首页

> 学术论文知识库

首页 学术论文知识库 问题

心衰合并房颤研究进展论文

发布时间:

心衰合并房颤研究进展论文

房颤!很多人听到这个名字或许比较陌生。

但脑梗死大家都知道吧,简单说就是中风。20%的脑梗死是房颤引起的,房颤是什么呢?是心脏跳乱了,我们正常的心脏是一下一下咚哒咚哒规律的跳动,这种跳动来自窦房结,所以大多数一做心电图提示窦性心律,大家还不知道啥意思,窦性心律意思就是正常的心跳的意思。

房颤,是最常见的心脏病之一,是一种心律失常。当发生房颤时,心房无规律颤动,不能正常收缩舒张,导致我们感觉心跳不整齐,毫无规律。简单理解正常心跳是一下一下很有规律的跳动;房颤则是没有任何规律的乱跳。

房颤可引起中风险增加5倍,心衰风险增加3倍,死亡风险增加近2倍,显著降低患者生活质量,同时也给 社会 和家庭造带来一定负担。有研究显示,合并有房颤患者的脑卒中致残率明显大于无房颤患者。 长期房颤也会引起心衰,而心衰也会加重房颤,形成恶性循环。研究表明,心衰患者中房颤的年发生率约为54%,房颤患者中心衰的年发生率约为33%。合并心衰的房颤患者,远期预后差,住院率高,死亡率高。

1、转复:

也就是尽可 能把房颤治疗成窦性心律,无论是药物、射频手术、电击等等方法;但这些方法不够完美,药物可能短期有效,长期逐渐就会失效,而且药物都有副作用。射频消融手术费用昂贵,成功率偏低,50-60%,复发率相对较高。

2、抗凝:

上面我们说了房颤最大的危害就是脑梗死,那是因为房颤容易形成血栓,血栓掉下来堵在脑子就会发生脑梗死。预防房颤这种血栓的正规办法不是阿司匹林,而是抗凝药物,常用的抗凝药包括:华法林、利伐沙班、达比加群等等。

3、控制心跳速度:

不管能不能转复成正常心跳,房颤都要把心跳降下来,因为心跳越快越容易心衰。一般建议休息时心跳60-70左右。

避免烟酒刺激,诱发房颤或加快心跳,所以要戒烟戒酒;减少情绪波动,减少熬夜劳累这些主动性刺激;

定期复查,尤其是服用华法林的朋友,一定要定期化验凝血,因为华法林吃多了会出血,吃少了没用,而每个人对药物反应又不一样。

总之,房颤要引起我们的重视,因为房颤不仅仅是心跳跳乱了,更主要是会引起脑梗死!

从字面理解,“房颤”就是心房颤动,光“哆嗦”,不能有效收缩。“房颤”是由于冠心病、心肌炎、心肌病等心脏病变,引起心房内电传导活动异常所引起。

房颤的电活动频率高达300~600次/分,幸好有房室结的阻挡,这些电信号不会全部传达到心室(否则心室也会一起颤了)。尽管如此,心室受影响,收缩频率也可以高达100多次,时间久了,心室肌肉也会出现劳损。

1 心房形成血栓

心房内血流紊乱,极容易形成血栓。血栓一旦脱落,随着血流运行,堵在哪里就在哪里形成栓塞。最常见的就是形成脑栓塞,引起脑梗死。

2 心悸不适。

房颤引起快速和紊乱、不规则的心跳,患者会有明显心悸感。尤其是心率过快。

3 心功能下降。

由于心房心室不能协调收缩,心脏射血效率下降。

4 心肌劳损。

长期的快速心率可加速心肌劳损。

1 把房颤转为正常心律。

有一些房颤可通过药物转复为正常心律,但是复发的也比较多。

药物控制不理想的患者,可以考虑用射频消融手术来转复房颤。

2 控制心室率。

相当一部分房颤患者既无法通过药物转复,也没有办法通过手术根治房颤。则退而求其次,只是用药物控制心室率,让心跳不要过快。

3 预防心房内血栓形成。

对于长期慢性房颤的患者,预防血栓形成是最为重要的一件事。

目前最为常用的办法是长期口服抗凝药(华法林),其缺点是受饮食、药物等外界影响比较多,要求定期抽血检查凝血指标,既不可过高,也不可过低。 现在也有了新型口服抗凝药,效果相对更稳定,可减少抽血化验次数。缺点是还不普及,也比较贵。

左心耳封堵术是随着 科技 发展兴起的新技术,在有条件的地方,也是值得考虑的。

欢迎留言讨论。

房颤对患者最大的危害是引起脑栓塞问题,所以最重要的是注意有无抗凝指征及按时服用抗凝药的问题。至于是否能治愈,取决于房颤的类型和有无器质性心脏病,对于一些无器质性心脏病的患者,经射频消融术是可以治愈的。

房颤其实是一种非常常见的心律失常,很多患者可以没有任何临床症状。但不管是否有临床症状,房颤最大的风险是脑卒中问题,研究发现,非心脏瓣膜病房颤引起脑栓塞发生的几率是对照组的5.6倍,而心脏瓣膜病合并的房颤则是对照组的17.6倍;非心脏瓣膜病房颤患者每年发生栓塞事件的几率5%左右,是非房颤患者的2~7倍,占所有脑栓塞事件的15%~20%。所以房颤患者,一定不要掉以轻心,需要知道自己是否需要抗凝。对于瓣膜性房颤(如风心病患者)、非瓣膜性房颤CHADS2评分大于等于2分的患者,均需抗凝治疗。瓣膜性房颤患者,需用华法林抗凝;非瓣膜性房颤患者可用达比加群、利伐沙班或华法林抗凝治疗,对于一些无法应用抗凝药的高危人群或在应用抗凝药物中仍发生脑血管事件的,也可行经皮左心耳封堵术。需要提醒的是,很多该用抗凝治疗的房颤患者,却在服用阿司匹林抗血小板聚集治疗,实际上根本起不到预防脑卒中的作用。

至于房颤治愈的问题,药物方面一些口服预防房颤的药物如决奈达隆、心律平、索他洛尔、胺碘酮等可以起到一定预防房颤复发的作用,但长期应用存在疗效不确切且有一定副作用问题,房颤的根治需靠射频消融手术治疗,但存在手术费昂贵且成功率相对不太高的问题。一般来说,对于无器质性心脏病的孤立性房颤患者,手术成功率相对较高,而对于有器质性心脏病的患者成功率较低。

房颤是心律失常的一种,心房不规则快速搏动可达100-160次/分,接近普通患者的倍。

常表现为 心跳快、心慌、心悸胸闷等 症状,一般在体检时发现。

首先患者要 定期检测心率 ,并服用抗凝药 法华林 。在饮食上遵循低热量,低脂肪,低胆固醇。

多吃有利于心脏的食物,如豆类、不饱和脂肪酸Ω-3的鱼类和利于血管 健康 的维生素C等。 患者平时不宜吃得过饱,暴饮暴食会增加心脏的负担。

最主要的危害是引起脑中风和心衰。心脏不规律地波动,导致血液右心房出现瘀滞形成血栓,血栓脱落后随血液循环到全身,可引起脑中风。心率过快时,左室收缩活动减弱,引起心力衰竭。

房颤需 控制心率和抗血栓治疗 。

常用 抗心律失常药物 :普罗帕酮、地高辛、倍他乐克、可达龙(盐酸胺碘酮片)等。

抗凝治疗 :目的是防止心房内形成附壁血栓,预防心房内附壁血栓脱落造成其他脏器柱栓塞,特别是脑栓塞,常用药物是 华法林 。

房颤是一种常见的快速心律失常,随着年龄增长,房颤的发病率逐渐升高。房颤多见于器质性心脏病患者,严重威胁患者的生命 健康 。

房颤最大的危害在于诱发脑卒中,研究表明,房颤可使脑卒中的发生风险增加5倍,而房颤诱发的脑卒中致残率、病死率及复发率更高。

一、房颤患者的注意事项: 根据房颤的发作时间,房颤可分为阵发性、持续性和永久性房颤。其中,初发房颤多为阵发性,因为症状不明显,且发作短暂,常被忽视。事实上,若阵发性房颤不及时治疗,会继续发展,可能会进展为持续性甚至是永久性房颤。因此,对于房颤患者而言,一定要注意积极进行干预和治疗。

