演讲是阐明事理或抒发情感,进行宣传鼓动的一种语言交际活动。演讲同时也是一种对自身沟通能力的提升。
【篇一】毕业答辩演讲稿
晚上好,我叫xxx,来自xx专业,我的毕业论文题目是《xxx》。我的毕业论文资料真实、可靠,是我在xxx老师的指导下,独立地进行研究所完成。在那里我向肖老师表示深深的谢意,同时向各位老师参加我的论文答辩表示衷心的感谢。
下面,我将从:研究资料,研究的目的和好处、研究的思路与方法、优缺点进行介绍,恳请各位老师批评指导。
首先,我谈一谈这篇毕业论文的资料:论文主要包括以下四部分:
第一部分:类比引入法,其中包括:表达形式类比法、基本性质类比法、运算方法类比法。
第三部分:设疑引入法,其中包括:问题引入法、悬念引入法、谜语引入法。
第二部分:故事引入法,其中包括:历史引入法、情景引入法、幽默引入法。
第四部分:直接引入法。
其次,我谈谈这篇论文的研究思路和方法:
在开始这个课题的研究的时候,我首先收集了超多初中数学课堂的案例以及一些相关的文献,并对这些案例、文献进行分析、研究。之后从收集到的材料中总结出一些我个人觉得其引入是十分高效的一些方法和案例,然后请肖老师给意见,然后对不足的地方进行修改。最后,对总结出来的方法和案例进行分门别类,并再次增加一些案例。从而使得这篇论文资料更加充实。
再次,我谈一谈这篇论文的研究目的和好处:
良好的开端是成功的一半,课堂引入是课堂教学的起步阶段。课堂讲授的引入是学生能否用心主动学习新知识的关键。因此初中数学课堂的高效引入在新课程改革中显得尤为重要。但是在日常教学中,如何科学地做到高效引入是我们一向探究的问题。为了在必须程度上解决这个问题,帮忙广大初中数学教师高效地引入新课,从而吸引住学生的注意力,唤起学生的求知欲望,使学生主动地去学习以到达预期的教学效果,本文对初中数学课堂的高效引入进行研究。
课堂导入是课堂教学的主要环节,它的成与败直接影响着课教学的效果。用心的思维活动是课堂教学成功的关键,而高效的导入能够激发学生学习数学的思维兴趣,所以教师在新课引入时就应注意采用恰当的导入来激发学生的思维,以引起其对新知识新资料的用心探求。
最后,我谈一谈这篇论文的优缺点:
这篇论文的优点:其一是研究的课题还是比较新颖的,对自己以后的从教之路也很有帮忙,其二是课堂引入方法的分类别具一格。
缺点是:由于我自身的水平所限对某些概念和方法的理解还不是很深刻,思考肯定还不够深刻也不够全面。此外虽然我已经很仔细的检查过了,但是依然可能还存在必须的错别字或语句不是很通顺的地方。
虽然我尽可能地收集材料,竭尽所能运用自己所学的知识进行的论文写作和分析,但论文还是存在着不足之处,分析不透彻或者推荐不具体,还有待改善。所以请各位老师提出宝贵的推荐,让我在今后的学习与工作中做到更好。
我的陈述完毕,请各位老师批评指正。谢谢!
【篇二】毕业答辩演讲稿
早上好!
我叫×××,20xx级社会学专业学生。我的毕业论文题目是《社会学视野下金庸小说中的婚恋观》。我的指导老师是xxx老师。从确定选题、拟定提纲、完成初稿,到最后定稿,我得到了张老师的精心细致指导,使我很快掌握了论文的写作方法,并在较短的时间里完成了论文的写作。不管这天答辩的结果如何,我都会由衷的感谢指导老师的辛勤劳动,感谢各位评委老师的批评指正。
截至目前,在学术界有关金庸武侠小说的论著十分多,但尚无从社会学视野下对金庸小说中婚恋观的研究。选取金庸小说作为毕业论文的写作题材,一方面是因为我对金庸小说比较喜欢,包括由金庸小说改编而成的电视剧。的确,金庸小说不仅仅向我们展现了侠客的快意恩仇,还借用江湖这个社会,使人物摆脱传统社会的束缚或少受社会制度的束缚。男女侠客不问出身,不讲家庭地位、社会背景,只讲两性相悦、以情相许,能实现真正好处上的男女平等、恋爱自由。另一方面结合当今社会现实,许多现象与金庸小说中的情节有一些相似,揭示其中的联系,警示世人,以倡导和谐的、理想的婚姻。
在这篇论文中,主要采用了资料分析和现实比较的写作手法,各部分安排按照先典型分析,具体对照现象,理论分析,再阐明现代性特征的层次进行。具体结构如下:
第一部分为所归纳的金庸小说中的五种感情类型;
第二部分为金庸小说中与现实相对应的婚姻类型;
第三部分为关于金庸小说中择偶的社会学分析,分为宏观和和微观两个方面分析。宏观方面的主要理论有:对于择偶的个人主义解释;择偶的社会文化解释;择偶梯度理论;同类匹配理论。微观方面的理论有:1、相似性理论;2、需求互补理论。从以上这些择偶理论我们能够做出如下推论:相似性原则是择偶的基本规律。无论从哪个理论角度这个结论总是成立的,虽做出如下推论:相似性原则是择偶的基本规律。无论从哪个理论角度这个结论总是成立的,虽然对具体是什么相似有些争议。在外在社会条件上贴合同类匹配,内在条件上又贴合需求互补,这似乎就是最完满的理想婚姻模式。
第四部分为金庸小说中婚恋观的现代性特征;在金庸小说中,男女侠客不问出身,不讲家庭地位、社会背景,只讲两性相悦、以情相许,能实现真正好处上的恋爱自由,而这些观念无疑与现代人的恋爱观相合。
第五部分:结论。
社会是历史积淀的产物,小说是反映生活、憧憬生活、甚至能够改造生活、提升生活品质的艺术。在某些传统思想仍在侵蚀当代人的这天,在已经冲破封建罗网,人们获得充分的个性自由,能够勇于追求自我感情的这天,回味金庸小说中具有现代性特征的感情婚恋,对我们仍有启迪。金庸小说中的感情不仅仅反映了作者心目中的感情观,也折射出传统文化孕育下的群众无意识及现代人的情感困惑与矛盾境况,从而具有重要的认识价值。因此,我们应当超越以感情为基础的内涵性婚姻和以现实利益为基础的功利性婚姻的简单对立,使工具理性与价值理性相结合来构建一种理想的婚姻模式综合权衡模式。
限于各种条件的制约,个性是本人理论水平所限,使得本论文对金庸小说中婚恋观的现实好处仅停留在比较粗浅的层面,尤其是理论方面,还有很多问题需要继续进行深入、细致的思考和探索。
最后,再次感谢张红老师在我的毕业论文写作过程中所给予的悉心帮忙与指导;其次我要感谢各位专业师在这四年来对我的教育与培养,没有你们的教导,也就没有我的这天;最后也要感谢本专老业同学这几年来对我的关心与支持,和你们生活在一齐的日子我永远也不会忘记!
