毕业设计(论文)撰写的内容与要求
在日常学习和工作生活中,大家都尝试过写论文吧,论文是学术界进行成果交流的工具。你知道论文怎样写才规范吗?以下是我为大家整理的毕业设计(论文)撰写的内容与要求,欢迎阅读,希望大家能够喜欢。
毕业设计(论文)撰写的内容与要求
1.标题
标题应简短、明确、有概括性。通过标题概括说明毕业设计(论文)的主要内容。标题字数要适当,一般不宜超过20字,如果有些细节必须放进标题,可以加副标题,主标题写得简明,将细节放在副标题里。
2.摘要或设计总说明书
摘要,是以浓缩的形式概括研究课题的内容、方法和观点,以及取得的成果和结论,应能反映设计(论文)的精华。中英文摘要以300-500字为宜,包括论文题目、论文摘要、关键词(3至5个),英文摘要与中文摘要内容要相对应;撰写摘要时应注意以下几点:
(1) 语言使用要精炼、概括;
(2) 陈述要客观,不加主观评价;
(3) 摘要的重点是成果和结论;
(4) 设计总说明主要介绍设计任务来源、设计标准、设计原则及主要技术资料。
3.目录
目录按三级标题编写(即:1.…、…、…),要求标题层次清晰。
4.前言
前言是说明本课题的研究意义、目的、范围及解决的主要问题。
5.正文
正文是对研究工作的详细论述。它是全文的主体,其内容包括:问题的提出,研究工作的基本前提、假设和条件;基本概念和理论基础;模型的建立,实验(设计)方案的拟定;实验方法、内容及其分析;理论论证,理论在课题中的应用,课题得出的结果,以及结果的讨论等。不同类型的毕业设计(论文),可根据实际情况取舍内容。
6.结论
结论是对整个研究工作进行归纳和总结,还应包括所得结论与前人结论的比较和本课题尚存在的问题,以及进一步开展研究的建议。结论集中反映作者的研究成果,表达作者对所研究课题的见解,是全文的精髓,结论要写得概括、简短。撰写时应注意以下几点:
(1)结论要简洁、明确,措辞应严谨;
(2)结论应反映个人的研究工作成果。
7.致谢
致谢应以简短的文字对课题研究与论文撰写过程中曾给予帮助的人员表示自己的谢意。
8.参考文献
参考文献是毕业设计(论文)不可缺少的组成部分,它反映设计(论文)的取材来源、引用材料的广博程度和材料的可靠程度。一般设计(论文)的参考文献应列入引用的主要中外文献。
9.附录
对于一些不宜放入正文中、但作为毕业设计(论文)又不可缺少的组成部分,或有主要参考价值的内容,可编入毕业设计(论文)的附录中,例如,公式的推演、编写的算法、语言程序等。如果毕业设计(论文)中引用的实例、数据资料,实验结果等符号较多时,为了节约篇幅,便于读者查阅,可以编写一个符号说明,注明符号代表的意义。
2022毕业设计(论文)撰写标准
一、毕业设计(论文)的编写格式:
1.“摘要”、“目录” 黑体,三号,居中排列。
2.“引言”、 “结论” 、“参考文献”黑体,四号,左对齐排列,“致谢”、“附录”黑体,四号,居中排列。
3.正文:各章标题黑体,四号,居左排列。各章下的节标题黑体,小四号,居左排列。正文内容中文为宋体,小四号。正文中的图名和表名及相应内容用宋体,五号字体,图名置于图正下方,表名置于表正上方。
4.页眉:宋体五号,居中排列。内容为“桂林电子科技大学毕业设计(论文)”。
5.页码:宋体小五号,页脚居中排列。页码从引言开始编号,一直编到附录。
二、毕业设计(论文)的前置部分:
毕业设计(论文)的前置部分包括封面、原创性声明、中文摘要、目录等。
1.题目:题目是以最恰当、最简明的词语反映论文中最重要的特定内容的逻辑组合。中文题目(包括副题和标点符号)一般不宜超过20字。
2.原创性声明
3.中文摘要及关键词
(1)中文摘要内容,宋体,小四号,一般为300字左右。摘要中不宜出现公式、非公用的符号、术语等。
(2)每篇论文选取3~5个关键词,关键词排列在摘要的左下方一行,顶格写:“关键词:”为黑体,小四号,内容采用小四号、宋体、接排、各个关键词之间有分号隔开。
4.目录:按照引言、论文的章节、结论、参考文献、致谢、附录等前后顺序,编写序号、名称和页码。目录页排在中文摘要之后,目录要求自动生成。摘要和目录编页用罗马字符编页。
三、毕业设计(论文)的主体部分:
毕业设计(论文)的主体部分包括引言、正文、结论、参考文献、致谢等。字数(正文部分)要求8000字以上。
1.引言:简要说明作者所作工作的目的、范围、国内外进展情况、前人研究成果、本人的设想、研究方法等。
2.正文:毕业设计(论文)的核心部分,包括理论分析、数据资料、实验方法、结果、本人的论点和结论等内容,还要附有各种有关的图表、照片、公式等。
(1)图:图序号一律用阿拉伯数字分章依序编码,如:图、,图、等。图序号和图名置于图的正下方。图中坐标单标注的符号和缩略词必须与正文中一致。
(2)表:表序号一律用阿拉伯数字分章依序编码,如:表、,表、等。表序号和表名置于表的正上方。
(3)公式:正文中的公式、算式、方程式等按式(3-1),式(6-1)分章依序编码。公式序号标注于该式所在行(当续行时,应标注于最后一行)的最右边。连续性的公式在“=”处排列整齐。大于999的整数或多于三位的'小数,一律用半角阿拉伯数字符的小间隔分开;小于1的数应将0置于小数点之前。
(4)计量单位:单位名称和符号的书写方式一律采用国际通用符号。
3.结论:准确、完整、精练地阐述作者创造性工作在本研究领域的地位和作用,对存在的问题和不足给予客观的说明,也可以提出进一步的设想。
4. 参考文献:在毕业设计(论文)中引用参考文献时,引出处右上角用方括号标注阿拉伯数字编排的序号(必须与参考文献一致)。
参考文献的类型和标识:
M——专著,C——论文集,N——报纸文章,J——期刊文章,D—学位论文,R——报告,S——标准,P——专利。
参考文献一律置于文末。其格式为:
(1)专著
[1] 张志建.严复思想研究[M]. 桂林:广西师范大学出版社.
[2] 马克思恩格斯全集:第1卷[M].北京:人民出版社,.
(2)期刊文章
[1] 郭英德.元明文学史观散论[J].北京师范大学学报(社会科学版),1995(3):12-18.
(3)论文集
[1] 伍蠡甫.西方文论选[C].上海:上海译文出版社,1979.
(4)报纸文章
李大伦.经济全球化的重要性[N].光明日报,1998-12-27,(3).
(5)学位论文
刘伟.汉字不同视觉识别方式的理论和实证研究[D].北京:北京师范大学心理系,1998.
(6)报告
白秀水,刘敢,任保平. 西安金融、人才、技术三大要素市场培育与发展研究[R].西安:陕西师范大学西北经济发展研究中心,1998.
(7)论文集中的析出文献
钟文发.非线性规划在可燃毒物配置中的应用[A].赵玮.运筹学的理论与应用——中国运筹学会第五届大会论文集[C].西安:西安电子科技大学出版社,~471.
(8)电子文献
王明亮.关于中国学术期刊标准化数据库系统工程的进展
(9)专利
姜锡洲.一种温热外敷药制备方案[P].中国专利:881056073.
