1、 “在中国做一年大使”项目外籍教师跨文化培训的设计与评价
2、 中国大学生使用英语空间动介构式的历时研究
3、 会话隐型含义的理论与实验语用学研究
4、 英汉交传中的译语过度冗余及应对策略——以《人类的明天》新书分享会为例
5、 汉英交传中笔记有效性不足及应对策略——以“产业政策思辨会”模拟会议为例
6、 在译前缺乏有关会议材料状况下应对术语策略探讨——以2018年苹果秋季新品发布会英汉同传为例
7、 中国历史人物传记英译项目中专名处理的难点及对策——以《九世班禅传》英译为例
8、 英语写作原则在汉译英中的运用——以《40人看40年》翻译项目为例
9、 外媒新闻报道翻译中涉华信息的准确传递——以一组国外时政新闻的英译中为例
10、 多媒体资源在旅行指南翻译中的辅助作用——以《孤独星球·美国》英译汉项目为例
11、 汉英交替传译中话语标记语的翻译及策略——以“‘朗润·格致’产业政策思辨会”模拟会议为例
12、 中文合同英译的法律术语误译原因及对策浅析——以一组房屋租赁合同英译项目为例
13、 从表演效果的角度看剧本翻译策略——以某影视培训项目的一组剧本为例
14、 机器翻译中译前编辑措施研究——以《2018全球城市论坛实录》翻译为例
15、 家具类产品手册英汉翻译的难点及对策——以北欧某家具品牌产品手册英译汉项目为例
美赛论文题目有如下:
1、A题是指连续型(continuous),具体可以理解为是连续函数建立一类模型。常用方法是微分方程,并多为“数值分析”领域的内容,需要熟练掌握偏微分方程以及精通将连续性方程离散化求解的编程能力。
2、B题是离散型(discrete)具体需要在编程上比较熟悉计算机的 “算法与数据结构”。
3、C题是数据分析型(data insights),最好是有统计学、数理金融、量化分析相关背景的知识。C题除了MATLAB、Python还可以是用无需编程的SPSS,也可能会用到R、STATS、SAS等统计软件。
4、D题一般为运筹学或网络科学(operations research/network science),近几年网络科学是一个热门研究领域,算法、软件包括可视化的软件都很多。
5、E题是环境科学题(sustainability),大体上会集中在环境污染、资源短缺、可持续发展、生态保护等几个方面。
6、F题是政策研究题(policy),EF题的数据一般需要自己搜集。
2021美赛题目已经发布了,对于需要参与2021年美国大学生数学建模竞赛的小伙伴们来说,这些都是非常重要的。下面我就为大家整理带来了2021美赛题目大全,美赛题目翻译及思路。有需要的小伙伴快跟我一起来看看吧!
MCM:
A:连续型
B:离散型
C:大数据
mcm指的是数学建模竞赛,强调用数学知识解决问题
ICM:
D:运筹学/网络科学
E:环境科学
F:政策
ICM属于是交叉学科,强调多学科的交叉与应用。
A题是连续型问题,是“数值分析”领域的内容,需要熟练掌握偏微分方程以及精通将连续性方程离散化求解的编程能力。这时,队伍里最好是有一个纯数学基础好的(偏微分方程、复变函数、信号与系统等等),还需要有两个擅长连续型问题编程的同学,两个人都比较擅长编程这一点很重要,既可以防止一个人编程的话,思路可能有所偏颇,又可以使得两个人在相互碰撞中产生新的灵感。
B题的话可能是离散型问题,对于B题在编程上,一定需要比较熟悉计算机的“算法与数据结构”这类离散型编程问题的同学。
C题属于大数据类问题,几乎都是关于数据,因此,最好是有统计学、数理金融、量化分析相关背景的知识。且C题的求解工具也更加丰富,除了matlab、python还可以是用无需编程的SPSS;R、stats、SAS等传统统计软件也都可能会用到。
D:运筹学/网络科学问题,熟练掌握运筹学里面的线性规划、动态规划、图论(最短路径、最小生成树、拓扑排序、二分图等等)、网络流(尤其是最小费用最大流)、排队论、决策树等理论
2017年美赛B题赛题 2017MCM ProblemB: Merge After Toll Multi-lanedivided limited-access toll highways use “ramp tolls” and “barrier tolls” tocollect tolls from motorists. A ramp toll is a collection mechanism at anentrance or exit ramp to the highway and these do not concern us here. Abarrier toll is a row of tollbooths placed across the highway, perpendicular tothe direction of traffic flow. There are usually (always) more tollbooths thanthere are incoming