恳请各位老师、同学进行批评指正,谢谢大家!
【篇三】毕业答辩演讲稿
大家好!
我是来自酒店管理xx班的xxx,十分荣幸参加我们的毕业生论文答辩!我的论文题目是《浅析如何提升饭店服务质量》。在此我要十分感谢我的论文指导老师陈爱华老师!因为之前一向在浙江工作,没有太多空闲时间去寻找论文资料,所以工作的时候,我就一向在想我要找到一个怎样的题目利于我写作?最后,我结合自己学习和实习的经验,针对于自己认为酒店服务当中的不足或是确实需要改善的地方写出了自己的感受。由于时间仓促,写出的论文瑕疵较多,还好有陈老师的帮忙斧正,这才顺利完成!甭管这天答辩的结果如何,我都要感谢给予我这次帮忙的老师和同学。
如何写好论文答辩陈述词呢?一、熟悉论文参加论文答辩,首先必须对自己所着的论文有深刻、全面、准确的理解;其次,还要对论文内容有横向把握,即理解从论文主题伸出的概念;此外,近期发生的、和论文有关的新闻时事、学术热点等最好多了解一下。二、想好“台词”在答辩前要事先规划好自己的论文陈述都说什么。一般来说应该涵盖这些方面:1、为什么选择这个题目;2、写作目的是什么,为解决什么问题;3、全文的基本框架、结构、行文逻辑是什么;4、通过研究发现了什么;5、论文在选题、观点、方法等方面有什么创新之处;6、论文有什么不足之处(但注意不要把论文的硬伤说出来)。 注意陈述一定要概括、将重点有所总结,而不是记流水账一样地说“第一章写了……第二章写了……”,因为这些内容老师完全通过翻阅纸质档论文了解。三、做好PPT1、内容:每页不超过10行字或一幅画,只列要点,避免放大段文字;2、配色:力求文字清晰、简洁易看,字体颜色要和背景形成鲜明反差,避免过多颜色、过于花哨繁复配色;3、图表:可以适当地在PPT中穿插使用一些能说明论点的图表,不仅能吸引观众注意,还能更形象地表达你的观点。四、练习控制时间一般答辩现场都对学生的陈述时间有限制。在正式答辩前一定要多计时演练几遍自己的陈述,学会控制掌握时间。这样到时显得你对答辩内容的掌握和控制较熟练,给答辩老师一个准备充分的好印象;否则,很可能会刚讲了一半时间就到了,造成尴尬达到结果。五、拿上必备材料1、论文纸质版:自己手上必须有一份,可以不加封面,但页码一定要与送交答辩的论文一致,方便老师提问时自己查找相应页面; 2、纸和笔:有些答辩老师提问较多,或者每个老师分别提问、学生最后一起回答,有纸笔方便在老师提问时记下题目,或在准备回答时简单做思路笔记。六、注意演讲技巧1、控制语速:很多学生答辩时,说话速度往往越来越快,一致答辩老师听不清楚,影响答辩效果。因此一定要注意语速,要有急有缓,有轻有重;2、目光移动:无论是否脱稿,都应注意自己的目光要时常望一下答辩老师和其他同学,这样可以避免观众分神;3、体态相辅:答辩过程中一成不变地站着或低头,很容易使答辩变得单调;而适当地运用体态,尤其是手势语言,会显得更为自信、有力。七、调整心态1、保持自信:面对几位学术水平显然高于你的答辩老师,不要过于紧张,要相信只要准备充分,一般老师是不会为难你的;2、心态谦虚:如果老师指出了你论文中明确的错误,最好就大方承认,不要试图再反复辩驳了;或者如果老师提出的问题论文中已经写出来了,也不要说“我论文中某某页已经写了答案”,只要再复述一遍答案就好。
数学专业毕业论文答辩问题范文
大学生活在不经意间即将结束,毕业生都要通过最后的毕业论文,毕业论文是一种的检验学生学习成果的形式,快来参考毕业论文是怎么写的吧!以下是我帮大家整理的数学专业毕业论文答辩问题范文,希望能够帮助到大家。
一、答辩自述
数学解题是数学教学与数学学习的重要组成部分
通过数学解题
可以深化对数学基础知识、基本技能的认识
逐渐体会数学知识的精髓--数学思想方法
培养严谨的逻辑思维能力、运算能力、空间想象能力、实践能力和创新意识
提高灵活运用数学知识去分析问题、解决问题的能力
研究中学数学解题的教与学
使学生认识中学数学解题在中学数学教学中的地位与作用
认识数学解题在培养思维与能力方面的意义
提高学生分析与解决数学问题的能力
充分发挥数学解题在数学教学中的积极作用
二、毕业论文答辩的一些问题
1、自己为什么选择这个课题?
由于自己对数学解题思想方面比较感兴趣也因为将来最有可能的工作是教师。所以希望在毕业论文的研究中能对今后有所帮助
加之数学解题技巧是初等数学中的一个非常重要的组成部分。所以选择了这个论问题
2、研究这个课题的意义和目的是什么?
答:数学解题是数学教学与学习的重要组成部分。通过数学解题,可以深化对数学基础知识、基本技能的认识,逐渐体会数学知识的精髓--数学思想方法。培养严谨的逻辑思维能力、运算能力、空间想象能力、实践能力和创新意识。提高灵活运用数学知识去分析问题、解决问题的能力。为了学生以后走上工作岗位不出现瘸腿现象。加强数学教育中的文化素质显得比较重要和具有现实意义。
3、全文的基本框架、基本结构是如何安排的?
