首页

> 学术论文知识库

首页 学术论文知识库 问题

自然环境温度检测论文

发布时间:

自然环境温度检测论文

"幸福校园"有不少形式的论文范文,参考一下吧,希望对你可以有所帮助。第1章 绪 论 温度控制系统的发展状况近几年来,在我国以信息化带动的工业化正在蓬勃发展,温度已成为工业对象控制中一种重要的参数,任何物理变化和化学反应过程都与温度密切相关,因此温度控制是生产自动化的重要任务。对于不同生产情况和工艺要求下的温度控制,所采用的加热方式,燃料,控制方案也有所不同。例如:在食品加工、冶金工业、化工生产、电力工程、造纸行业和机械制造等诸多领域中,广泛使用的各种锅炉、加热炉、热处理炉和反应炉等;燃料有煤气、天然气、油、电等。单片微型计算机的功能不断的增强,许多高性能的新型机种应运而生。单片机以其功能强、体积小、可靠性高、造价低和开发周期短等优点,成为自动化领域和其他测控领域中广泛应用的器件,在工业生产中成为必不可少的器件。在温度控制系统中,单片机更是起到了不可替代的核心作用。像用于化工生产的智能锅炉、用于融化金属的加热炉等都广泛应用。

温度传感器原理及应用论文参考文献

温度传感器原理及应用论文参考文献,温度传感器是温度测量仪表的核心部分,是指能感受温度并转换成可用输出信号的传感器,品种繁多,也是用处比较广的工具。以下分享温度传感器原理及应用论文参考文献。

一、温度传感器工作原理–恒温器

恒温器是一种接触式温度传感器,由两种不同金属(如铝、铜、镍或钨)组成的双金属条组成。

两种金属的线性膨胀系数的差异导致它们在受热时产生机械弯曲运动。

一、温度传感器工作原理–双金属恒温器

恒温器由两种热度不同的金属背靠背粘在一起组成。当天气寒冷时,触点闭合,电流通过恒温器。当它变热时,一种金属比另一种金属膨胀得更多,粘合的双金属条向上(或向下)弯曲,打开触点,防止电流流动。

有两种主要类型的双金属条,主要基于它们在受到温度变化时的运动。有在设定温度点对电触点产生瞬时“开/关”或“关/开”类型动作的“速动”类型,以及逐渐改变其位置的较慢“蠕变”类型随着温度的变化。

速动型恒温器通常用于我们家中,用于控制烤箱、熨斗、浸入式热水箱的温度设定点,也可以在墙上找到它们来控制家庭供暖系统。

爬行器类型通常由双金属线圈或螺旋组成,随着温度的变化缓慢展开或盘绕。一般来说,爬行型双金属条对温度变化比标准的按扣开/关类型更敏感,因为条更长更薄,非常适合用于温度计和表盘等。

二、温度传感器工作原理–热敏电阻

热敏电阻通常由陶瓷材料制成,例如镀在玻璃中的镍、锰或钴的氧化物,这使得它们很容易损坏。与速动类型相比,它们的主要优势在于它们对温度、准确性和可重复性的任何变化的响应速度。

大多数热敏电阻具有负温度系数(NTC),这意味着它们的电阻随着温度的升高而降低。但是,有一些热敏电阻具有正温度系数 (PTC),并且它们的电阻随着温度的升高而增加。

热敏电阻的额定值取决于它们在室温下的电阻值(通常为 25 o C)、它们的时间常数(对温度变化作出反应的时间)以及它们相对于流过它们的电流的额定功率。与电阻一样,热敏电阻在室温下的电阻值从 10 兆欧到几欧姆不等,但出于传感目的,通常使用以千欧为单位的那些类型。

温度传感器类毕业论文文献有哪些?

1、[期刊论文]一种高稳定性双端出纤型光纤光栅温度传感器

期刊:《声学与电子工程》 | 2021 年第 002 期

摘要:针对双端出纤型光纤光栅温度传感器线性度较差、温度测量精度低的问题,文章首先对传感器内部结构进行了优化,使光纤光栅在整个温度测量区间内不受结构件热胀冷缩的应力影响,从而提升传感器的稳定性、实验验证,采用新工艺封装的.光纤光栅温度传感器在5~65°C的范围内温度精度达到0、1°C,且重复性良好,适用于自然环境下的温度传感、

关键词:光纤光栅;温度传感器;应力;测温精度

链接:、zhangqiaokeyan、com/academic-journal-cn_acoustics-electronics-engineering_thesis/0201290086379、html

2、[期刊论文]某型温度传感器防护套弯折疲劳试验的寿命研究

期刊:《环境技术》 | 2021 年第 001 期

摘要:由于动车组轴端温度传感器的大多数已达到三级修、四级修的修程,检修的数量和成本逐年增加,检修发现出现防护套破损的情况较多,需要大量更换,本文通过对温度传感器的防护套进行弯折疲劳试验,对数据结果进行统计分析,确认导致防护套弯折老化的主要原因、

关键词:防护套;破损;弯折疲劳

链接:、zhangqiaokeyan、com/academic-journal-cn_environmental-technology_thesis/0201288850019、html

3、[期刊论文]进气压力温度传感器锡晶须的分析

期刊:《机械制造》 | 2021 年第 004 期

摘要:对进气压力温度传感器的结构进行了介绍,对进气压力温度传感器产生锡晶须问题进行了分析,并在分析锡晶须生长机理的基础上提出了抑制方法、

关键词:传感器;锡晶须;分析

链接:、zhangqiaokeyan、com/academic-journal-cn_machinery_thesis/0201288850874、html

4、[期刊论文]一种具有±0、5℃精度的CMOS数字温度传感器

期刊:《电子设计工程》 | 2021 年第 001 期

摘要:该文设计了一种基于0、35μm CMOS工艺的采用双极型晶体管作为感温元件的数字温度传感器、该温度传感器主要由正温度系数电流产生电路、负温度系数电流产生电路、一阶连续时间Σ-Δ调制器、计数器和I2C总线接口等模块组成、为提高温度传感器的测量精度

该文深入分析了在不采用校准技术的情况下工艺漂移对温度传感器精度的影响,并在此基础上提出了简单的校准电路设计、根据电路仿真结果,在加入校准电路之后,温度传感器在-40~120℃温度范围内的精度可以达到±0、5℃、

关键词:数字温度传感器;CMOS工艺;双极型晶体管;校准

链接:、zhangqiaokeyan、com/academic-journal-cn_electronic-design-engineering_thesis/0201286451032、html

5、[期刊论文]柴油机冷却水温度传感器断裂故障分析

期刊:《内燃机与配件》 | 2021 年第 004 期

摘要:针对柴油机冷却水温度传感器断裂的问题,通过对该测点管路流腔进行CFD仿真计算,分析了流腔内部速度和压力场的变化情况,确定了传感器的断裂原因。计算结果表明:传感器位置处流速较大,导致传感器下部受振荡力,且发生了空蚀,使传感器失效。

本文针对此次传感器断裂故障提出了解决措施:对传感器的位置进行了优化布置;对传感器的结构形式进行了改进。通过改进,传感器随整机验证时间超过1500h,未再发生同类断裂故障,保证了柴油机的安全运行,为以后类似故障的分析和解决提供参考。

关键词:柴油机;温度传感器;流速;受力

链接:、zhangqiaokeyan、com/academic-journal-cn_internal-combustion-engine-parts_thesis/0201288594662、html

常见温度传感器

温度是与人类生活息息相关的物理量,在工业生产自动化流程中,温度测量点要占全部测量点的一半左右。它不仅和我们的生活环境密切相关,在科研及生产过程中,温度的变化对实验及生产的结果至关重要,所以温度传感器应用相当广泛。

温度传感器对温度敏感具有可重复性和规律性,是利用一些金属、半导体等材料与温度相关的特性制成的。现在来介绍一些温度传感器的工作原理。

铂容易提纯,其物理、化学性能在高温和氧化介质中非常稳定。铂电阻的输入-输出特性接近线性,且测量精度高,所以它能用作工业测温元件,还能作为温度计作基准器。

铂电阻在常用的热电阻中准确度最高,国际温标ITS-90中还规定,将具有特殊构造的铂电阻作为℃~℃标准温度计来使用。铂电阻广泛用于-200℃~850℃范围内的温度测量,工业中通常在600℃以下。

PN结温度传感器是利用PN结的结电压随温度成近似线性变化这一特性实现对温度的检测、控制和补偿等功能。实验表明,在一定的电流模式下,PN结的正向电压与温度之间具有很好的线性关系。

根据PN结理论,对于理想二极管,只要正向电压UF大于几个kbT/e(kb为波尔兹曼常数,e为电子电荷)。其正向电流IF与正向电压UF和温度T之间的关系可表示为

由半导体理论可知,对于实际二极管,只要它们工作的PN结空间电荷区中的复合电流和表面漏电流可以忽略,而又未发生大注入效应的电压和温度范围内,其特性与上述理想二极管是相符合的[6]。实验表明,对于砷化镓、

锗和硅二极管,在一个相当宽的温度范围内,其正向电压与温度之间的关系与式(1-3)是一致的,如图1-1所示。

实验发现晶体管发射结上的正向电压随温度的上升而近似线性下降,这种特性与二极管十分相似,但晶体管表现出比二极管更好的线性和互换性。

二极管的温度特性只对扩散电流成立,但实际二极管的正向电流除扩散电流成分外,还包括空间电荷区中的复合电流和表面漏电流成分。这两种电流与温度的关系不同于扩散电流与温度的关系,因此,实际二极管的电压—温度特性是偏离理想情况的。

由于三极管在发射结正向偏置条件下,虽然发射结也包括上述三种电流成分,但是只有其中的扩散电流成分能够到达集电极形成集电极电流,而另外两种电流成分则作为基极电流漏掉,并不到达集电极。因此,晶体管的

所以表现出更好的电压-温ICUBE关系比管的IFUF关系更符合理想情况,

度线性关系。根据晶体管的有关理论可以证明,NPN晶体管的基极—发射极电压UBE与温度T和集电极电流Ic的函数关系式与二极管的UF与T和IF函数关系式(1-3)相同。因此,在集电极电流Ic恒定条件下,晶体管的基极—发射极电压UBE与温度T呈线性关系。但严格地说,这种线性关系是不完全的,因为关系式中存在非线性项。

集成温度传感器是将温敏晶体管及其辅助电路集成在同一芯片的集成化温度传感器。这种传感器的优点是直接给出正比于绝对温度的理想的线性输出[7]。目前,集成温度传感器已广泛用于-50℃~+150℃温度范围内的温度检测、控制和补偿等。集成温度传感器按输出形式可分为电压型和电流型两种。

进气温度传感器工作原理是什么?