lanes of traffic (see former 2005 MCM Problem B). So whenexiting the tollbooths in a barrier toll, vehicles must “fan in” from thelarger number of tollbooth egress lanes to the smaller number of regular travellanes. A toll plaza is the area of the highway needed to facilitate the barriertoll, consisting of the fan-out area before the barrier toll, the toll barrieritself, and the fan-in area after the toll barrier. For example, a three-lanehighway (one direction) may use 8 tollbooths in a barrier toll. After payingtoll, the vehicles continue on their journey on a highway having the samenumber of lanes as had entered the toll plaza (three, in this example). Considera toll highway having L lanes of travel in each direction and a barrier tollcontaining B tollbooths (B > L) in each direction. Determine the shape,size, and merging pattern of the area following the toll barrier in whichvehicles fan in from B tollbooth egress lanes down to L lanes of considerations to incorporate in your model include accidentprevention, throughput (number of vehicles per hour passing the point where theend of the plaza joins the L outgoing traffic lanes), and cost (land and road constructionare expensive). In particular, this problem does not ask for merely aperformance analysis of any particular toll plaza design that may already beimplemented. The point is to determine if there are better solutions (shape,size, and merging pattern) than any in common use. Determinethe performance of your solution in light and heavy traffic. How does yoursolution change as more autonomous (self-driving) vehicles are added to thetraffic mix? How is your solution affected by the proportions of conventional(human-staffed) tollbooths, exact-change (automated) tollbooths, and electronictoll collection booths (such as electronic toll collection via a transponder inthe vehicle)? YourMCM submission should consist of a 1 page Summary Sheet, a 1-2 page letter tothe New Jersey Turnpike Authority, and your solution (not to exceed 20 pages)for a maximum of 23 pages. Note: The appendix and references do not counttoward the 23 page limit. 