我知道, 碱性土壤有可能会导致农作物出现大量减产的情况,有可能会导致土壤的养分变低,会导致有效率变低,不利于农作物的良性生长,同时也不利于微生物的正常活动,一定要选择酸碱度适中的土壤。
莲藕喜欢偏酸性或中性的土壤,土质要富含有机质和粘性,碱性土质的藕田,莲藕是没发生长的。另莲藕的生长不可缺少氮、磷、钾。三种化肥的含量根据品种不同而不同。子莲类型的莲藕,需氮、磷含量较多;藕莲类型的莲藕,则需要氮、钾较多。因此,藕田的培土要根据莲藕的品种来进行。2、选择大小深浅莲藕在生长时对藕池大小深浅也是有要求的;藕池过大,在栽种、管理和病虫防护时不方便;藕池太小,不利于莲藕的衍生和成长;藕池过深,莲藕成熟后不便于挖掘;藕池太浅,冬季不利于续水保温。因此,藕池太大或太小,过深或过浅都不利于莲藕的生长。3、合理施肥莲藕喜欢肥沃的酸性或中性的土壤,因此,在莲藕的成长过程中,要合理的追加肥料。在莲藕的生育期,要除去杂草,追加2~3次人类尿肥;莲藕叶子长出5片时,每亩藕田施一千千克左右的尿肥;待终止叶结束开始结藕时,开始追加第三次肥,这次除了加入更多的人类尿肥外,还适当的追加饼肥。施肥也是有技巧的,应选在晴朗无风的上午或傍晚,施肥前先放掉藕田的水,施肥结束后,再灌水至原来的水位。深水的藕池追肥不能直接用液化肥,要使用固体肥料,将其埋入泥中。追施化肥时,将化肥与河泥混合搅拌均匀,做成肥泥团,再施入藕池,效果会更好。三、莲藕的功效1、清火凉血莲藕的生长离不开水,从小生长在水里,属寒性食物,食用莲藕,可以治疗热性病,有清热、清火、凉血的功效;口渴、衄血、咯血、下血患者食用,效果尤为明显。2、健脾开胃、通便止泻莲藕中含有较多的黏液蛋白和膳食纤维,这两种物质,能很好的结合人体内的胆酸盐和食物中的胆固醇及甘油三酯,将其排出体外从而减少人体对脂类的吸收,使人不容易长胖。另外,莲藕中还含有鞣质,可以健脾止泻、促进消化,增强食欲。3、提高免疫力连藕的营养价值很高,它富含的铁、钙、植物蛋白质、维生素、淀粉等人体必须的营养物质,可以补气补血,提高人体免疫力,中医将莲藕高评为:“主补中养神,益气力”。4、化瘀止血莲藕的寒性对热病血病的治疗有一定的功效,另外,其所含的大量的单宁酸,可以收缩血管,用来止血。因此,可以通过食用莲藕或是藕粉,达到预防热病血病、活血化瘀的效果。
自己在种植农作物的时候,也是要看一看土壤是否达标的。如果在碱性土壤里面种植农作物的话,可能也会让自己吃的不健康。自己对农作物一定要有所了解,千万不能够影响到农作物的生长。如果碱性过大会让农作物出现枯萎的现象,而且还会影响到自己肥料的使用。如果农作物都出现了变异,可能就没有办法进行大区域的种植了。自己在种植牵牛花的时候是紫色的但是如果放在碱性的土壤里面,很有可能就会变成其他的颜色。把牵牛花种在合适的土壤,长出来的样子就是不一样的。
农作物不能够跟带有碱性的土壤进行溶解,还会降低农作物的产量。让农作物进行好好的生长发育,就要去选择一些中性的土壤,这个时候它们也会发育的比较好。农村的人都很喜欢在田地里种上一些菠菜以及大白菜,但如果在碱性的土壤里面的话,这些农作物就会发生变质的现象。自己在吃东西的时候通过这些行为也可能会影响到自己的身体,也不能够给自己带来健康。
如果不想让自己把农作物种在碱性过量的土壤里,就要进行科学的管理。自己在施肥的时候一定要增加一些剂量,一定要把肥料吸收的利用率提高一些。蔬菜使用的东西都是不一样的,自己在种植的时候要进行逐步的分析。
农民种植农作物就是希望得到一个好的丰收,希望可以拿去卖些钱维持生活。不可以把这些农作物放在碱性里面,会影响到农作物接下来的生长情况。除了要选择好的土壤,还要定期的给农作物进行施肥进行浇水。不同的蔬菜需要的呵护就是不一样的,作为农户一定要对自己的农作物多上心。
可以,碱性土壤要选用好的肥料,苗生财中微肥价格合理,营养元素多
①改善土壤结构。蚯蚓活动能改善土壤结构,增强土壤的保水透气性,能保护和保持土壤有机物。 ②分解土壤有机物,提高土壤养分转化效率。蚯蚓可分解、破碎土壤粗有机物,从而使有机物更容易被微生物分解,提高土壤养分循环速度。 ③提高土壤速效养分。蚯蚓活动可以提高土壤养分的有效性和养分周转率,蚯蚓活动能显著促进了土壤氮素。
1.改善土壤结构:蚯蚓活动可以改善土壤结构,增强土壤的保水性和透气性。2.分解有机物:蚯蚓能分解土壤中的有机物,提高土壤中养分的循环率。3.改善土壤养分:蚯蚓能显著促进土壤中氮的矿化,增加土壤中有效氮的含量。4.促进植物生长:蚯蚓活动可以促进根系生长、植物发育和作物产量。1.赤子爱胜蚓:赤子爱胜蚓,俗称红蚯蚓,也是最常见的养殖蚯蚓。其个体相对较小,体长约60-160mm,体宽约3-5mm,体存80-110。其环带一般为橙红色或栗红色。2.环毛蚓:环毛蚓,俗称青蚯蚓、青蚯蚓、环毛蚓,个体较大,体长约90-250毫米,体宽约5-10毫米,背部呈青黄色、灰绿色或灰蓝色,背中线呈浅灰色。3.地龙参:地龙参,俗称蚯蚓,也是中国最常见的蚯蚓。它的个体比较大,体长约110~380mm,体宽约5~12mm。它的背是紫灰色的,背略浅,刚毛是白色的。4.大众山鸡:大众山鸡,俗称黑山鸡,也是南方最常见的蚯蚓。其体长约130~150mm,体宽约5~7mm,体存102~110。它的背是草绿色的,背中线是暗青色的。
蚯蚓粪含有高度活性的细菌和酶,植物残余物和动物粪便残余物以及蚯蚓卵(潮湿)的生物混合物。这些粪含有丰富的水溶性植物营养物质,比表层土壤中含有的腐殖质还多50%以上。