5. 致谢:对协助完成论文研究工作的单位和个人表示感谢。
四、毕业设计(论文)的附录部分:
1.附录编于致谢后,与致谢连续编页码,每一附录均另页起。
2.附录依次用大写正体A,B,C……….编序号,黑体三号。如:附录A。
3.附录中的图、表、公式、参考文献等与正文分开,用阿拉伯数字另行编序号,注意在数码前冠以附录的续码。如:图A1;表B2;文献[D5]
五、毕业论文的打印规格:
1.论文、任务书的所有封面打印规格:
中文题目:黑体三号字
院(系)、专业、学生姓名、班级、学号、指导教师姓名、年月日(提交论文日期):宋体三号;院(系)必须写:继续教育学院;专业必须写全称。
2.论文正文页面和版面的设置规格:
论文必须单面打印。为了便于装订、复制,要求每页纸的四周留有足够的空白边缘。页边距——上3厘米、下2厘米、内侧3厘米、外侧2厘米;装订线——1厘米;页眉—2厘米;页脚—1厘米。
页面设置数据为:文字的行间距- 20磅 ;公式的行间距- 倍 ;字符间距— 标准 。
七、毕业设计(论文)的装订说明:
毕业设计(论文)要求以A4号纸的大小标准进行装订。左侧装订。订2颗钉子。
装订页码顺序:(1)封面,(2)中文摘要、关键词,(3) 目录(要求至少有二个层次,注明页码),(4)论文正文,(5) 结论,(6)参考文献,(7) 致谢,(8) 附录。
根据GB3469规定,以单字母方式标识以下各种参考文献类型:
对于专著、论文集中的析出文献,其文献类型标识建议采用单字母“A”;对于其他未说明的文献类型,建议采用单字母“Z”。
对于数据库(database)、计算机程序(computer program)及电子公告(electronic bulletin board)等电子文献类型的参考文献,建议以下列双字母作为标识:
电子文献的载体类型及其标识
对于非纸张型载体的电子文献,当被引用为参考文献时需在参考文献类型标识中同时标明其载体类型。本规范建议采用双字母表示电子文献载体类型:磁带(magnetic tape)——MT,磁盘(disk)——DK,光盘(CD-ROM)——CD,联机网络(online)——OL,并以下列格式表示包括了文献载体类型的参考文献类型标识:
[文献类型标识/载体类型标识]
如:[DB/OL]——联机网上数据库(database online)
[DB/MT]——磁带数据库(database on magnetic tape)
[M/CD]——光盘图书(monograph on CD-ROM)
[CP/DK]——磁盘软件(computer program on disk)
[J/OL]——网上期刊(serial online)
[EB/OL]——网上电子公告(electronic bulletin board online)
以纸张为载体的传统文献在引作参考文献时不必注明其载体类型。
注:英文的文献标识码应与中文对应。[参考文献类型标识码]M专著Monograph;C-论文集Collection;N报纸文章News;J期刊文章Journal;D学位论文Degree;R报告Report;S标准Standard;P专利Patent;A专著、论文集中的析出文献Article;Z其它末说明文献(1)文献类型标识:专著[M];期刊[J];论文集[c];学位论文[D];标准[S];报告[R];专利[P];报纸[N];(2)电子文献类型标识:数据库[DB];计算机程序[CP];电子公告[EB];(3)电子文献的载体类型及其标识:联机网上数据库[DB/OL];国家期刊出版格式要求在中图分类号的下面应标出文献标识码,规定如下:作者可从下列A、B、C、D、E中选用一种标识码来揭示文章的性质:A理论与应用研究学术论文(包括综述报告);B实用性成果报告(科学技术)、理论学习与社会实践总结(科技);C业务指导与技术管理的文章(包括特约评论);D一般性通讯、报导、专访等;E文件、资料、人物、书刊、知识介绍等。注:英文的文献标识码应与中文对应。[参考文献类型标识码]M专著Monograph;C-论文集Collection;N报纸文章News;J期刊文章Journal;D学位论文Degree;R报告Report;S标准Standard;P专利Patent;A专著、论文集中的析出文献Article;Z其它末说明文献(1)文献类型标识:专著[M];期刊[J];论文集[c];学位论文[D];标准[S];报告[R];专利[P];报纸[N];(2)电子文献类型标识:数据库[DB];计算机程序[CP];电子公告[EB];(3)电子文献的载体类型及其标识:联机网上数据库[DB/OL];
1.著作格式[序号]著者.书名[M].版本(第一版不写).出版地:出版者,出版年:起止页码例:[1]孙家广,杨长青.计算机图形学[M].北京:清华大学出版社,1995:26-282. 期刊格式[序号]作者.题名[J].刊名,出版年份,卷号(期号):起止页码例:[3]李旭东,宗光华,毕树生,等.生物工程微操作机器人视觉系统的研究[J].北京航空航天大学学报,2002,28(3):249-2523.报纸格式[序号]主要责任者.文献题名[N].报纸名,出版日期(版次).例如:[8]谢希德.创造学习的新思路[N].人民日报,1998-12-25(10).4.学位论文格式[序号]主要责任者.文献题名[D].出版地:出版单位,出版年:起止页码(可选).例如:[4]赵天书.诺西肽分阶段补料分批发酵过程优化研究[D].沈阳:东北大学,.网络文献[序号]主要责任者.电子文献题名[EB/OL].[日期]//htpp:网址6析出文献格式[序号]析出文献主要责任者,析出文献题名[A],原文献主要责任者(可选)原文献题名[C],出版地:出版者,出版年:起止页码.例如:钟文发,非线性规划在可燃毒物配置中的应用[A];赵炜,运筹学的理论与应用——中国运筹学会第五届大会论文集[C];西安:西安电子科技大学出版社,1996:468。6.著作、学位论文、辞典等如果是多次引用,只给一个编号,在编号后面注明页码,文后参考文献不注明页码。
看看运筹与模糊学这本期刊撒,都是免费下载查阅的,
作者:唐家三公主链接:来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。基于数学核心素养的教学设计——以“简单的线性规划问题”为例职前数学教师学科知识的调查研究——以小学“数与代数”内容为例向量数量积的多元表示及其应用在线教育平台用户行为研究数学分析中的函数表示苏教版小学数学教材中组合问题的内容编排高中生理解数学归纳法的障碍分析及应对策略SOLO分类理论在评价解题特征中的应用研究“中国学习者悖论”之解——基于学生数学学习态度的视角表征视角下的数形结合思想教学研究软集分析理论中的积分理论软度量空间下的软P-H-R 型压缩及软Meir-Keeler 压缩的不动点定理人教版、苏教版与北师版教材的对比分析——以初中教材《全等三角形》为例小学生对除法概念及性质理解水平的调查研究国际背景下中国学生数学观现状研究——基于淮海经济区初二学生的调查模糊软度量空间的性质及其上的不动点理论一类非线性微分方程的Hyers-Ulam稳定性关于苏教版和人教版教科书中数学核心素养的比较分析不动点原理及其应用2013-2017年江苏高考数学试题浅析基于综合风险评价模型对水资源短缺的预测 ---以徐州市为例新课程标准下的高中数学教学设计和试题编写相关研究基于小波降噪的HMM模型在沪深300指数择时中的应用C语言编程在小学数学教学中的初探浅谈极限思想在中小学的应用斯金纳的强化理论在数学课堂教学上的应用一类特殊函数的极限数学实验在初中数学教学中的应用从常微分方程的解到代数方程的根新课程标准下高中数学教学过程中如何培养学生的核心素养小学数学几何直观能力培养的教学策略研究常微分方程特殊形式转换成标准形式的应用几类数学思想在中学数学中的应用关于Fibonacci数列通项公式证明的数学方法分类中学数学翻转课堂实施情况及实现路径平面与球面三角形的比较具有多时滞的2型糖尿病血糖-胰岛素调节系统周期解的存在性及其稳定性研究常见统计流形的几何结构初中生几何证明认知障碍分析及对策研究数学错题本的教学价值和实现路径两类二阶差分方程解的渐近性质二元函数极值的充分条件新课标下小学数学教材中“综合与实践”的比较——以苏教版和人教版为例蝴蝶定理的证明、推广及其应用对《等周问题的一个初等证明》的报告中学阶段的数学启发式教学热方程在几何中的应用一类具有负反馈和抑制的反应扩散生态模型动力学行为的理论分析等宽曲面的构造高中不等式证明的对策研究比较视角下江苏高考"不等式"内容的综合难度研究线性变换思想在中学数学中的应用整数环上多项式的可约性数学分析中的部分问题初探对江苏近十年高考数学一卷最后一题的研究黎卡提方程与二阶齐次线性微分方程的解法探究三阶常系数线性微分方程的常数变易法一类二阶线性微分方程的常数变易法BKP方程的十类解用方程思想解决中学数学问题浅谈微元法在数学中的应用管状曲面上的特殊曲线一类函数列的积分中值点列的收敛子列的渐进性数学文化在数学教学中的渗透研究悬链面上的渐近线一类二阶非线性微分方程的解法昆虫爬行最短路径问题黄金椭圆的若干优美性质
线性规划问题在经济生活中的应用详见线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法_在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料;二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是在一定条件下,合理安排人力物力等资源,使经济效果达到最优一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题文章根据线性规划问题在现实生活中的意义进行相关讨论与探究,介绍了线性规划问题产生的背景、特点和实际运用情况,以及线性规划问题在经济生活中运用的意义.