答:第一部分:几种常见的数学解题思想;
第二部分:数学解题技巧的培养;
第三部分:如何将数学解题思想贯穿于解题技巧中;第四部分:解题技巧的误区;
第五部分:解题思想与解题技巧的体会;
第六部分:结束语
4、你这篇论文的侧重点在哪方面?为什么?
答:我这篇论文的侧重点在如何将数学解题思想融入到数学解题技巧当中。因为我觉得在所有掌握了各种解题思想后最重要的是懂得何用将这些思想运用到实际问题当中。只有这些才算真正理解了解题思想它的应用。
5、你觉得数学解题技巧在解决数学问题有什么优势?
答:数学问题的解决方法有很多种。但是万变不离其中,这就要求我们掌握一些常用的数学解题技巧,在解题中不用为了用哪种方式合适而浪费时间,在解数学题时可以做到条件反身,从而为你整个解题过程节省很多时间。
6、论文虽未论及
但与其较密切相关的问题还有哪些?
答:本文在撰写有关解题技巧的误区这一方面只是列举了两个技巧的误区,但我觉得这方面很重要。这一点与如何培养学生的解题能力密切相关,应该罗列出哪些问题最容易产生惯性思维。避免走入技巧的误区。
7、哪些问题自己还没搞清楚
在论文中论述得不够透彻?
答:有些数学题看起来哪种方法都可以用,但是实际上我们并不能直接反应出哪种方法最合适。这篇论文在有关哪些题型用哪些方法方面没有去罗列出来。
8、写作论文时立论的主要依据是什么? 答:主要依据是数学解题思想的技巧
根据你所掌握的各种数学解题思想 然后将这些思想融入到实际问题当中 也即将这些思想融入到解题技巧当中。
拓展:
毕业论文答辩问题归纳
1、你的毕业论文采用了哪些与本专业相关的研究方法?
本文通过学术论文的方式进行,主要是通过对书籍、报刊的阅览与浏览网站寻找大量相关材料及信息,综合整理,系统分析,并运用所学经济学原理以及分析手段,对如何结合自身优势,借鉴国内外先进模式以及经验,对平度市旅游产业发展进行了深入的探索分析,对其成功经验进行提炼,并结合所学知识对不足之处提出改进建议和提升方法。
2、论文中的核心概念是什么?用你自己的话高度概括。
旅游产业已成为平度地区新的经济增长点,其发展速度惊人,收益率高。但是在平度市旅游产业飞速发展的背后,我们需要看到在发展过程中的种种不足和限制因素。研究平度市旅游产业发展的思路和对策,能帮助我们认清平度市旅游产业发展的未来发展方向与发展对策,有利于我们充分发挥平度市的综合优势,更好的发展旅游产业。
3、你选题的缘由是什么?研究具有何种现实指导意义?
近年来,旅游产业成为平度地区新的经济增长点,其发展速度惊人,收益率高。但是在平度市旅游产业飞速发展的背后,我们需要看到在发展过程中的种种不足和限制因素。研究平度市旅游产业发展的思路和对策,能帮助我们认清平度市旅游产业发展的未来发展方向与发展对策,有利于我们充分发挥平度市的综合优势,更好的发展旅游产业。
4、论文中的'核心概念怎样在你的文中体现?
现状分析、提出问题并进行针对性的解决。
5、从反面的角度去思考:如果不按照你说的那样去做,结果又会怎样?
阻碍旅游产业的科学、健康、可持续发展,进而放缓地区的经济发展速度。
6、论文的理论基础与主体框架存在何种关联?最主要的理论基础是什么?
为论文的主体框架提供理论依据。框架直接反应理论的理论概念。
主要理论基础:现代旅游产业发展规律、区域旅游规划原理、第三产业经济学。
7、质性研究与访谈法、定性研究、定量研究、调查研究、实证研究的区别?
质性研究方法的基本问题,包括什么是质性数据,质性方法与量化方法的联系与区别,质性方法对研究现实问题和理论建构的作用与意义。
8、经过你的研究,你认为结果会是怎样?有何正面或负面效果?
首先我必须正面诠释我的论文性质,作为一篇本科学士毕业论文,我确实用心完成了我的学习任务,但如果一旦将论文的框架与概论进行实际运用,它还是浅显、不成熟的。其结果也就有可能成为理论性上的成功或实际运用上的短板,但也为相关理论研究提供了一份微薄的补充。
正面:通过社会调查和资料查阅,分析现状,针对性的提出问题并解决问题。
负面:理论性过强,实际运用性有待于商榷,实际操作需根据不同地点不同旅游产业点的实际情况循序渐进。
9、你的论文基础何种研究视角?是管理学、教育学、心理学还是社会学视角?
社会角度。社会素材与产业数据的收集来源社会。
10、论文研究的对象是个体还是群体?是点的研究还是面的研究?
在社会大产业面前属于旅游产业的个体研究,但在这个点的集合上又是面的研究,涉及旅游产业的各个方面,综合因素及利弊端。
11、论文中的结论、建议或策略是否具有可行性和操作性?