1、积极治疗原发病: 尤其是心脏疾病患者,应注意遵医嘱坚持治疗,同时注意定期复诊,关注心脏 健康 。另外,还需注意监测血压、血脂、血糖等指标的变化。

2、注意症状的监测: 如患者出现胸闷气短、胸痛等症状时,应第一就医诊治。

3、生活方式管理: 房颤患者应注意控制自己的情绪,切忌愤怒、激动等不良情绪;还需注意天气变化,及时增减衣物,注意室内外温差;加强锻炼,控制体重;戒烟戒酒,少喝浓咖啡、浓茶;少食刺激性食物,低脂、低热、低盐饮食,多食蔬果、粗粮等;切忌长期熬夜,保证充足睡眠,劳逸结合等。

二、房颤的治疗: 房颤的治疗主要包括药物治疗和射频消融术治疗两大类,其中射频消融术治疗效果较好,有可能根治,但是不能保证成功率,且容易复发。而药物治疗只能是缓解症状,预防发作。

对于房颤患者而言,最重要的是积极进行治疗,尤其是阵发性房颤,应第一时间就医诊治,以防病情加重,进展为永久性房颤。除此之外,对于器质性心脏病患者、甲亢等疾病患者而言,应注意原发病的治疗。一般而言,通过原发病的治疗后,部分房颤患者可实现治愈。

“心内科喵医生”观点:

1、房颤的发病人数近年来逐渐增多,同时,年纪越大,房颤发生越多。

2、造成房颤的原因,包括:心肌缺血、高血压、心衰、甲亢、贫血、无原因等多种。

3、房颤是否可以治愈?这个取决于年纪、心脏是否扩大!年纪小,房颤治愈可能性大,心脏正常,房颤治愈性大。

4、目前,治疗房颤的方法,包括:药物、射频消融手术。

5、已经发生房颤的人士,最需要关注2方面:预防心衰、预防血栓。通过口服药物维持控制。

房颤就是心房颤动是指心房肌纤维发生频率为350―600次/分不规则的乱颤,是最常见的心律失常。

心房颤动能治好。

房颤患者注意的问题:1,病因预防,①,由于风心病是引起房颤最常见的病因,积极预防和治疗风湿热,对预防风心病所致的房颤有重要意义。

②,二尖瓣狭窄有手术适应症的,应手术治疗。

③,积极治疗冠心病和甲亢性心脏病。

2,预防房颤复发,可用药物奎尼丁,胺碘酮等。

3,电复律并发症的预防。

房颤病人主要应注意避免诱发心动过速,预防复发。因为心室率偏快,在90——100次/分者,容易引起反复发作。有人稍一活动,心室率就达90次/分以上,另外饱餐,情绪激动,紧张,刺激,大喜大悲等情绪不稳定,都容易出现心室率偏快,诱发房颤。

一般房颤可为阵发性及持久性。如果病情不是很严重,临床上以药物治疗为主,药物治疗的目的是减慢心室率、复率、以及预防复发。

房颤发作时的治疗,主要以控制心室率为主,从而保持血流动力学稳定。有部分病人随心室率减慢后可自动转为窦性心律。慢性房颤经电复律或药物复律后,需长期服用药物预防复发。

总之,房颤治愈后容易复发,患者应注意避免诱发因素,房颤患者基本上都有器质性心脏病,日常生活各方面都必须注意。慢性房颤患者还要配合长期服用药物,预防复发。

慢性房颤不能转复的注意控制心室率和抗凝预防卒中。

阵发房颤或房颤时间不长的可以积极转复。电转复或射频消融。成功率还是挺高的,不排除复发可能。

唉!体会。

犯病回回太恐慌,

犹如炮弹要出膛。

安神少动和吃药,

如此精心不好防。

房颤可以导致心衰,而心衰又常常合并房颤。那么对于既有房颤,又有心衰的患者,该怎样治疗?本文内容将为您详细解答。根据2014美国AHA房颤管理指南,对于射血分数保留(HFpEF)的代偿性心衰患者合并持续性或永久性房颤患者,推荐使用β受体-阻滞剂(如倍他乐克等)或非二氢吡啶类钙通道拮抗剂(如地尔硫卓等)控制静息心;房颤不合并预激时,急性心衰患者推荐静脉用β-阻滞剂以减慢房颤的快速心室率,但明显充血、低血压或左室射血分数减低的心衰患者需谨慎。根据我国2012年房颤专家共识,对于存在心力衰竭/左室射血分数减少的症状性房颤患者,射频消融术可以作为一线治疗。以上这一段话,患者朋友们读起来可能有些费解,涉及的医学专业名词较多,主要内容即对于合并心衰的房颤患者,可选药物控制心室率,也可选择射频消融术。近年来导管消融房颤在治疗房颤合并心力衰竭者中取得明显疗效,房颤合并心力衰竭导管消融的成功率与无心力衰竭房颤者相近,而围术期并发症的发生率与无心力衰竭者相比无明显差异。2008年发表的PABA-CHF研究,比较了合并心衰的房颤患者行导管消融与房室结消融+双心室起搏的效果。在这项前瞻性多中心临床试验中入选了81例症状明显、药物疗效不佳、左室射血分数低于40%及NYHA心功能Ⅱ或Ⅲ级的房颤患者(即心功能比较差的患者),随机分为导管消融组或房室结消融+起搏器植入组。两组间主要并发症无显着差异。随访6个月,射频消融组患者的生活质量更高、6分钟步行距离更长、左室射血分数也更高。该研究表明:对于房颤症状明显,合并心衰(LVEF≤40%)的患者,导管消融在减轻症状、提高生活质量和运动耐量,改善心功能等方面效果较好,在房颤导管消融经验丰富的中心值得推荐。在临床工作中,我们可以明显感觉到,对于合并心衰的房颤患者,目前传统的抗心律失常药物治疗效果并不明显,而房颤射频消融术通过恢复患者的窦性心律,使心房心室的活动恢复协调,使心功能得到了更为明显的改善,提高了患者的生活质量。

房颤和心衰二者是相互联系的,就好比一栋房子,因为地基不稳而出现墙壁有裂缝,墙壁就可能会倒塌。所以,一旦有了持续的房颤,那么心脏也就不能正常的工作了,从而出现所谓的心衰。如果是偶尔的出现房颤,及时采取治疗,就可以进行很好的干预。但是若持续出现半年以上,还不采取相应的措施去干预的话,那么就有可能导致心衰,而且越到后期,症状就会越来越严重。所以建议大家,尽早接受治疗,就是对心脏最好的保护。

房颤首先需要抗凝,然后可以用沙库巴曲缬沙坦和地高辛治疗心衰

房颤回顾性研究论文

不是。如果有出现相应的问题而不治疗,后期可能会引起更大的问题。

房颤患者没有症状是否需要治疗,这个是具体问题具体分析的。如果患者的年纪比较轻,没有合并一些心血管疾病,或者是心血管危险因素,只是在劳累或者是情绪激动的情况下出现。这种房颤是不需要治疗的,积极去除诱因即可。临床上很多房颤患者都会合并着一些心血管疾病,对这类型的房颤应该要进行治疗。因为虽然患者没有症状,但是房颤的危害还是存在的。例如脑卒中,心功能下降,所以应该要对这类型的房颤进行控制心室率,恢复窦性心律,必要时还需要进行抗凝治疗。

没有症状的时候也是需要治疗的,虽然表面看不出有什么反应,但是其实已经深入到了身体里面,如果不治疗的话,只会让病情越来越严重。

引起房产的原因很多,临床上风湿性瓣膜病二尖瓣狭窄是引起房颤的最主要原因,其次还有冠心病、高血压病、肺心病、甲亢心等等,治疗方面应该治疗引起房颤的原发病为主,对于房颤患者应积极控制心室率,过快的房颤心室率极易发生心衰,是危险的。要引起重视,以免加重病情。房颤是最常见的持续性心律失常,房颤时心房激动的频率达300~600次/分,比正常人心跳快得多,而且绝对不整齐,心房失去有效的收缩功能。药物能恢复和维持窦性心律,控制心室率以及预防血栓栓塞并发症。你也可以采取电转复和外科迷宫手术治疗。平时要注意戒烟,限制饮酒,效果不错的。

