the most effective method of learning is through interaction with 's diversity offers an environment for learning, both inside and outside the classroom. I hope to share my varied knowledge with my classmates and to take from them a new understanding of topics that are foreign to me. I believe that no other school provides students with the combination of education and environment offered by Stanford. Its outstanding academic reputation, mingled with its diverse environment and thriving Bay Area location, creates an opportunity for growth that is second to none. I have many ambitions for myself as I embark on this stage of my life. I believe that an education from Stanford will provide invaluable experiences and skills that will allow me to become a successful and innovative business leader in the new millennium. 4Research Department of Biomedical Engineering is designed to research on and solve the bio-electrical and biomagnetic engineering problems in the field of biology and medicine with the aid of engineering principles and methods. Its main task is to explain, from perspective view of engineering, the biological and pathologic processes of the living organisms, especially human beings, and research on and develop the related medical devices and life science devices. Its research directions mainly include the modeling and emulation of the biological system, testing and analysis of biomedical signals, the biomedical imaging and processing , the biological effects of electromagnetic field and the development of artificial organs and medical devices, Bioengineering With the development and integration of electromagnetism, biology and medicine, biological electromagnetism exercises more and more influence on human life and health, environment protection and biological engineering. The research on electromagnetic bioengineering is a new research direction for IEECAS, mainly including research on rules of mutual influence between electromagnetic field and life matter, biological electromagnetic effect and its application in biology, medicine and medical equipment. At present, the research team has set up labs such as biological electromagnetic environment lab, biological electromagnetic signals & electromagnetic property testing lab, electromagnetic biological effect testing lab and biological electromagnetic simulation lab. It is equipped with various electrical and magnetic fields for experiments of biological electromagnetic effects, simulation software and biochemical experiment equipment. With such equipments, it can do biological electromagnetic experiments on live animals and detached live cells, detect, analyze and process the very weak biological electromagnetic signals, analyze and test live organism or detached cell under electromagnetic interaction with biochemical quantitative methods. The recent research work focuses on the effects 方向对不对,不知你要哪种,告诉我,我再接着找多的话email you

说实话毕业论文弄好的话还是比较烦人的,准备了两个星期也没弄出来,题目全被否决了,老师又不给现成的题目,选题都麻烦的不得了,最后直接找VIP英语论文的帮我的,值得庆幸的是我还好找VIP英语论文的老师帮了忙,还辅导我熟悉了论文,还有答辩的问题,老师也没发现有什么问题,还是顺利的通过了,嘿嘿vwqbjuexwx

英语电教论文题目

关于英语专业的论文题目,学术堂整理了十五个好写的,供大家参考:1.《红字》中海丝特 白兰不理智的一面(The Irrational Side of Hester Prynne of The Scarlet Letter)2. 《董贝父子》中的矛盾冲突(The Conflict in Donbey and Son)3. 论文化不同对联想意义及翻译的影响(On Influence of Cultural Differences on Associative Meanings and Translation)4. 美国教育的衰弱(The Drop of American Education)5. 19世纪欧洲移民对美国工业化的积极影响(The Positive Impacts of European Immigration on American Industrialization in the 19th Century。6. 朱丽叶之人物分析(Character Studies in Juliet)7. 主述理论在文学中的运用(The Application of the Thematic Theory in Literature)8. 语用学中的会话含义理论(Conversational Implicature Theory in Pragmatics)9. 英语语音简析及对提高初学者口语的指导(A Brief Analysis of English Phonetics as well as a Guide to Improve Learners’ Oral English)10. 比较两种对于哈姆雷特复仇的评论(Comparison on Two Kinds of Comments on Hamlet’s Revenge)11. 英语语言中的性别歧视 (Sexism in English Language)12. 英语的学与教 (English Learning and Teaching)13. 由美国2004年总统选举所想到的 (More than 2004 Presidential Election)14. 论腐朽世界中的纯洁品质——关于《雾都孤儿》的赏析 (The Purity in a Corrupt World—An Analysis of Oliver Twister)15. 论理智与情感之关系——对《理智与情感》的人物分析

毕业 时期,英语专业论文写作成为热门,面对导师的严格要求,要想顺利通过论文答辩,拟定 一个优秀的英语专业论文题目必不可少。下面我给大家带来英语专业优秀论文题目_英语专业毕业论文选题,希望能帮助到大家!