蚯蚓粪里充满了植物生长所必需的矿物质,如浓硝酸盐,磷,镁,钾和钙。它还含有锰,铜,锌,钴,硼,铁,碳和氮。然而,最好的是,这些矿物质可以立即用于植物,没有任何烧根的风险。请记住,动物粪便有机肥和化肥必须在植物吸收之前在土壤中分解。
当有机物质通过蚯蚓的消化道时,在粪上沉积一薄层油。这层油会在2个月的时间内被侵蚀。尽管植物营养物质可以立即使用,但它们缓慢释放持续时间更长。蚯蚓粪中的茧每个包含2到10个在2周内孵化的卵。这意味着年轻蚯蚓持续分解土壤有机质过程,只要土壤松散,潮湿和有机物质丰富,蚯蚓就能活下来。
蚯蚓消化道内的细菌将有机废物转化为天然肥料。有机废物经历的化学变化包括除臭和中和。这意味着蚯蚓粪的pH值是中性,蚯蚓粪粪是无臭的(雨后它们闻起来就像一片森林里的味道)。蚯蚓的粪也含有细菌,当这个过程在土壤中继续进行,微生物的活动得到促进。
关于蚯蚓粪有机肥
有机肥来源的肥料对植物和土壤都有好处,如果使用得当,一般不会燃烧或损坏植物。有机肥料刺激土壤微生物繁殖,改善土壤结构。土壤微生物在将有机肥料转化为可被植物吸收的可溶性养分方面起着重要作用。有机肥料通常提供次生和微量营养素的需要,通常在化学肥料中却没有。
有机肥料氮、磷、钾的来源比化学肥料相对较低,但是可以保持土壤肥力更持久一些。因此,有机肥对植物的影响通常是更微妙的。假如有机肥应用到草坪,它可能需要一段时间才能看到结果,但回报是草坪保持绿色的时间。
蚯蚓粪呈黑灰色粒状,无臭、无毒,结构疏松,保湿、保肥、透气性均好,是花卉栽培中一种较好的有机肥.经测试,蚓粪含全氮,磷酸,氧化钾,分别是一般园土的5倍、7倍、11倍,比一般家畜粪所含养分高.此外还富含多种酶、激素和微生物,有益于营养物质的分解,极易被植株根系吸收.其偏酸性,是栽植茶花、月季、菊花、松柏类、白兰、米兰及培养树桩盆景的理想有机肥.
当地的气温,土壤中的肥力,添加的肥料,盐基物质 ,地理位置。可以使用一些石灰粉,也可以使用硫磺粉,要根据土壤的酸碱度进行判断,也可以施加一些农家肥,也可以使用一些耐盐碱的植物。
土壤酸化如何产生土壤酸化是指土壤pH值在原有基础上逐渐下降的现象,当土壤酸化至影响作物正常生长时就会变成酸性土壤。土壤自然酸化过程一般较为缓慢,但人为因素会加快酸化过程,这些因素主要有:施肥过量 长期施用生理酸性肥料和氮肥会导致或加重土壤酸化。例如长期施用硫酸铵或氯化钾,作物吸收NH4+或K+离子后,就会有酸根离子残留于土壤中而使土壤酸化;过量施用氮肥,经微生物的硝化作用生成的硝酸盐也会导致或加重土壤酸化。灌溉 灌水和降水后,最容易被淋溶的是Na、K等一价阳离子和Ca、Mg等二价阳离子,它们都是碱性离子,这些离子不断从土壤中流失会造成土壤酸化。酸沉降 酸沉降是指大气中的硫化物、氮氧化物等气体经过扩散、转化与迁移,以酸性降水(pH值<)和干沉降等形式降落至地表,从而使土壤酸化。土壤酸化需综合管理合理施肥 适当控制氮肥施用量,研究结果表明,科学施肥可以在高产条件下,将氮肥施用量再降低30%~60%,从而实现作物高产和环境保护“双赢”;酸性土壤钾、钙、镁等盐基养分缺乏,甚至成为作物产量和品质的限制因子,因此,应当适当增施钾肥、钙镁磷肥及其他碱性肥料,以满足作物生长需要;酸性土壤不仅养分缺乏,而且土壤物理性状恶劣,质地黏重,因此,要增施有机肥、秸秆还田和种植绿肥。施用石灰 当土壤pH值小于时,就必须通过施用石灰等措施进行改良。施用石灰不仅能补充土壤钙,为作物提供钙营养,而且还可以中和酸性土壤。石灰施用量(公斤/亩)以土壤酸度和质地而异,对微酸性土(pH值为),砂土、壤土、黏土施用量分别为25、25~50、50;对酸性土(pH值为~),砂土、壤土、黏土施用量分别为25~50、50~75、75~125;(对强酸性土pH值≤),砂土、壤土、黏土施用量分别为50~75、100、150。不同石灰性物质对土壤酸性的中和能力不同,中和能力越强,施用量越少。例如,若为CaCO3(石灰粉主要成分),需要100公斤;若为Ca(OH2)(熟石灰主要成分),需要74公斤,若为CaO(生石灰的主要成分),施用56公斤即可。合理种植 要选择耐酸耐瘠作物,其中茶树具有耐酸聚铝的特性,土壤中适当的高铝对茶树有利无害,是酸性土壤的首选作物;实行水旱轮作,在淹水条件下,土壤还原性物质增加,有利于提高土壤pH值和磷及多种微量元素的活性,改善作物的生长条件和营养状况。加强环保 通过控制工矿废气和汽车尾气排放,防止氮肥过量使用和施后覆土等措施,可以减少和阻断导致人为土壤酸化的渠道。
土壤酸碱度物理改良方法:
1、栽培农作物时,首先要弄清所栽培的作物pH适宜范围,是喜欢酸性土或中性土还是可以适宜于碱性土。 若土壤酸碱度不合适,就需要进行调节改良。
2、对于酸性过大的土壤,可每年每亩施入20-25千克的石灰,且施足农家肥,切忌只施石灰不施农家肥,这样土壤反而会变黄变瘦。在播种前1-3个月施用,以免对作物萌发及生长造成影响。也可施草木灰40-50千克,中和土壤酸性,更好的调节土壤的水、肥状况。
3、土壤碱性过高时,可加少量硫酸铝(施用需补充磷肥)、硫酸亚铁(见效快,但作用时间不长,需经常施用)、硫磺粉(见效慢,但效果最持久)、高活性腐殖酸等,具体施用量根据土壤酸碱度来确定。