衰老机制的研究进展论文

这还需要很长时间

研究如下:1、衰老是指生物体发育成熟后随年龄增长机体发生的功能性和器质性衰退老化的渐进过程。2、抗衰老机制古老而又崭新,近代又产生了自由基学说等。

《北京参考》:与衰老关系密切的因素有哪些? 童坦君:环境与遗传因素影响着衰老进程。其中遗传控制起着关键作用。衰老并非单一基因决定,而是一连串"衰老基因"、"长寿基因"激活和阻滞以及通过各自产物相互作用的结果。DNA(特别是线粒体DNA)并不像原先设想的那么稳定,包括基因在内的遗传控制体系可受内外环境,特别是氧自由基等损伤因素的影响,会加速衰老过程。在环境还没尽善尽美的条件下,环境是影响衰老的重要因素。譬如我国解放前平均寿命只有35岁,而现在北京市民平均寿命约76岁。还有我国的长寿地方如新疆的和田、江苏的南通、广西的巴马,说明了环境很重要。老百姓延缓衰老能做到的也只有尽量改善环境。但是,同一个长寿村,为什么不是每个人都长寿呢?同时说明遗传起着关键作用。在普通地域,常常有长寿家族,说明长寿基因可以通过遗传来表达。 世界卫生组织将60岁定为老年期的开始。人的衰老犹如春夏秋冬、花开花谢一样,是自然界的美丽现象,人虽然做不到永生,但是我们能追求健康长寿。探讨长寿的奥秘,是医学界的艰巨使命。如果做到80岁、90岁甚至100岁以前不显老,或者做到无病无痛而衰老呢?为此,笔者特意走访了我国初步解开衰老之谜的中国科学院院士、北京大学衰老研究中心主任、北京大学医学部童坦君教授。 人的自然寿命约120岁 《北京参考》人的寿命究竟有多长? 童坦君:法国著名的生物学家巴丰(Buffon)指出:哺乳动物的寿命约为生长期的5-7倍,通常称之为巴丰寿命系数。人的生长期约为20-25年,一次预计人的自然寿命为100-175年。海佛里克证明人类从胚胎到成人、死亡,其纤维母细胞可进行50次左右的有丝分裂,每次细胞周期约为年,推算人类的自然寿命,应为120岁左右。虽然不同学者解答的方式各不相同,但是结论基本一致,目前一般认为人的自然寿命为120岁左右。 《北京参考》:100年以后人的寿命还是120岁吗? 童坦君:平均寿命受环境影响很大,但是各种动物的最高寿限都相当稳定。鼠类最高寿限约为3年,猴约为28年,犬约为34年、大象约为62年,而人类约为120岁。100年以后,老鼠的最高寿命还是3年。但是100年以后人的平均寿命势必会提高。譬如我国解放前后,平均寿命就提高了一大截。要提高人类最高寿命困难重重,需要进行基因改造,虽然目前科学家在果蝇、蠕虫中试验成功,对其进行某些基因导入或使一些基因突变(改造)则可达到延长其最高寿命的作用。 《北京参考》:作为个体,人的寿命能否预测? 童坦君:预测寿命有多长?是很多人都希望知道的。为迎合这种心理,国内外一些非正式医学书刊登了寿命预测法。预测的主要依据,是将影响健康的一些列因素罗列起来,对健康有利的,根据性质或程度,分别加寿一至数年,对健康不利因素,根据危害性质或程度,分别减寿一至若干年。最后,将全部数据加起来得到总和,再与固定寿命指数或寿命基数相加减便可得出预测到的寿命年龄。但是在现实生活中,基因在人体不同的发育阶段是怎样控制衰老演变的?不前还不清楚。因此,目前世界上还没有公认能正确预测人类寿命的方法。 肺最容易衰老 《北京参考》:人什么时候开始衰老?人体器官有衰老次序吗? 童坦君:衰老分生理成分分生理衰老与病理衰老。同一物种不同个体,即使同一个体不同的组织或器官其衰老速度也不相同。从出生到16岁前各组织器官功能增长快,从16--20岁左右开始到平稳期直到30---35岁,从35岁开始有的器官和组织功能开始减退,其衰老速度随增龄而增加。如果以30岁人的各组织器官功能为100的话,则每增一岁其功能下降为:(休息状态下)神经传导速度以 o.4%下降,心输出量以0.8%下降,肾过滤速率以1.0%下降,最大呼吸能力以1.1%下降。可以理解为肺最容易衰老。其次为肾脏的肾小球,再是心脏,而神经、脑组织衰老速度相对慢一些。各组织器官功能随增龄呈线形进行性下降,因此老年人容易患病,这是一般规律。但在现实生活中有的人衰老速度衰老的生物学指标 《北京参考》:那么,什么情况提示人衰老了? 童坦君:制约哺乳动物衰老研究的一个重要因素就是缺少可靠、易测的评估生物学年龄的标志。我们在细胞水平、分子水平发现了一些指标,可作为衰老生物学标志,但是还只是在实验室阶段,离应用到生活中去还有很长的一段路要走。以下5个指标都和衰老有关,但单独使用都有欠缺与不足的地方: 一、成纤维细胞的体外增殖能力。根据细胞的衰老假说,成纤维细胞体外增殖能力是可靠的估算供者衰老程度的指标。 二、DNA损伤修复能力。多种 DNA损伤,如:染色体移位、DNA单双链断裂、片段缺失都随年龄积累。这一现象除与衰老过程中自由基生成率升高及抗氧化剂水平降低有关外,与DNA修复能力降低密切相关。作为估算DNA修复能力的指标包括非程序DNA合成、DNA聚合酶B及内切脱氧核糖核酸酶UV2DNase和AP2DNase。另外,检测各种DNA损伤的方法亦可用于检测该种DNA损伤的修复能力。 三、线粒体DNA片段缺失。线粒体 DNA片段缺失的检测可以毛发为材料,应用甚为便利,是一项很好的衰老生物学标志。 四、DNA甲基化水平。DNA甲基化是真核生物基因表达渐成性调节的重要机制,通过改变染色体的结构,影响DNA与蛋白质的相互作用,抑制基因表达。 五、端粒的长度。对人体不同的组织进行端粒长度检测,发现端粒长度与细胞的寿限相关,精子、胚胎的端粒最长,而小肠粘膜细胞的端粒最短。 Zglinicki等报道,氧化压力造成的单链断裂是端粒缩短的主要原因,过氧化氢诱导细胞出现衰老表型的同时,也加快端粒的缩短。因此,端粒长度不单是细胞分裂次数的"计数器",而是一项细胞衰老的标志。改善环境改变衰老 《北京参考》:与衰老关系密切的因素有哪些? 童坦君:环境与遗传因素影响着衰老进程。其中遗传控制起着关键作用。衰老并非单一基因决定,而是一连串"衰老基因"、"长寿基因"激活和阻滞以及通过各自产物相互作用的结果。DNA(特别是线粒体DNA)并不像原先设想的那么稳定,包括基因在内的遗传控制体系可受内外环境,特别是氧自由基等损伤因素的影响,会加速衰老过程。在环境还没尽善尽美的条件下,环境是影响衰老的重要因素。譬如我国解放前平均寿命只有35岁,而现在北京市民平均寿命约76岁。还有我国的长寿地方如新疆的和田、江苏的南通、广西的巴马,说明了环境很重要。老百姓延缓衰老能做到的也只有尽量改善环境。但是,同一个长寿村,为什么不是每个人都长寿呢?同时说明遗传起着关键作用。在普通地域,常常有长寿家族,说明长寿基因可以通过遗传来表达。 端区长度随增龄缩短 女性比男性长寿 《北京参考》:人的衰老有性别差异吗? 童坦君:流行病学调查表明,人类女性比男性长寿。从分子水平如何解释女性寿命比男性长这一普遍的生命现象呢?这得从衰老机理说起,比较公认的如氧自由基学说,还有现代的DNA损伤修复学说、线粒体损伤学说以及端区假说等。下面将目前国际上衰老研究的热点结合我们自身的研究工作介绍如下,人类除干细胞外,大多数体细胞端区长度随年龄增加而缩短,而体外培养的细胞端区长度随传代而缩短;端区缩短到一定程度,细胞不再分裂,即不能传代,最终衰老直至死亡。端区是指染色体末端的特殊结构,此结构可防止两条染色体末端的DNA链(又名脱氧核糖核酸,它是蕴含遗传信息的遗传物质)因互相交联而造成染色体的畸变。研究中发现,相同年龄组的成年男性的端区长度长于女性,但随增龄端区长度缩短速率却比女性快,每年差3bp。 《北京参考》:人能够改变衰老吗? 童坦君:运动医学专家研究表明,心肺功能、骨质疏松情况、肌肉力量、身体的耐久力、胆固醇水平、血压等,通过长年锻炼或参加体力劳动、保健是可以改善的。难以改善的指标,只有头发的变白与皮肤弹性减退及萎缩变薄两项。从分子水平讲,我们在细胞衰老相关基因及信号传递通路的先后研究中发现抑癌基因p16通过调节1Kb蛋白活性,不通过端粒酶,就可影响端粒长度、 DNA修复能力与细胞寿命,初步阐明 p16是人类细胞衰老遗传控制程序中的主要环节。这是我国在人类细胞衰老机理研究上取得的突破,还发现衰老相关基因p2 1可保护衰老细胞免于凋亡。至于还有哪些基因管着衰老、怎么管着衰老的速度,都是人类将要继续研究的课题。 《北京参考》:老百姓目前如何做到延缓衰老? 童坦君:改善内外环境--遵循平衡饮食、适当运动、心理平衡原则。对于好的环境因素,我们充分利用它;对于不好的因素,要了解它、调控它。平平常常普普通通轻轻松松《北京参考》:童老您今年多大年纪?