↓↓↓点击获取更多"论文"相关内容↓↓↓

★ 英语专业毕业论文题目 ★

英语教学法论文题目 ★

★ 毕业论文答辩发言稿 ★

★ 大学毕业论文评语 ★

英语本科论文题目

1、汉语对 英语写作 词汇的负迁移作用

2、《美国悲剧》的消费 文化 分析

3、从二语习得角度对比分析英语习语学习中的翻译导向模式与文化导向模式

4、礼貌原则在英文商务信函中的应用

5、南方哥特式小说特征在《心是孤独的猎手》中的体现

6、城市公示语的汉译英探索

7、归化与异化理论在汉语 歇后语 翻译中的应用

8、《婚礼的成员》中弗兰淇?亚当斯双性同体现象的研究

9、论《喜福会》中的文化冲突与共存

10、 广告 语言模糊性的语用研究

11、利用美剧进行 英语听力 自主学习

12、大学生 英语口语 学习动机研究

13、从文化视角看中国白酒广告

14、从功能翻译看《围城》英译本中文化信息的传递

15、对《达罗卫夫人》中克莱丽莎和塞普提默斯形象的研究

16、公示语汉译英错误及对策探析

17、探究美国安利公司的 企业文化 :基于其网站内容的文本分析

18、运用写长法促进英语写作能力的提高

19、中美“面子文化”对比分析

20、英汉恭维语和告别语的对比分析

21、英汉爱情隐喻的对比研究

22、新闻英语汉译的翻译技巧浅析

23、中美家庭文化比较

24、从文化的角度浅析中美企业 人力资源管理 的差异

25、华中农业大学英语专业学生高级 英语学习 状况调查

26、跨文化交际中中西方馈赠礼仪刍议

27、解读《双城记》中的人道主义思想

28、论《了不起的盖茨比》中的消费主义

29、从戴姆勒克莱斯勒事件看文化因素对跨国企业合并的影响

30、对中美离岸外包过程中跨文化交际案例的分析

31、从"老友记"中看合作原则在英语称赞语及其回应语中的应用

32、浅论美国文化与美语词汇 98 英汉植物词语联想意义的跨文化对比

33、一个被忽视的“准则英雄”--论《永别了,武器》中的女主人公凯瑟琳

34、从文化的角度看中美商务谈判风格的差异

35、英语娱乐新闻的文体特点

36、自然主义视野中《儿子与情人》主人公保罗的性格分析

37、美国价值观对《老友记》中主要角色的影响

38、中西文化中礼貌语的对比研究

39、广告双关语的作用

40、中美交流思维模式的差异

41、浅析《灶神之妻》中的多元文化主义

42、合作原则在英语商务信函中的应用

43、透过“超女现象” 反思 美国大众文化对中国传统精英文化的影响

44、中西方文化差异与英语教学

45、中西方文化差异及其对科学技术发展的影响

46、中西方文化差异对翻译的影响

47、中西方文化差异点滴

48、中西方送礼与受礼文化之差异

49、中西方思维差异与写作风格对比分析