具有。虽然相对于专家性的研究、指导具有一定的不足,但根据资料查阅和社会调研,所得结论和提出的建议及策略在配合当地实际情况及各界力量努力的基础上还有具有一定的可行性和操作性。
答辩的准备工作学生可以从下列问题(第4~10题)中,根据自己实际,选取二三个问题,作好汇报准备,(第1~3题必选)。时间一般不超过10分钟。内容最好烂熟于心中,不看稿纸,语言简明流畅。1.为什么选择这个课题(或题目),研究、写作它有什么学术价值或现实意义。2.说明这个课题的历史和现状,即前人做过哪些研究,取得哪些成果,有哪些问题没有解决,自己有什么新的看法,提出并解决了哪些问题。3.文章的基本观点和立论的基本依据。4.学术界和社会上对某些问题的具体争论,自己的倾向性观点。5.重要引文的具体出处。6.本应涉及或解决但因力不从心而未接触的问题;因认为与本文中心关系不大而未写入的新见解。7.本文提出的见解的可行性。8.定稿交出后,自己重读审查新发现的缺陷。9.写作毕业论文(作业)的体会。10.本文的优缺点。总之,要作好口头表述的准备。不是宣读论文,也不是宣读写作提纲和朗读内容提要。学生答辩注意事项1.带上自己的论文、资料和笔记本。2.注意开场白、结束语的礼仪。3.坦然镇定,声音要大而准确,使在场的所有人都能听到。4.听取答辩小组成员的提问,精神要高度集中,同时,将提问的问题——记在本上。5.对提出的问题,要在短时间内迅速做出反应,以自信而流畅的语言,肯定的语气,不慌不忙地—一回答每个问题。6.对提出的疑问,要审慎地回答,对有把握的疑问要回答或辩解、申明理由;对拿不准的问题,可不进行辩解,而实事求是地回答,态度要谦虚。
数学应用数学本科毕业论文篇2 试谈数学软件在高等数学教学中的应用 【摘要】高等数学是理工科大学生必修的一门基础课程,具有极其重要的作用.本文以Mathematic软件为例子介绍了其在高等数学课程教学中的几点应用,即用符号运算和可视化的功能辅助教学研究.不仅可以激发学生学习的兴趣,提高课堂效率,而且能提高学生分析和解决问题的能力,可以培养学生的动手能力和创新能力. 【关键词】Mathematic;符号运算;图形处理;高等数学 一、引 言 随着现代科学技术的迅猛发展和教育改革的不断深入,新的知识不断涌现,社会对现在的大学生的要求也越来越高,不仅要求他们具有扎实的理论基础,而且要求他们具有较强的动手能力和一定的创新能力,传统的高等数学教学内容和教学方法不断受到冲击.为了适应这种发展的需要,高校教师就需要不断地对教学内容和教学手段进行改革:如何运用现代信息技术提高课堂教学的质量和效率,不仅教给他们理论知识,而且要教给他们处理实际问题的工具和方法. 而数学软件正是这样一个必备的工具.目前,数学软件有很多,较流行的有四种:Maple、Matlab、MathCAD、Mathematica,这几种数学软件各有所长,难以分出伯仲.Maple与Mathematica以符号计算见长,Matlab以数值计算为强,而MathCAD则具有简洁的图形界面和可视化功能,本文以Mathematica在高等数学中的应用进行介绍.Mathematica是由位于美国伊利诺州的伊利诺大学Champaign分校附近的Wolfram Research公司开发的一个专门进行数学计算的软件. 从1988年问世至今,已广泛地应用到工程、应用数学、计算机科学、财经、生物、医学、生命科学以及太空科学等领域,深受科学家、学生、教授、研究人员及工程师的喜爱.很多论文、科学报告、期刊杂志、图书资料、计算机绘图等都是Mathematica的杰作.Mathematica的基本系统主要由C语言开发而成,因而可以比较容易地移植到各种平台上,其功能主要是强大的符号运算和强大的图形处理,使你能够进行公式推导,处理多项式的各种运算、矩阵的一般运算, 求有理方程和超越方程的(近似)解,函数的微分、积分,解微分方程,统计,可以方便地画出一元和二元函数的图形,甚至可以制作电脑动画及音效等等.我们努力追求的目标是如何将数学软件(如Mathematica)与高等数学教学有机地结合起来,起到促进教学改革和提高教学质量的作用. 二、Mathematica在教学中的作用 Mathematica语言非常简单,很容易学会并熟练掌握,在教学中有以下两个作用: 1.利用Mathematica符号运算功能辅助教学,提高学生的学习兴趣和运算能力 学习数学主要是基本概念和基本运算的掌握.要想掌握基本运算,传统的做法是让学生做大量的习题,数学中基本运算的学习导致脑力和体力的高强度消耗,很容易让学生失去学习兴趣,Mathematica软件中的符号运算功能是学生喜欢的一大功能,利用它可以求一些比较复杂的导数、积分等,学生很容易尝试比较困难的习题的解决,可以提高学生的学习兴趣,牢固地掌握一种行之有效的计算方法. 例1利用符号运算求导数. 利用Mathematica还可以解决求函数导数和偏导数、一元函数定积分和不定积分、常微分方程的解等.由于输入的语言和数学的自然语言非常近似,所以很容易掌握且不容易遗忘.Mathematica不仅是一种计算工具和计算方法,而且是一种验证工具,充分利用Mathematica这个工具进行验证,可以使得学生轻松地理解和接受在高等数学的教学中遇到的难理解的概念和结论.另外,在教学中会遇到难度比较大的习题,利用Mathematica可以验证我们作出的结果是否正确. 2.利用Mathematica可视化功能辅助教学,提高学生分析和解决问题的能力 利用Mathematica可视化功能辅助教学,可以很方便地描绘出函数的二维和三维图形,还可以用动画形式来演示函数图形连续变化的过程,图形具有直观性的特点,可以激发学生的兴趣,是教师吸引学生眼球,展示数学“美”的一种有效的教学手段,可以达到很好的教学效果. 在高等数学的教学中遇到的学生难理解的概念和结论,如果充分利用Mathematica这个工具进行验证,就可以让学生比较轻松地理解和接受. 在空间解析几何和多元函数微积分这两章内容中,涉及许多三维的函数图形,三维函数图形用人工的方法很难作出,要掌握二元函数的性质就需要学生较强的空间想象能力,这对一部分学生来说非常困难.利用Mathematica软件可以作出比较直观的三维图形,学生利用Mathematica软件就比较容易掌握这两章内容. 总之,高等数学中引入数学软件教学,在很多方面正改变着高等数学教学的现状,能给传统的教学注入新的活力,在教学中要充分发挥数学软件(如Mathematica)的作用,培养学生学习高等数学的兴趣,突出他们在学习中的主体地位,提高他们分析解决问题的能力,培养他们的创新意识. 三、结束语 本文探讨了在高等数学的课堂教学中,如何利用Mathematica软件的符号运算功能与可视化功能激发学生学习知识的动力,优化教学效果,提高课堂效率.在教学过程中,适当地运用数学软件,可将抽象的数学公式可视化、具体化,便于学生理解和掌握,最终起到化难为易、 化繁为简的作用.总之,高校教师在教学过程中,若能充分运用数学软件技术与多媒体技术辅助课堂教学,发挥新技术的优势,发掘新技术的潜力,必能提高教学的质量和效果. 【参考文献】 [1]郭运瑞,刘群,庄中文.高等数学(上)[M] .北京:人民出版社,2008. [2]郭运瑞,彭跃飞.高等数学(下)[M] .北京:人民出版社,2008. [3] (美)D尤金(著).Mathematica使用指南(全美经典学习指导系列) [M].邓建松,彭冉冉译.北京:科学出版社,2002. 猜你喜欢: 1. 数学与应用数学毕业论文范文 2. 应用数学教学论文 3. 应用数学系毕业论文 4. 本科数学系毕业论文 5. 数学专业本科毕业论文 6. 数学与应用数学毕业论文
我觉得LS回答得太随意了,我不是学数学专业的,所有帮不了你!