2017年美赛B题赛题翻译 B题中文翻译: 问题B:收费后合并 多车道有限接入收费公路使用“坡道收费”和“障碍收费”来收取驾驶员的收费。斜坡收费是在高速公路的入口或出口匝道处的收集机构,并且这些不关心我们在这里。障碍收费是一排跨过高速公路的收费站,垂直于交通流的方向。通常(总是)更多的收费站比交通车道(见前2005年MCM问题B)。因此,当驶出收费站时,车辆必须从较大数量的收费站出口车道“扇入”到较少数量的常规行驶车道。收费广场是高速公路需要用于促进障碍收费的区域,包括在障碍收费之前的扇出区域,收费路径本身以及收费路径之后的扇入区域。例如,三车道高速公路(一个方向)可以在障碍通行费中使用8个收费站。在支付了费用之后,车辆在具有与进入收费广场相同数量的车道(在该示例中为三个)的高速公路上继续行驶。 考虑在每个方向上具有L个行驶车道的收费高速公路和在每个方向上包含B个收费站(B> L)的障碍通行费。确定跟随收费障碍的区域的形状,尺寸和合并模式,其中车辆从B过街出口车道下行到L个车道。在您的模型中纳入的重要注意事项包括事故预防,吞吐量(每小时通过广场末端加入L外出车道的车辆数量)和成本(土地和道路建设昂贵)。特别地,该问题不仅仅要求可能已经实现的任何特定收费广场设计的性能分析。重点是确定是否有比任何常用的更好的解决方案(形状,大小和合并模式)。 确定您的解决方案在轻和重的流量的性能。随着更多自主(自驾)车辆添加到交通组合中,您的解决方案如何改变?您的解决方案如何影响常规(人员配备)收费站,精确更换(自动)收费站和电子收费站(例如通过车辆中的应答器收集电子费用)的比例? 您的MCM提交应包括1页摘要表,1-2页给新泽西州收费公路管理局的信件,以及您的解决方案(不超过20页),最多23页。注意:附录和参考文献不计入23页的限制。 2017年美赛B题优秀论文解读 2017年美国大学生数学建模竞赛有4907支队伍选择了B题,其中有5支队伍获得了特等奖。他们分别是56731、68303、69427、70174、70545,我们对这5篇特等奖论文进行了简单的分析,结果如下: (1)56731队伍提议的收费站的分布类似于蜂巢。在每个规则的六角形蜂窝的中心,有两个收费站,为两个分开的车辆流服务。由于新收费广场的特殊格局,总面积可大幅度减少。同时,可以减少排队造成的平均浪费时间,这意味着吞吐量将得到提高。此外,通过将合并过程分为两个阶段,也可以减少事故发生的可能性。与传统的线性分布收费站相比,新设计的蜂窝结构大大减少了建设面积。利用排队论对收费广场的吞吐量进行了分析。为了验证他们的理论,他们利用PTVISSIM模拟了大量车辆通过收费广场的行为。仿真结果表明,理想的蜂窝式收费站与传统的收费站相比具有更好的效果。接着分析了不同类型收费站的比例对他们设计的影响。他们模拟了蜂窝式收费广场在不同交通流量下的性能,显示该模型对交通流变化不敏感,鲁棒性强,适合于实际施工。为了进一步降低事故发生的可能性,他们对蜂窝收费亭概念模型进行了改进:使过渡区更加平滑,各种收费站的布置更加公平。对于自动驾驶车辆,在收费广场的中心,他们预留了特别的e-zpass收费亭。电子收费和自动车辆是现代交通的发展趋势,我们的新设计模式可以在成本、吞吐量和安全等方面提高收费广场的性能。 (2)68303队伍首先根据收费站的不同形状、大小和合并模式将已实施的区域划分为8类。其次,利用VisSim对收费站典型的8种模型进行了仿真研究。通过设置必要的观测点,他们获得了吞吐量数据、队列的时间和平均延迟时间。接着建立了基于主成分分析的综合评价模型,对8个典型模型进行了评价,并建立了最优评价模型。经过数据归一化后,得到了等腰梯形形状的最佳模型。为了获得更好的解,我们建立了两个模型来获得最优解。第一种是微分方程模型,目的是求出梯形区域的最优高度和收费站的最优数目。第二种是线性规划模型,它可以在最大限度地提高区域吞吐量的同时,计算出最优的合并模式。最后,他们分析了模型在不同条件下的性能,并对模型进行了修正以适应这些条件,还利用LINGO进行了灵敏度分析。 (3)69427队伍从事故率、交通流量和建设成本三个方面研究了收费广场的优化设计方案。同时给出了收费广场的设计方案和合并模式。第一阶段,假设交通状况正常,确定收费站的数目。而收费车道的数量取决于交通容量、交通流量和服务水平。他们通过上述三个指标建立收费站的功能模型。并在在灵敏度分析中发现,交通流量与收费车道数呈正相关。第二阶段,建立了基于最小风险和最大吞吐量的合并模式优化模型。该模型通过对现有收费广场性能的分析,优化其设计方案。他们认为整个收费广场的减速分流和加速合并是一个有方向的加权网络流。第三阶段,考虑到收费站车辆的可变运动,采用前后车的行驶距离和后车的制动距离。确定收费广场的规模,并建立优化模型,使建设成本降至最低。值得注意的是,他们对模型进行了详细的测试,发现轻型交通流的交通流量和事故率较低。最后,应用该模型对新泽西高速公路收费广场的优化设计进行了研究。 (4)70174队伍提出了一种新的广场设计开发和评价方法,该方法综合了不同交通水平的影响、收费站的支付方法以以及越来越多的自动驾驶汽车的数量首先,在NetLogo中创建了一个广场模型。因为它允许汽车模拟交通中的人与人之间的交互。在此基础上,他们的稳健模型能够评估影响广场顾客满意度的各种变量的多重实现。研究发现,为了最大限度地提高广场的满意度和效率,需要采用对称设计。此外,电子应答器专用车道数量的影响很大,此类通道的数量较多,总体满意度较高。研究发现,无人驾驶汽车的影响是可以忽略不计的,在不同的参数中,减少停车量和流量的能力对系统的影响最大。该有助于缓解美国各地主要收费广场的拥挤状况。 (5)70545队伍在建立模型之前,列出了一些假设,以使现实生活中的场景更容易建模。然后他们开始分析现有的模型,从中总结出它们的优缺点。他们通过分析这两种模型的特点,提出了两种新的模型:控制时间模型(CTM)和等待区模型(WAM)。在这两种新模式中,他们介绍了一种控制收费站车辆离开时间的方法。他们将根据他们的控制方法和一些假设,继续计算合并区域的大小和形状。在此基础上,提出了一种基于数学证明和计算机仿真相结合的最优合并模式的求解方法。他们接着根据实际情况下的统计规律,对不同模型的吞吐量、风险和成本进行了仿真研究。然后利用统计假设检验对这三种模型进行了比较,得出结论:ctm总体上是最好的。我们继续通过考察建筑成本和吞吐量(每小时)对模型中包含的一些变量的灵敏度来测试我们的模型,从不同的角度验证了模型的可靠性。最后他们对模型的优缺点进行了分析。
1,锁定主题,研究方向。首先要明确自己的研究方向,自己要写的论文是哪个领域的,有什么创新点。是一个全新的东西,还是一个验证对比性的论文。心里要有一个谱,每种写法不完全相同。概括一下,我们在写论文钱,心里基本就会大体估算出来自己论文长什么样子了。2,以点带面,查找资料。确定了自己论文的主题,那我要开始查找资料了。这样也能看出来自己要写的东西是否新颖,别人是否都做过,如果别人做了,按我是否还有进步的可能。查资料要细心,中文的就到中国知网,外文的也有相应SCI网站,一般是ScienceDirect吧。我建议可以查找相应的博士论文,越牛逼大学的越好,这样我们可以看看他的综述,了解一下世界上的研究进展。3,构思框架,初列提纲。这步我们可以具体构思一下论文由几部分组成,要论述什么。一般都是摘要概说论文的情况,主体部分的研究进展,讲一下我们的研究有哪些牛逼的地方,我们怎们做的,我们做出来的数据什么样,我们能得出来个什么结论。基本就是这样的套路,当然了,逻辑严密的求证与精美的图表都会对论文加分。4,内容填充,精细雕琢。提纲出来了,我们要把各个部分填充进内容。这个时候,就会用到我们之前查找到的资料了。这个时候我建议大家可以把要引用的文献原句抄到提纲里,然后在后边括弧写上文献的名字及作者,这样便于后期整理文献。除了引用的东西,其他部分都要尽量用自己的话表达出来。5,整理文献,完稿润色。这部分的论文已经初见雏形了,可以将括弧内的引文按照标号顺序排到文后参考文献出,并统一格式。将论文的整体格式都调成正常的论文,进行正规的排版。也要把图片等一并整理好,润色完成的论文,基本上就可以投出去了。6,查找期刊,投改结算。到了投稿部分,可以看看同组师兄师姐之前都投到哪里了,或者看看参考文献的作者都选择了哪些期刊。我们可以登录相应杂志主页,看投稿要求,如果需要按照模板更新格式,则在花点精更新一下论文。投出去,审完,支付完版面费,就等着杂志社通知了,比如校稿等。最后,报销相应的投稿费用。
美赛MCM的题目容易得奖。
我们统计了各个奖项的O奖人数,除以选择该题的总人数。由2016至今的数据,总体上答案是肯定的。整体而言ICM的DEF题的总的获奖率也会高于MCM的ABC题的总的获奖率。
而由前面的数据,基本每年选题率都是最少的F题的获奖率相对都要高于其他题目。但是比赛时还是建议大家选择自己擅长的方向,不要为了相对较小的竞争而随意更换题目。
横向比较,ICM和MCM的整体的获奖比例大致相同;纵向比较,H奖在2019年获奖比例大幅下降,2020年又有所回升,且2020年ICM的F奖的获奖比例升至3%。今年预测相比2020年F奖比例可能有所下降,其他奖项比例大致不变。
美赛与国赛不同。国赛的话要冲国奖如果建模手的话除非遇到了本专业的专业题目一般来说是两年(一年实在有点不太现实,paper writing都不一定搞得定)。
美赛的话,如果你的想法很奇妙,而且也确实自圆其说,并且论文写作很好的话,可以冲o的。但是一般来说比较困难,因为很多“美妙”的模型的建立一般都是要有一定的经验的建模手可以搞出来,当然对于本身有天赋的可能例外。
必须有一个论文写好的,而且学术英语要比较好,我们那年就是摘要写的不好,摘要不好直接没人看论文的。有人会找英语专业的学生,但是注意,你一定要确保沟通与表达,否则写出来很怪,当然也有人选择是生科,材料,电气,物理——他们英文写作也不错!