50、中西方企业理财环境的差异分析

51、中西方广告创意水平差异刍议

52、中西方管理者收购差异及其在中国实施的建议

53、中西方古代哲学思维的差异及对音乐的影响

54、中西方古代对天体变速运动的认识差异

55、试论中西文化差异与对外汉语教学

56、求职网络的性别差异:以失业群体为例---兼论社会资本的中西差

57、浅议中西古典园林的起源及差异

58、谈中西文化差异与翻译

59、浅谈中西绘画的差异

60、中西选举制度的差异及其相关性

优秀 商务英语 本科论文题目

1、商务英语的特点及翻译技巧

2、商务英语函电翻译技巧

3、商务英语学习中跨文化交际能力的培养

4、国际商务谈判中应注意的文化因素

5、商务谈判中的跨文化冲突

6、试论普通英语与商务英语的差异

7、商务谈判中的语言艺术

8、试论文化因素对商务活动的作用

9、电子商务对国际贸易的影响及对策

10、从文化视角比较中英文广告语言

11、国际商务英语信函话语分析

12、经贸英语的语言特点

13、浅论经贸英语的文体风格

14、经贸英语的语体特点与翻译

15、英语在商务活动中的作用

16、经贸英语在中国加入WTO后的新趋势

17、商务英语学习中的文化习得

18、浅谈如何有效学习经贸英语词汇

19、文化习俗与跨文化交际学对经贸英语学习的影响

20、商务英语专业人才培养模式改革与实践

21、试论文化导入在商务英语教学中的作用

22、中英文广告传播之语言特色及跨文化问题

23、商品译文的品牌形象对商务英语翻译教学的启示

24、试论商务英语写作的简洁礼貌原则及写作技巧

25、现代商务英语书信的写作风格和语法特点

26、从修辞方面浅探商务英语的语言特色

27、商务英语书面语篇词汇特点分析

28、从语境角度分析英汉互译中语言的得体

29、商务英语函电的文本特征

30、经贸英语合同的语言特色

31、商务合同英语的文体特征分析

32、经贸英语信函话语基调分析

33、中西文化差异与交际障碍

34、试谈语言交际中的文化差异

35、文化差异对经贸英语翻译的影响

36、经贸英汉互译中的矛盾与对策

37、经贸英语词汇特点与翻译

38、根据词义和逻辑关系谈涉外经济合同的翻译

39、商业 英文书信 所使用的 词语分类 浅析

40、一些普通词汇在经贸英语中的特殊意义及翻译

41、常用名词在经贸英语中的语义变化特征

42、浅谈经贸英语会话中的言语交际技巧

43、论国际经贸活动的语言交际技巧

44、跨文化交际中的非言语交际体系研究

45、文化差异对国际商务的影响

46、国际商务谈判中的文化差异

47、试论广告英语的语言特点

48、关于网络广告英语与报刊杂志广告英语词汇比较

49、商号、商标、公司名称等的翻译?