我也要 我也要
文章的写作也是需要积累和沉淀的,一瞬间的无病呻吟,并不能给你的文章增添多少亮点,专业的事交给专业的人来做,不坑不,走某宝,都有保障,给我一个信任,还你一个满意!无定金!几个大家常遇到的问题:1、重复率,约定好重复率,发来却没有达到要求,然后联系不到人;2、约定好包通过,结果发来的东西质量很差,当然找他修改时,对方玩失踪;3、任何事都没干,先开始要定金,然后一点是一点,让人欲哭无泪!4、重复率做假,以假的重复率截图欺消费者,然后发来的东西再去查重,基本80%以上,白白等掉了时间,浪费了金钱,荒废了感情,最后还极有可能影响了学业,耽误了毕业!所以,请一定要擦亮眼睛,仔细甄别-注意我头像哈,我们只做文字,不玩游戏
同道中人来报道,我是找的诚梦计算机毕业设计完成的,本来就是理科生看到文字就头疼,做毕业设计的问题还是别麻烦自己了,除非是真的很有能力,不然最后真的会疯掉的。
对于写论文是很头疼的事,真的就像无头苍蝇一样,当时找的诚梦计算机毕业设计帮忙搞定的,自己轻松好多。
1 远程教学网站设计 2 最短路径算法的动画演示 3 最小生成树算法的动画演示 4 数据结构学习网站 5 药店药品进销管理系统 6 酒店客房预定管理系统 7 LINUX 内核设计----块设备驱动程序的分析与设计 8 LINUX 内核设计----字符设备驱动程序的分析与设计 9 基于 X3D 的虚拟宠物设计与实现 10 分布式协同虚拟社区的分析与设计 11 基于 的旅游管理信息系统设计 12 三维图形造型设计 13 食堂膳食管理决策支持系统的数据库设计 14 食堂膳食管理决策支持系统的最优膳食结构模型设计 15 线性规划理论及算法在食堂最优膳食结构决策分析中的应用 16 平面自由曲线造型设计 17 广西城市演化规律研究 18 基于粗糙集理论的网站性能主要指标的智能提取方法研究 19 中国-东盟贸易与空间距离的关系分析 20 重力模型在广西城市交通预测中的应用研究 21 国家级双语示范课程电子商务网络教学平台—网站前台的设计与研究 22 国家级双语示范课程电子商务网络教学平台—网站后台的设计与研究 23 电子商务教学软件实验教学的应用研究 24 信息管理专业网络教学互动平台—网站前台的设计与研究 25 信息管理专业网络教学互动平台—网站后台的设计与研究 26 CRM 教学软件在实验教学中的应用研究 27 电子商务双语教学模式的分析与研究 28 ERP 软件在实验教学中的应用研究—从学习者的角度探讨教学模式与方法的创新 29 ERP 的车辆管理子系统的研究与设计 30 ERP 的车辆维修子系统的研究与设计 31 ERP 的工具管理子系统的研究与设计 32 ERP 的量具管理子系统的研究与设计 33 基于 ERP 二次开发平台的“落地结算”流程的设计与研究 34 基于 Bos 开发平台的“退货管理”流程的设计与研究 35 《大学计算机基础》自主学习平台的研究与开发 36 《教学工作状态评估》管理信息系统的研究与开发 37 本科毕业论文(设计)管理信息系统的研发与应用 38 科技文献管理信息系统的设计与开发 39 基于网络的智能家居监控系统设计 40 基于单片机的多点温度检测系统设计 41 GPS 电子导游仪的设计与实现 42 汽车用品购物网站的设计与实现 43 《单片机原理与应用》网络学习平台的设计与实现 44 普通话考试学习网站的设计与实现
……终于找到组织了,同上,跪求……
看看运筹与模糊学这本期刊撒,都是免费下载查阅的,
2017年美赛B题赛题 2017MCM ProblemB: Merge After Toll Multi-lanedivided limited-access toll highways use “ramp tolls” and “barrier tolls” tocollect tolls from motorists. A ramp toll is a collection mechanism at anentrance or exit ramp to the highway and these do not concern us here. Abarrier toll is a row of tollbooths placed across the highway, perpendicular tothe direction of traffic flow. There are usually (always) more tollbooths thanthere are incoming lanes of traffic (see former 2005 MCM Problem B). So whenexiting the tollbooths in a barrier toll, vehicles must “fan in” from thelarger number of tollbooth egress lanes to the smaller number of regular travellanes. A toll plaza is the area of the highway needed to facilitate the barriertoll, consisting of the fan-out area before the barrier toll, the toll barrieritself, and the fan-in area after the toll barrier. For example, a three-lanehighway (one direction) may use 8 tollbooths in a barrier toll. After payingtoll, the vehicles continue on their journey on a highway having the samenumber of lanes as had entered the toll plaza (three, in this example). Considera toll highway having L lanes of travel in each direction and a barrier tollcontaining B tollbooths (B > L) in each direction. Determine the shape,size, and merging pattern of the area following the toll barrier in whichvehicles fan in from B tollbooth egress lanes down to L lanes of considerations to incorporate in your model include accidentprevention, throughput (number of vehicles per hour passing the point where theend of the plaza joins the L outgoing traffic lanes), and cost (land and road constructionare expensive). In particular, this problem does not ask for merely aperformance analysis of any particular toll plaza design that may already beimplemented. The point is to determine if there are better solutions (shape,size, and merging pattern) than any in common use. Determinethe performance of your solution in light and heavy traffic. How does yoursolution change as more autonomous (self-driving) vehicles are added to thetraffic mix? How is your solution affected by the proportions of conventional(human-staffed) tollbooths, exact-change (automated) tollbooths, and electronictoll collection booths (such as electronic toll collection via a transponder inthe vehicle)? YourMCM submission should consist of a 1 page Summary Sheet, a 1-2 page letter tothe New Jersey Turnpike Authority, and your solution (not to exceed 20 pages)for a maximum of 23 pages. Note: The appendix and references do not counttoward the 23 page limit. 2017年美赛B题赛题翻译 B题中文翻译: 问题B:收费后合并 多车道有限接入收费公路使用“坡道收费”和“障碍收费”来收取驾驶员的收费。斜坡收费是在高速公路的入口或出口匝道处的收集机构,并且这些不关心我们在这里。障碍收费是一排跨过高速公路的收费站,垂直于交通流的方向。通常(总是)更多的收费站比交通车道(见前2005年MCM问题B)。因此,当驶出收费站时,车辆必须从较大数量的收费站出口车道“扇入”到较少数量的常规行驶车道。收费广场是高速公路需要用于促进障碍收费的区域,包括在障碍收费之前的扇出区域,收费路径本身以及收费路径之后的扇入区域。例如,三车道高速公路(一个方向)可以在障碍通行费中使用8个收费站。在支付了费用之后,车辆在具有与进入收费广场相同数量的车道(在该示例中为三个)的高速公路上继续行驶。 考虑在每个方向上具有L个行驶车道的收费高速公路和在每个方向上包含B个收费站(B> L)的障碍通行费。