您看上去很精神,请介绍一下您的养生之道。 童坦君:我71岁。老年人要平平常常过日子,不要有压力。 我觉得健康老人最重要的是双腿灵、手脚要利落,不要老是坐着不动或躺着。如能胜任长途步行,则反映心脏功能良好。值得一提的是,老年人不要一看电视就好几个小时。对于饮食要普普通通,不要太挑剔,也不忌口,譬如说肥肉,我也吃它一口,但总量不要太多。在心理方面,平时要做高兴的事,以求轻轻松松。譬如爬山时,你可以什么事情都不想。老年人退休后的生活也可以出彩儿,但不要太累;帮着带带孙子,其实是最幸福的事情。 以崇尚科学为荣以愚昧无知为耻 《北京参考》:您当初从事衰老研究工作是怎么想的? 童坦君:据统计,一个人一生的医药费用有三分之二花在老年阶段,随着老年人的增多,其医疗费用将成为家庭和社会的沉重负担,因此老年医学越来越重要。对衰老的研究目的就是要提高老年人的生命质量,延长老年人的健康期、缩短带病期而不仅仅是多活几年。衰老研究是一个年轻的学科,过去的研究方向是整体器官研究,现在是在细胞水平方面研究,以后还要做模式动物研究,但是又不能把动物研究的直接结果用在人的身上,因此,衰老研究还要多样化,不仅要在细胞水平做,还要在器官水平、整体水平做,这样衰老机理研究才能跟上国际与时代。老年医学基础研究对老年临床医学有着重要的作用。我国老年医学基础研究还比较薄弱,如掉队就很难赶上,我们应以崇尚科学为荣,以愚昧无知为耻,我国虽然是人口大国,但是衰老研究工作并不矛盾,在国际上应该处于先进行列。美科学家衰老新解 人类寿命是可以改变的2005年02月07日 09:12 新华网 美国《新闻周刊》1月17日一期刊登一篇题为《岁月的皱纹》的文章,介绍五位科学家对衰老的生物化学过程提出的新解释;他们有一个共同的认识,即人类的寿命并不是固定不变的。文章摘要如下: 虽然死亡与纳税一样不可避免,但是未来人们的衰老过程会变慢,寿命也会明显延长。五位科学家对衰老的生物化学过程提出了新的解释,为益寿延年药物的问世敞开了大门。虽然他们的研究方法不尽相同,但都有一个共同的认识,即人类的寿命并不是固定不变的。增强:目标基因在抗衰老方面更加活跃,几年前,分子遗传学家辛西娅·凯尼恩的学生拿着一盘蚯蚓问过往行人他们认为这些蚯蚓有多大。多数人说,它们只有5天那么大。他们并不知道凯尼恩已经修补了这些蚯蚓的基因。这些蠕动的生物的健康状况完全像刚出生5天的样子,但实际上它们已经出生144天了 — 这是它们正常寿命的6倍。 十年来,凯尼恩坚持不懈的研究已经表明:通过改变激素水平增强约100种基因的功能,“就可以轻而易举地使寿命大为改变”,至少蚯蚓是这样。这些基因有的能够产生抗氧化剂;有的能够制造天然的杀菌剂;有的则参与将脂肪运送到整个身体;还有一些被称作是监护人,据凯尼恩说,它们“能够使细胞成分保持良好的工作状态”。一般来说,这些基因越活跃生物的寿命就可能越长。 1993年,凯尼恩关于蚯蚓基因的研究成果首次发表,持怀疑态度者预言这项成果在人类身上行不通。科学家们仍不了解人类和蚯蚓寿命长短如此悬殊的确切原因,更不知道改变蚯蚓寿命长短对人类来说可能意味着什么。不过,蚯蚓的细胞构成很大程度上与高等哺乳动物十分相似。这项发现为生产保健营养品的长生公司打开了大门,该公司正在尝试开发一种药物,这种药物能够产生与凯尼恩的基因修改相同的效果。凯尼恩说:“我并不是说改变一些基因,人类就能够长生不死,但是这可以使80岁的老人看上去像40岁的样子。”对此,谁会反对呢? 压力:长期紧张使细胞衰老得更快 如果你抱怨压力使你又增添了新的皱纹或白发,很有可能你是对的。 《国家科学院学报》去年秋季发表的一项研究报告为你的这种看法提供了科学依据。参与这项研究的加州大学精神病学助理教授埃莉莎·埃佩尔和她的同事们发现,长期处于紧张状态,或仅仅是感到了紧张,就能明显缩短端粒的长度。端粒就是细胞内染色体端位上的着丝点,可用来衡量细胞衰老过程。端粒越短,细胞的寿命就越短,人体衰老的速度就越快。 埃佩尔对39名年纪在20岁—50岁之间的女性进行了研究,她们的孩子有的患严重的慢性病,比如大脑性麻痹。埃佩尔将她们与同一年龄组但孩子都很健康的另外19名母亲进行了比较。母亲照顾患病小孩的时间越长,她的端粒就越短,而且她所面临的氧化压力(释放损害DNA的自由基的过程)就越大。与感觉压力最小的妇女相比,两组女性中自称压力最大的人,其端粒与年长她们10岁的人相当。 虽然埃佩尔承认要想证实她的发现还需要进行更多的研究,但是她认为这个结果可能有积极意义。她说:“既然我们认为我们能够看到压力会造成细胞内的损伤,人们可能会更加重视精神健康。”她补充说,DNA受损可逆转是“绝对”有希望的,“改变生活方式,学会化解压力,就有可能改进你的生活质量、情绪和延长寿命”。 限制:严格控制卡路里摄取可能减缓衰老速度 1986年,当伦纳德·瓜伦特第一个提出通过限制卡路里的摄取来研究生物学的衰老时,这个主意听上去荒唐可笑。然而在过去十年中,研究人员主要了解为什么突然降低卡路里的摄取能激发一种名为SIR2的基因的活性并能延长简单生物体的寿命,而且取得了很大进展。 瓜伦特和一位名叫戴维·辛克莱的哈佛大学研究者都是这方面的顶尖专家,他们主要研究名为“sirtuins”的抗衰老酶,这是SIR2或哺乳动物身上的与SIR2类似的SIRT1所产生的蛋白家族。瓜伦特的实验已经搞清楚了SIR2背后的很多基本分子过程。例如一种名为NADH的天然化学物质可以抑制“sirtuins”发挥作用;他们已经确认NADH含量较低的酵母存活的时间更长。辛克莱发现白藜芦醇与限制卡路里摄取有关联。研究表明,酵母在大剂量白藜芦醇的作用下能延长寿命70%。 因为很少有人愿意大幅度限制卡路里的摄取,瓜伦特就开始寻找一种有相同功效的药剂。长生公司也开始利用瓜伦特的研究成果,这意味着有朝一日不用再提节食这个字眼,人类或许照样能从限制卡路里摄取中获得好处。 补给:两种化学物质使老鼠变年轻 据《国家科学院学报》2002年发表的研究报告说,加州奥克兰研究所儿童医学专家布鲁斯·埃姆斯和他的同事把两种在体细胞中发现的化学物质 — 乙酰基L肉碱和α硫辛酸 — 给老鼠吃。这不仅使老鼠在解决问题和记忆测试中表现更佳,而且行动起来也更加轻松和充满活力。 研究人员确认,不同化学物质混合起来能够改善线粒体和细胞器的功能,而细胞器是细胞主要的能量来源。埃姆斯在一项研究中发现,当加入过氧化铁或过氧化氢的时候,硫辛酸能保护细胞不被氧化。衰老:透过现象看本质一、前言当前,生命科学有关衰老机制的研究,正处于百花齐放、硕果累累的时期(Comfort, 1979; Medvedev, 1990; Hayflick, 1998; Kirkwood, 1999; Warner, 2005; Yin & Chen, 2005),然而,由于衰老过程极其复杂,影响因素千变万化,又由于各个领域研究工作者的知识局限和专业偏见,我们实际面临的是一个鱼龙混杂,莫衷一是的混乱局面(Medvedev, 1990; Olshansky et al. 2002; de Grey et al., 2002; de Magalhaes, 2005)。在这篇论文中,我们将首先简明地回顾有关衰老机理研究的重要进展,探讨在衰老过程中,遗传基因调控与不可避免的环境因子损伤的相互作用。接着,我们强调指出,为了研究真正意义上的衰老过程,应该将注意力集中在健康状态下的种种生理性老化改变,而不是病理性变化。例如,生物体内蛋白质的增龄性损变是一个最为普遍存在的老化现象。在详细阐述自由基氧化和非酶糖基化生化过程,以及熵增性老年色素形成生化机理后,重点探讨了羰基毒化(应激)在衰老过程中的特殊重要意义(Yin & Brunk,1995)。最后,透过现象看本质,提出生化副反应损变失修性累积是生理性衰老过程的生化本质。二、衰老理论概述和对衰老机理研究的总体评论大量的生命现象和实验事实提示,尽管少数低等动物的死亡显示出有一些神秘的“生命开关”在起作用,但衰老过程,尤其是高等动物在成年后的衰老过程已被清楚地认识到是一个受环境因素影响的缓慢渐进的损伤和防御相拮抗的过程。大量现行的重要的衰老研究成果都无可争辩地显示了这一点(Comfort, 1979; Medvedev, 1990; Hayflick, 1998; Yin, 2002)。