50、商标名称的美学特征及汉语商标名称的翻译

优秀英语专业毕业论文题目

1、航海英语教学中培养跨文化交际能力的意义

2、医学检验专业双语教学的思考

3、“微时代”下的军事 医学英语 微课教学研究

4、浅析中医五行学说一些术语的英译

5、传统美学视角下的 散文 翻译中情感美的传递

6、目的论视角下的文学翻译策略研究——以《红楼梦》两个英文译本为例

7、茅盾文学奖获奖作品的翻译研究价值——以《穆斯林的葬礼》为例

8、《长恨歌》中认知隐喻的翻译

9、高罗佩《武则天四大奇案》英译之诗学探析

10、诗歌翻译中的“意、音、形”之美——唐诗《江雪》四种英译的对比分析

11、《红楼梦》角色姓名“归化”译法探究

12、论戏剧翻译的可表演性原则

13、《越人歌》的审美再现——从语内翻译到语际翻译

14、早期西方汉学家英译《聊斋志异》中的跨文化操纵

15、“西语哲”视域下的英汉 句子 形态的差异及启示

16、中英文日常交际用语的差异探析

17、网络环境下英语教学模式改革初探

18、基于图式理论的高职商务英语专业听力作业设计研究

19、翻译工作坊教学模式研究

20、高校英语教学中目的语文化的渗透和本族语文化的回归研究

21、新课改下高校 教育 硕士(英语)培养模式的探索与反思

22、中小学英语衔接工作的探索与实践

23、信息技术与高校英语教学整合研究

24、探究基于计算机辅助模式的大学英语课堂教学情感因素

25、开元数字化平台大学英语教学模式研究——基于建构主义理论

26、非英语专业大学英语教师课堂话语的互动特征分析——以实习教师课堂为例

27、西部农村中学英语写作在线同伴反馈和教师反馈的对比研究

28、基于网络的高职英语自主学习生态化研究'))));基于网络的高职英语自主学习生态化研究

29、小学英语课堂激励 方法 的应用策略研究

30、高中英语以读促写的“读写一体化”教学模式探究

31、研究生英语学术论文语体特征多维度对比分析

32、MOOC下的中国职业英语教育改革探索与应对

33、初中英语教学策略初探

34、西北地区初中生英语自主学习浅见

35、浅议小学英语教学中的词汇教学

36、试析模块教学法在中职酒店英语教学中的应用

37、英语词汇增长路线图理论研究

38、语法及语法教学:从知识到技能的转变——D.拉森-弗里曼的语法观及语法教学刍议

39、周作人的直译观及其嬗变

40、新教学环境下的英语专业第二课堂建设分析

41、论翻转课堂模式下英语课堂提问策略的转变

42、支架式教学模式对中职英语教学的启示

43、基于“输出驱动假设”的警务英语教学策略研究

44、跨文化交际意识对商务英语翻译的影响

45、从目的论视角浅谈英文电影片名中译

46、浅析英语新闻标题的翻译

47、论《论语》英译中的语用充实

48、翻译目的论视角下的汉语典籍英译——以《论语》英译为例

49、英美影视作品中“神翻译”的定义及方法探析

50、电影片名翻译的跨文化解读

51、“讨论”与“演讲”相结合的大学英语课堂教学实践

52、单词 配对 法对双语词汇翻译的影响

53、素质教育视野下农村中小学教师心理资本开发与学生英语学习的关系

54、硕士研究生公共英语课程的元认知策略

55、语境中语块的加工及其影响因素——以中级汉语学习者为例

56、激发和培养学生英语学习兴趣之管见

57、浅谈如何提高小学英语教学质量

58、如何更好地利用多媒体辅助英语教学

59、平行文本视域下的企业简介汉英翻译策略研究

60、文化差异的导入对大学英语教学的意义

英语专业优秀论文题目相关 文章 :