进气温度传感器的工作原理是:进气温度传感器在工作状态下,内部安装了一个具有负温度电阻系数的热敏电阻,通过这个负温度热敏电阻感知温度变化,进而调节电阻的大小改变电路电压。

以下是关于进气温度传感器的详细介绍:

1、原理:进气温度传感器就是一个负温度系数的热敏电阻,当温度升高的时候电阻阻值会变小,当温度降低的时候电阻值会增大,汽车的电压会随着汽车电路中电阻的变化而变化,从而产生不一样的电压信号,可以完成汽车控制系统的自动操作。

2、作用:汽车的进气温度传感器就是检测汽车发动机的进气温度,将进气温度转变为电压信号输入为ecu作为喷油修正的信号使用。

温度监控系统的范围很广,你要用在什么地方,比如说:我国是世界上设施栽培面积最大的国家,ifu b_近几年国产连栋温室每年以新增1001_50万公顷的面积快速发展「1」。引导温室用户根据作物的要求进行环境因子的调节以获得作物产量和品质的提高,是温室环境因子调控决策支持系统的主要目标和方向「2」。然}fu,目前的温室测控系统大多采用有线布网、人工测量,导致现场安装困难,工作效率偏低,测量精度差,这不仅大大增加了电气工程施工费用,也导致施肥等工作困难;此外,系统中的每个监控点没有自组织功能和自愈能力,维护工作量大,也不利十系统升级。因此,为了实现温室农作物的优质、高产和高效,开发和研制一种新型的温室环境测控系统是十分必要的。无线传感器网络技术是现代传感器技术、微电子技术、通信技术、嵌入式计算技术和分布式信息处理技术等多个学科的综合。把无线传感器网络技术引入到温室大棚生产中来,农业将有可能逐渐地从以人力为中心,依赖十孤立的生产模式转向以信息和软件为中心的生产模式。从}fU实现温室信息采集自动部署、自组织传输和智能控制、大幅度提高单位面积的劳动生产率和资源产出率、改善温室等设施内工作环境和工作条件、提高工作效率、保障农民身体健康、提高农民生活质量,有助十解决“二农”问题,对实现温室作物生产的可持续发展具有重要意义。本课题基十无线传感器网络技术,研究温室环境中温湿度智能监测系统的相关技术,为实现温室无线传感器网络监测系统奠定良好基础。

温度检测论文

用DS18B20做的电子温度计,非常简单。#include <> #include\"\"#include <>#include <>//********************************************************#define Seck (500/TK) //1秒中的主程序的系数#define OffLed (Seck*5*60) //自动关机的时间5分钟!//********************************************************#if (FHz==0) #define NOP_2uS_nop_()#else #define NOP_2uS_nop_();_nop_()#endif//**************************************#define SkipK 0xcc //跳过命令#define ConvertK 0x44 //转化命令#define RdDs18b20K 0xbe //读温度命令//*******************************************extern LedOut(void);//*************************************************sbit PNP1=P3^4;sbit PNP2=P3^5;sbit BEEP=P3^2;//***********************************#defineDQ PNP2 //原来的PNP2 BEEP//***********************************static unsigned char Power=0;//************************************union{ unsigned char Temp[2]; //单字节温度 unsigned int Tt; //2字节温度}T;//***********************************************typedef struct{ unsigned char Flag; //正数标志 0;1==》负数 unsigned char WenDu; //温度整数 unsigned int WenDuDot; //温度小数放大了10000}WENDU; //***********************************************WENDU WenDu;unsigned char LedBuf[3];//----------------------------------//功能:10us 级别延时// n=1===> 6Mhz=14uS 12MHz=7uS//----------------------------------void Delay10us(unsigned char n){ do{ #if (FHz==1) NOP_2uS;NOP_2uS; #endif }while(--n);}//-----------------------------------//功能:写18B20//-----------------------------------void Write_18B20(unsigned char n){ unsigned char i; for(i=0;i<8;i++){ DQ=0; Delay10us(1);//延时13us 左右 DQ=n & 0x01; n=n>>1; Delay10us(5);//延时50us 以上 DQ=1; }}//------------------------------------//功能:读取18B20//------------------------------------unsigned char Read_18B20(void){ unsigned char i; unsigned char temp; for(i=0;i<8;i++){ temp=temp>>1; DQ=0; NOP_2uS;//延时1us DQ=1; NOP_2uS;NOP_2uS;//延时5us if(DQ==0){ temp=temp&0x7F; }else{ temp=temp|0x80; } Delay10us(5);//延时40us DQ=1; } return temp;}//-----------------------------------void Init (void){ DQ=0; Delay10us(45);//延时500us DQ=1; Delay10us(9);//延时90us if(DQ){ //0001 1111b=1f Power =0; //失败0 }else{ Power++; DQ=1; }}//----------------------------------void Skip(void){ Write_18B20(SkipK); Power++;}//----------------------------------void Convert (void){ Write_18B20(ConvertK); Power++;}//______________________________________void Get_Ds18b20L (void){ [1]=Read_18B20(); //读低位 Power++;}//______________________________________void Get_Ds18b20H (void){ [0]=Read_18B20(); //读高位 Power++;}//------------------------------------//规范化成浮点数// sssss111;11110000// sssss111;1111()//------------------------------------void ReadTemp (void){ unsigned char i; unsigned intF1=0; char j=1; code int Code_F[]={6250,1250,2500,5000}; ; if ([0] >0x80){ //负温度 =~; //取反+1=源吗 +符号S ; } <<= 4; //左移4位 [0]; // 温度整数 //************************************************** [1]>>=4; //--------------------------- for (i=0;i<4;i++){ //计算小数位 F1 +=([1] & 0x01)*Code_F; [1]>>=1; } ; //温度的小数 Power=0;}//----------------------------------void Delay1S (void){ static unsigned int i=0; if (++i==Seck) {i=0ower++;}}//----------------------------------void ReadDo (void){ Write_18B20(RdDs18b20K); Power++;}/**********************************函数指针定义***********************************/code void (code *SubTemp[])()={ Init,Skip,Convert,Delay1S,Init,Skip,ReadDo,Get_Ds18b20L, Get_Ds18b20H,ReadTemp};//**************************************void GetTemp(void){ (*SubTemp[Power])();}//---------------------------------------------------//将温度显示,小数点放大了 GetBcd(void){ LedBuf[0]= / 10; LedBuf[1]= % 10 +DotK; LedBuf[2]=()%10; if(LedBuf[0]==0)LedBuf[0]=Black; if() return; if(LedBuf[0] !=Black){ LedBuf[2]=LedBuf[1]; LedBuf[1]=LedBuf[0]; LedBuf[0]=Led_Pol; //'-' }else{ LedBuf[0]=Led_Pol; //'-' }}/*//---------------------------------------------------void JbDelay (void){ static long i; if (++i>=OffLed){ P1=0xff; P2=0xff; PCON=0x02; }}*//*****************************************************主程序开始1:2002_10_1 设计,采用DS18B20测量2:采用函数数组读取数码管显示正常!3:改变FHz可以用6,12MHz工作!******************************************************/code unsigned char Stop[3] _at_ 0x3b;void main (void){ P1=0xff; ; while (1){ GetTemp(); GetBcd(); // JbDelay(); LedOut(); }}复制代码 20091012_8b1ef92155560c13b5807ZmoDVSacjwD[1].jpg (12 KB) 2009-10-21 23:21 上传下载次数:0

我做的课程设计,用的数码管,也做了protues仿真,你有需要的话,我邮箱是。希望对你有帮助,#include<>sbit P11=P1^1;sbit P12=P1^2;sbit P13=P1^3;sbit P14=P1^4;/////数码管1断码控制///////////////sbit P15=P1^5;sbit P16=P1^6;sbit P17=P1^7;sbit P32=P3^2;/////数码管2段码控制////////////////sbit up=P3^7;sbit down=P3^6; ////按键操作端口//////////////////sbit P35=P3^5; ////////控制晶闸管端口/////////sbit DQ =P3^3; ///////温度传感器端口///////// #define THCO 0xee#define THLO 0x00unsigned char code duan[]={ 0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0XD8,0x80,0x90,0x88,}; //////////////////////////////////////////int b=0;char pwm=0;int k;char r=0,q=0;static char wendu_1;char hao=20;//////////////////////////////////////////////void delay(unsigned int i){while(i--);}//////////////////////////////////////////Init_DS18B20(void){unsigned char x=0;DQ = 1; //DQ复位delay(8); //稍做延时DQ = 0; //单片机将DQ拉低delay(80); //精确延时 大于 480usDQ = 1; //拉高总线delay(14);x=DQ; //稍做延时后 如果x=0则初始化成功 x=1则初始化失败delay(20);}////////////////////////////////////////////ReadOneChar(void){unsigned char i=0;unsigned char dat = 0;for (i=8;i>0;i--){DQ = 0; // 给脉冲信号dat>>=1;DQ = 1; // 给脉冲信号if(DQ)dat|=0x80;delay(4);}return(dat);}////////////////////////////////////////////////WriteOneChar(unsigned char dat){unsigned char i=0;for (i=8; i>0; i--){DQ = 0;DQ = dat&0x01;delay(5);DQ = 1;dat>>=1;}//delay(4);}/////////////////////////////////////////////////DS18B20程序读取温度ReadTemperature(void){unsigned char a=0;unsigned char b=0;unsigned int t=0;float tt=0;Init_DS18B20();WriteOneChar(0xCC); // 跳过读序号列号的操作WriteOneChar(0x44); // 启动温度转换Init_DS18B20();WriteOneChar(0xCC); //跳过读序号列号的操作WriteOneChar(0xBE); //读取温度寄存器等(共可读9个寄存器) 前两个就是温度a=ReadOneChar();b=ReadOneChar();t=b;t<<=8;t=t|a;tt=t*;return(t);}xianshi(){/////////////////当前温度显示///////////////////////////// P11=1; P0=duan[wendu_1/1000]; for(k=0;k<1000;k++); P1=0;P12=1; P0=duan[wendu_1/100%10]; for(k=0;k<1000;k++); P1=0;P13=1; P0=duan[wendu_1%100/10]; for(k=0;k<1000;k++); P1=0;P14=1; P0=duan[wendu_1%10]; for(k=0;k<1000;k++); P1=0; ///////////////////////////目标电压显示/////////////// P15=1; P2=duan[hao/1000]; for(k=0;k<1000;k++); P1=0;P16=1; P2=duan[hao/100%10]; for(k=0;k<1000;k++); P1=0;P17=1; P2=duan[hao%100/10]; for(k=0;k<1000;k++); P1=0;P32=1; P2=duan[hao%10]; for(k=0;k<1000;k++); P32=0;////////////////////////////////////////////////////////// }/////////////////////////////////////////////////////////// main(void){ P11=0; P12=0; P13=0; P14=0; P15=0; P16=0; P17=0; P32=0; P35=0; /////////////////////////////////////////////////////////// while(1){ wendu_1=ReadTemperature()/16;//读温度 xianshi(); ///显示系统数据/////////////////////////////////////操作函数//////////////////////////////////// if(down==0) {hao--;} if(up==0){hao++;} ///////////////////////////////////////////////////////////////////hao为理想温度/////wendu_1为实际环境温度/////////////////////////////////////////////////////////////////P35为高时 led灯工作///////////////////////////////////// P35=0; pwm=hao-wendu_1; if(pwm>0) {P35=1;} if(pwm<0) {P35=0;} if(pwm==0) {P35=0;}///////////////////////////////////////////////////////////////// }}

温度传感器原理及应用论文参考文献

温度传感器原理及应用论文参考文献,温度传感器是温度测量仪表的核心部分,是指能感受温度并转换成可用输出信号的传感器,品种繁多,也是用处比较广的工具。以下分享温度传感器原理及应用论文参考文献。

一、温度传感器工作原理–恒温器

恒温器是一种接触式温度传感器,由两种不同金属(如铝、铜、镍或钨)组成的双金属条组成。

两种金属的线性膨胀系数的差异导致它们在受热时产生机械弯曲运动。

一、温度传感器工作原理–双金属恒温器

恒温器由两种热度不同的金属背靠背粘在一起组成。当天气寒冷时,触点闭合,电流通过恒温器。当它变热时,一种金属比另一种金属膨胀得更多,粘合的双金属条向上(或向下)弯曲,打开触点,防止电流流动。

有两种主要类型的双金属条,主要基于它们在受到温度变化时的运动。有在设定温度点对电触点产生瞬时“开/关”或“关/开”类型动作的“速动”类型,以及逐渐改变其位置的较慢“蠕变”类型随着温度的变化。

速动型恒温器通常用于我们家中,用于控制烤箱、熨斗、浸入式热水箱的温度设定点,也可以在墙上找到它们来控制家庭供暖系统。

爬行器类型通常由双金属线圈或螺旋组成,随着温度的变化缓慢展开或盘绕。一般来说,爬行型双金属条对温度变化比标准的按扣开/关类型更敏感,因为条更长更薄,非常适合用于温度计和表盘等。

二、温度传感器工作原理–热敏电阻

热敏电阻通常由陶瓷材料制成,例如镀在玻璃中的镍、锰或钴的氧化物,这使得它们很容易损坏。与速动类型相比,它们的主要优势在于它们对温度、准确性和可重复性的任何变化的响应速度。

大多数热敏电阻具有负温度系数(NTC),这意味着它们的电阻随着温度的升高而降低。但是,有一些热敏电阻具有正温度系数 (PTC),并且它们的电阻随着温度的升高而增加。

热敏电阻的额定值取决于它们在室温下的电阻值(通常为 25 o C)、它们的时间常数(对温度变化作出反应的时间)以及它们相对于流过它们的电流的额定功率。与电阻一样,热敏电阻在室温下的电阻值从 10 兆欧到几欧姆不等,但出于传感目的,通常使用以千欧为单位的那些类型。

温度传感器类毕业论文文献有哪些?