4、常浇一些硫酸亚铁或硫酸铝的稀释水,可使土壤增加酸性。腐植酸肥料因含有较多的腐殖质,能较安全地调整土壤的酸碱度。硫酸铝也被用来调节土壤pH值,因为它水解生成氢氧化铝的同时产生少量的硫酸稀溶液。
5、如果大田内有作物生长,可增施酸性、碱性肥料来调节土壤酸碱度。利用钙镁等碱性元素置换氢离子,提高pH值,还能对作物提供养分。
扩展资料:
土壤酸碱性对营养元素有效性的影响:
1、氮在6-8时有效性较高,是由于在小于6时,固氮菌活动降低,而大于8时,硝化作用受到抑制;
2、磷在时有效性较高,由于在小于时,易形成磷酸铁、磷酸铝,有效性降低,在高于时,则易形成磷酸二氢钙;
3、酸性土壤的淋溶作用强烈,钾、钙、镁容易流失,导致这些元素缺乏。在pH高于时,土壤钠离子增加,钙、镁离子被取代形成碳酸盐沉淀,因此钙、镁的有效性在pH6-8时最好;
4、铁、锰、铜、锌、钴五种微量元素在酸性土壤中因可溶而有效性高;钼酸盐不溶于酸而溶于碱,在酸性土壤中易缺乏;硼酸盐在时有效性较好。
参考资料:土壤酸碱度-百度百科
土壤酸碱性用土壤浸出液,滴到PH试纸上,论文吗,应该是分析土壤酸碱性产生原因吧
1、土壤不仅能固定植株,而且可以通过其中的水分、养分、空气、温度来影响花卉的生长发育,因此土壤是花卉生长的基础不同。
2、土质对花卉的影响不同的土壤类型对花卉生育的影响在一般情况下,大多数花卉要求生长在腐殖质丰富、疏松通气、排水良好的土壤中。
3、土壤为植物提供根系的生长环境,为其保温,保湿,同时能够辅助根部对植株的固定作用。 土壤是很好的“储藏室”,其中可以储存水分、空气、矿质元素,这些是植物生长所必需的,植物直接从土壤中摄取。 另外土壤内含有大量其它生物,如微生物和无脊椎动物。
扩展资料:
水分、空气对植物生长的影响:
一、水分
1、中生花卉这类花卉对水分的要求介于旱生和湿生花卉之间,大部分露地花卉属于这一类型,如月季、菊花、牡丹、郁金香等。
2、旱生花卉在干旱的条件下能正常生长发育的花卉,如仙人掌类、景天等。这类花卉形成了适应干旱气候生态环境的形态结构与生理适应性,因而耐旱性强。
3、同种花卉不同生育时期对水分的要求同一种花卉在不同生育时期对水的要求也有明显的差异。种子萌发时需要较多的水分,使种子膨胀萌动,一般种子吸水量为种子重量的100%;种子发芽出土以后,由于根系弱小,在土壤中分布较浅,抗旱能力较弱,必须经常保持土壤湿润。
二、空气
1、空气与花卉的生命活动观赏植物在其生命活动中需不断地进行呼吸,吸进氧气,放出二氧化碳。除了呼吸作用外,白天还要进行光合作用,通过叶绿体在光能的作用下吸收二氧化碳,并与根部吸收的水分及矿物质,合成营养物质,供自身生长发育的需要。
2、无论是呼吸作用或是光合作用,都必须在有氧气参与的情况下才能进行,否则就不能生存。因此,空气中的氧气和二氧化碳是花卉全部生命活动能量的来源。
参考资料来源:百度百科-植物
土壤为植物提供根系的生长环境,为其保温,保湿,同时能够辅助根部对植株的固定作用。土壤是很好的“储藏室”,其中可以储存水分、空气、矿质元素,这些是植物生长所必需的,植物直接从土壤中摄取。另外土壤内含有大量其它生物,如微生物和无脊椎动物。微生物能够分解有机质(植物无法直接吸收有机物)使之变成植物能够直接利用的无机物,为植物的生长提供营养;无脊椎动物如蚯蚓,能够通过其生理作用(运动等)达到翻土的目的,使土壤空隙加大,增大空气的含量,同时蚯蚓粪便能够为植物提供直接营养。
土壤是农业生产的基础,药用植物生产是农业生产的一部分,同样离不开土壤。植物生长一般需要日光、热、水分、养分和空气,除日光外,其余的大部分或一部分都依靠土壤来供给。大气层虽然是植物进行光合作用和呼吸作用时二氧化碳和氧气的提供者,但是土壤同样也是植物生长重要的气体来源。如土壤通气不良,氧气供应不足,根系的呼吸就会受到阻滞,甚至导致植株死亡。土壤温度的高低也直接影响着植物的生长发育。而上述植物生长所必需的各个土壤因素,对植物来说都是同等重要的。只有这些因素同时存在,并处于相互协调状态,才能保证植物生长,发育良好。
土壤肥力是指土壤能适时地提供植物生长所需的水分、养分、空气、热量和扎根条件的性能。在各种自然条件作用下形成的土壤所具有的肥力称为“自然肥力”;在人为措施影响下形成的土壤肥力称为“人工肥力”,它是在自然肥力的基础上经过人类生产活动的改造而产生的,随着社会政治经济制度、生产力和科学技术的发展,人工肥力也在不断提高。评价土壤肥力的高低,一般可以用植物生长发育状况和产量高低来衡量。所以,建立一套完整的用地养地制度,不断提高土壤肥力,是夺取药用植物稳产高产的基础。
土壤及其肥力的形成是一个复杂的过程。在各种复杂的自然条件下形成了各种类型的土壤,其肥力也各不相同,不同药用植物对土壤的反应也是不同的。有的药用植物在某些土壤里不能生长,有的虽能生长,伹生长缓慢,影响质量和产量。而这种土壤对另外一些药用植物来说不仅生长良好,且品质好产量高。所以,药用植物栽培工作者不仅要对药用植物生长习性有所了解,而且应当对土壤有充分了解。这样,在栽培药用植物时才能做到合理利用土壤和进行科学的改良,使之能更适合各种药用植物的生长,以达到优质高产的目的。
土壤肥力是植物生长好坏、能否获得高产的主要因素之一。土壤除能提供良好的立足条件外,还需要提供足够的营养、水、气条件才能使植物生长良好。影响药用植物生长的土壤因素很多,如,土壤质地、土壤有机质、土壤营养、土壤水分、土壤空气及土壤微生物等,下面仅介绍几个主要因素。