首先你要说下研究函数极值的意义:在很多工程实际中,我们经常需要做一些优化。当然,本人是学飞行器设计的,举个简单的例子:飞机的升力主要由机翼提供,那么机翼的截面到底设计成什么形状,或者机翼的平面投影设计成什么形状,其升力可以达到最大,甚至在保证升力的同时还不能让阻力太大,所以这些都涉及到一个最优的问题。(当然,楼主可以就具体工程实际给出例子),再比如,就拿天气预报来说吧,通过实验测得很多气象数据,那么我们怎么处理这些数据,或者说用什么方法处理这些数据,才能达到预测结果最为准确呢,这其实也是一个广义上的极值问题。还有就是经济学的投资问题,我们知道现在国家搞什么高铁、高速公路的,都是浩大的工程,动不动就几百亿的,如何合理布局(要考虑建设成本、怎么选定线路、建成之后为国民经济带来的效益、运营费用、会不会对环境有影响,那么污染治理费也要考虑),才能让这些公共基础建设的利远大于弊。。。。一般实际问题都是一个或者一组多元函数,那么研究清楚这些问题,对我们的工程实际将有莫大的裨益,对节省能源等等问题都有好处
这里就有一篇,百度文库里面很多 有兴趣去里面找,如果不懂得下载,可以联系我
函数的零点等价于对应方程的根,计算方法主要是解方程。对区间上的可导函数而言,函数的极值点是导函数的变号零点,这时极值点的计算方法是先求导,再求导函数的零点,再讨论零点两侧的导数符号,最后结论。所以要经历求导运算,解方程,解不等式等。对于区间上的不可导函数而言,函数的极值可能存在,因而极值点存在。往往用初等方法。需讨论。例如y=|x|,因为y=|x|≥0,当且仅当x=0时,y min=0.所以极值点x=0.亲,以上是提供,供参考。您可以发散一下,并举些具体例子。必要时把零点和极值点的定义加进去。
导数的广泛应用,为我们解决函数问题提供了有力的工具,用导数可以解决函数中的最值问题,不等式问题,还可以解析几何相联系,可以在知识的网络交汇处设计问题。
数形结合就是运用图形来简化解题思路,数与形是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。 中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合,或形数结合。我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事非。”“数”与“形”反映了事物两个方面的属性。我们认为,数形结合,主要指的是数与形之间的一一对应关系。数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”即通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的。 作为一种数学思想方法,数形结合的应用大致又可分为两种情形:或者借助于数的精确性来阐明形的某些属性,或者借助形的几何直观性来阐明数之间某种关系,即数形结合包括两个方面:第一种情形是“以数解形”,而第二种情形是“以形助数”。“以数解形”就是有些图形太过于简单,直接观察却看不出什么规律来,这时就需要给图形赋值,如边长、角度等等。 数形结合的思想方法是数学教学内容的主线之一,应用数形结合的思想,可以解决以下问题: 一、解决集合问题:在集合运算中常常借助于数轴、Venn图来处理集合的交、并、补等运算,从而使问题得以简化,使运算快捷明了。 二、解决函数问题:借助于图象研究函数的性质是一种常用的方法。函数图象的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。 三、解决方程与不等式的问题:处理方程问题时,把方程的根的问题看作两个函数图象的交点问题;处理不等式时,从题目的条件与结论出发,联系相关函数,着重分析其几何意义,从图形上找出解题的思路。 四、解决三角函数问题:有关三角函数单调区间的确定或比较三角函数值的大小等问题,一般借助于单位圆或三角函数图象来处理,数形结合思想是处理三角函数问题的重要方法。 五、解决线性规划问题:线性规划问题是在约束条件下求目标函数的最值的问题。从图形上找思路恰好就体现了数形结合思想的应用。 六、解决数列问题:数列是一种特殊的函数,数列的通项公式以及前n项和公式可以看作关于正整数n的函数。用数形结合的思想研究数列问题是借助函数的图象进行直观分析,从而把数列的有关问题转化为函数的有关问题来解决。 七、解决解析几何问题:解析几何的基本思想就是数形结合,在解题中善于将数形结合的数学思想运用于对点、线、曲线的性质及其相互关系的研究中。 八、解决立体几何问题:立体几何中用坐标的方法将几何中的点、线、面的性质及其相互关系进行研究,可将抽象的几何问题转化纯粹的代数运算。多做几个类似的题目啊....找本专题什么的强化一下就可以了