★ 英语专业优秀论文题目

★ 优秀英语毕业论文题目参考

★ 英语专业方向的论文题目

★ 本科英语专业毕业论文题目

★ 英语专业毕业论文选题文化

★ 英语专业文化类方面毕业论文题目选题

★ 本科英语专业毕业论文题目选题

★ 2021英语专业各方向论文题目

英语教学论文题目选题参考整理

★ 英语专业不同方向的毕业论文题目

主要是教学方法的

学术堂整理了9个英语教学毕业论文题目,并提供了写作思路的指导:1、初中英语课堂教学的开放性探究写作提示-写作思路:文章通过与自己多年的教学经验相结合,来谈谈中学英语课堂实践,研究中学英语课堂的开放性活动,为学生构建一个自主、自由、活跃的课堂生活。2、浅析初中英语教学中学生主动性的培养写作提示-写作思路:通过中学生学习的主体作用的发挥,可以让学生在学习的道路上取得事半功倍的学习效果。如何让它充分发挥?首先要建立协调、和谐、互补的师生关系,激发学生的主体意识,其次要尝试探尝试探究性教学,发展学生主体能力。3、浅析初中英语学困生的成因及其转化策略写作提示-写作思路:初中阶段是英语学习的重要时期,由于多方面原因,学生中途掉队的现象十分普遍。本文根据学困生的成因,针对性地提出了心理、学法、习惯等方面有效促进了学困生的转化。4、浅谈打造初中英语有效课堂教学的策略写作提示-写作思路:有效课堂就是课堂达到教师教得有效,学生学得有效,学生对知识的掌握和灵活运用达到有效,它真正实现了教学效益的最大化。教师教得不再那么累了,学生学得不再那么苦了,而学习效率却真正提高了。实施有效课堂让笔者更新了教学理念,转变了教育思想,提高了教学艺术水平。重新审视以前的教学工作,反思过去的教学行为,笔者深切感受到了有效课堂的优质效果。那么如何打造有效的课堂教学呢?笔者认为应从下面加个方面做起。5、有声思维法在初中英语阅读教学中的优势及运用写作提示-写作思路:一、前言根据克拉申(1985)所创立的二语习得输入假说理论可知,语言输入在二语或外语学习者的语言学习过程中占有极其重要的地位。对初中生而言,他们正处于英语学习的初级阶段,需要大量的英语语料的输入。输入方式有两种听力与阅读。刘润清(2002)为代表的北派观点主张中国英语教学应以“听说为本、读写并重”,而南派英语教学的代表董亚芬(2003)则主张“中国英语教学应始终以读写为本”。6、提高我县初中英语教学质量的建议写作提示-写作思路:黔西县是毕节试验区的东大门和贵阳市的后花园,享有“中国杜鹃花都” 的美誉,近年来,在县委、政府“科教兴县”战略的引领下,全县教育事业蒸蒸日上,特别是突破高中教育、义务教育均衡发展和中职教育方面取得长足的发展。但是,我县的教育发展中也凸显了许多亟待解决的问题。譬如,乡镇学校教师缺编问题严重,教育教学质量总体水平不高等。7、情境教学法在初中英语语法教学中的运用写作提示-写作思路:在英语教学过程中,英语语法的教学是一个很重要的部分,我们不能过分的强调语法的作用,又绝对不能忽视必要的语法学习。然而,长期以来,在传统的教学法的影响下,很多老师都是为了语法而教语法,学生往往学了语法而不知道怎么用。语法教学要改变过去满堂灌的现象,关键在于英语教师应具备语法教学交际化的意识和技巧,使语法在具体的语境中让学生得以体会,在实战中演练。8、浅析农村初中英语课堂中的合作教学写作提示-写作思路:在新课改背景下,教师应转变传统的“一言堂”的讲课方法,并要把主导者的身份转变成学生学习的引导者,逐渐使学生实现其学习的主体地位。为了适应这一转变,在农村初中英语课堂中,教师应适时搞好合作教学,使学生实现合作学习,从而最大限度地提高英语教学效率。9、初中英语课外作业创新性设计探究写作提示-写作思路:恰当的课后作业可以促进学生对所学知识的巩固,久而久之,会促使学生养成良好的学习习惯,强化英语学习观念。本文结合笔者的教学实践,从研究目前初中英语作业布置中存在的问题入手,探讨了改进初中英语作业布置的创新性策略。

电厂电气论文题目

这类的选题有很多,在这里大家可以参考一下往期的论文选题,如:高功率引述整流器的建模与仿真、直流电机闭环控制调速系统的SIMULINK软件仿真、电力系统故障录波器的实验平台开发、抽油机抽空监测及控制器的软件设计、电容器分时投切无功补偿技术在抽油机上的应用研究、油水分离罐的自动运行系统的开发、新型开关电源拓扑的PSPICE的仿真研究、配电网单相接地故障选线的仿真,等等,这类的选题有很多,大家想要了解相关信息不妨来期刊目录网看看。