一、土壤质地
土壤的粗细,也就是土壤的机械组成,土壤中各种粒级配合的比例,或各粒级在土壤重量中所占的百分数,称为土壤质地。土壤是由数量不等的粘粒、砂粒和粉粒组成的。各种粒级的组成比例不同,就形成了各种土壤,主要可归纳为三类,即砂土、粘土和壤土。
质地不同,土壤所表现的肥力性状(如扎根条件,透水通气好坏,保持水分和养分的能力等)、耕作性能和生产性能也不同,对药用植物生长的影响也很大,特别是根茎类的药用植物对土壤质地的要求较严格。多数种类都喜欢在疏松的壤土中生长,这类土壤有利于根系的生长和地下根茎的发育。
(一)砂土类
砂粒含量较多,粘粒较少,土壤粒间孔隙大,小孔隙少,总孔隙度小。毛管作用弱,保水性差,但通气性良好,易干旱,耕性较好;因含粘粒少,保肥性能也差,养分容易淋失,有机质含量少,分解快,贫瘠;砂性土热容量小,土壤易增温也易降温,昼夜温差大,早春土温易上升发暖,但晚秋一遇寒流,温度下降快,植物容易遭受冻害。因此砂性土要多施肥,深施有机肥,施用化肥时要少施、勤施,基肥、追肥并重。
砂性土壤广泛分布于新疆、青海、甘肃、内蒙古等省区,华北平原、各地河流两岸及沿海地区也有分布。
此类土壤适宜种植一些耐旱性强的药用植物,如北沙参、甘草、麻黄等,北沙参主要产区山东烟台地区,多种植在海边砂土或砂质壤土上。由于砂土疏松,北沙参根系生长发育良好,主根入土深,可达40cm左右,同时分杈少,质量好。而生长在一般的粘壤土内,根系发育不良,主根短,分杈多,商品质量差。麻黄、甘草多分布在我国西北、内蒙古等省区干旱的沙丘、荒漠上,在粘重多湿的土壤里则生长不良。
(二)粘土类
这类土壤比较粘重,耕性差。粘粒含量较高,总孔隙度虽大,但土粒间孔隙小,小孔隙多,土壤的通气性透水性差,易积水,引起根的腐烂,甚至死亡,水分蒸发慢。不耐涝、不耐旱;土温低,温差变化小,有机质分解慢、腐殖质易积累;含矿物质养分丰富,特别是K+、Ca2+、Mg2+、Fe2+等阳离子含量较高。吸附性能较强,不易被水淋失,保肥力强。腐殖质含量高,氮的含量也较一般土壤高;因粘土较紧实、板结,湿时泥泞,干时坚硬,耕作费力,水、气常处于矛盾状态。
由于这类土壤物理性状较差,对多数药用植物均不适宜,常造成缺苗,同时根系发育不良,特别是根茎类或深根类的药用植物,根系不易舒展,主根不易深入较深的土层。因而支根多,品质差。适宜在粘土类生长的多为沼泽生或水生药用植物。如泽泻、菖蒲、芡实等,常种于水稻田或溪沟、池溏等低湿地方。此外,少数旱生的药用植物如川明参也适宜在排水良好的粘壤土上种植,生长良好,根充实,质量好。种于砂土或砂质壤土上的川明参,根含水量高,粉质少,不充实,加工后质量较差。
(三)壤土类
所含土粒的粗细比例适度,砂粘合宜,其性状介于砂性土和粘性土之间,兼有二者的优点。大小孔隙比例适当,通透性、保蓄性好。养分含量丰富,有机质分解快,土性温暖,耕性良好。
壤土类广泛分布于黄土地区、华北平原、松辽平原、长江中下游、珠江三角洲河网平原及河流两岸冲积平原上。
这类土壤是多数药用植物栽培最理想的土壤,特别是根茎类药用植物更喜欢在这种疏松肥沃的土壤上生长,有利根系的发育和根茎的膨大。如党参、当归、地黄、贝母、人参、丹参等。
有些根系较长的如黄芪、栝楼、山药、牛膝等,主根长30—100cm,有的甚至可达150cm。不但要求耕层是疏松的砂质壤土,同时也要求心土疏松。这样生长的主根直,分杈少,入土深,刨收容易,不易断根。如黄芪的主产区内蒙古,怀山药、怀牛膝主产区河南黄河岸边的武陟、温县等地,砂质壤土疏松、土层深厚、富含腐殖质及透水力强,生产的黄芪、怀山药、怀牛膝根长且直,不分杈或少分杈。加工后商品质量高,常出口,为国家换取大量外汇。
有些根系分布较浅的药用植物,如黄连、郁金等都要求上层疏松、下层紧密的土壤。因黄连地下根茎向上生长,须根多分布在表土层,所以疏松肥沃的表土层是根茎向上生长和膨大的良好环境。下层紧密的土壤,能使郁金块根不致于长得太深,挖收比较方便。
土壤质地对药用植物生长的影响,还可以从同一药用植物在不同的土壤类型中生长所表现的差异,看出土壤质地的显著影响。如杜永祥在黄芪栽种产生“鸡爪芪”原因的调查中看出,同一种黄芪(Astragalus membranaceus Bunge)在不同的土壤类型上种植,黄芪的生长表现有明显变化,发育状况有显著差异。
棕色森林土(山地棕色砂砾土),其质地疏松,含腐殖质较少,砂性较大,排渗水力强,透气性好,水、肥、气、热协调,pH值呈微酸性。种植黄芪的根系长直,分杈甚少,根皮黄棕色,表皮光滑,无锈斑,无水眼,折断面纤维细腻,粉性好,呈鞭杆状,商品质量最好。
淋溶黑土(黑砂壤土),质地松散,渗水力好,保水力强,透气性好,有团粒结构,淋溶明显,三相协调,pH值呈中性或微酸性。种植黄芪的根较长直,分歧不多,根皮黑褐色,兼有少量锈斑,折断面纤维较粗,粉性较小,商品质量好。
碳酸盐黑土(盐碱土),质地较松,渗水力较好,保水力较差,含有盐碱,pH值呈碱性,有明显返碱。种植黄芪的根系较长,分杈较少,但因根皮受盐碱侵蚀,锈斑严重,折断面纤维木质化,粉性甚小,商品质量差。
沿江冲积砂土,质地疏松,渗水力好,保水力强,含水量大,腐殖质少,pH值呈微酸性。种植黄芪的根系长直,分杈较少,但因土壤含水量大,根皮水眼重,烂皮较多,商品质量较差,特别是地势低洼或多雨年份水眼、烂皮现象更为严重。