确定跟随收费障碍的区域的形状,尺寸和合并模式,其中车辆从B过街出口车道下行到L个车道。在您的模型中纳入的重要注意事项包括事故预防,吞吐量(每小时通过广场末端加入L外出车道的车辆数量)和成本(土地和道路建设昂贵)。特别地,该问题不仅仅要求可能已经实现的任何特定收费广场设计的性能分析。重点是确定是否有比任何常用的更好的解决方案(形状,大小和合并模式)。 确定您的解决方案在轻和重的流量的性能。随着更多自主(自驾)车辆添加到交通组合中,您的解决方案如何改变?您的解决方案如何影响常规(人员配备)收费站,精确更换(自动)收费站和电子收费站(例如通过车辆中的应答器收集电子费用)的比例? 您的MCM提交应包括1页摘要表,1-2页给新泽西州收费公路管理局的信件,以及您的解决方案(不超过20页),最多23页。注意:附录和参考文献不计入23页的限制。 2017年美赛B题优秀论文解读 2017年美国大学生数学建模竞赛有4907支队伍选择了B题,其中有5支队伍获得了特等奖。他们分别是56731、68303、69427、70174、70545,我们对这5篇特等奖论文进行了简单的分析,结果如下: (1)56731队伍提议的收费站的分布类似于蜂巢。在每个规则的六角形蜂窝的中心,有两个收费站,为两个分开的车辆流服务。由于新收费广场的特殊格局,总面积可大幅度减少。同时,可以减少排队造成的平均浪费时间,这意味着吞吐量将得到提高。此外,通过将合并过程分为两个阶段,也可以减少事故发生的可能性。与传统的线性分布收费站相比,新设计的蜂窝结构大大减少了建设面积。利用排队论对收费广场的吞吐量进行了分析。为了验证他们的理论,他们利用PTVISSIM模拟了大量车辆通过收费广场的行为。仿真结果表明,理想的蜂窝式收费站与传统的收费站相比具有更好的效果。接着分析了不同类型收费站的比例对他们设计的影响。他们模拟了蜂窝式收费广场在不同交通流量下的性能,显示该模型对交通流变化不敏感,鲁棒性强,适合于实际施工。为了进一步降低事故发生的可能性,他们对蜂窝收费亭概念模型进行了改进:使过渡区更加平滑,各种收费站的布置更加公平。对于自动驾驶车辆,在收费广场的中心,他们预留了特别的e-zpass收费亭。电子收费和自动车辆是现代交通的发展趋势,我们的新设计模式可以在成本、吞吐量和安全等方面提高收费广场的性能。 (2)68303队伍首先根据收费站的不同形状、大小和合并模式将已实施的区域划分为8类。其次,利用VisSim对收费站典型的8种模型进行了仿真研究。通过设置必要的观测点,他们获得了吞吐量数据、队列的时间和平均延迟时间。接着建立了基于主成分分析的综合评价模型,对8个典型模型进行了评价,并建立了最优评价模型。经过数据归一化后,得到了等腰梯形形状的最佳模型。为了获得更好的解,我们建立了两个模型来获得最优解。第一种是微分方程模型,目的是求出梯形区域的最优高度和收费站的最优数目。第二种是线性规划模型,它可以在最大限度地提高区域吞吐量的同时,计算出最优的合并模式。最后,他们分析了模型在不同条件下的性能,并对模型进行了修正以适应这些条件,还利用LINGO进行了灵敏度分析。 (3)69427队伍从事故率、交通流量和建设成本三个方面研究了收费广场的优化设计方案。同时给出了收费广场的设计方案和合并模式。第一阶段,假设交通状况正常,确定收费站的数目。而收费车道的数量取决于交通容量、交通流量和服务水平。他们通过上述三个指标建立收费站的功能模型。并在在灵敏度分析中发现,交通流量与收费车道数呈正相关。第二阶段,建立了基于最小风险和最大吞吐量的合并模式优化模型。该模型通过对现有收费广场性能的分析,优化其设计方案。他们认为整个收费广场的减速分流和加速合并是一个有方向的加权网络流。第三阶段,考虑到收费站车辆的可变运动,采用前后车的行驶距离和后车的制动距离。确定收费广场的规模,并建立优化模型,使建设成本降至最低。值得注意的是,他们对模型进行了详细的测试,发现轻型交通流的交通流量和事故率较低。最后,应用该模型对新泽西高速公路收费广场的优化设计进行了研究。 (4)70174队伍提出了一种新的广场设计开发和评价方法,该方法综合了不同交通水平的影响、收费站的支付方法以以及越来越多的自动驾驶汽车的数量首先,在NetLogo中创建了一个广场模型。因为它允许汽车模拟交通中的人与人之间的交互。在此基础上,他们的稳健模型能够评估影响广场顾客满意度的各种变量的多重实现。研究发现,为了最大限度地提高广场的满意度和效率,需要采用对称设计。此外,电子应答器专用车道数量的影响很大,此类通道的数量较多,总体满意度较高。研究发现,无人驾驶汽车的影响是可以忽略不计的,在不同的参数中,减少停车量和流量的能力对系统的影响最大。该有助于缓解美国各地主要收费广场的拥挤状况。 (5)70545队伍在建立模型之前,列出了一些假设,以使现实生活中的场景更容易建模。然后他们开始分析现有的模型,从中总结出它们的优缺点。他们通过分析这两种模型的特点,提出了两种新的模型:控制时间模型(CTM)和等待区模型(WAM)。在这两种新模式中,他们介绍了一种控制收费站车辆离开时间的方法。他们将根据他们的控制方法和一些假设,继续计算合并区域的大小和形状。在此基础上,提出了一种基于数学证明和计算机仿真相结合的最优合并模式的求解方法。他们接着根据实际情况下的统计规律,对不同模型的吞吐量、风险和成本进行了仿真研究。然后利用统计假设检验对这三种模型进行了比较,得出结论:ctm总体上是最好的。我们继续通过考察建筑成本和吞吐量(每小时)对模型中包含的一些变量的灵敏度来测试我们的模型,从不同的角度验证了模型的可靠性。最后他们对模型的优缺点进行了分析。
售书问题优化模型摘要优化问题是工程技术、经济管理和科学研究等领域重做常见的一类问题,在解决极值问题中起着重要作用。零一规划也是常用的数学工具,能够有效的表示事物的有效性。本文是以一极具有实际意义的问题,而随着信息时代的发展,大学生接受知识的途径多种多样,报纸、杂志、图书一直赢得大学生不同程度的青睐,而且出现了电子图书这个时代的产物,对于这个实际意义较大的问题就应有简单易懂的模型,让人看起来比较容易接受。考虑到建立销售点,使它供书的人数达到最大,那就要在条件约束下建立优化模型,而选择两地之间是否有销售的关系为他们的决策变量,那样就使人易懂,易于理解。通过建立线性规划模型,并应用Linggo软件得到最优解,B和E之间建立代售关系即在B(E)建立代售点并向E(B)售书,D和G之间建立代售关系即在D(G)建立代售点并向G(D)售书,可是大学生的人数最大,为177千人。最优解可以有多种选择方法,这就有选择的灵活性。本模型适用于只考虑人数最大的地址的选择,具有较强的实用性和普遍性。关键字 售书问题 优化模型 零一规划 Linggo1.问题的重述一家出版社准备在某地向七个区大学生供应图书,每个区的大学生数量如图所示(单位:千人),出版社准备在该市设立两个图书代理销售点,每个代理点只能想该地区和一个相邻的地区售书,出版社知道售书覆盖的人群越大,所获得的利润也就也大,所以出版社要选择两个恰当的代理销售点使覆盖的人群最大。现在所要解决的是选在合适的代理销售点。2.问题分析 书是人们进步的阶梯,售书问题普遍受到人们的关注。近年来随着科学技术的发展,电子图书、网上书城等的出现,人们阅读的方式越来越多,而书的销售问题也越来越受销售商的关注。如何选择待销售点才能使卖出的书最多,销售商获得的利益最大,成为问题的关键所在。在许多候选地区中选择最优的地区,制定最优的规划方案,显然必须建立优化模型,每个地区都选与不选的可能性,这就必须用到0—1规划模型,立两个销售代理点, 在满足以下的条件的情况下,要想得到一个最优计划,出版社就需要设计一个合理有效的投资方案:1.只能建立两个销售代理点。2.每个销售代理点只能向本区和一个相邻区的大学生售书在上述要求中,将每两个相邻地区之间连线表示该地区建立售代关系,这种售代关系据有建立与不建立两种选择,显然每个地区只能选择一个销售或者代理,最优方案就是选择权值最大与次大的连线,将上述方案限制转化为约束条件,并使目标函数,约束条件决策标量转化为数学符号,利用LINGGO 软件来求最优解接,3符号的说明符号表示 符号说明A 34千人的地区B 29千人的地区C 42千人的地区D 21千人的地区E 56千人的地区F 18千人的地区G 71千人的地区x1 AB两地区之间建立代售关系x2 AC两地区之间建立代售关系x3 BE两地区之间建立代售关系x4 BD两地区之间建立代售关系x5 CD两地区之间建立代售关系x6 DG两地区之间建立代售关系x7 DF两地区之间建立代售关系x8 DE两地区之间建立代售关系x9 EF两地区之间建立代售关系x10 FG两地区之间建立代售关系X11 BC两地区之间建立代售关系Q 所能供应的大学生的数量4.问题假设选择代理销售点时,只考虑该地区总人数以及相邻地区,对人员的迁入迁出,人员的消费能力,人们的需求不予考虑;1、 只有两个销售代理点,且每个销售代理点只能向该区和他临近的去售书。2、 7个销售区中没有人员的流动3、 书的供应量远远满足学生的需求4、 销售代理点向两个地区的学生销售书的价格相同。5、 不考虑邻区因学生买书的路费问题而减少书的购买。6、 售书多少与人数多少成正比。7、 人人的消费能力是相等的。5.模型的建立决策变量:设在ABCDEFG中的某两地之间代售关系Xi(i=1,2,3…10).Xi=1表示在其建立代售关系。Xi=0表示没有建立代售关系目标函数:所能供应的大学生的数量Q千人;则Q=63*x1+76*x2+85*x3+50*x4+63*x5+92*x6+39*x7+77*x8+74*x9+89*x10+71*x11;约束条件1.只能建立两个销售代理点。x1+x2+x3+x4+x5+x6+x7+x8+x9+x10=2;2.与A建立代售关系只能有一个即x1+x2<=1;与B建立代售关系只能有一个即x2+x5+x11<=1;与C建立代售关系只能有一个即x1+x3+x4+x11<=1;与D建立代售关系只能有一个即x4+x5+x6+x7+x8<=1;与E建立代售关系只能有一个即x3+x8+x9<=1;与F建立代售关系只能有一个即x7+x9+x10<=1;与G建立代售关系只能有一个即x6+x10<=1;综上所述:Max Q=63*x1+76*x2+85*x3+50*x4+63*x5+92*x6+39*x7+77*x8+74*x9+89*x10;x1+x2+x3+x4+x5+x6+x7+x8+x9+x10=2;x1+x2<=1;x2+x5+x11<=1;x1+x3+x4+x11<=1;x4+x5+x6+x7+x8<=1;x3+x8+x9<=1;x7+x9+x10<=1;x6+x10<=1;6.