美赛数学建模通常题目选材非常宽泛,题目开放性比较强,因此建议从如下角度入手:1、关于中英和英中互译问题。因为美赛最后需要提交英文全文,另外题目也是英文题目,稍不注意,就会出现题目理解不到位,或者论文表述词不达意的情况,所以,一定要准备好。或者在题目出来后,让一位教英语的老师帮助,看看你们的理解是否合适,最后再帮助润色论文。2、在数学上,打好基础,并不一定要学习很深的数学知识,而是要注意一些最经常用到的数学知识,看看在实际中这些数学知识是怎么应用的。比如概率和统计的知识是如何应用的,例如统计量如何应用到质量控制(QS)中,而假设检验又是如何应用到经济领域等等。3、注意一下发散思维,下一些功夫。既然开放性强,选题宽泛,那么就不仅需要集中思维,而是更需要发散思维,也就是说:从一点出发,如何发现和这一个点联系的事物和其他点的本质相同之处,尤其是在数学上的本质相同之处,在此基础上,联系第二点,应该能建立一个好的数学模型。4、多注意搜索一下历年比赛的优秀论文,或者说其他队员贴在网上的论文,即使不是获奖论文,也有可参考之处,一定要多看,毕竟他山之石可以攻玉的。5、美赛含金量比较高,得二等奖已经不错了,当然,国内知名高校得一等奖的也不少!祝你们取得好成绩
2017年美赛B题赛题 2017MCM ProblemB: Merge After Toll Multi-lanedivided limited-access toll highways use “ramp tolls” and “barrier tolls” tocollect tolls from motorists. A ramp toll is a collection mechanism at anentrance or exit ramp to the highway and these do not concern us here. Abarrier toll is a row of tollbooths placed across the highway, perpendicular tothe direction of traffic flow. There are usually (always) more tollbooths thanthere are incoming lanes of traffic (see former 2005 MCM Problem B). So whenexiting the tollbooths in a barrier toll, vehicles must “fan in” from thelarger number of tollbooth egress lanes to the smaller number of regular travellanes. A toll plaza is the area of the highway needed to facilitate the barriertoll, consisting of the fan-out area before the barrier toll, the toll barrieritself, and the fan-in area after the toll barrier. For example, a three-lanehighway (one direction) may use 8 tollbooths in a barrier toll. After payingtoll, the vehicles continue on their journey on a highway having the samenumber of lanes as had entered the toll plaza (three, in this example). Considera toll highway having L lanes of travel in each direction and a barrier tollcontaining B tollbooths (B > L) in each direction. Determine the shape,size, and merging pattern of the area following the toll barrier in whichvehicles fan in from B tollbooth egress lanes down to L lanes of considerations to incorporate in your model include accidentprevention, throughput (number of vehicles per hour passing the point where theend of the plaza joins the L outgoing traffic lanes), and cost (land and road constructionare expensive). In particular, this problem does not ask for merely aperformance analysis of any particular toll plaza design that may already beimplemented. The point is to determine if there are better solutions (shape,size, and merging pattern) than any in common