森林灰化土(白浆土),表土层腐殖质较多,质地松散,保水力强;心土层(称淀积层或白浆层)质地粘重紧密,渗水力甚差,透气性极不好,有石灰菌丝体,三相失调,pH值呈酸性。种植黄芪的主根短曲,伸至淀积层停止,致使根系变异,分衩甚多,呈鸡爪型,且因表土层保水力强,根皮锈斑多,水眼重,折断面纤维较粗,粉性较小,商品质量最差。
草甸土(草炭土),其成土地势低洼,腐殖质层深厚,排水力差,保水力强,含水量大,pH值呈酸性。种植黄芪的主根较短,分衩较多,水眼甚重,烂皮明显,商品质量低劣。
特举黑龙江省有代表性的两种土类列入表5—1。
表5—1 不同土壤类型对黄芪的生长发育影响
注:1.根粗部位:芦下10cm处粗度
2.均为本地种子
我国地域辽阔,地形复杂,各类土壤在各地都或多或少有分布。而各种药用植物由于长期生长在某一环境条件下,形成了对某种土壤的一定适应性。所以各种药用植物对土壤条件的要求,很不相同,在栽培时应根据药用植物的特性,选用相应的土壤栽培,才能达到优质高产的目的。
二、土壤有机质
土壤固相中除了矿物质外,还有一个重要的组成部分,就是土壤有机质。在自然土壤中有机质的含量多的可达10%以上,一般土壤则较少,约在—3%之间。土壤有机质含量虽不多,但其作用很大,它不仅是养分的主要来源,而且对土壤一系列性质和生产性状的好坏也起着决定性作用。因此,土壤有机质被视为土壤肥力的中心,是评定土壤肥瘦好坏的重要标志之一。许多药用植物都喜欢在有机质含量高的腐殖质土生长。
(一)土壤有机质的来源和类型
土壤有机质主要来源于动植物和微生物的残体,以及施入的有机肥料,土壤有机质在土壤中都要经过微生物分解,由于分解的程度不同,一般可分为三类:
1.新鲜有机质
即很少被微生物分解的那一部分有机物,它们仍保持着解剖学上的特征,大部分为动植物的残体。
2.部分被分解的有机物
这类有机质已失去解剖学上的特征,呈暗褐色小块,对疏松土壤有良好的作用。
3.腐殖质
是彻底被微生物改造过的有机物,呈黑色或黑褐色的胶体物质,是复杂的高分子有机化合物,它与矿物质颗粒紧密结合,只能用化学方法分离,而不能用任何机械的方法分开,是土壤有机质中主要的类型,对土壤肥力影响很大。
(二)有机质在土壤肥力中的作用
1.植物养料的主要来源
土壤有机质含有植物所需的一切养分,如C、H、O、N、P、K、S、Ca、Mg以及多种微量元素。有机质经过微生物的矿质化作用,释放植物营养元素,供给植物和微生物生活的需要。微生物在分解有机质的过程中,取得生命活动所需要的能量,同时产生的CO2供植物的碳素营养。植物还能直接吸收某些简单有机化合物,如氨基酸、有机磷化合物以及高度分散的胶态及分子态腐殖质等。
土壤中氮素的来源主要是土壤有机质,这些有机质有的经过矿质化释放出植物可吸收态氮素,另外很多则经过分解合成作用而转化成土壤腐殖质,贮于土中。由于腐殖质比较稳定,分解缓慢,每年只有2—4%的氮释放为有效态,所以土中有效氮含量并不高,一般约占土壤全氮的1—2%。
土壤中磷的含量在—之间,除了有机态磷有待分解释放外,无机磷也与钙、镁、铁、铝结合为不易溶解状态,因此这部分磷的释放也很重要。一方面含磷有机物分解释放出植物可吸收态磷,另一方面,由于有机质是一种络合剂,能与难溶性磷酸盐的盐基进行络合作用,从而也提高磷的可给性。
此外,土壤有机质所含的钾、钙、镁、硫、铁以及其它微量元素,随着有机质的分解,逐渐供植物利用。
2.对植物生长有刺激作用
可溶性胡敏酸在低浓度下(百万分之几至十万分之几)能刺激根系的生长,而在高浓度的情况下则抑制根系发育。
可溶性胡敏酸进入植物体后,能促进植物的呼吸作用,提高细胞膜的透性从而增加养分吸收的数量。
总之,低浓度可溶性的胡敏酸在作物生长的前期能促进根系的发育,后期能促进养分的吸收,而对作物吸收作用的促进则贯穿于作物的整个生命过程中。
3.能提高土壤保水保肥能力
半分解的有机物能使土壤疏松,大大增加了土壤的孔隙度,从而提高土壤的保水性。腐殖质又是亲水胶体,能吸持大量水分,其吸水率为400—600%,而粘粒的吸水率则为50—60%,比粘粒大10倍左右,所以能吸收更多的水分。
腐殖质是一种胶体物质,有多种功能团,如羧基和酚羟基上的H+,可与土壤溶液中的阳离子进行交换,使这些阳离子不致流失,同时腐殖质的代换量比粘粒大4—5倍。所以腐殖质能大大提高土壤的保肥力。
4.改善土壤物理性质
腐殖质是良好的胶结剂,能促进土壤团粒结构的形成。尤其在有钙离子存在的条件,腐殖质产生凝聚作用,使分散的土粒胶结成团聚体,可形成良好的水稳性团粒。腐殖质的粘结力比粘粒小11倍,粘着力比粘粒小一半,但都比砂粒大。因此,它能减低粘土的粘性,增加砂土的粘性,从而改善粘土的通透性和耕性,以及砂土的松散性。腐殖质还可使土色变黑,吸热能力加大,使土温提高。
5.促进土壤有益微生物的活动
土壤有机质是微生物营养和能量的主要来源。同时腐殖质能调节土壤的酸碱反应,使之有利于微生物的活动。
鉴于上述土壤有机质对改良土壤结构、提高土壤肥力的巨大作用,使得土壤具有疏松、透气、肥沃的特性,即水、肥、气得到充分的协调,创造了植物生长发育所需要的良好条件,也是多数药用植物生长最优良的条件。那些在山区林间自然形成的有机质含量丰富的土壤,即所谓腐殖质土最适于一些浅根系的多年生药用植物生长,如人参、黄连、细辛等,它们的根系都不大,只在表土层生长。黄连须根分布于表土层0—25cm处,而集中分布于5—10cm土层里,说明其根系的好气性,而腐殖质土既疏松又透气,是黄连根茎生长最优良环境。人参、西洋参及细辛,也属多年生阴生植物,光合作用能力较低,吸肥量少,植株生长缓慢,在生长期间不需要过多的速效性肥料。腐殖质土除具疏松特点外,其特性稳定,能源源不断地释放所需养分供吸收利用,因而使植株生长良好,不但产量高,质量也好。