为了便于分析和讨论,我们首先列出数十种迄今最为重要的衰老学说:整体水平的衰老学说主要有:磨损衰老学说(Sacher 1966)、差误成灾衰老学说(Orgel 1963)、代谢速率衰老学说、自体中毒衰老学说(Metchnikoff 1904)、自然演进衰老学说(程控学说)、剩余信息学说(程控学说)、交联衰老学说; 器官水平的衰老学说有:大脑衰退学说、缺血损伤衰老学说、内分泌减低衰老学说(Korencheysky, 1961)、免疫下降衰老学说(Walford 1969);细胞水平的衰老学说有:细胞膜衰老学说(, 1978)、体细胞突变衰老学说(Szilard, 1959)、线粒体损伤衰老学说(Miquel et al., 1980)、溶酶体(脂褐素)衰老学说(Brunk et al., 2002)、细胞分裂极限学说(程控学说);分子水平的衰老学说有:端粒缩短学说(程控学说)、基因修饰衰老学说、DNA修复缺陷衰老学说(Vilenchik, 1970)、自由基衰老学说(Harman, 1956, 2003)、氧化衰老学说(Sohal & Allen, 1990; Yu & Yang, 1996)、非酶糖基化衰老学说(Cerami, 1985)、羰基毒化衰老学说(Yin & Brunk, 1995)和微量元素衰老学说(Eichhorn, 1979)等等。其它重要的衰老学说还有熵增衰老学说(Sacher 1967, Bortz, 1986)、数理衰老学说和各种各样的综合衰老学说(Sohal, 1990; , 1991; Kowald & Kirkwood, 1994)。从上述26种主要的衰老学说可以初略的看出绝大多数衰老学说(22种)认为,衰老是因生命过程中多种多样的外加损伤造成的后果。简言之,是一个被动的损伤积累的过程。应该说明的是在4种归类为“程控学说”的衰老理论中,细胞分裂极限学说和端粒缩短学说所观察研究的所谓“细胞衰老”与动物整体的衰老有着很大的差别。就“细胞不分裂”这个概念本身而言,并不是“细胞衰老”的同义词。解释很简单,终末分化的神经细胞和绝大多数肌肉细胞在生命的早期(胎儿或婴儿)时期完成了分化以后,便不再分裂,却仍然健康的在动物体内延用终身(Sohal, 1981; Porta, 1990)。近来Lanza等甚至用体外培养接近倍增极限的胎牛二倍体成纤维细胞作为供核细胞成功地培育出了6只克隆牛(Lanza et al., 2000),所述的6只克隆牛的端粒比同龄有性生殖牛还长。其实,从衰老过程的常识(或定义:衰老是生物体各种功能的普遍衰弱以及抵抗环境伤害和恢复体内平衡能力逐渐降低的过程)的角度来讲:端粒缩短与细胞和整体动物的增龄性功能下降基本无关。因篇幅所限,本文不作详谈(Wakayama et al. 2000; Cristofalo et al., 2004)。生命科学对于遗传因子与环境损伤各自如何影响衰老进程的认识经历了漫长的“各自为证”的阶段。经过遗传生命科学家几十年的辛勤探索,现已实验确定的与衰老和长寿有关的基因已达几十种(Finch & Tanzi 1997; Warner, 2005;),例如:age-1, Chico, clk-1, daf-2, daf-16, daf-23, eat-2, gro-1, hsf-1, hsp-16, hsp-70, Igflr+/-, indy, inR, isp-1, KLOTHO, lag-1, lac-1, MsrA, mth, αMUPA, old-1, p66sh, Pcmt, Pit-1, Prop-1, ras2p, spe-26, sag, sir2, SIRT1, sod1 基因等等(Hamet & Tremblay, 2003; Warner, 2005)。这些寿命相关基因可被大致分为四类:1)抗应激类基因(如,抗热休克,抗氧应激类);2)能量代谢相关基因(如,胰岛素/胰岛素因子信号途径,限食或线粒体相关基因);3)抗损伤和突变类基因(如,蛋白质和遗传因子的修复更新等);4)稳定神经内分泌与哺乳动物精子产生的相关基因等。好些“寿命基因”的生物学功能目前还不是很清楚。另外,研究发现的与细胞分裂和衰老相关的细胞周期调控因子有CDK1、PI3K、MAPK、IGF-1和 P16等等(Wang et al., 2001; de Magalhaes, 2005)。因此,生命科学家已经清醒地认识到确有与衰老和长寿相关的基因,但掌管寿命长短的遗传因子不是一个或几个,也不是一组或几组,而是数以百计的遗传因子共同作用的结果(Holliday, 2000; Warner, 2005)。衰老过程是与生理病理相关的,在调控、防御、修复、代谢诸多系统中的多个基因网络共同协调,抵御种种环境损伤的总结果。总之,衰老是先天(遗传)因素和后天(环境)因素共同作用的结果,已逐渐成为衰老生物学研究领域公认的科学事实。认清了动物衰老的上述特征,关于衰老机制的研究便可理性地聚焦在(分子层面上的)损伤积累和防御修复的范围之内。三、衰老的生理性特征和潜藏的分子杀手为了讨论真正意义上的衰老机制,有必要对衰老和老年疾病作较为明晰的界定。一般来讲,学术界普遍认同:衰老不是一种疾病。衰老机制主要研究的是生物体健康状态下的生理性老化改变。考虑到衰老过程是一个普遍存在的、渐进性的、累积性的和不可逆的生理过程,因此造成生理性衰老的原因应该是有共性的损伤因素(Strehler, 1977)。这些因素造成的积累性的,不可逆的改变才是代表着实际意义的衰老改变。其实无论是整体水平、器官水平还是细胞水平的衰老改变归根结底还是分子水平的改变,是分子水平的改变分别在不同层次上的不同的表现形式而已。许多非疾病性衰老改变,例如增龄性血管硬化造成的血压增高,又例如胶原交联造成的肺纤维弹性降低和肺活量下降,还有皮肤松弛,视力退化,关节僵硬等等都隐含着生物大分子的内在改变(Bailey, 2001)。这些改变从整体和组织器官的角度来讲不算生病,但分子结构已经“病变”了。例如,蛋白质的交联硬化就是一个最为常见的不断绞杀生命活力的生化“枷锁”,即使是无疾而终的老人,体内蛋白质的基本结构与年轻人的相比也早已面目全非了。生物体内蛋白质的增龄性损变和修饰是一个普遍存在的老化现象。衰老的身体,从里到外、从上到下都可观察到增龄性的蛋白质损变。当然,许多学者会毫不犹豫地赞同,基因受损应该是导致衰老的重要原因之一。然而,‘衰老过程为体细胞突变积累’的假说却遭到了严谨的科学实验无情地反驳,例如,辐射损伤造成遗传因子突变在单倍体和二倍体黄蜂(wasp)身上应该造成明显的寿差,但研究结果表明,DNA结构遭受加倍辐射损伤的二倍体黄蜂的寿命与单倍体黄蜂相比没有出现显著性的寿命差别,否定了上述推测 (Clark & Rubin, 1961; Lamb, 1965)。另外,大量的生物医学研究表明,衰老过程中DNA损伤和突变的增加主要导致病理性改变(Bohr, 2002; Warner, 2005),比如,造成各种各样的线粒体DNA的疾病(Holliday, 2000; Wallace, 2003)以及癌变的产生等。考虑到衰老过程明显的生理特征,蛋白质的增龄性损伤和改变则显然比遗传物质的损伤、变构对“真正衰老”做出了更多“实际的贡献”(Kirkwood,1999; Ryazanov & Nefsky,2002; Yin & Chen, 2005)。 另外,Orgel (1963) 提出的“差误成灾衰老学说”认为:衰老是生物体对‘蛋白质合成的正确维护的逐渐退化’也遇到了科学实验的强烈挑战而基本被否定(Gallant & Palmer 1979; Harley CB et al., 1980)。Harley等人(1980)的研究表明:‘体外培养的人体成纤维细胞在衰老过程中蛋白质的合成错误没有增加’(注意,对于蛋白质来说,氧化应激几乎为无孔不入和无时不在的生命杀手)。进而,该领域的科学家们越来越清楚地认识到,蛋白质的表达后损变才是生命活动和衰老的最主要的表现。因为与衰老相关的蛋白质变构在衰老身体的各个部位比比皆是(如身体各器官组织的增龄性纤维化和被种种疾病所加速的纤维化),而且组织内蛋白质的衰老损变是最终的也是最普遍的衰老现象。事实上,老化蛋白质损伤几乎在每个衰老假说中都有所涉及。因此,本论文的分析和讨论的重点将聚焦在蛋白质的损伤和修复与衰老的相关性等范畴。总的来说,蛋白质的合成、损变与更新贯穿于整个生命过程中。在生命成熟以后,蛋白质的合成与降解(速度)处于动态平衡中。随着年龄增长,这个平衡逐渐出现倾斜(Bailey, 2001; Terman, 2001)。衰老的生物体细胞内无论是结构蛋白还是功能性蛋白质的损伤和改变的报道比比皆是(Stadtman, 1992, 2003; Rattan, 1996; Ryazanov & Nef