1、[期刊论文]一种高稳定性双端出纤型光纤光栅温度传感器

期刊:《声学与电子工程》 | 2021 年第 002 期

摘要:针对双端出纤型光纤光栅温度传感器线性度较差、温度测量精度低的问题,文章首先对传感器内部结构进行了优化,使光纤光栅在整个温度测量区间内不受结构件热胀冷缩的应力影响,从而提升传感器的稳定性、实验验证,采用新工艺封装的.光纤光栅温度传感器在5~65°C的范围内温度精度达到0、1°C,且重复性良好,适用于自然环境下的温度传感、

关键词:光纤光栅;温度传感器;应力;测温精度

链接:、zhangqiaokeyan、com/academic-journal-cn_acoustics-electronics-engineering_thesis/0201290086379、html

2、[期刊论文]某型温度传感器防护套弯折疲劳试验的寿命研究

期刊:《环境技术》 | 2021 年第 001 期

摘要:由于动车组轴端温度传感器的大多数已达到三级修、四级修的修程,检修的数量和成本逐年增加,检修发现出现防护套破损的情况较多,需要大量更换,本文通过对温度传感器的防护套进行弯折疲劳试验,对数据结果进行统计分析,确认导致防护套弯折老化的主要原因、

关键词:防护套;破损;弯折疲劳

链接:、zhangqiaokeyan、com/academic-journal-cn_environmental-technology_thesis/0201288850019、html

3、[期刊论文]进气压力温度传感器锡晶须的分析

期刊:《机械制造》 | 2021 年第 004 期

摘要:对进气压力温度传感器的结构进行了介绍,对进气压力温度传感器产生锡晶须问题进行了分析,并在分析锡晶须生长机理的基础上提出了抑制方法、

关键词:传感器;锡晶须;分析

链接:、zhangqiaokeyan、com/academic-journal-cn_machinery_thesis/0201288850874、html

4、[期刊论文]一种具有±0、5℃精度的CMOS数字温度传感器

期刊:《电子设计工程》 | 2021 年第 001 期

摘要:该文设计了一种基于0、35μm CMOS工艺的采用双极型晶体管作为感温元件的数字温度传感器、该温度传感器主要由正温度系数电流产生电路、负温度系数电流产生电路、一阶连续时间Σ-Δ调制器、计数器和I2C总线接口等模块组成、为提高温度传感器的测量精度

该文深入分析了在不采用校准技术的情况下工艺漂移对温度传感器精度的影响,并在此基础上提出了简单的校准电路设计、根据电路仿真结果,在加入校准电路之后,温度传感器在-40~120℃温度范围内的精度可以达到±0、5℃、

关键词:数字温度传感器;CMOS工艺;双极型晶体管;校准

链接:、zhangqiaokeyan、com/academic-journal-cn_electronic-design-engineering_thesis/0201286451032、html

5、[期刊论文]柴油机冷却水温度传感器断裂故障分析

期刊:《内燃机与配件》 | 2021 年第 004 期

摘要:针对柴油机冷却水温度传感器断裂的问题,通过对该测点管路流腔进行CFD仿真计算,分析了流腔内部速度和压力场的变化情况,确定了传感器的断裂原因。计算结果表明:传感器位置处流速较大,导致传感器下部受振荡力,且发生了空蚀,使传感器失效。

本文针对此次传感器断裂故障提出了解决措施:对传感器的位置进行了优化布置;对传感器的结构形式进行了改进。通过改进,传感器随整机验证时间超过1500h,未再发生同类断裂故障,保证了柴油机的安全运行,为以后类似故障的分析和解决提供参考。

关键词:柴油机;温度传感器;流速;受力

链接:、zhangqiaokeyan、com/academic-journal-cn_internal-combustion-engine-parts_thesis/0201288594662、html

常见温度传感器

温度是与人类生活息息相关的物理量,在工业生产自动化流程中,温度测量点要占全部测量点的一半左右。它不仅和我们的生活环境密切相关,在科研及生产过程中,温度的变化对实验及生产的结果至关重要,所以温度传感器应用相当广泛。

温度传感器对温度敏感具有可重复性和规律性,是利用一些金属、半导体等材料与温度相关的特性制成的。现在来介绍一些温度传感器的工作原理。

铂容易提纯,其物理、化学性能在高温和氧化介质中非常稳定。铂电阻的输入-输出特性接近线性,且测量精度高,所以它能用作工业测温元件,还能作为温度计作基准器。

铂电阻在常用的热电阻中准确度最高,国际温标ITS-90中还规定,将具有特殊构造的铂电阻作为℃~℃标准温度计来使用。铂电阻广泛用于-200℃~850℃范围内的温度测量,工业中通常在600℃以下。

PN结温度传感器是利用PN结的结电压随温度成近似线性变化这一特性实现对温度的检测、控制和补偿等功能。实验表明,在一定的电流模式下,PN结的正向电压与温度之间具有很好的线性关系。

根据PN结理论,对于理想二极管,只要正向电压UF大于几个kbT/e(kb为波尔兹曼常数,e为电子电荷)。其正向电流IF与正向电压UF和温度T之间的关系可表示为

由半导体理论可知,对于实际二极管,只要它们工作的PN结空间电荷区中的复合电流和表面漏电流可以忽略,而又未发生大注入效应的电压和温度范围内,其特性与上述理想二极管是相符合的[6]。实验表明,对于砷化镓、

锗和硅二极管,在一个相当宽的温度范围内,其正向电压与温度之间的关系与式(1-3)是一致的,如图1-1所示。

实验发现晶体管发射结上的正向电压随温度的上升而近似线性下降,这种特性与二极管十分相似,但晶体管表现出比二极管更好的线性和互换性。

二极管的温度特性只对扩散电流成立,但实际二极管的正向电流除扩散电流成分外,还包括空间电荷区中的复合电流和表面漏电流成分。这两种电流与温度的关系不同于扩散电流与温度的关系,因此,实际二极管的电压—温度特性是偏离理想情况的。

由于三极管在发射结正向偏置条件下,虽然发射结也包括上述三种电流成分,但是只有其中的扩散电流成分能够到达集电极形成集电极电流,而另外两种电流成分则作为基极电流漏掉,并不到达集电极。因此,晶体管的

所以表现出更好的电压-温ICUBE关系比管的IFUF关系更符合理想情况,

度线性关系。根据晶体管的有关理论可以证明,NPN晶体管的基极—发射极电压UBE与温度T和集电极电流Ic的函数关系式与二极管的UF与T和IF函数关系式(1-3)相同。因此,在集电极电流Ic恒定条件下,晶体管的基极—发射极电压UBE与温度T呈线性关系。但严格地说,这种线性关系是不完全的,因为关系式中存在非线性项。

集成温度传感器是将温敏晶体管及其辅助电路集成在同一芯片的集成化温度传感器。这种传感器的优点是直接给出正比于绝对温度的理想的线性输出[7]。目前,集成温度传感器已广泛用于-50℃~+150℃温度范围内的温度检测、控制和补偿等。集成温度传感器按输出形式可分为电压型和电流型两种。

进气温度传感器工作原理是什么?

进气温度传感器的工作原理是:进气温度传感器在工作状态下,内部安装了一个具有负温度电阻系数的热敏电阻,通过这个负温度热敏电阻感知温度变化,进而调节电阻的大小改变电路电压。

以下是关于进气温度传感器的详细介绍:

1、原理:进气温度传感器就是一个负温度系数的热敏电阻,当温度升高的时候电阻阻值会变小,当温度降低的时候电阻值会增大,汽车的电压会随着汽车电路中电阻的变化而变化,从而产生不一样的电压信号,可以完成汽车控制系统的自动操作。

2、作用:汽车的进气温度传感器就是检测汽车发动机的进气温度,将进气温度转变为电压信号输入为ecu作为喷油修正的信号使用。

温度检测计论文

你好,我有你需要的设计!需要的联系回答者 目 录 一、引言 4 二、设计内容及性能指标 5 三、系统方案论证与比较 5 (一)、方案一 5 (二)、方案二 6 四、系统器件选择 7 (一)、 单片机的选择 7 1、 89S51 引脚功能介绍 8 (二)、温度传感器的选择 10 1、 DS18B20 简单介绍: 10 2、 DS18B20 使用中的注意事项 12 3、 DS18B20 内部结构 12 4、DS18B20测温原理 16 5、提高DS1820测温精度的途径 17 (三)、显示及报警模块器件选择 18 五、硬件设计电路 18 (一)、主控制器 19 (二)、显示电路 19 (三)、 温度检测电路 20 (四)、温度报警电路 25 六、 软件设计 26 (一)、 概述 26 (二)、主程序模块 26 (三)、各模块流程设计 27 1、 温度检测流程 28 2、报警模块流程 28 3、 中断设定流程 29 七、总结和体会 31 八、致谢 31 仪器简介 数字温度计是测温仪器类型的其中之一。根据所用测温物质的不同和测温范围的不同,有煤油温度计、酒精温度计、水银温度计、气体温度计、电阻温度计、温差电偶温度计、辐射温度计和光测温度计、双金属温度计等。编辑本段仪器参数和适用范围 数字温度计采用进口芯片组装精度高、高稳定性,误差≤, 内电源、微功耗、不锈钢外壳,防护坚固,美观精致。 数字温度计采用进口高精度、低温漂、超低功耗集成电路和宽温型液晶显示器,内置高能量电池连续工作≥5年无需敷设供电电缆,是一种精度高、稳定性好、适用性极强的新型现场温度显示仪。是传统现场指针双金属温度计的理想替代产品,广泛应用于各类工矿企业,大专院校,科研院所。 温度数我们日常生产和生活中实时在接触到的物理量,但是它是看不到的,仅凭感觉只能感觉到大概的温度值,传统的指针式的温度计虽然能指示温度,但是精度低,使用不够方便,显示不够直观,数字温度计的出现可以让人们直观的了解自己想知道的温度到底是多少度。 数字温度计采用温度敏感元件也就是温度传感器(如铂电阻,热电偶,半导体,热敏电阻等),将温度的变化转换成电信号的变化,如电压和电流的变化,温度变化和电信号的变化有一定的关系,如线性关系,一定的曲线关系等,这个电信号可以使用模数转换的电路即AD转换电路将模拟信号转换为数字信号,数字信号再送给处理单元,如单片机或者PC机等,处理单元经过内部的软件计算将这个数字信号和温度联系起来,成为可以显示出来的温度数值,如摄氏度,然后通过显示单元,如LED,LCD或者电脑屏幕等显示出来给人观察。这样就完成了数字温度计的基本测温功能。 数字温度计根据使用的传感器的不同,AD转换电路,及处理单元的不同,它的精度,稳定性,测温范围等都有区别,这就要根据实际情况选择符合规格的数字温度计。 数字温度计有手持式,盘装式,及医用的小体积的等等。仪器发展历史 最早的温度计是在1593年由意大利科学家伽利略(1564~1642)发明的。他的第一只温度计是一根一端敞口的玻璃管,另一端带有核桃大的玻璃泡。使用时先给玻璃泡加热,然后把玻璃管插入水中。随着温度的变化,玻璃管中的水面就会上下移动,根据移动的多少就可以判定温度的变化和温度的高低。温度计有热胀冷缩的作用所以这种温度计,受外界大气压强等环境因素的影响较大,所以测量误差大。 后来伽利略的学生和其他科学家,在这个基础上反复改进,如把玻璃管倒过来,把液体放在管内,把玻璃管封闭等。比较突出的是法国人布利奥在1659年制造的温度计,他把玻璃泡的体积缩小,并把测温物质改为水银,这样的温度计已具备了现在温度计的雏形。以后荷兰人华伦海特在1709年利用酒精,在1714年又利用水银作为测量物质,制造了更精确的温度计。他观察了水的沸腾温度、水和冰混合时的温度、盐水和冰混合时的温度;经过反复实验与核准,最后把一定浓度的盐水凝固时的温度定为0℉,把纯水凝固时的温度定为32℉,把标准大气压下水沸腾的温度定为212℉,用℉代表华氏温度,这就是华氏温度计。 在华氏温度计出现的同时,法国人列缪尔(1683~1757)也设计制造了一种温度计。他认为水银的膨胀系数太小,不宜做测温物质。他专心研究用酒精作为测温物质的优点。他反复实践发现,含有1/5水的酒精,在水的结冰温度和沸腾温度之间,其体积的膨胀是从1000个体积单位增大到1080个体积单位。因此他把冰点和沸点之间分成80份,定为自己温度计的温度分度,这就是列氏温度计。? 华氏温度计制成后又经过30多年,瑞典人摄尔修斯于1742年改进了华伦海特温度计的刻度,他把水的沸点定为0度,把水的冰点定为100度。后来他的同事施勒默尔把两个温度点的数值又倒过来,就成了现在的百分温度,即摄氏温度,用℃表示。华氏温度与摄氏温度的关系为 ℉=9/5℃+32,或℃=5/9(℉-32)。 现在英、美国家多用华氏温度,德国多用列氏温度,而世界科技界和工农业生产中,以及我国、法国等大多数国家则多用摄氏温度。数字温度测量仪表的精度等级和分度值 仪表名称 精度等级 分度值,℃(摄氏度) 双金属温度计 1,, 压力式温度计 1,, 玻璃液体温度计 热电阻 1~10 热电偶 5~20 光学高温计 1~ 5~20 辐射温度计(热电堆) 5~20 部分辐射温度计 1~ 1~20 比色温度计 1~