三、土壤养分
见第六章药用植物营养与施肥,第二节药用植物的土壤营养。
四、土壤水分
(一)土壤水分对药用植物生长的影响
土壤水分在土壤形成中起着很重要的作用,是土壤肥力的重要因素。土壤中所进行的许多物质转化过程,如土壤中矿物养分的溶解和化,有机质的合成与分解都离不开土壤水分。而水分的多少也影响这一转化过程,土壤水分影响土壤通气状况和土壤的热状况,也影响土壤的氧化-还原过程,微生物的活动和有机质的分解。
植物的生命活动也离不开水:首先水分是植物体的重要组成部分,一般植物体内含有60—80%的水分;种子发芽需要水分;水是植物进行光合作用的原料之一,没有水光合作用就不能进行;植物生长发育所需要的养分,必须溶于水后才能被吸收,并输送到植物体所需要的各部分去;植物需吸收大量水分,才能保证叶面蒸腾的需要,以降低并稳定植物体温,使植物在强烈的日光下进行光合作用而不致灼伤。
植物虽需大量水分,但不能盲目给土壤浇水,因土壤中的水、气常处于矛盾状态,水分太多则影响土壤的通气,也影响根系的吸收作用,从而影响根系正常的生命活动,以致于影响全株的生长。药用植物种类多,特性各异,对水分的要求也各有不同。有些药用植物不需要太多的水分,即所谓耐旱的药用植物如麻黄、甘草等,土壤湿度大则生长不良,或引起烂根;有些药用植物则需要较多的水分,如泽泻、菖蒲、芡实等,甚至可以在淹水的嫌气条件下生长,土壤太干则生长不良;而绝大多数药用植物则需在干湿适当的土壤条件下生长,过于潮湿的土壤,常引起烂根,导致全株死亡,太干容易缺苗或生长不良。所以在生长期间应注意水分管理,若天旱不雨,要注意浇水,雨后应及时排水,避免土壤通气不良致使植株窒息死亡。
(二)土壤水分含量及其有效性
1.土壤含水量的表示方法
自然条件下土壤保持的水分含量称为土壤含水量,其表示:方法有以下几种:
(1)重要百分率
即土壤含水量占土重的百分率,一般以烘干土重为基数。
(2)容积百分数
土壤含水量的重量百分数虽然普遍采用,但要说明土壤水分占土壤孔隙的容积,或水分与空气在土壤中所占容积的比率等则不方便,为此应以土壤中水分体积占土壤体积的百分数来表示。
(3)相对含水量
为了更好地说明土壤水分的饱和程度,有效性和水、气状况,在植物栽培中,常用土壤自然含水量占田间持水量的百分数来表示土中水分状况,称为相对含水量。
(4)水层厚度(mm)表示
为了使土壤所含实际水量与降雨量和蒸发量进行比较,将一定深度土层中所含实际水量换算成水层厚度(mm)来表示,有时也称土壤蓄水量(mm)。
水层厚度(mm)=土壤含水量(水重%)×容重×土层厚度(cm)×102.土壤水分对植物的有效性
土壤水分的有效性是指土壤水分能否被植物利用以及利用的难易。土壤水分并非全部都能被植物利用,它取决于根毛吸力和土壤吸力之间的矛盾。当土壤水分充足时,土壤吸水力仅为8—个大气压,水分运动快,植物可以吸收到所需水分。随着植物对水分的吸收和土壤水分的蒸发,土壤水分越来越少,土壤对水的吸力愈来愈大,植物吸水就愈来愈困难。当土壤吸水力达到15个大气压(约等于根的吸水力)时,根毛就不能再吸进水分,植物便呈现永久萎蔫,所以萎蔫系数是土壤有效水分的下限。当土壤含水达到田间持水量时,其能量水平已接近自由水,土壤吸力约为1/3个大气压,这时土壤水分有效性最高,是有效水分含量的上限。田间持水量以上的水分是多余的无效水分,甚至是有害的,因多余的水分会使土壤通气不良,影响根系的生长活动。实际上土壤水分达到植物生长阻滞含水量时,植物的正常生长已受到影响。因而在土壤尚未达到生长阻滞含水量以前,就要抓紧时间及时灌溉。
土壤最大有效水贮量,受土壤质地、结构、松紧状况和有机质含量等条件的影响。就质地而言,砂土最少,壤土最大,粘土比壤土小。
此外,土层深度也是影响土壤有效水量的一个重要因素,在其他因素相同的情况下,土层深的有效水量显然多于土层浅的。所以,通过深耕改土加深耕层也是增加土壤有效水量的一个重要措施。
一、包气带土体生物地球化学特征
包气带土体的结构决定了它的功能,在的钻孔地质剖面中,以浅主要为粉质轻亚粘土及粉土,以深则以砂层为主夹有数层厚度不等的粉质重亚粘土层(表6-1)。
表6-1 试验场ZK1取样孔剖面岩性表
(一)包气带土体剖面微生物分布特征
地下的生物主要是微生物,且以细菌为主,约占微生物总量的70%~90%(钱易等,2000)。微生物的活动不仅能促进岩石、矿物的风化和有机物质的分解,而且在为地表和地下生态系统提供营养和传输物质中起着重要媒介作用。在对整个地球的碳、氮、硫、磷等生命元素的循环特别是在氮素的转化中微生物起着重要作用。地下的微生物种类很多,1 g土壤里的微生物就有几千万个甚至几亿个之多。对正定试验场包气带剖面97组土样作了细菌总数、硝化菌、固氮菌、反硝化菌和脱氮菌的培养鉴定,其随深度变化见图6-1,由此图可看出:5种细菌指标的生物活性变化趋势具有良好的对应关系。在土壤表层0~段,5种细菌指标除个别外,大多显示出由上至下总的递减规律,这和以往土壤学的研究结果是一致的,尤其是细菌总数从106降至103有3个数量级的衰减;但在~出现了一个异常峰值区段,而在~为相对低值区段,~为另一个高峰值变化段,~又为一低值区段,~的剖面末段曲线再次显示微生物活动增强。