模型的求解在lingo中输入以下代码,见附录1.通过运行LINDO教学软件,我们可以得到该售书问题的最优解,即建立代售关系的最优方案,其截图为: Objective value: Variable Value Reduced Cost X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 从中可以看到在B和E之间建立代售关系即在B(E)建立代售点并向E(B)售书,D和G之间建立代售关系即在D(G)建立代售点并向G(D)售书,可是大学生的人数最大,为177千人。(详细结果见附录2)但考虑到地区中人数的问题,以及现实中去买书的路费问题,所以销售代理点应建立在人数较多的地区,在B、E地区中E区人较多为56千人,在D、G地区中G区中人数较多为71千人,所以最好把两个销售代理点建在E区和G区。7.模型的评价和推广 通过查看该区图可以粗略知道应选择人数最大地区为代售点,在题中假设的前提下,选择人数最大的地区为代售点,覆盖了大部分人口,此模型的建立,很好的应用数学知识将选择销售代理点的问题抽象化,使选择我们的选择不再主观、盲目,而是更全面、深入、条理。选择最少的变量考虑问题简化了模型建立的分析。这也是模型最大的弊端数据的真实性受到了很大的限制对实际应用很不利。虽然假设的变量比较多,但人们可以较容易理解。题中假设的太多假设,有些脱离实际,考虑现实当中的销售点间的运输路程、交通便利程度、学生在校期间的对书的消费情况,不同人群之间的消费能了等情况,8.参考文献【1】姜启源 谢金星 叶俊 数学建模(第三版)高等教育出版社 2003【2】.附录附录1:max=63*x1+76*x2+85*x3+50*x4+63*x5+92*x6+39*x7+77*x8+74*x9+89*x10;x1+x2+x3+x4+x5+x6+x7+x8+x9+x10=2;x x1+x2<=1;x2+x5+x11<=1;x1+x3+x4+x11<=1;x4+x5+x6+x7+x8<=1;x3+x8+x9<=1;x7+x9+x10<=1;x6+x10<=1; 附录2:Global optimal solution found. Objective value: Total solver iterations: 0Variable Value Reduced Cost X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Row Slack or Surplus Dual Price 1 2 3 4 5 6 7 8 9 10
售书问题优化模型摘要优化问题是工程技术、经济管理和科学研究等领域重做常见的一类问题,在解决极值问题中起着重要作用。零一规划也是常用的数学工具,能够有效的表示事物的有效性。本文是以一极具有实际意义的问题,而随着信息时代的发展,大学生接受知识的途径多种多样,报纸、杂志、图书一直赢得大学生不同程度的青睐,而且出现了电子图书这个时代的产物,对于这个实际意义较大的问题就应有简单易懂的模型,让人看起来比较容易接受。考虑到建立销售点,使它供书的人数达到最大,那就要在条件约束下建立优化模型,而选择两地之间是否有销售的关系为他们的决策变量,那样就使人易懂,易于理解。通过建立线性规划模型,并应用Linggo软件得到最优解,B和E之间建立代售关系即在B(E)建立代售点并向E(B)售书,D和G之间建立代售关系即在D(G)建立代售点并向G(D)售书,可是大学生的人数最大,为177千人。最优解可以有多种选择方法,这就有选择的灵活性。本模型适用于只考虑人数最大的地址的选择,具有较强的实用性和普遍性。关键字 售书问题 优化模型 零一规划 Linggo1.问题的重述一家出版社准备在某地向七个区大学生供应图书,每个区的大学生数量如图所示(单位:千人),出版社准备在该市设立两个图书代理销售点,每个代理点只能想该地区和一个相邻的地区售书,出版社知道售书覆盖的人群越大,所获得的利润也就也大,所以出版社要选择两个恰当的代理销售点使覆盖的人群最大。现在所要解决的是选在合适的代理销售点。2.问题分析 书是人们进步的阶梯,售书问题普遍受到人们的关注。近年来随着科学技术的发展,电子图书、网上书城等的出现,人们阅读的方式越来越多,而书的销售问题也越来越受销售商的关注。如何选择待销售点才能使卖出的书最多,销售商获得的利益最大,成为问题的关键所在。在许多候选地区中选择最优的地区,制定最优的规划方案,显然必须建立优化模型,每个地区都选与不选的可能性,这就必须用到0—1规划模型,立两个销售代理点, 在满足以下的条件的情况下,要想得到一个最优计划,出版社就需要设计一个合理有效的投资方案:1.只能建立两个销售代理点。2.每个销售代理点只能向本区和一个相邻区的大学生售书在上述要求中,将每两个相邻地区之间连线表示该地区建立售代关系,这种售代关系据有建立与不建立两种选择,显然每个地区只能选择一个销售或者代理,最优方案就是选择权值最大与次大的连线,将上述方案限制转化为约束条件,并使目标函数,约束条件决策标量转化为数学符号,利用LINGGO 软件来求最优解接,3符号的说明符号表示 符号说明A 34千人的地区B 29千人的地区C 42千人的地区D 21千人的地区E 56千人的地区F 18千人的地区G 71千人的地区x1 AB两地区之间建立代售关系x2 AC两地区之间建立代售关系x3 BE两地区之间建立代售关系x4 BD两地区之间建立代售关系x5 CD两地区之间建立代售关系x6 DG两地区之间建立代售关系x7 DF两地区之间建立代售关系x8 DE两地区之间建立代售关系x9 EF两地区之间建立代售关系x10 FG两地区之间建立代售关系X11 BC两地区之间建立代售关系Q 所能供应的大学生的数量4.问题假设选择代理销售点时,只考虑该地区总人数以及相邻地区,对人员的迁入迁出,人员的消费能力,人们的需求不予考虑;1、 只有两个销售代理点,且每个销售代理点只能向该区和他临近的去售书。2、 7个销售区中没有人员的流动3、 书的供应量远远满足学生的需求4、 销售代理点向两个地区的学生销售书的价格相同。5、 不考虑邻区因学生买书的路费问题而减少书的购买。6、 售书多少与人数多少成正比。7、 人人的消费能力是相等的。5.模型的建立决策变量:设在ABCDEFG中的某两地之间代售关系Xi(i=1,2,3…10).Xi=1表示在其建立代售关系。Xi=0表示没有建立代售关系目标函数:所能供应的大学生的数量Q千人;则Q=63*x1+76*x2+85*x3+50*x4+63*x5+92*x6+39*x7+77*x8+74*x9+89*x10+71*x11;约束条件1.只能建立两个销售代理点。x1+x2+x3+x4+x5+x6+x7+x8+x9+x10=2;2.与A建立代售关系只能有一个即x1+x2<=1;与B建立代售关系只能有一个即x2+x5+x11<=1;与C建立代售关系只能有一个即x1+x3+x4+x11<=1;与D建立代售关系只能有一个即x4+x5+x6+x7+x8<=1;与E建立代售关系只能有一个即x3+x8+x9<=1;与F建立代售关系只能有一个即x7+x9+x10<=1;与G建立代售关系只能有一个即x6+x10<=1;综上所述:Max Q=63*x1+76*x2+85*x3+50*x4+63*x5+92*x6+39*x7+77*x8+74*x9+89*x10;x1+x2+x3+x4+x5+x6+x7+x8+x9+x10=2;x1+x2<=1;x2+x5+x11<=1;x1+x3+x4+x11<=1;x4+x5+x6+x7+x8<=1;x3+x8+x9<=1;x7+x9+x10<=1;x6+x10<=1;6.模型的求解在lingo中输入以下代码,见附录1.通过运行LINDO教学软件,我们可以得到该售书问题的最优解,即建立代售关系的最优方案,其截图为: Objective value: Variable Value Reduced Cost X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 从中可以看到在B和E之间建立代售关系即在B(E)建立代售点并向E(B)售书,D和G之间建立代售关系即在D(G)建立代售点并向G(D)售书,可是大学生的人数最大,为177千人。(详细结果见附录2)但考虑到地区中人数的问题,以及现实中去买书的路费问题,所以销售代理点应建立在人数较多的地区,在B、E地区中E区人较多为56千人,在D、G地区中G区中人数较多为71千人,所以最好把两个销售代理点建在E区和G区。7.模型的评价和推广 通过查看该区图可以粗略知道应选择人数最大地区为代售点,在题中假设的前提下,选择人数最大的地区为代售点,覆盖了大部分人口,此模型的建立,很好的应用数学知识将选择销售代理点的问题抽象化,使选择我们的选择不再主观、盲目,而是更全面、深入、条理。选择最少的变量考虑问题简化了模型建立的分析。这也是模型最大的弊端数据的真实性受到了很大的限制对实际应用很不利。虽然假设的变量比较多,但人们可以较容易理解。题中假设的太多假设,有些脱离实际,考虑现实当中的销售点间的运输路程、交通便利程度、学生在校期间的对书的消费情况,不同人群之间的消费能了等情况,8.参考文献【1】姜启源 谢金星 叶俊 数学建模(第三版)高等教育出版社 2003【2】.附录附录1:max=63*x1+76*x2+85*x3+50*x4+63*x5+92*x6+39*x7+77*x8+74*x9+89*x10;x1+x2+x3+x4+x5+x6+x7+x8+x9+x10=2;x x1+x2<=1;x2+x5+x11<=1;x1+x3+x4+x11<=1;x4+x5+x6+x7+x8<=1;x3+x8+x9<=1;x7+x9+x10<=1;x6+x10<=1; 附录2:Global optimal solution found. Objective value: Total solver iterations: 0Variable Value Reduced Cost X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Row Slack or Surplus Dual Price 1 2 3 4 5 6 7 8 9 10 你也可以到这个网站找找!