可以写最新的电气技术研究,开始也不会的,还是学长给的文方网,写的《基于节能理念的建筑电气施工初探》,很快就通过了。关于电气防火安全检测工作的实践与思考浅析建筑电气的设计与安装电气二次设计中的问题与有效措施分析浅析电气自动化在电气工程中的应用创新驱动 电气新技术与能效应用“正泰杯”第六届全国电气工程师论文大赛征文通知电厂电气设备的检修与管理辽宁后仙峪镁电气石热处理改性及其磁性研究电气石改性沥青混合料路用性能电气石颜色标型特征新型材料电气石对酸性溶液中镉离子的吸附煤矿电气安全关键技术研究 优先出版《引进设备电气技术》杂志征稿启事关于民用建筑电气设计中的节能措施探讨 优先出版建筑电气工程主要能源节能技术的分析 优先出版浅谈机械电气一体化设备安装技术要点 优先出版建筑电气中照明节能设计分析 优先出版基于改进杜邦分析法的平高电气经营绩效评价加拿大电子电气产品市场准入制度浅析浅谈高等职业院校电气控制课程实践教学校园电气设备故障排查的方法与步骤变电站电气误操作的因素及防范措施贺《建筑电气》创刊三十周年工业生产中电气设备的故障及维护的探讨土建工程与电气安装工程的施工要点分析建筑电气安装工程质量保证措施研究电气石在水处理方面的应用智能建筑的电气接地舰船电气火灾用新型消烟剂的研制高压电气设备绝缘在线监测研究上海Buick轿车的电气系统探讨电气的自动化在电气工程中融合运用机床电气故障维修与电气图分析电气工程中的电气自动化技术探析机床的电气图分析与电气故障维修电气工程及自动化工程的发展前景探讨浅谈预防建筑电气安装中常见质量通病基于CATIA电气元件库的设计与实现2013年《中国电气工业100强特刊》征稿启事创新驱动 电气新技术与能效应用 “正泰杯”第六届全国电气工程师论文大赛征文通知分析电气的自动化在电气工程中的融合运用谈建筑电气安装工程常见问题及解决办法

电气技术可以写系统控制、电力电子方面的。之前也是不会弄,还是学长给的文方网,写的《桥式起重机起升机构控制改造与应用研究》,非常靠谱先进飞机电气系统汇流条控制器的设计与研制基于模糊理论的数控车床可靠性分配加工中心可信性影响度分析及增长技术研究飞机电源系统配电技术研究大型潮流能发电场的电气系统经济性分析与测试评价海上油气平台电气系统继电保护方案研究吉化化肥厂电气系统成本管理研究混合动力重型汽车电路设计及其可靠性研究基于APROS的发电厂电气仿真系统面向并行工程的数控车床可靠性研究海浪发电实验装置设计与研究高速电梯电气系统的改进核电站电气监控系统组网研究基于多智能体的8G型电力机车故障诊断系统的研制水机电耦合系统建模及其相互影响研究多组舱段质量质心测量设备关键技术研究面向可靠性概率设计的数控机床载荷谱建立方法研究中低速磁浮列车关键电气系统研究基于建设方的商业地产建筑电气设计与管理研究新型收配碴整形车的研制和改进悬臂式掘进机电液控制系统研究与仿真GKD3B型内燃机车电气系统研究配电自动化系统仿真与调试软件研究基于FMEA和重要度分析的数控车床可靠性改进设计炼油化工企业的电气管理应用研究42V汽车用永磁发电机设计与研究株洲南车时代电气城轨关键装备业务发展战略研究连续闪光锚链对焊机电气系统研究与设计碟形飞行器系统设计及其动力学模型和控制方法研究混合动力汽车42V电源系统研究

电气自控技术在工厂的应用分析、商场空调设备自动化系统节能控制研究。推荐两个好写的,1、电气自控技术在工厂的应用分析;2、商场空调设备自动化系统节能控制研究。毕业论文,按一门课程计,是普通中等专业学校、高等专科学校、本科院校、高等教育自学考试本科及研究生学历专业教育学业的最后一个环节,为对本专业学生集中进行科学研究训练而要求学生在毕业前总结性独立作业、撰写的论文。

相关百科

热门百科

首页
发表服务