摘要本设计的温度测量计加热控制系统以AT89S52单片机为核心部件,外加温度采集电路、键盘显示电路、加热控制电路和越限报警等电路。采用单总线型数字式的温度传感器DSI8B20,及行列式键盘和动态显示的方式,以容易控制的固态继电器作加热控制的开关器件。本作品既可以对当前温度进行实时显示又可以对温度进行控制,以使达到用户需要的温度,并使其恒定再这一温度。人性化的行列式键盘设计使设置温度简单快速,两位整数一位小数的显示方式具有更高的显示精度。建立在模糊控制理论控制上的控制算法,是控制精度完全能满足一般社会生产的要求。通过对系统软件和硬件设计的合理规划,发挥单片机自身集成众多系统及功能单元的优势,再不减少功能的前提下有效的降低了硬件的成本,系统操控更简便。实验证明该温控系统能达到℃的静态误差,℃的控制精度,以及只有%的超调量,因本设计具有很高的可靠性和稳定性。关键词:单片机 恒温控制 模糊控制引言温度是工业控制中主要的被控参数之一,特别是在冶金、化工、建材、食品、机械、石油等工业中,具有举足重轻的作用。随着电子技术和微型计算机的迅速发展,微机测量和控制技术得到了迅速的发展和广泛的应用。 采用单片机来对温度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大提高产品的质量和数量。MSP430系列单片机具有处理能强、运行速度快、功耗低等优点,应用在温度测量与控制方面,控制简单方便,测量范围广,精度较高。温度传感器将温度信息变换为模拟电压信号后,将电压信号放大到单片机可以处理的范围内,经过低通滤波,滤掉干扰信号送入单片机。在单片机中对信号进行采样,为进一步提高测量精度,采样后对信号再进行数字滤波。单片机将检测到的温度信息与设定值进行比较,如果不相符,数字调节程序根据给定值与测得值的差值按PID控制算法设计控制量,触发程序根据控制量控制执行单元。如果检测值高于设定值,则启动制冷系统,降低环境温度;如果检测值低于设定值,则启动加热系统,提高环境温度,达到控制温度的目的。图形点阵式液晶可显示用户自定义的任意符号和图形,并可卷动显示,它作为便携式单片机系统人机交互界面的重要组成部分被广泛应用于实时检测和显示的仪器仪表中。支持汉字显示的图形点阵液晶在现代单片机应用系统中是一种十分常用的显示设备,汉字BP机、手机上的显示屏就是图形点阵液晶。它与行列式小键盘组成了现代单片机应用系统中最常用的人机交互界面。本文设计了一种基于MSP430单片机的温度测量和控制装置,能对环境温度进行测量,并能根据温度给定值给出调节量,控制执行机构,实现调节环境温度的目的。━、硬件设计1:MSP430系列单片机简介及选型单片机即微控制器,自其开发以来,取得了飞速的发展。单片机控制系统在工业、交通、医疗等领域的应用越来越广泛,在单片机未开发之前,电子产品只能由复杂的模拟电路来实现,不仅体积大,成本高,长期使用后元件老化,控制精度大大降低,单片机开发以后,控制系统变为智能化了,只需要在单片机外围接一点简单的接口电路,核心部分只是由人为的写入程序来完成。这样产品体积变小了,成本也降低了,长期使用也不会担心精度达不到了。特别是嵌入式技术的发展,必将为单片机的发展提供更广阔的发展空间,近年来,由于超低功耗技术的开发,又出现了低功耗单片机,如MSP430系列、ZK系列等,其中的MSP430系列单片机是美国德州仪器(TI)的一种16位超低功耗单片机,该单片机

多功能智能化温度测量仪设计 论文编号:JD599 包括外文翻译,论文字数:26446,页数:59 多功能智能化温度测量仪设计 摘要:温度是一个基本的物理量,它是工业生产过程中最普遍、最重要的工艺参数随着工业的不断发展,对温度测量的要求来越高,而且测量范围也越来越广,因此对温度检测技术的要求也越来越高。本文介绍的多功能智能化温度测量仪是以8051单片机系统和温度检测元件一AD590相结合的温度测量系统。本仪器的数学模型合理,测量方法容易实现。实际仪器采用抗干扰、低零漂、低温漂的电子元件,性能稳定。该测量仪总体特点是使用简便、实用、测量稳定可靠、使用对象广,并且实现了智能化。本文主要介绍了温度的自动测量,包括温度传感器、单片机接口及其应用软件的设计,大体分为以下几大部分:介绍了国内外温度检测技术和温度检测的发展现状,并且分析了温度检测技术的未来发展方向;根据实际使用要求设计了相应的单片机硬件系统,该系统能够实现数据采集、数据处理、温度值的在线显示以及时钟电路的时间显示;简略介绍了该仪表的软件部分;对该温度仪表的未来发展进行了展望。 关键词: 温度测量;智能化;单片机 Designe on Multifunctional Intellectual Temperature Measure Instrument Abstract: Temperature,as a basic physical quantity,is one of the most universal and important technical parameters. Along with the development of industry,the requirement of measurement of temperature is higher. Further more,the scope of measurement of temperature is wider, so, the technology of measurement must be improved. The multifunctional intellectual temperature measure instrument introduced by the paper is the system of 8051 single-chip microcomputer and conventional measureing component一AD590. The mathematic model is appropriate,and measurement method is easy to be excuted. The electronic components used are anti一jamming,less zero-drift and less temperature-drift. The instrument is convenient and applicabale,it is steady,reliable and so fit to use. At the same time, it has larger scope of measurement and it can be used in many kinds of object measured. It has intellectualized the process[4].The thesis introduces automatical measurement of temperature,including temperature sensor,I/ O of single-chip microcomputer and application software,it can be divided into some parts:It introduces the development of temperature measurement and the development direction of temperature measurement in the future;According to the practical demands, I design corresponding hardware system;The system can realize data acquisition,showing of temperature discuss the future of the instrument. Keywords: Temperature Measurement;Intelligentiztion;Single-chip Microcomputer 目录 摘要I Abstract II 第1章 绪 论 1 单片机的历史及应用 1 国内外温度检测技术的动向与趋势 4 第2章 多功能温度测量仪表的原理 5 系统总体设计方案 5 设计主要内容和要求 5 各模块的方案设计说明 7 第3章 系统的硬件设计 13 系统总体电路框图 13 信号输入部分总体设计 13 信号输入部分设计 13 单片机及其扩展I/O的设计 18 键盘和显示的设计 19 模拟信号输出部分设计 20 时钟电路的硬件设计 20 第4章 多功能温度测量仪的软件设计 27 系统软件总体设计 27 主程序设计 27 数据采集及处理子程序设计 27 键盘/显示程序设计 28 电子时钟应用程序设计 29 结束语 37 参考文献 38 致谢39 附录40 以上回答来自:

毕业设计(论文)报告 系 别: 电子与电气工程学院 专 业: 电子信息工程 班 号: 电子 0 8 5 学 生 姓 名: 傅浩 学 生 学 号: 080012212 计 论 ) 目 设 ( 文 题 : 基于AT89C51 的数字温度计的设计 指 导 教 师: 傅浩 设 计 地 点: 起 迄 日 期: 常州信息职业技术学院电子与电气工程学院 毕业设计论文 毕业设计(论文)任务书 专业 电子信息工程 班级 电子 085 姓名 傅浩一、课题名称:基于 AT89C51 的数字温度计的设计二、主要技术指标: 1、测温范围-50℃-110℃ 2、精度误差小于 ℃ 3、LED 数码直读显示 4、可通过人机接口任意设定温度报警阀值三、工作内容和要求:(1)、要求数字温度计能对环境的温度进行实时监测。(2)、数字温度计要能够实时显示环境的温度信息,使用户及时了解到环境温度情况。(3)、数字温度计能够在程序跑飞的情况下自动重启,对环境温度进行正确的测量。 四、主要参考:1.李勋.刘源单片机实用教程M.北京航空航天大学出版社,20002.李朝青.单片机原理及接口技术(简明修订版)M.杭州:北京航空航天大学出版社,19983.李广弟.单片机基础M.北京:北京航空航天大学出版社,19944.阎石.数字电子技术基础(第三版)M.北京:高等教育出版社,19895.廖常初.现场总线概述J.电工技术,19996.王津.单片机原理与应用M.重庆大学出版社,2000 学 生(签名) 年 月 日 指 导 教师(签名) 年 月 日常州信息职业技术学院电子与电气工程学院 毕业设计论文 教研室主任(签名) 年 月 日 系 主 任(签名) 年 月 日 常州信息职业技术学院电子与电气工程学院 毕业设计论文 毕业设计(论文)开题报告设计(论文)题目 基于 AT89C51 的数字温度计的设计一、选题的背景和意义: 随着时代的进步和发展,单片机技术已经普及到我们生活、工作、科研等各个领域,已经成为一种比较成熟的技术,本文将介绍一种基于单片机控制的数字温度计,它给人带来的方便也是不可否定的。要为现代人生活提供更好、更方便的设施就需要从数单片机技术入手,一切向着数字化控制,智能化控制方向发展。 本文将要设计的数字温度计具有性能稳定、灵敏度高、抗干扰能力强、使用方便等优点,广泛应用于冰箱、空调器、粮仓等日常生活中温度的测量和控制中,为人们生活水平的提高做出了巨大的贡献。二、课题研究的主要内容: 1.本文是以单片机 AT89C51 为核心进行设计。 2.通过 DALLAS 公司的单总线数字温度传感器 DS18B20 来实现环境温度的采集和 A/D转换。 3.其输出温度采用数字显示,用 3 位共阳极 LED 数码管以串口传送数据,实现温度显示,能准确达到以上要求。 4.此温度计属于多功能温度计可以用来测量环境温度,还可以设置上下报警温度,当温度不在设置范围内时,可以报警。 常州信息职业技术学院电子与电气工程学院 毕业设计论文三、主要研究(设计)方法论述: 1. 通过查阅书籍了解数字温度计的基本概念等信息,结合以前所学的电子专业知识认真研究课题。 2. 借助强大的网络功能,借鉴前人的研究成果更好的帮助自己更好地理解所需掌握的内容。 3. 通过与老师与同学的讨论研究,及时地发现问题反复地检查修改最终完成。 四、设计(论文)进度安排:时间(迄止日期) 工 作 内 容 ~ 查找资料,确定论文题目 ~ 根据选题方向查资料,确定基本框架和设计方法 ~ 完成开题报告 ~ 完成初稿并交指导老师审阅 ~ 根据指导老师意见修改论文 ~ 根据模板将论文排版 ~ 仔细阅读论文并作细节完善后上交 常州信息职业技术学院电子与电气工程学院 毕业设计论文五、指导教师意见: 指导教师签名: 年 月 日六、系部意见: 系主任签名: 年 月 日 常州信息职业技术学院电子与电气工程学院 毕业设计论文 目录摘要Abstract第 1 章 前言 ...................................................... 1第 2 章 数字温度计总体设计方案 .................................... 2 数字温度计设计方案.......................................... 2 总体设计框图................................................ 2第 3 章 数字温度计的硬件设计 ...................................... 3 主控制器 AT89C51 ............................................ 3 AT89C51 的特点及特征 .................................... 3 管脚功能说明............................................ 3 片内振荡器.............................................. 5 芯片擦除................................................ 5 单片机的主板电路............................................ 6 温度采集部分的设计.......................................... 6 温度传感器 DS18B20 ...................................... 6 DS18B20 温度传感器与单片机的接口电路 ................... 10 显示部分设计............................................... 10 74LS164 引脚功能及特征 ................................. 10 温度显示电路........................................... 11 报警系统电路............................................... 12第 4 章 数字温度计的软件设计 ..................................... 13 系统软件设计流程图......................................... 13 数字温度计部分程序清单..................................... 15第 5 章 结束语 ................................................... 20答谢辞参考文献 常州信息职业技术学院电子与电气工程学院 毕业设计论文 摘 要 随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数字温度计就是一个典型的例子。 本设计所介绍的数字温度计与传统的温度计相比,具有读数方便,测温范围广,测温准确,其输出温度采用数字显示。该设计控制器使用单片机 AT89C51,测温传感器使用 DS18B20,用 3 位共阳极 LED 数码管以串口传送数据,实现温度显示。本温度计属于多功能温度计,可以设置上下报警温度,当温度不在设置范围内时,可以报警。 此外本文还介绍了数字温度计的硬件设计和软件设计,硬件设计主要包括主控制器、单片机的主板电路、温度采集部分电路、显示电路以及报警系统电路。 软件设计包括系统软件的流程图和数字温度计的部分程序清单。关键词:AT89C51 单片机,数字控制,测温传感器,多功能温度计 常州信息职业技术学院电子与电气工程学院 毕业设计论文 Abstract As peoples living standard rising SCM is undoubtedly one of theobjectives pursued by the people the convenience it brings is equallynegative and one digital thermometer is a typical example. The design presented in the traditional thermometer digitalthermometer and compared with a reading convenience a wide range oftemperature measurement temperature measurement accuracy the output ofthe temperature digital display. The design of the controller usingmicrocontroller AT89C51 temperature sensor uses DS18B20 with threecommon anode LED digital tube to serial transmission of data to achievetemperature display. The thermometer is multi-functional thermometeryou can set the upper and lower alarm temperature range when thetemperature is not set you can alarm. Besides the paper also describes the digital thermometer in hardwaredesign and software design hardware design includes the main controllermicrocontroller circuit board the temperature acquisition part of thecircuit display circuit and the alarm system circuit. Software designincluding system software flow chart and the digital thermometer in thepart of the program words: AT89C51 microcontroller digital control temperature sensormulti-function thermometer 常州信息职业技术学院电子与电气工程学院 毕业设计论文第1章 前言 随着时代的进步和发展,单片机技术已经普及到我们生活,工作,科研,各个领域,已经成为一种比较成熟的技术,本文将介绍一种基于单片机控制的数字温度计,本温度计属于多功能温度计,可以设置上下报警温度,当温度不在设置范围内时,可以报警。 现代信息技术的飞速发展和传统工业改造的逐步实现。 能够独立工作的温度检测和显示系统应用于诸多领域。传统的温度检测以热敏电阻为温度敏感元件。热敏电阻的成本低,但需后续信号处理电路,而且可靠性相对较差,测温准确度低,检测系统也有一定的误差,所以传统的温度计有反应速度慢、读数麻烦、测量精度不高、误差大等缺点。 本文是以单片机 AT89C51 为核心,通过 DALLAS 公司的单总线数字温度传感器 DS18B20 来实现环境温度的采集和 A/D 转换,用来测量环境温度,温度分辨率为 ℃,并能数码显示。因此本文设计的数字温度计具有读数方便,测温范围广,测温精确,数字显示,适用范围宽其电路简单,软硬件结构模块化,易于实现等特点。 数字式温度计的设计将给人们的生活带来很大的方便, 为人们生活水平的提高做出了贡献。数字温度计在以后将应用于我们生产和生活的各个方面,数字式温度计的众多优点告诉我们:数字温度计将在我们的未来生活中应用于各个领域,它将会是传统温度计的理想的替代产品。 -1- 常州信息职业技术学院电子与电气工程学院 毕业设计论文第2章 数字温度计总体设计方案 数字温度计设计方案方案 一: 采用热敏电阻器件,利用其感温效应,再将随被测温度变化的电压或电流采集过来,进行 A/D 转换后,利用单片机进行数据的处理,然后在显示电路上,将被测温度显示出来。 方案 二: 利用温度传感器,在单片机电路设计中,大多都是使用传感器,所以这是非常容易想到的,所以可以采用一只温度传感器 DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换就可以满足设计要求。 分析上述两种方案可以看出方案一是使用热敏电阻之类的器件利用其感温效应,进行 A/D 转换后,利用单片机进行数据的处理,在显示电路上被测温度显示出来,这种设计需要用到 A/D 转换电路,感温电路比较麻烦。方案二是利用温度传感器直接读取被测温度,读数方便,测温范围广,测温精确,适用范围宽而且电路简单易于实现。 综合方案一和方案二的优缺点,我们选择方案二。 总体设计框图 温度计电路设计总体设计方框图如图 2-1 所示, 控制器采用单片机 AT89C51,温度传感器采用 DS18B20,用 4 位 LED 数码管以串口传送数据实现温度显示。 L 单片机复位 E D 主 显 控 示 报警点按键调整 制 器 温 度 时钟振荡 传 感 器 图 2-1 总体设计方框图 -2- 常州信息职业技术学院电子与电气工程学院 毕业设计论文第3章 数字温度计硬件设计 主控制器 AT89C51 的特点及特性: 40 个引脚,4K Bytes FLASH 片内程序存储器,128 Bytes 的随机存取数据存储器(RAM) ,32 个外部双向输入/输出(I/O)口,5 个中断优先级 2 层中断嵌套中断,2 个 16 位可编程定时计数器,2 个全双工串行通信口,看门狗(WDT)电路,片内时钟振荡器。 此外,AT89C51 在空闲模式下,CPU 暂停工作,而 RAM 定时计数器,串行口,外中断系统可继续工作,掉电模式冻结振荡器而保存 RAM 的数据,停止芯片其它功能直至外中断激活或硬件复位。同时该芯片还具有 PDIP、TQFP 和 PLCC 等三种封装形式,以适应不同产品的需求。 主要功能特性: 兼容 MCS-51 指令系统 4k 可反复擦写gt1000 次)ISP FLASH ROM 32 个双向 I/O 口 工作电压 2 个 16 位可编程定时/计数器 时钟频率 0-33MHZ 全双工 UART 串行中断口线 128X8 BIT 内部 RAM 2 个外部中断源 低功耗空闲和省电模式 中断唤醒省电模式 3 级加密位 看门狗(WDT)电路 软件设置空闲和省电功能 灵活的 ISP 字节和分页编程 双数据寄存器指针 管脚功能说明: AT89C51 管脚如图 3-1 所示: -3- 常州信息职业技术学院电子与电气工程学院 毕业设计论文 图 3-1 AT89C51 管脚图 (1)VCC:供电电压。 (2)GND:接地。 P0 P0 (3) 口: 口为一个 8 位漏级开路双向 I/O 口, 每脚可吸收 8TTL 门电流。当 P1 口的管脚第一次写 1 时,被定义为高阻输入。P0 能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在 FIASH 编程时,P0 口作为原码输入口,当 FIASH 进行校验时,P0 输出原码,此时 P0 外部必须被拉高。 (4)P1 口:P1 口是一个内部提供上拉电阻的 8 位双向 I/O 口,P1 口缓冲器能接收输出 4TTL 门电流。P1 口管脚写入 1 后,被内部上拉为高,可用作输入,P1 口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在 FLASH编程和校验时,P1 口作为第八位地址接收。 (5)P2 口:P2 口为一个内部上拉电阻的 8 位双向 I/O 口,P2 口缓冲器可接收,输出 4 个 TTL 门电流,当 P2 口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2 口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2 口当用于外部程序存储器或 16 位地址外部数据存储器进行存取时,P2 口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2 口输出其特殊功能寄存器的内容。P2 口在 FLASH 编程和校验时接收高八位地址信号和控制信号。 (6)P3 口:P3 口管脚是 8 个带内部上拉电阻的双向 I/O 口,可接收输出 4个 TTL 门电流。当 P3 口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3 口将输出电流(ILL)这是由于上拉的缘故。P3 口也可作为 AT89C51 的一些特殊功能口,如下所示: RXD(串行输入口) TXD(串行输出口) /INT0(外部中断 0) /INT1(外部中断 1) T0(记时器 0 外部输入) T1(记时器 1 外部输入) /WR(外部数据存储器写选通) /RD(外部数据存储器读选通) -4- 常州信息职业技术学院电子与电气工程学院 毕业设计论文 P3 口同时为闪烁编程和编程校验接收一些控制信号。 (7)RST:复位输入。当振荡器复位器件时,要保持 RST 脚两个机器周期的高电平时间。 (8)ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。在 FLASH 编程期间,此引脚用于输入编程脉冲。在平时,ALE 端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的 1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部数据存储器时,将跳过一个 ALE 脉冲。如想禁止 ALE 的输出可在 SFR8EH 地址上置 0。此时,ALE 只有在执行 MOVX,MOVC 指令是 ALE 才起作用。另外,该引脚被略微拉高。如果微处理器在外部执行状态 ALE 禁止,置位无效。 (9)/PSEN:外部程序存储器的选通信号。在由外部程序存储器取指期间,每个机器周期两次/PSEN 有效。 但在访问外部数据存储器时, 这两次有效的/PSEN信号将不出现。 ( 10 ) /EA/VPP : 当 /EA 保 持 低 电 平 时 , 则 在 此 期 间 外 部 程 序 存 储 器(0000H-FFFFH),不管是否有内部程序存储器。注意加密方式 1 时,/EA 将内部锁定为 RESET;当/EA 端保持高电平时,此间内部程序存储器。在 FLASH 编程期间,此引脚也用于施加 12V 编程电源(VPP)。 (11)XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。 (12)XTAL2:来自反向振荡器的输出。 片内振荡器: 该反向放大器可以配置为片内振荡器,如图 3-2 所示。 图 3-2 片内振荡器 芯片擦除: -5- 常州信息职业技术学院电子与电气工程学院 毕业设计论文 整个 PEROM 阵列和三个锁定位的电擦除可通过正确的控制信号组合, 并保持ALE 管脚处于低电平 10ms 来完成。在芯片擦操作中,代码阵列全被写“1”且在任何非空存储字节被重复编程以前,该操作必须被执行。 此外,AT89C51 设有稳态逻辑,可以在低到零频率的条件下静态逻辑,支持两种软件可选的掉电模式。在闲置模式下,CPU 停止工作。但 RAM、定时器、计数器、串口和中断系统仍在工作。在掉电模式下,保存 RAM 的内容并且冻结振荡器,禁止所用其他芯片功能,直到下一个硬件复位为止。单片机 AT89C51 具有低电压供电和体积小等特点,四个端口只需要两个口就能满足电路系统的设计需要,很适合便携手持式产品的设计使用系统可用二节电池供电。 单片机 AT89C51 具有低电压供电和体积小等特点,四个端口只需要两个口就能满足电路系统的设计需要, 很适合便携手持式产品的设计使用系统可用二节电池供电。 单片机主板电路 单片机 AT89C51 是数字温度计的核心元件,单片机的主板电路如图 3-3 所示,包括单片机芯片、报警系统电路、晶振电路、上拉电阻以及与单片机相连的其他电路。 图 3-3 单片机的主板电路 温度采集部分的设计 温度传感器 DS18B20 DS18B20 温度传感器是美国 DALLAS 半导体公司最新推出的一种改进型智能温度传感器,与传统的热敏电阻等测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现 9~12 位的数字值读数方式。 -6- 常州信息职业技术学院电子与电气工程学院 毕业设计论文 TO-92 封装的 DS18B20 的引脚排列见图 3-4,其引脚功能描述见表 .