你要什么方面的,要的话QQ米我 我尽量发给你
2017年美赛B题赛题 2017MCM ProblemB: Merge After Toll Multi-lanedivided limited-access toll highways use “ramp tolls” and “barrier tolls” tocollect tolls from motorists. A ramp toll is a collection mechanism at anentrance or exit ramp to the highway and these do not concern us here. Abarrier toll is a row of tollbooths placed across the highway, perpendicular tothe direction of traffic flow. There are usually (always) more tollbooths thanthere are incoming lanes of traffic (see former 2005 MCM Problem B). So whenexiting the tollbooths in a barrier toll, vehicles must “fan in” from thelarger number of tollbooth egress lanes to the smaller number of regular travellanes. A toll plaza is the area of the highway needed to facilitate the barriertoll, consisting of the fan-out area before the barrier toll, the toll barrieritself, and the fan-in area after the toll barrier. For example, a three-lanehighway (one direction) may use 8 tollbooths in a barrier toll. After payingtoll, the vehicles continue on their journey on a highway having the samenumber of lanes as had entered the toll plaza (three, in this example). Considera toll highway having L lanes of travel in each direction and a barrier tollcontaining B tollbooths (B > L) in each direction. Determine the shape,size, and merging pattern of the area following the toll barrier in whichvehicles fan in from B tollbooth egress lanes down to L lanes of considerations to incorporate in your model include accidentprevention, throughput (number of vehicles per hour passing the point where theend of the plaza joins the L outgoing traffic lanes), and cost (land and road constructionare expensive). In particular, this problem does not ask for merely aperformance analysis of any particular toll plaza design that may already beimplemented. The point is to determine if there are better solutions (shape,size, and merging pattern) than any in common use. Determinethe performance of your solution in light and heavy traffic. How does yoursolution change as more autonomous (self-driving) vehicles are added to thetraffic mix? How is your solution affected by the proportions of conventional(human-staffed) tollbooths, exact-change (automated) tollbooths, and electronictoll collection booths (such as electronic toll collection via a transponder inthe vehicle)? YourMCM submission should consist of a 1 page Summary Sheet, a 1-2 page letter tothe New Jersey Turnpike Authority, and your solution (not to exceed 20 pages)for a maximum of 23 pages. Note: The appendix and references do not counttoward the 23 page limit. 2017年美赛B题赛题翻译 B题中文翻译: 问题B:收费后合并 多车道有限接入收费公路使用“坡道收费”和“障碍收费”来收取驾驶员的收费。斜坡收费是在高速公路的入口或出口匝道处的收集机构,并且这些不关心我们在这里。障碍收费是一排跨过高速公路的收费站,垂直于交通流的方向。通常(总是)更多的收费站比交通车道(见前2005年MCM问题B)。因此,当驶出收费站时,车辆必须从较大数量的收费站出口车道“扇入”到较少数量的常规行驶车道。收费广场是高速公路需要用于促进障碍收费的区域,包括在障碍收费之前的扇出区域,收费路径本身以及收费路径之后的扇入区域。例如,三车道高速公路(一个方向)可以在障碍通行费中使用8个收费站。在支付了费用之后,车辆在具有与进入收费广场相同数量的车道(在该示例中为三个)的高速公路上继续行驶。 考虑在每个方向上具有L个行驶车道的收费高速公路和在每个方向上包含B个收费站(B> L)的障碍通行费。确定跟随收费障碍的区域的形状,尺寸和合并模式,其中车辆从B过街出口车道下行到L个车道。在您的模型中纳入的重要注意事项包括事故预防,吞吐量(每小时通过广场末端加入L外出车道的车辆数量)和成本(土地和道路建设昂贵)。特别地,该问题不仅仅要求可能已经实现的任何特定收费广场设计的性能分析。重点是确定是否有比任何常用的更好的解决方案(形状,大小和合并模式)。 确定您的解决方案在轻和重的流量的性能。随着更多自主(自驾)车辆添加到交通组合中,您的解决方案如何改变?您的解决方案如何影响常规(人员配备)收费站,精确更换(自动)收费站和电子收费站(例如通过车辆中的应答器收集电子费用)的比例? 您的MCM提交应包括1页摘要表,1-2页给新泽西州收费公路管理局的信件,以及您的解决方案(不超过20页),最多23页。注意:附录和参考文献不计入23页的限制。 2017年美赛B题优秀论文解读 2017年美国大学生数学建模竞赛有4907支队伍选择了B题,其中有5支队伍获得了特等奖。他们分别是56731、68303、69427、70174、70545,我们对这5篇特等奖论文进行了简单的分析,结果如下: (1)56731队伍提议的收费站的分布类似于蜂巢。在每个规则的六角形蜂窝的中心,有两个收费站,为两个分开的车辆流服务。由于新收费广场的特殊格局,总面积可大幅度减少。同时,可以减少排队造成的平均浪费时间,这意味着吞吐量将得到提高。此外,通过将合并过程分为两个阶段,也可以减少事故发生的可能性。与传统的线性分布收费站相比,新设计的蜂窝结构大大减少了建设面积。利用排队论对收费广场的吞吐量进行了分析。为了验证他们的理论,他们利用PTVISSIM模拟了大量车辆通过收费广场的行为。仿真结果表明,理想的蜂窝式收费站与传统的收费站相比具有更好的效果。接着分析了不同类型收费站的比例对他们设计的影响。他们模拟了蜂窝式收费广场在不同交通流量下的性能,显示该模型对交通流变化不敏感,鲁棒性强,适合于实际施工。