图6-1 土样细菌指标随深度变化曲线
的包气带剖面微生物变化特征,一方面验证了以往在表层2m内随深度增加土壤有机质含量减少,微生物活动逐渐减弱的结论;另一方面也看出土壤中微生物分布不是简单的自上而下递减,即使是在2m以内也有波动。如处的细菌总数高于段2倍多。而在2m以下随地质结构的变化出现了微生物活动强弱交替的层段变化。
(二)包气带土体的物理化学指标
包气带土体的物理化学特性决定着微生物的环境特性,这些环境特性影响到微生物菌群的生存、繁殖、组合和作用强度。我们测定了剖面土样的含水量、TDS、Cl-和有机质含量。其随深度变化的特点如图6-2所示。
图6-2 土样物理化学指标随深度变化曲线
1.土体的水理性质指标变化特征
从土样的含水量指标随深度变化曲线看出:其变化特征具有显明的分段性。0~段,含水量均值为7%;~均值为18%;~均值为3%;~均值为20%;~均值为3%;~均值为17%。总体上为3个高值区和2个低值区与细菌分布的峰谷变化趋势一致。土体的含水量与沉积物颗粒粗细所制约的容水性及持水性密切相关,细粒岩土容水性及持水性均优于粗粒岩土,含水量大。另外,靠近地下水饱和带部位含水量往往受毛细作用影响而增大。
2.土体的地球化学指标随深度变化特征
(1)土样的TDS值反映沉积物的可溶盐含量,在剖面中它与含水量随深度变化曲线有较好的关联性。0~ TDS均值为829mg/kg,~为1300mg/kg,~为431mg/kg,~为916mg/kg,~段TDS含量介于800~300mg/kg之间,其均值为544mg/kg。土体的氯离子含量与上述曲线有类似的变化特征。
(2)土样的 、 、 、总氮和碱解氮含量随深度变化情况如图6-3所示。它们的曲线形态表征出包气带土体中各种形态的氮化合物含量在纵向上的变化具有较好的一致性。在土壤表层深度的样品,土壤总氮、碱解氮和 和 含量出现高值,尤以碱解氮明显,在~层段则呈减少趋势;除 外,在~其余4项指标含量都在一个高值区;~ 深度土壤各种氮化合物含量明显增高;~剖面位置上,各种氮化合物含量又处在相对较低的水平,在~水位变动带附近, 含量有所增加。
图6-3 土样氮化合物指标随深度变化曲线
(3)土体有机质含量是沉积环境及其演化的指示剂,随深度变化有机质含量在0~段从逐渐降至,均值为;~ 均值为,~均值为,~均值为,~均值为,与微生物分布对应良好。
综合各指标随剖面深度变化趋势,相互间存在着较好的关联性,曲线间的高值峰段与低值谷段的波动大都相吻合,多数曲线存在着4个峰值和2个低值区段。
第一个峰值段为0~,总特征是多数指标在的近地表段出现高值,而后由高值向低值递减,尤以土壤的细菌总数、有机质含量、总氮含量、碱解氮、亚硝酸盐、反硝化菌和固氮菌表现明显,其他指标变化较平稳。
第二个峰值段为~(主要由粉质轻亚粘土组成),虽然各指标变化幅度有差异,但大多呈现高峰值,特别是土壤含水量、硝酸根离子和氯离子变化较明显,硝酸根离子平均含量为全剖面之最高值。土体中 含量在该段未显示明显的富集特征。
第三个峰值段为~(主要由两层粉质重亚粘土夹薄层粉砂组成),所有指标在该段都显示出峰值特征,尤其是土壤含水量、5种细菌含量和 含量在该段出现高峰值(尤以~层段最高)。
第四个峰值段处于地下水位波动带,为~,土壤含水量与微生物5种细菌在该段都有增高趋势,尤以固氮菌、硝化菌、反硝化菌含量增高明显。
第一个低值段为~,第二个低值段为~,两层段都主要由中砂组成。在此两层段内,各指标均在不同程度上出现含量相对较低的特点,土壤含水量与细菌总数反映得尤为明显。
二、包气带土体剖面特征在氮转化研究中的意义
(一)活性层的生物地球化学作用
由一定比例粘粒成分构成的粘性土层,称之为活性层。这是由于粘性矿物与土壤的吸湿性、对离子及微生物的吸附性以及较高的有机质含量等有关,对土壤微生物生长、繁殖和含量具有很大影响,它成为土壤活性的根本性区带,为此我们把粘性土层称为活性层,它起着生物地球化学屏障的作用。如果说地球化学屏障是指表生带在短距离内迁移条件明显交替并导致化学元素浓集的地段,使元素和化合物由迁移状态变为非迁移状态,那么生物地球化学屏障除了具有浓集元素和化合物的作用外,还具有因活跃于此带的微生物作用促进元素或化合物的转化功能,尤其对氮元素价态转换的影响更为显著,因为氮循环过程中氮素转化的几个重要过程主要由微生物推动。在氮转化研究中把活性层视为生物地球化学屏障对理解和阐释包气带土体剖面的生物地球化学特征具有理论和实际的指导意义。
(二)生物地球化学屏障锋面的构成
与活性层交接的非粘性土层是活性层与非活性层岩性变化过渡地段,是生物地球化学环境的交界线,是相对好气层和相对厌气层并存的部位,形成生物地球化学屏障的锋面。根据它与活性层层位的上下关系,又可分为上锋面与下锋面。就我们所研究的剖面而言,位于粉质轻亚粘土之上的深度段的粉土层段、位于粉质重亚粘土层之上的深度段的中砂层段、位于粉质重亚粘土层之上的深度段的粉砂层段,以及位于粉质重亚粘土层之上的 深度段的中砂层段,均属于上锋面类型;位于粉质重亚粘土之下的深度段的粉砂层段则属于下锋面类型。在我们所研究的剖面上出现的高值峰区主要由生物地球化学屏障与其锋面组成。