凋亡是细胞程序性死亡,是细胞按照机体的指令在一定时间,不论是由于外因还是内因,自动死亡的过程,凋亡是个体的生命活动,是机体生命活动正常进行的一种机制,衰老是整体的概念,=如器官衰老,

某抗衰老方法的研究进展论文

长生不老的愿望只能通过人类去探索才能实现。但是,在一般人的思想中总是固执地认为,有生必有死,这是一种不可抗拒的自然规律。既然衰老是一种规律,而不是定律,那么形成这一规律的本质一定是有因可寻的生物学现象,因此也有理由相信,只要我们查明这一规律的本质,就能按这一规律去设计出使人返老还童和长生不老的方法。 大自然中许多单细胞的动物,如变形虫,在条件适宜下,依靠虫体分裂繁殖,可永生不死;生殖细胞和癌细胞也可长生不老;多细胞的水母类、海鞘类、扁形动物三肠类等众多的低等动物,经长时间饥饿后,就做反向生长发育,发生实质性的返老还童。征服衰老与长生不老决不违背什么自然的规律,人的衰老是可征服的,只是人体衰老机理更加复杂一些。

其实这种要真的不要相信啊 我觉得是药三分毒的 所以尽量不要尝试了 可以吃一些胶原哦 花晴宜就可以了 当然除了食补以外还要多运动哦 比较好的适合女性的运动我觉得是瑜伽

抗衰老方法其实很简单,简单日常就能做到!以下为您分享

1、【解码二十一】ENlivEN21 W+NMN。这是经过了科学的认证和临 床的数 据,并且取得了多 项突破性医学贡献,近几年来国 际上权 威的学术、论文、反复证明改善老化D NA,大幅延缓衰老和防止老年痴 呆症等多种神 经元退化

2、常吃海藻制品

海带、紫菜等海藻具有类似血浆的成分,富含多种矿物质和营养物。海藻有助于使皮肤解毒和抗击自由基,进而减缓衰老。

3、压力不要过大

多项研究表明,压力过大会导致皱纹早生,增加面部“五线谱”。不妨每天找点乐子,放松身心。

4、不吃或少吃糖

过分偏爱甜食则导致糖与皮肤中的蛋白质发生反应,危害负责维持肌肤弹力的胶原蛋白,进而加速皮肤衰老进程。

5、多摄入蛋白质

多吃蛋白质可使皮肤更嫩白,蛋白质在胶原质和弹力蛋白的形成过程中起到关键作用。良好的蛋白质食物来源包括:肉类、鱼类、鸡蛋、豆类等。

6、晚霜营养护理

可在睡前使用含有维生素B、C和P等营养成分的晚霜产品,以刺激细胞代谢和血液循环。

抗衰老方法很简单,养颜抗衰老简单日常就能做到!

【解码二十一】ENlivEN21 W+NMN衡中粒定制营养

NMN它存在于所有的活 细包中,维持着代谢和线 粒体功能。是人体内固有的物 质,在人体中NMN是NA D+的前体,其生 理功 能主要通过提 高NAD+水平来体现。NAD+则是维持细包核与线粒 体之间的化学通信纽带,如果此纽带减弱,将导致线  粒体的衰退、缩短、和线粒 体D NA的突变、甚至诱导细包凋 亡,线 粒体的衰 退缩短是细包衰 老的一个重要原因,细包衰 老则是人体整体脏 器循 坏系 统的衰 -老。所以补充外源的NAD+是一个重要途径。W+NMN(端 粒塔修复因子)经口服后,可迅速进入血 液并作用于其 他身体组织,提升随着年龄而降低的NAD+水平。

当人体提高NAD+水平后,需要的是【解码二十一】衡中粒 组合营养集合体,可迅速进入血-液,细包,为细包提供启动所需的所有燃 料,提供能 量、维持D NA的健 康和线粒 体功 能。就好比同样给予雨水的两棵禾 苗,一颗给予施禾 苗必须的肥 料,一颗什么肥料也不给予,可想而知的是施肥的那颗禾 苗会茁 壮成长,结出殷 实饱满的果实,而另一棵禾苗肯定会是根不壮苗不旺,甚至会枯 萎,同样的道理,

学婴儿式简单舌头操,抗衰老

step1:每天早晨洗脸后对着镜子,舌头伸出缩进,各做十次,然后把舌头放在嘴巴外面,左右摆动为一组,做五组。

step2:坐在坐在凳子上,双手十指张开放在膝盖上,上半身稍微前倾,鼻子吸气嘴巴大大的张开,舌头吐出来并呼气,睁大双眼,平视前方,反复操作5次。

step3:嘴巴张开,舌头伸出并缩进,同时用右手食指、中指与无名指的指尖在左下边至咽喉处,上下搓擦30次,接着舌头伸出与缩进,用左手三指的指尖,在右下边至咽喉处,上下搓擦30次即可。

抗衰老方法很简单,养颜抗衰老,简单日常就能做到!