use. Determinethe performance of your solution in light and heavy traffic. How does yoursolution change as more autonomous (self-driving) vehicles are added to thetraffic mix? How is your solution affected by the proportions of conventional(human-staffed) tollbooths, exact-change (automated) tollbooths, and electronictoll collection booths (such as electronic toll collection via a transponder inthe vehicle)? YourMCM submission should consist of a 1 page Summary Sheet, a 1-2 page letter tothe New Jersey Turnpike Authority, and your solution (not to exceed 20 pages)for a maximum of 23 pages. Note: The appendix and references do not counttoward the 23 page limit. 2017年美赛B题赛题翻译 B题中文翻译: 问题B:收费后合并 多车道有限接入收费公路使用“坡道收费”和“障碍收费”来收取驾驶员的收费。斜坡收费是在高速公路的入口或出口匝道处的收集机构,并且这些不关心我们在这里。障碍收费是一排跨过高速公路的收费站,垂直于交通流的方向。通常(总是)更多的收费站比交通车道(见前2005年MCM问题B)。因此,当驶出收费站时,车辆必须从较大数量的收费站出口车道“扇入”到较少数量的常规行驶车道。收费广场是高速公路需要用于促进障碍收费的区域,包括在障碍收费之前的扇出区域,收费路径本身以及收费路径之后的扇入区域。例如,三车道高速公路(一个方向)可以在障碍通行费中使用8个收费站。在支付了费用之后,车辆在具有与进入收费广场相同数量的车道(在该示例中为三个)的高速公路上继续行驶。 考虑在每个方向上具有L个行驶车道的收费高速公路和在每个方向上包含B个收费站(B> L)的障碍通行费。确定跟随收费障碍的区域的形状,尺寸和合并模式,其中车辆从B过街出口车道下行到L个车道。在您的模型中纳入的重要注意事项包括事故预防,吞吐量(每小时通过广场末端加入L外出车道的车辆数量)和成本(土地和道路建设昂贵)。特别地,该问题不仅仅要求可能已经实现的任何特定收费广场设计的性能分析。重点是确定是否有比任何常用的更好的解决方案(形状,大小和合并模式)。 确定您的解决方案在轻和重的流量的性能。随着更多自主(自驾)车辆添加到交通组合中,您的解决方案如何改变?您的解决方案如何影响常规(人员配备)收费站,精确更换(自动)收费站和电子收费站(例如通过车辆中的应答器收集电子费用)的比例? 您的MCM提交应包括1页摘要表,1-2页给新泽西州收费公路管理局的信件,以及您的解决方案(不超过20页),最多23页。注意:附录和参考文献不计入23页的限制。 2017年美赛B题优秀论文解读 2017年美国大学生数学建模竞赛有4907支队伍选择了B题,其中有5支队伍获得了特等奖。他们分别是56731、68303、69427、70174、70545,我们对这5篇特等奖论文进行了简单的分析,结果如下: (1)56731队伍提议的收费站的分布类似于蜂巢。在每个规则的六角形蜂窝的中心,有两个收费站,为两个分开的车辆流服务。由于新收费广场的特殊格局,总面积可大幅度减少。同时,可以减少排队造成的平均浪费时间,这意味着吞吐量将得到提高。此外,通过将合并过程分为两个阶段,也可以减少事故发生的可能性。与传统的线性分布收费站相比,新设计的蜂窝结构大大减少了建设面积。利用排队论对收费广场的吞吐量进行了分析。为了验证他们的理论,他们利用PTVISSIM模拟了大量车辆通过收费广场的行为。仿真结果表明,理想的蜂窝式收费站与传统的收费站相比具有更好的效果。接着分析了不同类型收费站的比例对他们设计的影响。他们模拟了蜂窝式收费广场在不同交通流量下的性能,显示该模型对交通流变化不敏感,鲁棒性强,适合于实际施工。为了进一步降低事故发生的可能性,他们对蜂窝收费亭概念模型进行了改进:使过渡区更加平滑,各种收费站的布置更加公平。对于自动驾驶车辆,在收费广场的中心,他们预留了特别的e-zpass收费亭。电子收费和自动车辆是现代交通的发展趋势,我们的新设计模式可以在成本、吞吐量和安全等方面提高收费广场的性能。 (2)68303队伍首先根据收费站的不同形状、大小和合并模式将已实施的区域划分为8类。其次,利用VisSim对收费站典型的8种模型进行了仿真研究。通过设置必要的观测点,他们获得了吞吐量数据、队列的时间和平均延迟时间。接着建立了基于主成分分析的综合评价模型,对8个典型模型进行了评价,并建立了最优评价模型。经过数据归一化后,得到了等腰梯形形状的最佳模型。为了获得更好的解,我们建立了两个模型来获得最优解。第一种是微分方程模型,目的是求出梯形区域的最优高度和收费站的最优数目。第二种是线性规划模型,它可以在最大限度地提高区域吞吐量的同时,计算出最优的合并模式。最后,他们分析了模型在不同条件下的性能,并对模型进行了修正以适应这些条件,还利用LINGO进行了灵敏度分析。 (3)69427队伍从事故率、交通流量和建设成本三个方面研究了收费广场的优化设计方案。