温度的检测论文

用DS18B20做的电子温度计,非常简单。#include <> #include\"\"#include <>#include <>//********************************************************#define Seck (500/TK) //1秒中的主程序的系数#define OffLed (Seck*5*60) //自动关机的时间5分钟!//********************************************************#if (FHz==0) #define NOP_2uS_nop_()#else #define NOP_2uS_nop_();_nop_()#endif//**************************************#define SkipK 0xcc //跳过命令#define ConvertK 0x44 //转化命令#define RdDs18b20K 0xbe //读温度命令//*******************************************extern LedOut(void);//*************************************************sbit PNP1=P3^4;sbit PNP2=P3^5;sbit BEEP=P3^2;//***********************************#defineDQ PNP2 //原来的PNP2 BEEP//***********************************static unsigned char Power=0;//************************************union{ unsigned char Temp[2]; //单字节温度 unsigned int Tt; //2字节温度}T;//***********************************************typedef struct{ unsigned char Flag; //正数标志 0;1==》负数 unsigned char WenDu; //温度整数 unsigned int WenDuDot; //温度小数放大了10000}WENDU; //***********************************************WENDU WenDu;unsigned char LedBuf[3];//----------------------------------//功能:10us 级别延时// n=1===> 6Mhz=14uS 12MHz=7uS//----------------------------------void Delay10us(unsigned char n){ do{ #if (FHz==1) NOP_2uS;NOP_2uS; #endif }while(--n);}//-----------------------------------//功能:写18B20//-----------------------------------void Write_18B20(unsigned char n){ unsigned char i; for(i=0;i<8;i++){ DQ=0; Delay10us(1);//延时13us 左右 DQ=n & 0x01; n=n>>1; Delay10us(5);//延时50us 以上 DQ=1; }}//------------------------------------//功能:读取18B20//------------------------------------unsigned char Read_18B20(void){ unsigned char i; unsigned char temp; for(i=0;i<8;i++){ temp=temp>>1; DQ=0; NOP_2uS;//延时1us DQ=1; NOP_2uS;NOP_2uS;//延时5us if(DQ==0){ temp=temp&0x7F; }else{ temp=temp|0x80; } Delay10us(5);//延时40us DQ=1; } return temp;}//-----------------------------------void Init (void){ DQ=0; Delay10us(45);//延时500us DQ=1; Delay10us(9);//延时90us if(DQ){ //0001 1111b=1f Power =0; //失败0 }else{ Power++; DQ=1; }}//----------------------------------void Skip(void){ Write_18B20(SkipK); Power++;}//----------------------------------void Convert (void){ Write_18B20(ConvertK); Power++;}//______________________________________void Get_Ds18b20L (void){ [1]=Read_18B20(); //读低位 Power++;}//______________________________________void Get_Ds18b20H (void){ [0]=Read_18B20(); //读高位 Power++;}//------------------------------------//规范化成浮点数// sssss111;11110000// sssss111;1111()//------------------------------------void ReadTemp (void){ unsigned char i; unsigned intF1=0; char j=1; code int Code_F[]={6250,1250,2500,5000}; ; if ([0] >0x80){ //负温度 =~; //取反+1=源吗 +符号S ; } <<= 4; //左移4位 [0]; // 温度整数 //************************************************** [1]>>=4; //--------------------------- for (i=0;i<4;i++){ //计算小数位 F1 +=([1] & 0x01)*Code_F; [1]>>=1; } ; //温度的小数 Power=0;}//----------------------------------void Delay1S (void){ static unsigned int i=0; if (++i==Seck) {i=0ower++;}}//----------------------------------void ReadDo (void){ Write_18B20(RdDs18b20K); Power++;}/**********************************函数指针定义***********************************/code void (code *SubTemp[])()={ Init,Skip,Convert,Delay1S,Init,Skip,ReadDo,Get_Ds18b20L, Get_Ds18b20H,ReadTemp};//**************************************void GetTemp(void){ (*SubTemp[Power])();}//---------------------------------------------------//将温度显示,小数点放大了 GetBcd(void){ LedBuf[0]= / 10; LedBuf[1]= % 10 +DotK; LedBuf[2]=()%10; if(LedBuf[0]==0)LedBuf[0]=Black; if() return; if(LedBuf[0] !=Black){ LedBuf[2]=LedBuf[1]; LedBuf[1]=LedBuf[0]; LedBuf[0]=Led_Pol; //'-' }else{ LedBuf[0]=Led_Pol; //'-' }}/*//---------------------------------------------------void JbDelay (void){ static long i; if (++i>=OffLed){ P1=0xff; P2=0xff; PCON=0x02; }}*//*****************************************************主程序开始1:2002_10_1 设计,采用DS18B20测量2:采用函数数组读取数码管显示正常!3:改变FHz可以用6,12MHz工作!******************************************************/code unsigned char Stop[3] _at_ 0x3b;void main (void){ P1=0xff; ; while (1){ GetTemp(); GetBcd(); // JbDelay(); LedOut(); }}复制代码 20091012_8b1ef92155560c13b5807ZmoDVSacjwD[1].jpg (12 KB) 2009-10-21 23:21 上传下载次数:0

你好,我有你需要的设计!需要的联系回答者 目 录 一、引言 4 二、设计内容及性能指标 5 三、系统方案论证与比较 5 (一)、方案一 5 (二)、方案二 6 四、系统器件选择 7 (一)、 单片机的选择 7 1、 89S51 引脚功能介绍 8 (二)、温度传感器的选择 10 1、 DS18B20 简单介绍: 10 2、 DS18B20 使用中的注意事项 12 3、 DS18B20 内部结构 12 4、DS18B20测温原理 16 5、提高DS1820测温精度的途径 17 (三)、显示及报警模块器件选择 18 五、硬件设计电路 18 (一)、主控制器 19 (二)、显示电路 19 (三)、 温度检测电路 20 (四)、温度报警电路 25 六、 软件设计 26 (一)、 概述 26 (二)、主程序模块 26 (三)、各模块流程设计 27 1、 温度检测流程 28 2、报警模块流程 28 3、 中断设定流程 29 七、总结和体会 31 八、致谢 31 参考文献32

我做的课程设计,用的数码管,也做了protues仿真,你有需要的话,我邮箱是。希望对你有帮助,#include<>sbit P11=P1^1;sbit P12=P1^2;sbit P13=P1^3;sbit P14=P1^4;/////数码管1断码控制///////////////sbit P15=P1^5;sbit P16=P1^6;sbit P17=P1^7;sbit P32=P3^2;/////数码管2段码控制////////////////sbit up=P3^7;sbit down=P3^6; ////按键操作端口//////////////////sbit P35=P3^5; ////////控制晶闸管端口/////////sbit DQ =P3^3; ///////温度传感器端口///////// #define THCO 0xee#define THLO 0x00unsigned char code duan[]={ 0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0XD8,0x80,0x90,0x88,}; //////////////////////////////////////////int b=0;char pwm=0;int k;char r=0,q=0;static char wendu_1;char hao=20;//////////////////////////////////////////////void delay(unsigned int i){while(i--);}//////////////////////////////////////////Init_DS18B20(void){unsigned char x=0;DQ = 1; //DQ复位delay(8); //稍做延时DQ = 0; //单片机将DQ拉低delay(80); //精确延时 大于 480usDQ = 1; //拉高总线delay(14);x=DQ; //稍做延时后 如果x=0则初始化成功 x=1则初始化失败delay(20);}////////////////////////////////////////////ReadOneChar(void){unsigned char i=0;unsigned char dat = 0;for (i=8;i>0;i--){DQ = 0; // 给脉冲信号dat>>=1;DQ = 1; // 给脉冲信号if(DQ)dat|=0x80;delay(4);}return(dat);}////////////////////////////////////////////////WriteOneChar(unsigned char dat){unsigned char i=0;for (i=8; i>0; i--){DQ = 0;DQ = dat&0x01;delay(5);DQ = 1;dat>>=1;}//delay(4);}/////////////////////////////////////////////////DS18B20程序读取温度ReadTemperature(void){unsigned char a=0;unsigned char b=0;unsigned int t=0;float tt=0;Init_DS18B20();WriteOneChar(0xCC); // 跳过读序号列号的操作WriteOneChar(0x44); // 启动温度转换Init_DS18B20();WriteOneChar(0xCC); //跳过读序号列号的操作WriteOneChar(0xBE); //读取温度寄存器等(共可读9个寄存器) 前两个就是温度a=ReadOneChar();b=ReadOneChar();t=b;t<<=8;t=t|a;tt=t*;return(t);}xianshi(){/////////////////当前温度显示///////////////////////////// P11=1; P0=duan[wendu_1/1000]; for(k=0;k<1000;k++); P1=0;P12=1; P0=duan[wendu_1/100%10]; for(k=0;k<1000;k++); P1=0;P13=1; P0=duan[wendu_1%100/10]; for(k=0;k<1000;k++); P1=0;P14=1; P0=duan[wendu_1%10]; for(k=0;k<1000;k++); P1=0; ///////////////////////////目标电压显示/////////////// P15=1; P2=duan[hao/1000]; for(k=0;k<1000;k++); P1=0;P16=1; P2=duan[hao/100%10]; for(k=0;k<1000;k++); P1=0;P17=1; P2=duan[hao%100/10]; for(k=0;k<1000;k++); P1=0;P32=1; P2=duan[hao%10]; for(k=0;k<1000;k++); P32=0;////////////////////////////////////////////////////////// }/////////////////////////////////////////////////////////// main(void){ P11=0; P12=0; P13=0; P14=0; P15=0; P16=0; P17=0; P32=0; P35=0; /////////////////////////////////////////////////////////// while(1){ wendu_1=ReadTemperature()/16;//读温度 xianshi(); ///显示系统数据/////////////////////////////////////操作函数//////////////////////////////////// if(down==0) {hao--;} if(up==0){hao++;} ///////////////////////////////////////////////////////////////////hao为理想温度/////wendu_1为实际环境温度/////////////////////////////////////////////////////////////////P35为高时 led灯工作///////////////////////////////////// P35=0; pwm=hao-wendu_1; if(pwm>0) {P35=1;} if(pwm<0) {P35=0;} if(pwm==0) {P35=0;}///////////////////////////////////////////////////////////////// }}

自然环境污染论文

大量事实表明,人与自然的关系不和谐,往往会影响人与人的关系、人与社会的关系。如果生态环境受到严重破坏、人们的生产生活环境恶化,如果资源能源供应高度紧张、经济发展与资源能源矛盾尖锐,人与人的和谐、人与社会的和谐是难以实现的。目前,我国的生态环境形势相当严峻,一些地方环境污染问题相当严重。随着人口增多和人们生活水平的提高,经济社会发展与资源环境的矛盾还会更加突出。如果不能有效保护生态环境,不仅无法实现经济社会可持续发展,人民群众也无法喝上干净的水,呼吸上清洁的空气,吃上放心的食物,由此必然引发严重的社会问题。要科学认识和正确运用自然规律,学会按照自然规律办事,更加科学地利用自然为人们的生活和社会发展服务,坚决禁止各种掠夺自然、破坏自然的做法。要引导全社会树立节约资源的意识,以优化资源利用、提高资源产出率、降低环境污染为重点,加快推进清洁生产,大力发展循环经济,加快建设节约型社会,促进自然资源系统和社会经济系统的良性循环。要加强环境污染治理和生态建设,抓紧解决严重威胁人民群众健康安全的环境污染问题,保证人民群众在生态良性循环的环境中生产生活,促进经济发展与人口、资源、环境相协调。要增强全民族的环境保护意识,在全社会形成爱护环境、保护环境的良好风尚。如果不够就需要你再加点去了.保护环境,对我们每个人来说都很重要,而且对我们每个人的幸福也有很大的关系。人类的每一个进步都是自然给予的,但我们现在却在迫害我们赖以生存的环境。你发现了吗?现在的夏天来得越来越早,越来越热,人们躲在空调房间里不愿出门;全球各地不断出现台风、地震、泥石流等自然灾害。这些是多么可怕的现实啊!我们必须马上行动起来,从现在做起,保护我们的家园。你知道吗?我国每年都有价值250亿元的资源被白白浪费了!这些资源既不是石油也不是天然气,更不是高科技产品,而是我们每个家庭每天都在产生的生活垃圾。由于我们没有将垃圾进行适当的分类,不仅使那些可利用而没有得到利用的废弃物成为二次污染的源头,而且还造成巨大的资源浪费,实在是太可惜了! 让我们先来看一看生活垃圾全部混在一起都会带来哪些后果吧!首先,会增加填埋或焚烧的垃圾量。仅在北京,垃圾占地就已达1万亩啦,焚烧垃圾越多,释放的有毒气体也就越多,同时还会产生有害炉渣和灰尘呢,这些都对我们的健康构成了极大威胁。 我们再来算算垃圾不分类会造成多大的资源浪费吧。据有关部门统计,我国每年约有300万吨废钢铁,600万吨废纸没得到利用。而我们经常随手丢弃的废干电池,每年就有60多亿只,里面总共含有7万多吨锌,10万吨二氧化锰呢。这些资源如果都能被重新利用,将会成为多大的社会财富啊。 既然垃圾分类这么重要,为什么大家总是做不好呢?主要是很多人怕麻烦、环保意识不够,还有一个重要的原因是,大街上和社区里方便分类垃圾箱特别少,让人们很难养成垃圾分类的好习惯。 哎,难道说,就继续让这些垃圾混在一起,又污染环境又浪费资源吗?那可不行,必须想办法解决。如果政府加大垃圾分类的推行力度,当然最好还能制定奖惩制度,效果可能就明显得多。除此之外,最好能够设计出更为方便分类,同时外观又醒目的垃圾箱,让它的标识就像交通红绿灯一样深入人心,时刻提醒大家要做到垃圾分类。这样一来,不但可以减少污染,保护环境,而且还能给国家节约不少能源呢。我认为要全民树立环保意识,让大家意识到保护环境、资源和我们每个人都是息息相关的,而且已经直接关系到人类社会的生死存亡!不能有环保多我一人、少我一人差别不大的思想,也不能怕麻烦。只要我们共同努力,就能让一片片沙漠变成绿洲,让小草更肥,树儿更绿;让小河里的水欢跳着流,为社会、也为自己留下一片碧水蓝天! 美国进口普卫欣天 猫