为了进一步降低事故发生的可能性,他们对蜂窝收费亭概念模型进行了改进:使过渡区更加平滑,各种收费站的布置更加公平。对于自动驾驶车辆,在收费广场的中心,他们预留了特别的e-zpass收费亭。电子收费和自动车辆是现代交通的发展趋势,我们的新设计模式可以在成本、吞吐量和安全等方面提高收费广场的性能。 (2)68303队伍首先根据收费站的不同形状、大小和合并模式将已实施的区域划分为8类。其次,利用VisSim对收费站典型的8种模型进行了仿真研究。通过设置必要的观测点,他们获得了吞吐量数据、队列的时间和平均延迟时间。接着建立了基于主成分分析的综合评价模型,对8个典型模型进行了评价,并建立了最优评价模型。经过数据归一化后,得到了等腰梯形形状的最佳模型。为了获得更好的解,我们建立了两个模型来获得最优解。第一种是微分方程模型,目的是求出梯形区域的最优高度和收费站的最优数目。第二种是线性规划模型,它可以在最大限度地提高区域吞吐量的同时,计算出最优的合并模式。最后,他们分析了模型在不同条件下的性能,并对模型进行了修正以适应这些条件,还利用LINGO进行了灵敏度分析。 (3)69427队伍从事故率、交通流量和建设成本三个方面研究了收费广场的优化设计方案。同时给出了收费广场的设计方案和合并模式。第一阶段,假设交通状况正常,确定收费站的数目。而收费车道的数量取决于交通容量、交通流量和服务水平。他们通过上述三个指标建立收费站的功能模型。并在在灵敏度分析中发现,交通流量与收费车道数呈正相关。第二阶段,建立了基于最小风险和最大吞吐量的合并模式优化模型。该模型通过对现有收费广场性能的分析,优化其设计方案。他们认为整个收费广场的减速分流和加速合并是一个有方向的加权网络流。第三阶段,考虑到收费站车辆的可变运动,采用前后车的行驶距离和后车的制动距离。确定收费广场的规模,并建立优化模型,使建设成本降至最低。值得注意的是,他们对模型进行了详细的测试,发现轻型交通流的交通流量和事故率较低。最后,应用该模型对新泽西高速公路收费广场的优化设计进行了研究。 (4)70174队伍提出了一种新的广场设计开发和评价方法,该方法综合了不同交通水平的影响、收费站的支付方法以以及越来越多的自动驾驶汽车的数量首先,在NetLogo中创建了一个广场模型。因为它允许汽车模拟交通中的人与人之间的交互。在此基础上,他们的稳健模型能够评估影响广场顾客满意度的各种变量的多重实现。研究发现,为了最大限度地提高广场的满意度和效率,需要采用对称设计。此外,电子应答器专用车道数量的影响很大,此类通道的数量较多,总体满意度较高。研究发现,无人驾驶汽车的影响是可以忽略不计的,在不同的参数中,减少停车量和流量的能力对系统的影响最大。该有助于缓解美国各地主要收费广场的拥挤状况。 (5)70545队伍在建立模型之前,列出了一些假设,以使现实生活中的场景更容易建模。然后他们开始分析现有的模型,从中总结出它们的优缺点。他们通过分析这两种模型的特点,提出了两种新的模型:控制时间模型(CTM)和等待区模型(WAM)。在这两种新模式中,他们介绍了一种控制收费站车辆离开时间的方法。他们将根据他们的控制方法和一些假设,继续计算合并区域的大小和形状。在此基础上,提出了一种基于数学证明和计算机仿真相结合的最优合并模式的求解方法。他们接着根据实际情况下的统计规律,对不同模型的吞吐量、风险和成本进行了仿真研究。然后利用统计假设检验对这三种模型进行了比较,得出结论:ctm总体上是最好的。我们继续通过考察建筑成本和吞吐量(每小时)对模型中包含的一些变量的灵敏度来测试我们的模型,从不同的角度验证了模型的可靠性。最后他们对模型的优缺点进行了分析。
随着科学技术特别是信息技术的高速发展,数学建模的应用价值越来越得到众人的重视,
数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,以下是一篇关于数学建模教育开展策略探究的论文 范文 ,欢迎阅读参考。
大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和 创新思维 ,提高其素质和创新能力,实现向素质教育的转化和深入。
一、数学建模的含义及特点
数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学 方法 及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。一般来说",数学建模"包含五个阶段。
1.准备阶段
主要分析问题背景,已知条件,建模目的等问题。
2.假设阶段
做出科学合理的假设,既能简化问题,又能抓住问题的本质。
3.建立阶段
从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。
4.求解阶段
对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。
5.验证阶段
用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。
二、加强数学建模教育的作用和意义
(一) 加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质
数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题, 因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。数学修养和素质自然而然得以培养并提高。
(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力
数学建模问题来源于社会生活的众多领域,在建模过程中,学生首先需要阅读相关的文献资料,然后应用数学思维、数学逻辑及相关知识对实际问题进行深入剖析研究并经过一系列复杂计算,得出反映实际问题的最佳数学模型及模型最优解。因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。
(三)加强数学建模教育有助于培养学生的创造性思维和创新能力
所谓创造力是指"对已积累的知识和 经验 进行科学地加工和创造,产生新概念、新知识、新思想的能力,大体上由感知力、 记忆力 、思考力、 想象力 四种能力所构成"[1].现今教育界认为,创造力的培养是人才培养的关键,数学建模活动的各个环节无不充满了创造性思维的挑战。
很多不同的实际问题,其数学模型可以是相同或相似的,这就要求学生在建模时触类旁通,挖掘不同事物间的本质,寻找其内在联系。而对一个具体的建模问题,能否把握其本质转化为数学问题,是完成建模过程的关键所在。同时建模题材有较大的灵活性,没有统一的标准答案,因此数学建模过程是培养学生创造性思维,提高创新能力的过程[2].
(四)加强数学建模教育有助于提高学生科技论文的撰写能力
数学建模的结果是以论文形式呈现的,如何将建模思想、建立的模型、最优解及其关键环节的处理在论文中清晰地表述出来,对本科生来说是一个挑战。经历数学建模全过程的磨练,特别是数模论文的撰写,学生的文字语言、数学表述能力及论文的撰写能力无疑会得到前所未有的提高。
(五)加强数学建模教育有助于增强学生的团结合作精神并提高协调组织能力建模问题通常较复杂,涉及的知识面也很广,因此数学建模实践活动一般效仿正规竞赛的规则,三人为一队在三天内以论文形式完成建模题目。要较好地完成任务,离不开良好的组织与管理、分工与协作[3].
三、开展数学建模教育及活动的具体途径和有效方法
(一)开展数学建模课堂教学
即在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模,介绍建模的过程和思想方法及建模中要注意的问题。案例教学法的关键在于把握两个重要环节:
案例的选取和课堂教学的组织。
教学案例一定要精心选取,才能达到预期的教学效果。其选取一般要遵循以下几点。
1. 代表性:案例的选取要具有科学性,能拓宽学生的知识面,突出数学建模活动重在培养兴趣提高能力等特点。
2. 原始性:来自媒体的信息,企事业单位的 报告 ,现实生活和各学科中的问题等等,都是数学建模问题原始资料的重要来源。
3. 创新性:案例应注意选取在建模的某些环节上具有挑战性,能激发学生的创造性思维,培养学生的创新精神和提高创造能力。
案例教学的课堂组织,一部分是教师讲授,从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,介绍如何通过合理的假设和简化建立优化的数学模型。还要强调如何用求解结果去解释实际现象即检验模型。另一部分是课堂讨论,让学生自由发言各抒己见并提出新的模型,简介关键环节的处理。最后教师做出点评,提供一些改进的方向,让学生自己课外独立探索和钻研,这样既突出了教学重点,又给学生留下了进一步思考的空间,既避免了教师的"满堂灌",也活跃了课堂气氛,提高了学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的[4].