函数的导数表示函数在一点处(瞬时)随自变量变化快慢的程度。利用它,可以直接研究函数及其图像在一点处的变化性质(例如瞬时速度、切线斜率等)。为了应用导数研究函数在区间上的变化性质,先要熟悉微分学的中值定理。1. 中值定理微分学中有费马引理、罗尔定理和拉格朗日中值定理。拉格朗日定理 如果函数 满足:(ⅰ)在闭区间 , 上连续;(ⅱ)在开区间 , 内可导,则在 , 内至少存在一点 ,使或由图3容易理解,当函数 满足(ⅰ)、(ⅱ),即 是条连续曲线并且在 , 内的每点处有切线时,那么在曲线上(只要把弦AB平行移动)至少有一点P(在图中是 ),使得曲线在该点处的切线与弦AB平行,也就是说,P点处的切线斜率 和弦AB的斜率 相等。需要注意的是,拉格朗日定理并没有给出求 值的具体方法,它只是肯定了 值的存在,并且至少有一个。如图3中的函数 ,在 , 有 与 两个。拉格朗日定理的意义是:建立了函数 在区间 , 上的改变量 与函数在区间 , 内某一点 处的导数之间的关系,从而为用导数去研究函数在区间上的性质提供了理论基础。2. 用导数研究函数的性质为了使论述方便,我们将使用记号 和 ,它们分别表示开区间 , 和闭区间 , 。现在我们利用导数来研究函数的单调性。设函数 在 上连续,在 上可导。如果函数 在 上单调增加,那么,它的图形是一条沿 轴正向上升的曲线,如图(a)所示,这时曲线上各点的切线斜率大于等于零( );如果函数 在 上单调减少,那么,它的图形是一条沿 轴正向下降的曲线,如图(b)所示,这时曲线上各点的切线斜率小于等于零( )。由此可见,函数的单调性与其导数的符号有着密切的联系。反过来,我们是否可以有导数的符号来判定函数的单调性呢?一阶导数的符号在 上任取两点 、 ,其中 < ,在区间[ , ]上应用微分中值定理,得到 ( < < )有上式可见,若 , ,就有 ,于是 , , 在区间 上单调递增。同理可以说明 在区间 上单调递减。由此我们可以归纳出函数单调性的判别法。设 在区间 上连续且在区间 上可导,则(1) 如果函数 在区间 上满足 ,则函数 在区间 为递增函数;(2) 如果函数 在区间 上满足 ,则函数 在区间 为递减函数。(3) 如果函数 在区间 上满足 ,则函数 在区间 为常数。此外,导数的绝对值告诉我们变化率的大小。当 绝对值较大时,函数曲线就陡峭一些; 绝对值较小时,函数曲线就平坦一些。记住这些,你就可以从一个函数的导数情况判断出函数的一些性态。曲线的上下凹性设 在某一区间内可微,一阶导数告诉我们,如果在某一区间内 ,那么 在该区间式递增的;如果在某一区间内 ,那么 在该区间式递减的。如果 在某一区间内递增,则它的函数曲线向上弯曲或称为上凹,如果 在某一区间内递减,则它的函数曲线向下弯曲或称为下凹。当 向上弯曲时,曲线切线的斜率随着 增加而增加,如图所示;当 向下弯曲时,曲线切线的斜率随着 增加而减少, 点 为函数 的拐点,即函数曲线在区域内点 的左边向上凹,在点 的右边向下凹,它是曲线由向上凹变为向下凹的分界点。二阶导数的符号函数曲线的向上凹或向下凹、曲线的拐点可以用函数的二阶导数来确定。设 在区间 上连续且在区间 上可导,则(1) 如果函数 在区间 上满足 ,则函数 在区间 为递增函数,函数曲线上凹;(2) 如果函数 在区间 上满足 ,则函数 在区间 为递减函数,函数曲线下凹。局部极值性我们说 在点 达到极大值,指的是在 的领域内 为最大,如图所示。 在点 处达到极大值,虽然 = 在整个图像中不是最大,它只是在点 领域内为最大,另一个最大值是B= ,它只是函数在区间[ , ]端点 的函数值,而 = 则是整个图像的最大值。同样, 在点 达到极小值,指的是在 的领域内 为最小,如图所示。 在点 处达到极小值,虽然 = 在整个图像中不是最小,它只是在点 领域内为最小,另一个最小值是A= ,它只是函数在区间[ , ]端点 的函数值,而 = 则是整个图像的最小值。函数的极大值和极小值概念是局部性的。如果 是函数 的一个极大值(或极小值),那只是就点 附近一个局部范围来说, 是函数 的一个极大值(或极小值),如果就函数 整个定义域来说, 不见得是函数 极大值(或极小值)。我们在微分中值定理一节曾经提到,如果函数 可导,并且点 是它的极值点,那么点 必定是它的驻点,但是函数的驻点未必是它的极值点。如函数 ,点 =0是它的驻点,但是在 内函数 是单调增加的,所以点 =0不是它的极值点,可见,函数的驻点只是可能的极值点。此外,函数在它不可导点处也可能取得极值,如函数 在点 =0处不可导,但是在该点取得极小值。最大值与最小值在前面讨论极值的基础上我们进一步讨论函数在一个区间上的最大值与最小值的求法。最大值与最小值的应用很广泛,人们做任何事情,小到日常用具的制作,大至生产科研和各类经营活动,都要讲究效率,考虑怎样以最小的投入得到最大的产出,这类问题在数学上往往可以归纳为求某一函数在某个区间内的最大与最小值的问题。现在设函数 在闭区间 , 上连续,在开区间 , 可导,根据闭区间上连续函数的性质可知,函数 在闭区间 , 的最大值、最小值必定存在;其次,如果最大值或最小值在开区间 , 内的某一点 取得,那么这个最大值或最小值 必定是函数 的一个极大值或极小值。于是,点 必定为函数 的驻点;最后,函数 的最大值或最小值也可能是在 或 处取得。我们通过一个例子来看一看最大值或最小值的求法过程。例5 求函数 在闭区间 , 上的最大值与最小值。
b^2-ac未定
数学与应用数学幂函数论文,行咯,多少字的,姐给.