同时给出了收费广场的设计方案和合并模式。第一阶段,假设交通状况正常,确定收费站的数目。而收费车道的数量取决于交通容量、交通流量和服务水平。他们通过上述三个指标建立收费站的功能模型。并在在灵敏度分析中发现,交通流量与收费车道数呈正相关。第二阶段,建立了基于最小风险和最大吞吐量的合并模式优化模型。该模型通过对现有收费广场性能的分析,优化其设计方案。他们认为整个收费广场的减速分流和加速合并是一个有方向的加权网络流。第三阶段,考虑到收费站车辆的可变运动,采用前后车的行驶距离和后车的制动距离。确定收费广场的规模,并建立优化模型,使建设成本降至最低。值得注意的是,他们对模型进行了详细的测试,发现轻型交通流的交通流量和事故率较低。最后,应用该模型对新泽西高速公路收费广场的优化设计进行了研究。 (4)70174队伍提出了一种新的广场设计开发和评价方法,该方法综合了不同交通水平的影响、收费站的支付方法以以及越来越多的自动驾驶汽车的数量首先,在NetLogo中创建了一个广场模型。因为它允许汽车模拟交通中的人与人之间的交互。在此基础上,他们的稳健模型能够评估影响广场顾客满意度的各种变量的多重实现。研究发现,为了最大限度地提高广场的满意度和效率,需要采用对称设计。此外,电子应答器专用车道数量的影响很大,此类通道的数量较多,总体满意度较高。研究发现,无人驾驶汽车的影响是可以忽略不计的,在不同的参数中,减少停车量和流量的能力对系统的影响最大。该有助于缓解美国各地主要收费广场的拥挤状况。 (5)70545队伍在建立模型之前,列出了一些假设,以使现实生活中的场景更容易建模。然后他们开始分析现有的模型,从中总结出它们的优缺点。他们通过分析这两种模型的特点,提出了两种新的模型:控制时间模型(CTM)和等待区模型(WAM)。在这两种新模式中,他们介绍了一种控制收费站车辆离开时间的方法。他们将根据他们的控制方法和一些假设,继续计算合并区域的大小和形状。在此基础上,提出了一种基于数学证明和计算机仿真相结合的最优合并模式的求解方法。他们接着根据实际情况下的统计规律,对不同模型的吞吐量、风险和成本进行了仿真研究。然后利用统计假设检验对这三种模型进行了比较,得出结论:ctm总体上是最好的。我们继续通过考察建筑成本和吞吐量(每小时)对模型中包含的一些变量的灵敏度来测试我们的模型,从不同的角度验证了模型的可靠性。最后他们对模型的优缺点进行了分析。
给文章取题目的注意事项如下:
文章能够直接向读者传达文章在干嘛的信息,类似于Studies on这种字词,实际上没有什么有效信息,应该尽量避免;文章的题目应该尽量具体、明确,能够反映文章的主要贡献;文章的题目不要太宽泛;不要犯语法错误啊。
(2010年一篇找最佳击球点的论文里面有一篇叫做“Science in Sweet Spot”的论文,标题犯了三大错误:关于特定的研究Science前不加冠词,介词使用错误,单数可数名词前不加冠词。这个标题的正确写法应该是“The science of the Sweet Spot”。)
比如16年一篇O奖论文的题目就很好:Strategies to Eliminating Space Debris: Approaches from a Time Dependent Evaluation Model。
众所周知,标题是论文的眼睛,好的标题会给人眼前一亮的感觉,通过标题编辑与专家对论文会有一个初步印象,这个印象也会影响到老师或者期刊编辑对你论文整体的评价。因此,标题在论文中的重要性,取一个好的、恰当的标题是多么重要。一个好的标题,应兼顾专业性与可读性。
给文章取题目的注意事项如下:
文章能够直接向读者传达文章在干嘛的信息,类似于Studies on这种字词,实际上没有什么有效信息,应该尽量避免;文章的题目应该尽量具体、明确,能够反映文章的主要贡献;文章的题目不要太宽泛;不要犯语法错误啊。
(2010年一篇找最佳击球点的论文里面有一篇叫做“Science in Sweet Spot”的论文,标题犯了三大错误:关于特定的研究Science前不加冠词,介词使用错误,单数可数名词前不加冠词。这个标题的正确写法应该是“The science of the Sweet Spot”。)
比如16年一篇O奖论文的题目就很好:Strategies to Eliminating Space Debris: Approaches from a Time Dependent Evaluation Model。
众所周知,标题是论文的眼睛,好的标题会给人眼前一亮的感觉,通过标题编辑与专家对论文会有一个初步印象,这个印象也会影响到老师或者期刊编辑对你论文整体的评价。因此,标题在论文中的重要性,取一个好的、恰当的标题是多么重要。一个好的标题,应兼顾专业性与可读性。
1,锁定主题,研究方向。首先要明确自己的研究方向,自己要写的论文是哪个领域的,有什么创新点。是一个全新的东西,还是一个验证对比性的论文。心里要有一个谱,每种写法不完全相同。概括一下,我们在写论文钱,心里基本就会大体估算出来自己论文长什么样子了。2,以点带面,查找资料。确定了自己论文的主题,那我要开始查找资料了。这样也能看出来自己要写的东西是否新颖,别人是否都做过,如果别人做了,按我是否还有进步的可能。查资料要细心,中文的就到中国知网,外文的也有相应SCI网站,一般是ScienceDirect吧。我建议可以查找相应的博士论文,越牛逼大学的越好,这样我们可以看看他的综述,了解一下世界上的研究进展。3,构思框架,初列提纲。这步我们可以具体构思一下论文由几部分组成,要论述什么。一般都是摘要概说论文的情况,主体部分的研究进展,讲一下我们的研究有哪些牛逼的地方,我们怎们做的,我们做出来的数据什么样,我们能得出来个什么结论。