从锋面的生物地球化学效应来看,上锋面更为显著。最典型的例子是深度的中砂层段和深度的粉砂层段,除pH值、TDS和Cl-含量外,大多数测试项目均显示了不同程度的高值异常,在诸异常中,尤以细菌总数的增加最为突出。锋面上异常的出现,可能与岩性过渡带通气层和厌气层并存形成了有利于生物地球化学作用的生态环境有关(如通气性、有机质、粒度成分、湿度等因素的贡献性搭配)。其机制问题尚需进一步探讨。
(三)活性层与非活性层某些生物地球化学指标的对比分析
为了研究活性层与非活性层某些生物地球化学特征上的差异性,选择3个厚度较大的粘性土层段和3个厚度较大的中砂层段,进行对比分析(表6-2)。
表6-2 粘性土层段与中砂层段地球化学指标特征
粘性土层段与中砂层段有机质与总氮含量之间具有各自的对应关系:在大多数情况下,前者有机质含量为,总氮量为 n%;后者有机质含量为 n%,总氮量则为 n%,上述对应关系反映了有机质含量与总氮含量的内在关系。
有机质含量和湿度是影响微生物生长和繁衍的重要环境条件,粘性土层正是具备优于砂层的上述条件,因此,在微生物含量上有明显的优势。除表层和接近含水层的砂层段外,在总体上粘性土层中各种菌的含量均高于砂层,尤以硝化菌和固氮菌的反映明显。由于地质剖面上土体粒度成分分布的不均一性以及微生物分布控制性因素的多样性,在剖面上微生物含量的波动较大。粘性土层与中砂层在地球化学指标上的差别如表6-2 所示,主要表现在:前者的TDS与Cl-含量较后者高出1倍多。TDS含量在粘性土层随深度减少,砂层则相反;粘性土层TDS分布所具有的反向演化(即随深度减小)特点,除与近地表人为影响有关外,是否还隐含着气候变化的信息?Cl-含量除~深度的层段外,在粘性土层与砂层均趋向正向演化,其变化幅度很小,这与Cl-的地球化学特点有关。 、 和 在两类土体层段的变化很好地体现了活性层与非活性层的生物地球化学作用的差异。粘性土层 含量最高可高出中砂层3倍之多, 含量可相差一个数量级,而 含量在总体上粘性土层略高于中砂层。
将不同深度的粘性土层的 、 、 含量加以比较可以看出:高值段分别出现在不同的深度上: 在~深度段; 在~深度段; 在~深度段。上述不同价态氮出现于不同深度的特点反映了它们对氧化还原条件的依附性。
需要指出的是:剖面上还出现了两个 含量的高值异常点,分别位于和深度中砂层的两个取样段,其含量分别为24mg/kg与35mg/kg,超出粘土层1倍之多。与上述两异常点相对应,出现全剖面仅有的两个pH值低异常点,分别为和。这是剖面上仅有的偏酸性环境, 特高值出现的机制与其所处的酸性环境有关。这是由于NH3的离子化(即离子化为 )高度依赖于环境中的pH值,较低的pH值有利于 的积累(陈文新,1996)。
在上述几个地球化学指标中,TDS、 受控于颗粒的吸附性,而Cl-和 则很少受吸附性的影响。Cl-含量在两类土层和不同层位的变化除个别层段外,基本上是在一个数量级内波动。 则不同,其含量不仅有不同土层的变化,也有同一土类不同层段的变化,反映出它的积累过程与微生物分布紧密相关的特点。
(四)水位变动带与氮转化有关的菌群数量异常
异常带出现在薄层()粉质重亚粘土之下、潜水面以上厚约的中砂层段,是在土体剖面上由包气带向饱水带转换的过渡空间内。它的特点是:与其上部中砂层段不同,粘性土层下的中砂层段的固氮菌、硝化菌、脱氮菌、反硝化菌在此砂层段内没有明显的衰减;硝化菌数超过上覆粘性土层段并达到剖面上粘性土层硝化菌数的最高数量级(107个/g);脱氮菌、反硝化菌高点值也高出上覆粘性土层的细菌数,形成了以上述菌群活化为特征的微生物垒。另外,与其上部的中砂层段不同,其含水量高出一个数量级,达到粘性土层含水量的量级。在这个层段上还出现了 含量增高的趋势。
将上述异常与所研究的各项指标对比分析,此砂层段的含水量是此异常带可与粘性土层的水理特征相比拟的指标。含水量是否为此层段菌群数量异常的贡献性因子?这只是统计学相关的分析。控制微生物分布的因素很多,复杂的机理问题还需多学科联合深入研究。
三、小结
(1)包气带作为层圈相互作用及由地表向地下传输物质和能量的过渡带,生物地球化学场态研究和开发对评估和防治地下水污染以及进行环境演化和全球变化对比研究具有重要的科学价值。
(2)不同价态的氮及其相关的微生物含量,在包气带土体剖面上随深度的分布不是一个简单的线性递增或衰减。它们在剖面上的丰度波动及其递增和衰减的幅度受土体组构特点的制约。不同粒度成分土体在剖面上的配置关系以及包气带厚度、水位变动带岩性组成及其幅度均对生物地球化学场及其变化产生影响。
(3)在包气带剖面上,不仅自上而下存在着纵向的层间氮转化过程,也在不同的层段内部进行着强度不等的氮素形态转化。只有深入研究上述两个侧面氮转化的机制,才能全面认识氮在地质大循环基础上的地区和地段的生物地球化学小循环特征。
(4)包气带土体剖面上由活性层及相邻土层构成的生物地球化学屏障和锋面及水位变动带的微生物学特征,为氮素污染地下水的阻控以及污染土体(如有机化学物质污染等)的原位生态修复研究开辟了新的思路。
(5)包气带剖面中各项测试指标与其地质结构的对应关系揭示它们对研究区环境演变具有记忆效应,这些指标的提取对认识环境演变过程非常重要。也就是说,包气带中储存着更多环境演变研究的可提取信息,若能展开系统研究将对全球变化影响的对比具有重要意义。
1.氨氮的作用;2.土壤中氮的循环过程,有机氮,氨态氮,硝态氮;3.氨氮的来源(施肥、雷电、生物固氮等),对土壤中的植物、微生物以及环境的影响和危害;4.回头再增,有事先撤了