函数的零点等价于对应方程的根,计算方法主要是解方程。对区间上的可导函数而言,函数的极值点是导函数的变号零点,这时极值点的计算方法是先求导,再求导函数的零点,再讨论零点两侧的导数符号,最后结论。所以要经历求导运算,解方程,解不等式等。对于区间上的不可导函数而言,函数的极值可能存在,因而极值点存在。往往用初等方法。需讨论。例如y=|x|,因为y=|x|≥0,当且仅当x=0时,ymin=0.所以极值点x=0.亲,以上是提供,供参考。您可以发散一下,并举些具体例子。必要时把零点和极值点的定义加进去。
还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法
日语毕业论文写作格式
日语毕业论文写作格式是怎样的呢?只有了解了日语毕业论文写作格式,才能顺利的开展论文的撰写。欢迎阅读我整理的日语毕业论文写作格式,希望能够帮到大家。
1.封面:全校采用统一格式(见附表1),正标题使用3号MSゴシック字居中,副标题使用4号MSゴシック字居中(前加破折号),其他项目使用4号楷体字。
2、开题报告(见附表2)
3.任务书(见附表3)
4.成绩评定表(见附表4)
5.目录:另起页;标题使用3号MSゴシック字,“目录”两字中间空3个汉字字符格;内容使用4号MS明朝字,要求标明页码,每项内容与对应的页码之间要求使用省略号分隔开。
6.中文摘要(含关键词):另起页;标题使用3号黒体字,两个标题各自独占行,居中,“摘要”两字中间空3个汉字字符格,“关键词”三字每两字中间空1个汉字字符格;内容使用小4号宋体字,20磅行距。
7.日文摘要(含关键词):与中文摘要和关键词同页,空2行;标题使用3号MSゴシック字体,两字中间空3个汉字字符格。两个标题各自独占行,居中;内容使用小4号MS明朝字体,20磅行距。
8.正文:另起页;
正文文中标题:正文首页不要论文题目,以一级标题“はじめ”开始;余白:3CM,下同;
一级标题:标题序号为“一、”,4号MSゴシック字,不加粗,独占行,左对齐,末尾不加标点号。一级标题与另一级标题之间空一行;
二级标题:标题序号为“(一)”与正文字号相同,独占行,二级标题以下不空行,末尾不加标点符号。
三级标题:标题序号为“1.”与正文字号、字体相同。
四级标题:标题序号为“(1)”与正文字号、字体相同。
五级标题:标题序号为“①”与正文字号、字体相同。
其它内容全部使用小4号明朝体,20磅行距。
9.谢辞:另起页;标题使用3号ゴシック字,“谢辞”(不用“あとがき”)两字中间空3个汉字字符格,独占行,居中;内容使用4号MS明朝体,单倍行距。
10.参考文献:另起页;标题使用3号ゴシック字,标题汉字之间无空格,独占行,居中;内容使用小4号宋体字(日语文献使用小4号明朝体),单倍行距。
11.注释:另起页;标题使用3号ゴシック字,“注释”两字中间空3个汉字字符格,独占行,居中;内容使用小4号明朝体字,单倍行距。用以下形式:[注1][注2]等……
12.附录:另起页;标题使用3号ゴシック字,“附录”两字中间空3个汉字字符格,独占行,居中;内容使用小4号明朝体字,20磅行距。
13.封底:另起页,空白。
14、“附表2:”“4号宋体”“行距”等类似的字符是对作者的提示,交稿时须删除。
知识扩展:论文写作过程中日语论文答辩稿
こちらの各位の先生、こんにちわ!私は日本语科の四年生xxxともします、どうぞよろしくお愿いいたします。私の论文のテーマは中日若者の结婚観の比较です。この论文はx先生に指导されて完成できますので、ここで特にx先生に向って深い感谢の気持ちを表して、それに他の先生が忙しところを、私の论文の答弁に参加して心から感谢しております。
社会は発展して、人々の思想もとても大きいな変化が発生して、高い要求、高い品质な生活を求めて、自由を追求する。しかしどんな制限がない自由だったら、人々は婚姻に対してあこがれを満たして、でもとても恐れ慌てる。间もなく婚姻が嫁がせる年齢を议论することに直面して、文章を书く原因は若者をいくつか助けをあげることができるとおもいます。
本论文は四つの部分からなっている。
第一部分は中国の若者と日本の若者の结婚観の特徴、両国に存在する社会现象を简単にまとめる。
第二部分は両国の结婚を绍介する。恋爱観や结婚観の変化の原因を探し。
第三部分は両国の若者の结婚観の优れた点と欠点を通して、共通点また差异、解决本を研究する。
最後に、この论文はたくさんの不足なところが存在して、ご高教を仰ぐ。
翻译:
这里的各位老师,您好!我是日语系四年级的xxx,请多多关照。我的论文题目是中日年轻人的结婚观的比较。这篇论文由x老师指导完成,所以在这里向特别老师表示深深的感谢的心情,并且其他的老师也在忙碌的地方,参加我的论文的答辩从心里感谢。
社会发展,人们的思想也发生了很大的变化,追求高高的要求,追求高质量的生活,追求自由。但是,如果没有什么限制的自由,人们就对婚姻充满了憧憬,但是很着急。不久就要面临婚姻的年龄,写文章的原因可以给年轻人或帮助。
本论文由四部分组成。
第一部分是中国年轻人和日本年轻人的结婚观的特征,简单地归结两国存在的社会现象。
第二部分介绍两国的婚姻。寻找恋爱观和结婚观的变化的原因。
第三部分通过两国年轻人的结婚观的优秀的点和缺点,共同点又差异,研究解决书。
最后,这篇论文有很多不足的地方也存在,请指教。
拓展阅读:日语毕业论文答辩技巧:
一、论文答辩——熟悉内容
作为将要参加论文答辩同学,首先而且必须对自己所著的毕业论文内容有比较深刻理解和比较全面的熟悉。这是为回答毕业论文答辩委员会成员就有关毕业论文的深度及相关知识面而可能提出的论文答辩问题所做的准备。所谓“深刻的理解”是对毕业论文有横向的把握。例如题为《创建名牌产品发展民族产业》的论文,毕业论文答辩委员会可能会问“民族品牌”与“名牌”有何关系。尽管毕业论文中未必涉及“民族品牌”,但参加论文答辩的学生必须对自己的毕业论文有“比较全面的熟悉”和“比较深刻的理解”,否则,就会出现尴尬局面。
二、论文答辩——图表穿插