(二)开展数模竞赛的专题培训指导工作
建立数学建模竞赛指导团队,分专题实行教师负责制。每位教师根据自己的专长,负责讲授某一方面的数学建模知识与技巧,并选取相应地建模案例进行剖析。如离散模型、连续模型、优化模型、微分方程模型、概率模型、统计回归模型及数学软件的使用等。学生根据自己的薄弱点,选择适合的专题培训班进行学习,以弥补自己的不足。这种针对性的数模教学,会极大地提高教学效率。
(三)建立数学建模网络课程
以现代 网络技术 为依托,建立数学建模课程网站,内容包括:课程介绍,课程大纲,教师教案,电子课件,教学实验,教学录像,网上答疑等;还可以增加一些有关栏目,如历年国内外数模竞赛介绍,校内竞赛,专家点评,获奖心得交流;同时提供数模学习资源下载如讲义,背景材料,历年国内外竞赛题,优秀论文等。以此为学生提供良好的自主学习网络平台,实现课堂教学与网络教学的有机结合,达到有效地提高学生数学建模综合应用能力的目的。[5,6]
(四)开展校内数学建模竞赛活动
完全模拟全国大学生数模竞赛的形式规则:定时公布赛题,三人一组,只能队内讨论,按时提交论文,之后指导教师、参赛同学集中讨论,进一步完善。笔者负责数学建模竞赛培训近 20 年,多年的实践证明,每进行一次这样的训练,学生在建模思路、建模水平、使用软件能力、论文书写方面就有大幅提高。多次训练之后,学生的建模水平更是突飞猛进,效果甚佳。
如 2008 年我指导的队荣获全国高教社杯大学生数学建模竞赛的最高奖---高教社杯奖,这是此赛设置的唯一一个名额,也是当年从全国(包括香港)院校的约 1 万多个本科参赛队中脱颖而出的。又如 2014 年我校 57 队参加全国大学生数学建模竞赛,43 队获奖,获奖比例达 75%,创历年之最。
(五)鼓励学生积极参加全国大学生数学建模竞赛、国际数学建模竞赛
全国大学生数学建模竞赛创办于 1992 年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛, 国际大学生数学建模竞赛是世界上影响范围最大的高水平大学生学术赛事。参加数学建模大赛可以激励学生学习数学的积极性,提高运用数学及相关工具分析问题解决问题的综合能力,开拓知识面,培养创造精神及合作意识。
四、结束语
数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,而高校数学教学改革的目的之一是要着力培养学生的创造性思维,提高学生的创新能力。因此应将数学建模思想融入教学活动中,通过不断的数学建模教育和实践培养学生的创新能力和应用能力从而提高学生的基本素质以适应社会发展的要求。
参考文献:
[1]辞海[M].上海辞书出版社,2002,1:237.
[2]许梅生,章迪平,张少林。 数学建模的认识与实践[J].浙江科技学院学报,2003,15(1):40-42.
[3]姜启源,谢金星,一项成功的高等教育改革实践[J].中国高教研究,2011,12:79-83.
[4]饶从军,王成。论高校数学建模教学[J].延边大学学报(自然科学学版),2006,32(3):227-230.
[5]段璐灵。数学建模课程教学改革初探[J].教育与职业,2013,5:140-142.
[6]郝鹏鹏。工程网络课程教学的实践与思考[J]科技视界,2014,29:76-77.
大部分数学知识是抽象的,概念比较枯燥,造成学生学习困难,而数学建模的运用,在很大程度上可以将抽象的数学知识转化成实体模型,让学生更容易理解和学习数学知识。教师要做的就是了解并掌握数学建模的方法,并且把这种 教学方法 运用到数学教学中。
对教师来说,发现好的教学方法不是最重要的,而是如何把方法与教学结合起来。通过对数学建模的长期研究和实践应用,笔者 总结 了数学建模的概念以及运用策略。
一、数学建模的概念
想要更好地运用数学建模,首先要了解什么是数学建模。可以说,数学建模就像一面镜子,可以使数学抽象的影像产生与之对应的具体化物象。
二、在小学数学教学中运用数学建模的策略
1.根据事物之间的共性进行数学建模
想要运用数学建模,首先要对建模对象有一定的感知。教师要创造有利的条件,促使学生感知不同事物之间的共性,然后进行数学建模。
教师应做好建模前的指导工作,为学生的数学建模做好铺垫,而学生要学会尝试自己去发现事物的共性,争取将事物的共性完美地运用到数学建模中。在建模过程中,教师要引导学生把新知识和旧知识结合起来的作用,将原来学习中发现的好方法运用到新知识的学习、新数学模型的构建中,降低新的数学建模的难度,提高学生数学建模的成功率。如在教学《图形面积》时,教师可以利用不同的图形模板,让学生了解不同图形的面积构成,寻找不同图形面积的差异以及图形之间的共性。这样直观地向学生展示图形的变化,可以加深学生对知识的理解,提高学生的学习效率。
2.认识建模思想的本质
建模思想与数学的本质紧密相连,它不是独立存在于数学教学之外的。所以在数学建模过程中,教师要帮助学生正确认识数学建模的本质,将数学建模与数学教学有机结合起来,提高学生解决问题的能力,让学生真正具备使用数学建模的能力。
建模过程并不是独立于数学教学之外的,它和数学的教学过程紧密相连。数学建模是使人对数学抽象化知识进行具体认识的工具,是运用数学建模思想解决数学难题的过程。因此,教师要将它和数学教学组成一个有机的整体,不仅要帮助学生完成建模,更要带领学生认识数学建模的本质,领悟数学建模思想的真谛,并逐渐引导学生使用数学建模解决数学学习过程中遇到的问题。
3.发挥教材在数学建模上的作用
教材是最基础的教学工具,在数学教材中有很多典型案例可以利用在数学建模上,其中很大一部分来源于生活,更易于小学生学习和理解,有助于学生构建数学建模思想。教师要利用好教材,培养学生的建模能力,帮助学生建造更易于理解的数学模型,从而提高学生的学习效率。如在教学加减法时,教材上会有很多数苹果、香蕉的例题,这些就是很好的数学模型,因为贴近生活,可以激发学生的学习兴趣,培养学生数学建模的能力,所以教师应该深入研究教材。
数学建模是一种很好的数学教学方法,教师要充分利用这种教学方法,真正做到实践与理论完美结合。
1、层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。
2、多属性决策是现代决策科学的一个重要组成部分,它的理论和方法在工程设计、经济、管理和军事等诸多领域中有着广泛的应用,如:投资决策、项目评估、维修服务、武器系统性能评定、工厂选址、投标招标、产业部门发展排序和经济效益综合评价等.多属性决策的实质是利用已有的决策信息通过一定的方式对一组(有限个)备选方案进行排序或择优.它主要由两部分组成:(l) 获取决策信息.决策信息一般包括两个方面的内容:属性权重和属性值(属性值主要有三种形式:实数、区间数和语言).其中,属性权重的确定是多属性决策中的一个重要研究内容;(2)通过一定的方式对决策信息进行集结并对方案进行排序和择优。
3、灰色预测模型(Gray Forecast Model)是通过少量的、不完全的信息,建立数学模型并做出预测的一种预测方法.当我们应用运筹学的思想方法解决实际问题,制定发展战略和政策、进行重大问题的决策时,都必须对未来进行科学的预测.预测是根据客观事物的过去和现在的发展规律,借助于科学的方法对其未来的发展趋势和状况进行描述和分析,并形成科学的假设和判断。
4、Dijkstra算法能求一个顶点到另一顶点最短路径。它是由Dijkstra于1959年提出的。实际它能出始点到 其它 所有顶点的最短路径。
Dijkstra算法是一种标号法:给赋权图的每一个顶点记一个数,称为顶点的标号(临时标号,称T标号,或者固定标号,称为P标号)。T标号表示从始顶点到该标点的最短路长的上界;P标号则是从始顶点到该顶点的最短路长。
5、Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。
6、模拟退火算法是模仿自然界退火现象而得,利用了物理中固体物质的退火过程与一般优化问题的相似性从某一初始温度开始,伴随温度的不断下降,结合概率突跳特性在解空间中随机寻找全局最优解。
7、种群竞争模型:当两个种群为争夺同一食物来源和生存空间相互竞争时,常见的结局是,竞争力弱的灭绝,竞争力强的达到环境容许的最大容量。使用种群竞争模型可以描述两个种群相互竞争的过程,分析产生各种结局的条件。
8、排队论发源于上世纪初。当时美国贝尔电话公司发明了自动电话,以适应日益繁忙的工商业电话通讯需要。这个新发明带来了一个新问题,即通话线路与电话用户呼叫的数量关系应如何妥善解决,这个问题久久未能解决。1909年,丹麦的哥本哈根电话公司.埃尔浪(Erlang)在热力学统计平衡概念的启发下解决了这个问题。
9、线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。决策变量、约束条件、目标函数是线性规划的三要素。
10、非线性规划:非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。20世纪50年代初,库哈() 和托克 () 提出了非线性规划的基本定理,为非线性规划奠定了理论基础。这一方法在工业、交通运输、经济管理和军事等方面有广泛的应用,特别是在“最优设计”方面,它提供了数学基础和计算方法,因此有重要的实用价值。
数学建模全国优秀论文相关 文章 :
★ 数学建模全国优秀论文范文
★ 2017年全国数学建模大赛获奖优秀论文
★ 数学建模竞赛获奖论文范文
★ 小学数学建模的优秀论文范文
★ 初中数学建模论文范文
★ 学习数学建模心得体会3篇
★ 数学建模论文优秀范文
★ 大学生数学建模论文范文(2)
★ 数学建模获奖论文模板范文
★ 大学生数学建模论文范文