写作思路:写有关空气污染的防治措施,并给出保护环境的方法。

大气是由多种成分组成的混合气体,这些混合气体的组成通常包括以下几部分:

(一)干洁空气:它的主要成分为氮、氧、氩,它们在空气中的总容积约占。此外还有少量其他成分,如二氧化碳、氖、氦、臭氧等。干洁空气是大气中的不变组成。

(二)水汽:大气中的水汽含量比较低,但它在大气中的含量随时间、地域、气象条件的不同而变化很大,在干旱地区可低到,而在温湿地带可达6%。水汽对天气起着重要的作用。

(三)悬浮微粒:悬浮微粒是指由于自然因素而生成的颗粒物,如岩石的风化、火山爆发、宇宙落物以及海水溅沫等。无论是它的含量、种类,还是化学成分都是变化的。大气污染通常是指由于人类活动和自然过程引起某种物质进入大气中,呈现出足够的浓度,达到了足够的时间并因此而危害了人体的舒适,健康和福利或危害了环境环境的现象。

按污染的范围,大气污染可分为:局部地区大气污染,区域性大气污染,广域性大气污染和全球性大气污染。燃料的燃烧是造成大气污染的主要原因;石油工业和化工工业大规模的发展也增加了空气中污染物的种类和数量;在农业方面,由于各种农药的喷洒而造成的大气污染也是不可忽视的问题。

空气是人类生存所必需的,空气被各种有害物质污染将直接或间接影响到人们的健康。大气污染是随着现代工业的发展、城市人口的密集、煤炭和石油燃料的迅猛增长而产生的。

近百年来,西欧、美国和日本等工业发达国家大气污染事件日趋增多,20世纪50~60年代成为公害的泛滥时期,例如:英国伦敦烟雾事件,日本四日市哮喘事件,美国洛杉矶烟雾事件,印度博帕尔毒气泄漏事件等,不仅严重地危害居民健康,甚至造成数百、数千人的死亡。

大气污染的防治策略和措施,基本的策略应该是监测干预,评价。

第1步,通过对环境污染和人群健康的监测,掌握情况;

第2步,针对问题制订对策,进行干预治理;

第3步,对干预的效果进行评价,再针对发现的问题采取相应的措施。如此循环往复,将环境治理得越来越好,人群健康状也越来越好。

一、空气污染论文写作思路及要点

1、开头先写明空气的重要性。

2、然后写空气污染具体有哪些。

3、最后写如何解决空气污染。

二、空气污染论文范例

空气是人类赖以生存和发展的必不可少的环境要素之一。然而人口的增多,人类活动频繁,自然因素影响使大气污染严重,保护大气环境是我们刻不容缓的义务。

人类赖以生存的环境由自然环境和社会环境组成。自然环境是人类生活和生产所必需的自然条件和自然资源的总和,即阳光、温度、气候、地磁、空气、水、岩石、土壤、动植物、微生物以及地壳的稳定性等自然因素的总和。

而社会环境是人类在自然环境的基础上,为不断提高物质和精神生活水平,通过长期有计划、有目的地发展,逐步创造和建立起来的一种人工环境。社会环境是人类物质文明和精神文明发展的标志,它随着经济和科学技术的发展而不断地变化。社会环境的质量对人类的生活和工作,对社会的进步都有极大的影响。

一、 空气污染对健康的危害

空气是人类生存所必需的,空气被各种有害物质污染将直接或间接影响到人们的健康。大气污染是随着现代工业的发展、城市人口的密集、煤炭和石油燃料的迅猛增长而产生的。近百年来,西欧、美国和日本等工业发达国家大气污染事件日趋增多,20世纪50~60年代成为公害的泛滥时期,例如:英国伦敦烟雾事件,日本四日市哮喘事件,美国洛杉矶烟雾事件,印度博帕尔毒气泄漏事件等,不仅严重地危害居民健康,甚至造成数百、数千人的死亡。

二、大气污染的防治策略和措施

基本的策略应该是监测-干预-评价。第1步,通过对环境污染和人群健康的监测,掌握情况。第2步,针对问题制订对策,进行干预治理。第3步,对干预的效果进行评价,再针对发现的问题采取相应的措施。如此循环往复,将环境治理得越来越好,人群健康状也越来越好。

根据大气污染物和存在状态,其治理技术可分为两大类:颗粒污染物和气态污染物控制。

1、颗粒污染物控制技术又称处尘技术,此技术和设备及方法很多,各具不同的性能和特点。常见的除尘设备有以下几类:重力沉将、旋风除尘、湿式除尘器除尘。

2、气态污染物控制技术:气态污染物控制技术也有很多,归纳起来有:吸收、吸附、催化、燃烧、冷凝、生物膜分离、电子束等。

随着人口的增加,空气质量仍在不断恶化。特别是在20世纪80年代以后,大面积生态环境的破坏,酸雨面积的逐年扩大,城市空气质量的日益恶化以及全球性污染的出现使大气污染呈现了范围大,危害严重,持续恶化等特点。因此,从整体出发,统一规划并综合运用各种手段和措施治理,有效地控制大气污染已经成为刻不容缓的事实,让我们一起努力去让地球变的更美好吧!