基本就是这样的套路,当然了,逻辑严密的求证与精美的图表都会对论文加分。4,内容填充,精细雕琢。提纲出来了,我们要把各个部分填充进内容。这个时候,就会用到我们之前查找到的资料了。这个时候我建议大家可以把要引用的文献原句抄到提纲里,然后在后边括弧写上文献的名字及作者,这样便于后期整理文献。除了引用的东西,其他部分都要尽量用自己的话表达出来。5,整理文献,完稿润色。这部分的论文已经初见雏形了,可以将括弧内的引文按照标号顺序排到文后参考文献出,并统一格式。将论文的整体格式都调成正常的论文,进行正规的排版。也要把图片等一并整理好,润色完成的论文,基本上就可以投出去了。6,查找期刊,投改结算。到了投稿部分,可以看看同组师兄师姐之前都投到哪里了,或者看看参考文献的作者都选择了哪些期刊。我们可以登录相应杂志主页,看投稿要求,如果需要按照模板更新格式,则在花点精更新一下论文。投出去,审完,支付完版面费,就等着杂志社通知了,比如校稿等。最后,报销相应的投稿费用。
简洁地重述一遍问题即可,MCM的题目一般较短,复述一遍问题就行了,ICM的题目一般较长,压缩一下,挑重点说。
用英文书写,字体大小不小于12pt(相当于中文的小四),没有限制排版的格式。美赛的论文格式和国赛的差不多,毕竟都是论文的格式,但是还是有一点不同如字体、排版等小方面。
这个。。。对啊。。。论文里面好多地方都不知道该怎么处理,同求。。。 到数学中国社区网站查看回答详情>>
数学建模美赛论文页面布局要求如下:
美国大学生数学建模竞赛(MCM/ICM)由美国数学及其应用联合会主办,是唯一的国际性数学建模竞赛,也是世界范围内最具影响力的数学建模竞赛。赛题内容涉及经济、管理、环境、资源、生态、医学、安全、等众多领域。
竞赛要求三人(本科生和研究生均可参加)为一组,在四天时间内,就指定的问题完成从建立模型、求解、验证到论文撰写的全部工作,体现了参赛选手研究问题、解决方案的能力及团队合作精神。 为现今各类数学建模竞赛之鼻祖。
MCM/ICM 是 Mathematical Contest In Modeling 和 Interdisciplinary Contest In Modeling 的缩写。MCM 始于 1985 年,ICM 始于 1999 年,由 COMAP(the Consortium for Mathematics and Its Application,美国数学及其应用联合会)主办,得到了 SIAM,NSA,INFORMS 等多个组织的赞助。MCM/ICM 着重强调研究和解决方案的原创性、团队合作、交流及结果的合理性。
2019年,共有来自美国、中国、加拿大、英国、澳大利亚等17个国家和地区共25370支队伍参加,包括来自哈佛大学、普林斯顿大学、麻省理工学院、清华大学、北京大学、上海交通大学等国际知名高校学生参与此项赛事角逐。
2020年,来自美国、澳大利亚、加拿大、英国、印度等多个国家与地区包括剑桥大学等众多高校在内的20948支队伍(MCM 13749支、ICM 7199支)参加,共评出Outstanding Winners奖37项(获奖率约),冠名奖16项(获奖率约)。
发展历史:
1985年,在美国科学基金会的资助下,创办了一个名为“数学建模竞赛”(Mathematical Competition In Modeling 后改名Mathematical Contest In Modeling,简称MCM)一年一度的大学水平的竞赛,MCM的宗旨是鼓励大学师生对范围并不固定的各种实际问题予以阐明、分析并提出解法,通过这样一种结构鼓励师生积极参与并强调实现完整的模型构造的过程。
它是一种彻底公开的竞赛,每年只有若干个来自不受限制的任何领域的实际问题,学生以三人组成一队的形式参赛,在四天内任选一题,完成该实际问题的数学建模的全过程,并就问题的重述、简化和假设及其合理性的论述、数学模型的建立和求解(及软件)、检验和改进、模型的优缺点及其可能的应用范围的自我评述等内容写出论文。
由专家组成的评阅组进行评阅,评出优秀论文,并给予某种奖励,它只有唯一的禁律,就是在竞赛期间不得与队外任何人(包括指导教师)讨论赛题,但可以利用任何图书资料、互联网上的资料、任何类型的计算机和软件等,为充分发挥参赛学生的创造性提供了广阔的空间。
第一届MCM时,就有美国70所大学90个队参加,到1992年已经有美国及其它一些国家的189所大学292个队参加。据主办方公布,2019年美国大学生数学建模竞赛吸引了包括美国、中国在内的来自全球17个国家和地区的25370支队伍参赛,竞赛已经成为一种国际性竞赛,影响极其广泛。
美赛参考文献引用格式如下:
引用别人的成果或其他公开的资料(包括网上查到的资料)必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如 [1][3] 等;引用书籍还必须指出页码。
书籍的表述方式为:
[编号]作者,书名,出版地:出版社,出版年。
期刊杂志论文的表述方式为:
[编号]作者,论文名,杂志名,卷期号:起止页码,出版年。
网上资源的表述方式为:
[编号]作者,资源标题,网址,访问时间(年月日)。
标注参考文献的原因:
1、体现研究价值与立项依据是否充分。通过参考文献的层次与水平,可以反映出作者文章或申请书研究的广度与深度、是否具有研究价值。
2、体现研究的前瞻性与作者的研究态度。参考文献绝大多数时候都是文章立意的来源,引用近几年内有具有代表性的参考文献(3-5年最好),保持选题的新颖性与前瞻性,可以体现自己的研究能力,也让文章更具有创新性与研究意义。
3、尊重他人研究成果,体现严谨、科学的学术态度。一篇好的文章不是“空穴来风”,而是“站在巨人的肩膀上看世界”,文章的论点一定是成立的、有理论支持、有权威性的。