一、肌肤抗氧化

人体由细胞组成,人体衰老也是从细胞开始的。压力、紫外线、大量运动等因素对健康细胞产生“氧化”破坏作用,最终导致和加速了细胞乃至整个人体的衰老。因此近年来流行一个理念——抗氧化。其实,抗氧化对我们并不陌生,像维生素C、E都有抗氧化作用,但都是普通的抗氧化物质。番茄红素被认为是抗氧化活性最强的天然营养素,其抗氧化活性是维生素C的1000倍,维生素E的102倍。

Tips

每天至少吃1~2份由2~3种富含抗氧化物质的水果及蔬菜(柑橘、梨子、葡萄、苹果、樱桃、蓝莓、西瓜;番茄、花椰菜、胡萝卜、青椒等)组成的拼盘;

二、适脂生活

脂肪摄入多了会引起肥胖、高血脂、动脉粥样硬化等。但脂肪有好坏之分。动物的油脂等饱和脂肪属于“坏”脂肪,是导致胆固醇升高、血脂升高、动脉粥样硬化等心血管疾病的罪魁祸首。而植物油(尤其是橄榄油、葵花籽油)和坚果当中所含的脂肪主要为不饱和脂肪,对人体有益。其中对人体最为重要的莫过于欧米茄-3不饱和脂肪酸了。

Tips

1、适当补充大豆、花生、核桃、松子等富含不饱和脂肪和必需脂肪酸的食物;

2、每周吃1~2次鳕鱼、鲱鱼、鲑鱼等富含不饱和脂肪酸的深海鱼类。

三、【解码二十一】ENlivEN 21  W+NMN(衡中粒营养)

华 盛 顿大 学医 学 院的科 学 在2016年发表的一篇论 文中指出,服用W+NMN后,10分钟内W+NMN(衡中粒营养)在血 液中的浓 度逐渐上升,并且在30分钟内,NM N随血 液循环进入多个组 织中,并在组织中合成NAD+,提升其水 平。促进活 化提升DN A线 粒体的自我修 复能力和速度,刺 激人体内细包的加速分 裂和分化,在修 复全身各器-官老化的同时,也显 著地再 生修 复生殖系统的衰 老退化。延 缓身体器 官生 理性衰退和老化!!

【解码二十一】W+NMN组合营养改善衰 老指标的研究几乎得到了所有科 学杂 志的支持,Nature、Science 、Cell等众多期刊的研 究证 实了W+NMN在神 经退行 性疾-病(老年痴呆、渐 冻症和帕金森)、心 血-管、听力视力方面的作用。

四、饮食有道

有人说,一个人是否开始老了从体重就能看出来。这话不无道理。在标准体重以上的人,寿命随体重增加而缩短。众多研究显示,在许许多多种延寿措施中,限食是最有效的措施!饱食不仅会增加肠胃负担,还会因为摄入过多的热量导致肥胖,而肥胖本身会成为高血压、心脏病、糖尿病、胆道疾病乃至癌症的诱因。

Tips

饭吃八分饱。俗话说“八分饱、肠胃好”,吃饭的时候。八分饱的感觉是最舒服的,而八分饱又能保证基本的营养需求。

五、补充蛋白

未成年的女性肌肉逐年增长,25岁时达到最高值,以后又逐年缓慢下降。30岁女性的肌肉比例约占体重的40%~45%,而老年人仅约占25%左右。从这个角度讲,衰老的过程就是肌肉逐渐流失的过程。除了适当的锻炼有利于保持身体的肌肉含量外,人体肌肉衰老与摄取蛋白质存在着非常密切的关系。

Tips

每天中午一次性摄入日需蛋白质的80%,它与每天4次平均摄入相同数量的蛋白质相比,更有利于肌肉蛋白质的合成,促进非脂肪组织的生长,从而达到延伸肌肉衰老的目的。

六、膳食纤维促进身体排毒

随着年龄的增长,人的胃肠也逐渐慵懒起来。便秘是困扰众多中老年人甚至是年轻人的一大隐痛之一。便秘的原因十分复杂,但主要是因不良生活习惯造成的,饮食中缺乏膳食纤维即为重要原因之一。食物中膳食纤维在肠道内吸收水分而充分膨胀,可促进肠壁的有效蠕动,使肠内容物迅速通过肠道而排出体外,客观上起到了通便的作用。同时可将肠道内各种毒素吸附、稀释、包裹,并促使其迅速排出体外,起到肠道清道夫的作用,并可预防大肠癌的发生。膳食纤维对于男性常见的几大慢性疾病都有很好的预防作用,可以说是维护人体胃肠健康的多面手。

Tips

每天1份粗粮:如玉米、小米、麦片、全麦食品等,以及1份富含膳食纤维的蔬菜,如木耳、银耳、菌类、胡萝卜、豌豆、裙带菜等。

大家多少都知道的就是健康饮食、生活、运动就可以有效抗衰老。但是实际能做到的少之又少。所以现在大部分人群的抗衰都是比如吃抗衰产品来达成,我自己吃的是【益生好NMN18000】这款产品。NMN可以说是目前综合抗衰效果最好的物质之一了,市面上很多NMN产品就很贵,我认为是不值的。我吃的益生好这款,性价比相对而言我觉得就很符合我的需求。1瓶几百块,可以吃一个月,是比较可以接受的。统一了解

抗衰老药物的最新研究进展论文

澳洲昆士兰科技大学(QUT)的研究有了新的发现! 他们发现了一种可以「可以让细胞年轻20岁」的抗衰老药物。

据《每日邮报》报导,昆士兰科技大学癌症和老龄化研究计画(CARP)的教授Ken O’Byrne表示, 他们开发出了一种可以抗衰老的药物,可以延缓甚至逆转衰老过程。 O’Byrne教授说:「我们可以让细胞从60岁变成40岁。」

当归是最常用的中药之一,来源于伞形科植物当归Angelicasinensis(Oliv.)Diels的干燥根。其性温,味甘、辛。归肝、心、脾经;具有补血活血、调经止痛、润肠通便的功能;用于血虚萎黄、眩晕心悸、月经不调、经闭痛经、虚寒腹痛、风湿痹痛、跌仆损伤、痈疽疮疡、肠燥便秘等症。除中医处方配方用药外,含当归的中成药达80余种。同时,当归也是中国卫生部规定的可用于保健食品的原料,在日常生活中常被作为滋补品食用。为此,国内外许多学者对当归的栽培、加工、化学成分、药理作用、临床应用等方面进行着广泛研究,尤其是当归的化学成分和药用价值更是研究的热点,近年来从中发现了很多新成分和生物活性,阐明其作用机理。本文对当归的化学成分和药理作用进行了综述,以期为当归的临床应用、新产品研究与开发提供依据。

1化学成分

当归中分离、鉴定到的化合物主要包括挥发油、有机酸、多糖和黄酮等成分。

挥发油当归中挥发油的含量约为1%,为当归的主要有效成分之一。挥发油中藁本内酯的含量最高,其次为丁烯基酞内酯。刘国生等⑴曾将当归的挥发油分为中性、酚性和酸性3个部分。从化学结构上看,挥发油中的主要成分为苯酞类及其二聚体类化合物。

苯酞类:苯酞类化合物是当归挥发油中的主要成分,也是从当归中最早分离鉴定的一类化合物,包括Z藁本内酯、E藁本内酯、洋川芎内酯A、E-丁烯基苯酞、Z-丁烯基苯酞等成分。苯酞类二聚体:苯酞类二聚体是近年来从当归中分离鉴定的化合物,主要有Z-383'a,7'a-四氢"6,3',7,7'a-二聚藁本内酯劣'项同、V-,',7,3'a-二聚藁本内酉旨、levistolideA、(3Z,3Z')','-双藁本内酯、当归双藁苯内酯A等。

其他成分:当归挥发油中还含有以ai蒎烯、P雪松烯、氧化石竹烯等为代表的萜类化合物;以丁烯基苯酣、丁香油酣、对-乙烯基愈创木酣等为代表的酣类化合物;以十四烷、壬烷、正十一烷等为代表的烷烃类化合物。

有机酸类当归中含有多种有机酸类化合物,其代表为阿魏酸。阿魏酸是从当归中较早分离出来的有效成分。自1979年林茂等首次从当归中提取分离出阿魏酸后,许多学者对阿魏酸的提取工艺和含量测定进行了研究?。目前,阿魏酸是2010年版中国药典当归质量控制的指标成分。同时,阿魏酸也是川芎、藁本药材质量控制的指标成分。然而,阿魏酸存在于多种植物中,不是当归的特征性成分。此外,当归中还含有丁二酸、烟酸、十六烷竣酸、香荚兰酸、邻二苯酸、茴香酸、壬二酸、棕榈酸、亚油酸、硬脂酸等酸性成分。

多糖类当归多糖(Angelicapolysaccharide,APS)是当归中的水溶性有效成分,其含量可达到15%。目前,提取分离当归粗多糖较成熟的方法为水提醇沉法。当归粗多糖再经过离子交换层析、凝胶层析、DEAE纤维素层析等分离后可得到高纯度的多糖亚组分。商澎等先后从当归中提取分离得到当归总多糖及其亚组分,并分析了多糖中单糖的组成,主要为葡萄糖、阿拉伯糖、鼠李糖、半乳糖等;酸性多糖为糖醛酸。但是单糖的组成及其比例不同。