1. 我国水环境问题及其影响因素我国水环境面临着水体污染、水资源短缺和洪涝灾害等多方面压力。水体污染加剧了水资源短缺,水生态环境破坏促使洪涝灾害频发。据1999年《中国环境状况公报》显示,目前我国七大水系、主要湖泊、近岸海域及部分地区的地下水受到不同程度的污染。河流以有机污染为主,主要污染物是氨氮、生化需氧量、高锰酸盐指数和挥发酚等;湖泊以富营养化为特征,主要污染指标为总磷、总氮、化学需氧量和高猛酸盐指数等;近岸海域主要污染指标为无机氮、活性磷酸盐和重金属。这些因素构成了水环境问题影响范围广,危害严重,治理难度大等特征。我国水环境问题产生的原因是多方面的,但主要是人类主观因素的影响。长期以来,我国经济增长方式粗放,企业单纯追求经济效益,忽视环境效益和生态效益。工业发展中,水消耗量大、利用率低。不仅单位产值污水排放量大,而且万元产值用水量各省区间差距悬殊。1998年全国平均万元GDP用水683m3以上。其中,北京161m3,天津201m3,上海300m3。但是,黑龙江、内蒙古、江西、广西、贵州、青海、甘肃等省区大多在1000m3以上。宁夏、新疆为4000m3左右。北京1m3灌溉用水可以生产2kg粮食,而宁夏才生产不到1kg。同时,在传统的计划经济体制下,粗放型的经济增长方式,使企业生产经营缺乏节能降耗的动力。企业技术改造往往以扩大再生产为目的,生产工艺落后,更新换代速度慢。随着经济体制改革的不断深入,经济增长方式的日趋转变,以及科技水平的快速提高,水资源的合理开发和利用将逐步走上科学化管理轨道。但是,这种转变需要一个较长的历史过程。水环境问题严重的另一个重要原因,是国家政策导向的偏差。长期以来,国民经济和社会发展注重经济增长速度、主要产品产量、城镇居民收入增长等指标,没有把资源消耗和环境代价纳入经济核算体系。迄今为止,城市环境基础设施建设仍作为“非生产性福利事业”。城市污水处理、垃圾处理由政府包揽,使政府不堪重负,以至于拿不出钱搞环境基础设施建设,甚至建成污染处理设施也因经费来源问题没解决而难以正常运转。在计划经济体制下,一些经济发展政策有悖于环境保护。我国一度“遍地开花”的“十五”小企业,布局分散,规模不经济,生产工艺落后,造成了严重的环境污染和生态破坏。区域经济发展和区域环境容量不相适应,也是造成水环境污染的重要原因。以往在确定地区产业发展方向、地区生产力布局时,往往忽视区域环境容量。我国主要江河出现的严重流域性水污染,在很大程度上与流域产业结构和布局不合理有直接关系。淮河流域四省自80.年代初开始,利用当地资源,大力发展高耗水的化工、造纸、制革、火电、食品等小型工业,污染物排放量超过了淮河的承载能力,使淮河流域水质急剧恶化;由于缺乏科学认证和科学管理,一些缺水地区盲目发展高耗水型工业,造成地下水位下降;一些资源丰富的地区发展单一的资源型产业,不发展与之相配套的加工业,产业结构雷同,形成严重的结构型污染。自然因素的影响在一定程度上加重了水环境问题的恶化,增加了水污染防治的难度。近年来,由于气候变化引起全球温度、湿度、降水量的分布变化,使一些国家和地区的灾害频发。我国北方地区气候也明显变暖,华北地区冬季平均气温90年代比50年代上升℃。气温上升,地表径流减少,蒸发量增大,发生旱灾的机会增多。1997年我国北方地区受厄尔尼诺现象的影响,降水量异常偏少,温度偏高,海河水资源量只有多年平均量的40%;黄河水资源量为多年平均量的61%。由于河道径流减少,水体自净能力下降,加剧了水环境恶化。1998年受厄尔尼诺现象影响,长江中下游、嫩江、松花江流域降水量偏多,导致特大洪水灾害的发生。我国水资源地区分布不均,南多北少,相差悬殊,水资源分布与人口、经济和社会发展布局极不协调。北方黄河、淮河、海河、松辽河,以及内陆河5个流域,总人口占全国的47%左右,耕地面积占65%以上,GDP占全国的45%以上,而水资源却只占全国水资源总量的19%,人均占有量仅为南方地区的1/3。这些因素也是导致水环境问题突出的重要方面。2. 重点流域水污染防治面临的主要问题“九五”以来,我国重点流域水污染防治以淮河治理为先导,太湖、巢湖、滇池,以及海河、辽河相继开始。通过采取工业污染源的末端治理,以及在产业结构调整和压缩过剩生产力中,取缔、关闭、和淘汰生产工艺落后、设备陈旧、污染严重的企业等一系列措施,治理工作取得一定成效。部分水域已经接近实现第一阶段的污染防治目标。“九五”水污染防治作为我国历史上第一次大规模的流域水污染防治,积累了大量宝贵经验,对于开拓我国的环境与发展道路具有长远的战略意义。但是,从总体上看,重点流域的水污染防治工作进展还比较缓慢,取得的成果十分脆弱。在实践中暴露出来的一些问题充分说明,我国当前和今后一个时期流域水污染防治仍面临严重挑战。 黄河、长江流域水环境问题亟待解决“九五”期间“三河三湖”的治理仅仅是拉开了我国水污染防治的序幕。在大规模治理“三河三湖”的同时,必须看到,黄河、长江的污染问题也到了非治理不可的程度了。黄河这个中华民族的摇篮,他养育了人类,也无数次地给人类带来灾难。如今,由于人类活动的作用力,使黄河的环境问题日趋严重。1999年,在黄河流域的114个重点监测断面上,V类和劣V类水体分别为70%和,黄河主要支流的污染更为严重,而且黄河的污染主要来自支流。目前,黄河水量少,自净能力弱,水环境处于危机之中。在西部大开发中,黄河流域的经济发展将进入较快增长时期。黄河的水污染必然使沿岸的水资源短缺“雪上加霜”。长江上游沿岸地区经济社会的快速发展和城市化进程的加快,使这一地区的污染物排放量迅速增加,污染问题随之加重,特别是三峡库区及其上游的水质不断恶化。如果不采取有效措施,预计到2010年,长江上游重点地区废水排放量将以年均的速度增长;沿江城镇生活垃圾入江量,将由1995年的约200万t增加到2010年的467万t;三峡库区的水体自净能力将大幅度下降。2009年三峡库区建成蓄水后,库区将由一个流速快、流量大的河流变成一个流速缓、滞留时间长,回水面积大的人工湖。水体稀释自净能力下降,水污染必然加重。根据预测,三峡工程建成后,湖区上游岸边污染带主要污染物浓度将比建坝前增加2-10倍,将成为重污染区。 城市生活污水逐年增加,污水处理设施建设严重滞后城市基础设施是工业建设的载体,制约着工业建设规模和发展速度。长期以来,我国城市建设不恰当地把基础设施建设的载体地位降低为工业的一般附属物地位,基础设施的发展与人口、资源、环境和工业建设不协调,导致基础设施长期超负荷承载。特别是城市环境保护基础设施,仅仅在近几年才开始兴建。全国绝大多数城市的污水处理能力远远满足不了实际需要。随着人口迅速增加和人民生活水平的日益提高,生活污水产生量大幅度增长。近年来,城市生活污水和工业废水排放量的比例已接近持平。但是,城市污水处理厂的建设远远不能适应经济社会发展的需要。一般情况下,城市污水处理厂的建设周期为3年。从目前的建设进度看,实现“九五”期间国家提出的全国50万人口的城市都要建设集中式污水处理装置的要求,还需要相当长的时间。以淮河为例,按规划,到2000年,淮河流域四省需要建设城市污水处理厂52座,总投资亿元,形成污水处理能力352万l/d。到1999年6月建成的污水处理厂只有3座,污水处理能力仅为44万l/d。集中式污水处理设施建设缓慢的原因,除了资金短缺外,现行管理和运行机制的掣肘也使城市污水处理厂的建设和运营陷于困境。由于没有真正落实“污染者负担”的政策,地方财政因无力支付污水处理费用,常常使建成后的污水处理厂不能正常运行,环境保护投资不能有效发挥环境效益。 大量的面源污染问题尚未找到解决途径目前,全国的工业污染已经开始得到有效控制。到2000年底,全国所有工业污染源都将实现达标排放。城市污水处理正在逐步加快步伐。但是,农村经济发展带来的农药、化肥、畜禽养殖污染量大面广,有一定治理难度。从50年代到90年代,我国农药施用量增加近100倍,成为世界上农药用量最大的国家。我国每年因农药中毒的人数占世界同类事故中毒人数的50%。而且由于农药的大量流失,造成严重的水体污染。全国化肥使用量也在成倍增加。1995年是1978年的4倍。目前,偏施化学氮肥,使氮、磷、钾比例失调现象比较严重。而且化肥的利用率只有30%左右,大量化肥流失,进入河流、海洋、湖泊,成为水体面源污染的主要来源。同时,由于大量化肥的使用,农村畜禽粪便的农业利用减少,畜禽业的集约化程度提高,加重了养殖业与种植业的脱节。畜禽粪便的还田率只有30%多,大部分未被利用。1998年全国畜禽粪便产生量是当年全国工业固体废物产生量的倍。这些畜禽粪便大部分未经处理直接排入江河湖海。同时,作为农村经济的重要组成部分,乡镇企业的发展也一直是困扰农村环境的一大难题。据1991年和1997年两次全国乡镇工业污染源调查,乡镇工业二氧化硫、烟尘、化学耗氧量和固体废物排放量分别增长了、、和552%;在全国主要工业污染物排放总量有所控制的情况下,乡镇企业排污量却在增长,这将对水环境构成严重威胁。 经济政策不配套,污染治理资金严重短缺在计划经济体制下,我国污染防治资金以国家预算内资金为主。随着市场经济体制的建立,完全依靠行政手段管理环境已经不能奏效。但是,由于市场经济条件下的环境经济政策体系尚未建立,多元化的环境保护投资体制难以形成。作为促进污染防治的重要经济手段排污收费制度,目前还很不完善。主要问题是,排污收费标准过低,不能发挥刺激污染防治的作用。超标排放污水收费作为排污收费的主体,其收费额不足污染处理设施运行成本的一半;污水排放收费最高不超过元/l;排污收费项目不全,主要对象是大中型企业和部分事业单位,城市污水处理费仅在少数城市开征,而且收费标准较低,“污染者付费”的原则没有充分体现;排污费的转移支付机制尚未建立,流域内上下游之间缺乏利益补偿政策,水资源的开发利用与保护不协调,造成水资源的浪费。“九五”期间我国环境保护投资有了大幅度提高,特别是国家采取积极的财政政策,在扩大内需中把环境保护作为重点投资领域,一些水污染防治重点项目得到国债资金的支持。但是,由于环境保护资金渠道狭窄,投资量小,污染治理资金短缺的问题仍然非常突出。按计划,“三河三湖”水污染防治约需资金1260亿元,但是目前已经落实的资金与需求相差甚远。1998年国家增发财政债券和银行贷款资金用于基础设施建设,分配给淮河流域10亿元财政债券资金用于城市污水处理厂建设。但是,这些资金仅为淮河城市污水处理厂总投资的,而且投资项目达34个之多。由于地方配套资金不足,开工的项目不少,却因缺乏资金施工建设进度缓慢,很多工程至今投资尚无着落。3. 关于水污染防治的政策建议我国是在经济技术相对落后的情况下实现经济快速发展的。人口基数大,人均资源少,环境污染和生态破坏的防治将是一项长期的战略任务。特别是水环境污染问题的解决不可能一蹴而就,需要经过一个艰苦的治理过程。因此,我们必须在认真总结“九五”期间水污染防治经验教训的基础上,借鉴世界一切成功的经验,结合我国的具体情况,不断加强政策创新、制度创新和技术创新,逐步走出一条具有中国特色的水污染防治道路。 在决策中控制新的水环境问题产生国家和地方各级政府,在确定经济发展速度、制定国民经济和社会发展计划、资源开发计划、区域开发计划,以及制定经济技术政策,进行重大经济决策时,应当对实施这些决策可能产生的环境影响做出科学评价,评价的结论作为各级决策的依据。在决策中综合考虑环境、经济和社会因素,统筹兼顾,使发展对环境的影响降低到最小。建立科学的评价指标体系,设置专门的评价审议机构,并使这一制度法制化,逐步建立起依法决策的运行机制。区域经济的发展要充分考虑水资源保护。限制缺水地区发展耗水型产业,调整缺水地区的产业结构,严格控制高耗水、高耗能和重污染的建设项目。近期应重点调整北方缺水地区的产业结构,防止水资源短缺问题进一步加剧。生态环境脆弱地区的经济发展应考虑为生态用水留有余地,防止因过度开发导致下游地区河湖萎缩、土地沙化、生态退化。在水源地区,引导和组织水源地生态经济体系建设,避免水源地区经济发展导致下游城市水源污染。 资源的开发和利用要坚持开源节流并举的方针大力开展节水活动,采取有效措施,减少水消耗。有组织地推行节水、高效的农灌技术;完善科学的农业用水管理措施,尽快改变农业生产大量耗水的局面。制定单位产品用水定额和水重复利用率考核指标,建立工业用水考核制度;明确规定冷却水及工艺用水等工业废水必须循环利用和再生利用;大力发展水的闭路循环使用,最大限度地减少废水排放量。在开展节约用水,解决我国水资源短缺的同时,全面加强水污染防治,特别是重点流域的水污染防治。流域治理的重点在城市,城市工业废水和生活污水的治理,要走集中与分散治理相结合和废水资源化路子。因地制宜地建设污水处理设施,处理后的污水要用于工业冷却水、城市景观和园林绿地用水等。 建立和完善资源有偿使用制度和价格体系国家有关部门应抓紧组织开展资源定价研究,有计划地对关系国计民生的重要资源和国家稀缺资源制定分类指导的价格政策,尽快改变“资源无价”,资源产品低价的不合理状况,使水资源价格体现资源价值、资源利用和污染防治费用。同时,积极推进水资源资产化管理进程,加强资源核算体系的研究,为逐步将水资源核算纳入国民经济核算体系创造条件。 完善环境经济政策抓紧制定有利于环境保护的环境经济政策,进一步强化市场经济体制下的环境经济手段。尽快提高排污费标准,使之高于污染治理成本;制定水污染防治相关政策,建立资源更新的补偿机制;全面实现“污染者付费”的原则,在用水收费中,普遍增加污水处理费,作为城市污水处理厂运行费用;环境保护作为“市场失效”的领域,特别是环境科技研究与开发、环境保护基础设施建设等,国家应加强产业政策支持。同时,鼓励和推动环境保护基础设施建设和管理的企业化。积极建立环境税收制度。扩大资源税的征收范围,对地下水等稀缺资源征收资源税;对新建污染项目征收固定资产投资方向调节税,控制结构型污染;对现行排污费与费改税进行利弊分析,探索征收污染附加税;对从事城市污水处理的企业实行零税率;对生产再生资源和利用再生资源生产的产品,应给予税收减免的优惠。 大力推行清洁生产工业部门要加快产业结构调整,合理调整工业布局,推动资源消耗小、效益高的高新技术产业发展。结合技术改造推行以清洁原料、清洁生产过程和清洁产品为主要内容的清洁生产。要把清洁生产当作在可持续发展战略指导下的一次工业企业的全面改造,在全国所有工业企业推行清洁生产。通过加强环境管理审计,建立科学的管理体制,促进我国工业向新的技术基础转移,以集约方式提高质量,降低消耗,增加经济效益。并在此基础上逐步建立我国资源节约型生态工业生产体系。 加强农村面源污染的防治农村要推行以改善农业生态环境,加快农村经济发展为主要内容的生态农业生产体系。全面推广种植业、养殖业、加工业合理配置的“大农业”生产模式,注重农、林、牧、副、渔各业全面发展,农、工、商综合经营。把现代化科学技术和传统农业精华有机结合起来,逐步增加有机肥料的使用,减少化肥、农药的使用。开发生物农药技术,推广以菌治虫、以虫治虫的生物技术替代农药。目前,我国已有2000多个生态农业试点,应当在总结经验的基础上,把推行生态农业作为农村经济发展中的一场革命,在全国广大农村普遍展开。逐步把农村富余劳动力从污染型乡镇工业转移到生态农业建设上来。县、乡两级政府要制定生态农业建设规划,国家有关部门要加强技术推广,有计划地在全国乡、村培养一批技术骨干,指导农民发展生态农业。 加快城镇污水处理厂建设,大力发展环保产业改革现行城市污水处理体制,实现污水处理厂建设和运营的社会化、市场化、企业化。污水处理厂的建设要引入竞争机制,按照“谁投资谁所有,谁管理谁受益”的原则,建立多元化投资建设、企业化运营管理、社会共同负担费用、政府给予必要的政策扶持的模式。积极探索城镇给排水建设和运营一体化的管理体制。逐步使政府从直接管理污水处理设施的建设和运行中解脱出来,让污水处理真正走向市场。环保产业的发展应当成为国民经济新的增长点。国家应制定扶持环保产业发展的经济政策,在投资、信贷、税收等方面给予优惠;鼓励一部分产品过剩的企业转向环保产品生产和服务;组建环保产业集团,尽快形成产业规模;抓紧培育环保市场,把原来政府管理的环保服务事业推向市场。同时,要加强环境科学研究,组织开展高浓度有机废水处理等急需的重点水处理技术攻关;加速污染防治和生态工程成套设备的国产化,改变我国环保产业落后的现状,以适应我国污染防治的需要。

相关百科

热门百科

首页
发表服务