任何毕业论文,无论是文科还是理科都或多或少地涉及到用图表表达论文观点的可能,故我认为应该有此准备。图表不仅是一种直观的表达观点的方法,更是一种调节论文答辩会气氛的.手段,特别是对私人论文答辩委员会成员来讲,长时间地听述,听觉难免会有排斥性,不再对你论述的内容接纳吸收,这样,必然对你的毕业论文答辩成绩有所影响。所以,应该在论文答辩过程中适当穿插图表或类似图表的其它媒介以提高你的论文答辩成绩。
三、论文答辩——语流适中
进行毕业论文答辩的同学一般都是首次。无数事实证明,他们论文答辩时,说话速度往往越来越快,以致毕业答辩委员会成员听不清楚,影响了毕业答辩成绩。故毕业答辩学生一定要注意在论文答辩过程中的语流速度,要有急有缓,有轻有重,不能像连珠炮似地轰向听众。
四、论文答辩——目光移动
毕业生在论文答辩时,一般可脱稿,也可半脱稿,也可完全不脱稿。但不管哪种方式,都应注意自己的目光,使目光时常地瞟向论文答辩委员会成员及会场上的同学们。这是你用目光与听众进行心灵的交流,使听众对你的论题产生兴趣的一种手段。在毕业论文答辩会上,由于听的时间过长,委员们难免会有分神现象,这时,你用目光的投射会很礼貌地将他们的神“拉”回来,使委员们的思路跟着你的思路走。
五、论文答辩——体态语辅助
虽然毕业论文答辩同其它论文答辩一样以口语为主,但适当的体态语运用会辅助你的论文答辩,使你的论文答辩效果更好。特别是手势语言的恰当运用会显得自信、有力、不容辩驳。相反,如果你在论文答辩过程中始终直挺挺地站着,或者始终如一地低头俯视,即使你的论文结构再合理、主题再新颖,结论再正确,论文答辩效果也会大受影响。所以在毕业论文答辩时,一定要注意使用体态语。
六、论文答辩——时间控制
一般在比较正规的论文答辩会上,都对辩手有答辩时间要求,因此,毕业论文答辩学生在进行论文答辩时应重视论文答辩时间的掌握。对论文答辩时间的控制要有力度,到该截止的时间立即结束,这样,显得有准备,对内容的掌握和控制也轻车熟路,容易给毕业论文答辩委员会成员一个良好的印象。故在毕业论文答辩前应该对将要答辩的内容有时间上的估计。当然在毕业论文答辩过程中灵活地减少或增加也是对论文答辩时间控制的一种表现,应该重视。
七、论文答辩——紧扣主题
在校园中进行毕业论文答辩,往往辩手较多,因此,对于毕业论文答辩委员会成员来说,他们不可能对每一位的毕业论文内容有全面的了解,有的甚至连毕业论文题目也不一定熟悉。因此,在整个论文答辩过程中能否围绕主题进行,能否最后扣题就显得非常重要了。另外,委员们一般也容易就论文题目所涉及的问题进行提问,如界能自始至终地以论文题目为中心展开论述就会使评委思维明朗,对你的毕业论文给予肯定。
八、论文答辩——人称使用
在毕业论文答辩过程中必然涉及到人称使用问题,我建议尽量多地使用第一人称,如“我”“我们”即使论文中的材料是引用他人的,用“我们引用”了哪儿哪儿的数据或材料,特别是毕业论文大多是称自己作的,所以要更多使用而且是果断地、大胆地使用第一人称“我”和“我们”。如果是这样,会使人有这样的印象:东西是你的,工作做了不少!
研究ながら。。。。
各位老师,下午好! 我叫***,是**级**班的学生,我的论文题目是--------------------,论文是在**导师的悉心指点下完成的,在这里我向我的导师表示深深的谢意,向各位老师不辞辛苦参加我的论文答辩表示衷心的感谢,并对四年来我有机会聆听教诲的各位老师表示由衷的敬意。下面我将本论文设计的目的和主要内容向各位老师作一汇报,恳请各位老师批评指导。首先,我想谈谈这个毕业论文设计的目的及意义。其次,我想谈谈这篇论文的结构和主要内容。最后,我想谈谈在实验过程中的不足和这篇论文。烧玻璃的过程以及这篇论文的写作,也使我越来越认识到自己知识与经验缺乏的过程。虽然,我尽可能地收集材料,竭尽所能运用自己所学的知识进行烧玻璃实验和论文写作,但所测数据并不完备,对许多还是一知半解,论文还是存在许多不足之处,有待改进.请各位评委老师多批评指正,让我在今后的学习中学到更多!谢谢!
呵呵 论文答辩之前要先给老师们写一个总结你自己论文的概要 大概a4一页左右 先个人陈述论文内容 然后老师提问 大体是这样的。用词的话也不用紧张 反正都是自己老师呀 具体参考如下:皆さんの多くは、発表用の资料を见ながら、事前に头の中で何回か発表のイメージトレーニングを行うと思うが、それらを全部书き下して丸暗记して、话すのでは大変である。完全シナリオ読み上げ型の场合、よくあるのが、少しでも忘れた箇所があった场合に、その後がすっかり头の中から飞んでしまい”ボロボロ”になってしまう、というケースだ。そこで、今回お奨めしたいのは、発表をいくつかの段阶に切り分けて、各段阶で言いたいことのポイントだけをメモしておく方法である。“こういうことを言おう“というポイントだけがわかっていて、练习段阶でアドリブで说明できれば、それでOKである。もし、暗记をするのであれば、各段阶での出だしのフレーズを1行分もしくは、2行分に的を绞って空で言えるように覚えよう。 例えば、まず、坛上に出た时に言う最初のフレーズが大事だったりする。“みなさん、こんにちは、○△ゼミの田中です。私は~をテーマに卒业研究を行いましたので、その成果について绍介します”これが、まずスムーズに出てくるのと、出てこないのでは、聴众者に与える印象が大きく异なる。また各段阶の出だしのフレーズでは“次に、実际の~についての说明に移りたいと思います。では、こちらをご覧ください。…”。また、缔めくくりでは・・・“これで、说明は终わりになります。”このような最後の言叶、区切りになる言叶については、暗记しておいて损はない。流れをスムーズに运ぶし、闻いている方も安心感が出る。うまく、発表をコントロールしているといった印象を与える。この部分の暗记は有効である。区切り、节目のフレーズがしっかりしていると、自分自身発表していて安心できるし、その後もスムーズにゆくものだ。节目毎のフレーズは完璧に暗记しておこう。大体流程是这样的 希望对你有帮助 建议你到日文的谷歌或者雅虎里搜索”卒业论文口头试问” 里面会出来很多答辩的建议的 很有参考价值 我当年就是这么办的 哈哈