黄酮类王芙蓉等_以75%乙醇为溶剂,采用回流提取法从当归中提取、分离得到黄色黏稠状物质,经金属盐类试剂络合反应鉴定为黄酮类化合物。之后,李谷才等四通过正交试验确定了用乙醇提取当归中总黄酮的最佳条件为:乙醇浓度为70%,固液比为1:50,提取温度85°C,提取时间2h;并用分光光度法测出当归中黄酮的含量为

。但是,迄今为止,未见到从当归中分离鉴定黄酮类单体化合物的研究报道。

其他成分当归中含有苏氨酸、亮氨酸、异亮氨酸等多种氨基酸,以及铜、铁、锰、锌等多种微量元素。此外,当归中还含有尿嘧啶、腺嘌昤、维生素E、青霉菌属的代谢产物,以及香豆素类等成分U7)。

2药理作用

大量的药理研究报道表明,当归及其主要化学成分具有广泛的生物活性,对造血系统、循环系统、神经系统等均有药理作用。

对造血系统的影响当归被称为“补血要药”,其补血作用得到历代医家的公认。对当归补血作用的研究主要集中于两方面:一是体内实验,研究当归对血虚动物模型的补血效果;二是通过体外实验,研究当归的补血作用及其机理。而后者是目前研究工作的热点。

APS是当归造血的主要活性成分之一,其造血机理主要是通过剌激与造血相关的细胞、分子等来修复造血功能。近年研究表明,APS能动员外周血和骨髓中的单个核细胞促进造血。胡晶等?将APS动员的雄性BALB/c小鼠的外周血单个核细胞静脉输注给受到射线照射的雌性同系受体小鼠,采用聚合酶链式反应方法鉴定造血重建的来源;发现APS组受体小鼠WBC、PLT、HGB、30d存活数均明显高于对照组和生理盐水组(P<);说明APS动员的小鼠外周血造血干/祖细胞移植后能够有效地重建小鼠的造血功能。张雁等〔19’%发现APS可通过降低造血干细胞表面的黏附分子的表达,促使骨髓单个核细胞(BMNC)更早进入外周血循环,促进造血功能的修复。进一步研究发现,APS能通过降低放射损伤小鼠BMNC凋亡相关基因P53mRNA的表达来抑制细胞凋亡;以及提高BMNC黏附分子抗体CD44和CD49d的表达;上调BMNC对细胞外基质中纤维连接蛋白的黏附率来加速BMNC增殖分化,从而促进造血。

肌卫星细胞(MSCs)是造血功能重建最有希望的种子细胞来源。王晓玲等_采用MTT法检测经不同浓度APS干预的无培养基和用骨髓基质细胞培养的小鼠MSCs,发现经过不同浓度APS干预后的骨髓基质细胞条件培养的各MSCs增殖显著,并且经过APS干预的骨髓基质细胞条件培养基可有效地改变MSCs的生长特性,明显促进MSCs增殖及干细胞因子受体蛋白的表达。

对循环系统的作用

对心血管系统的作用:当归及其挥发油具有调节血管生成、抑制心肌细胞肥大和抗心律失常的作用。Yeh等_发现当归挥发油和正丁烯基苯酞内酯能抗血管生成;而当归水煎液能促进血管生成。这为研发新的血管生成调节剂治疗心血管疾病提供了依据。喻华等_将当归注射液作用于血管紧张素n诱导的肥大心肌细胞,发现心肌细胞蛋白含量减少,说明当归注射液能有效抑制血管紧张素n诱导的心肌细胞肥大。肖军花等_发现当归挥发油的中性非酣性部位(A3)具有明显的抗心律失常作用,能抑制心肌自搏频率,延长功能性不应期,降低心肌收缩力和动作电位振幅,缩短复极20%时程和复极90%时程,其作用机理可能与A阻滞Ca2+、Na+内流和促进K+外流有关,且对K+通道具有选择性。

抗血小板凝聚作用:当归中的阿魏酸能对抗血栓素A:(TXA2)的生物活性,增加前列环素(PGI2)的生物活性,使PGI2/TXA2的值升高,从而抑制血小板凝聚。当归注射液能使弥散性血管内凝血大鼠的血小板聚集和黏附降低,红细胞变形能力增强,从而达到抑制血小板凝聚的作用_。

抗动脉粥样硬化:当归及其有机酸成分阿魏酸均具有抗动脉粥样硬化的作用。当归能够改善高脂血清对血管内皮细胞形态结构的损伤,逆转高脂血清导致的内皮细胞中TGB^表达降低和bFGF表达增加,达到抗动脉粥样硬化的作用。阿魏酸治疗塞性动脉粥样硬化症也具有显著疗效。

对神经系统的作用当归可减轻缺氧时神经元的变性,并在激活血管内皮生长因子(VEGF,具有类似血管源性的神经保护和神经营养作用)mR-NA中有一定的调控作用,提示当归在保护损伤神经及促进神经再生方面具有重要作用咖。

当归注射液可通过降低神经干细胞的增殖来保护宫内缺氧新生大鼠的神经干细胞。钟星明等_的研究表明:当归注射液能够减少宫内缺氧后幼年大鼠神经胶质细胞GFAP的表达,抑制新生大鼠大脑内N甲基D-天冬氨酸受体亚单位NR1的表达,达到对宫内缺氧新生大鼠脑组织的保护作用。此外,当归注射液对神经系统疾病慢性脑低灌注和帕金森病均有一定的治疗作用,其作用机制可能分别为上调海马区Nrf2的RNA与蛋白水平的表达和通过特定信号通路激活SIRT1、抑制羟基多巴胺诱导PC12细胞的凋亡_。

对平滑肌的作用

对子宫平滑肌的作用:当归的挥发油和水提物对子宫平滑肌具有不同的作用。前者是抑制子宫收缩的主要活性成分。刘琳娜等-的研究表明,当归挥发油可抑制小鼠离体正常子宫平滑肌的收缩幅度、频率和活动力,对催产素所致离体子宫平滑肌的剧烈收缩亦可抑制,并能使其恢复至正常水平;说明当归挥发油对正常和病理性子宫平滑肌均有抑制作用,并有较强的抗子宫平滑肌痉挛作用。肖军花等_进一步发现当归挥发油中A;为抑制子宫收缩的最佳活性部位,其作用机理与其抑制PGF2下游P42/44MAPKCx43信号转导途径有关。

相反,当归的水提物则为兴奋子宫的主要活性成分。当归水煎液在浓度时,对离体小鼠子宫肌有兴奋作用,这与当归兴奋子宫肌上H受体有关,但与子宫肌上M受体、a受体和前列腺素合成酶无关。实际上,当归挥发油中的酸性部位(A1)、酣性部位(A2)也能兴奋子宫,但呈剂量相关的双向作用。例如,肖军花等_研究结果显示,在正常离体大鼠子宫中,A1在0~160mg/L呈兴奋作用,仅在320mg/L才出现明显的抑制作用;小剂量A2(忘10mg/L)略有兴奋作用,而大剂量(为20mg/L)则表现出抑制作用。

对支气管平滑肌的作用:当归挥发油具有松弛支气管平滑肌的作用。王锋等?发现当归挥发油对静息状态下的豚鼠离体气管平滑肌有明显松弛作用。其中,^是发挥该作用的主要组分;A1和^对豚鼠离体气管平滑肌的作用不明显,但A1与^之间存在交互影响,两者合用时可使^对豚鼠离体气管平滑肌的松弛作用减弱;提示A1可能会拮抗A松弛豚鼠离体气管平滑肌的作用。

对胃肠道平滑肌的作用:当归挥发油能舒张胃肠平滑肌,降低肌张力。王瑞琼等_采用兔离体胃肠平滑肌条,通过二道生理记录仪描记胃肠平滑肌等长收缩或舒张的肌张力变化曲线,计算肌张力变化率。发现当归挥发油对兔离体胃底、胃体、十二指肠、空肠和回肠平滑肌均具有舒张作用,且呈现浓度依赖关系。

对主动脉平滑肌的作用:当归挥发油能抑制主动脉平滑肌的收缩。吴国泰等_采用离体平滑肌灌流实验系统,观察当归挥发油对正常兔离体胸主动脉平滑肌和去甲肾上腺素(NE)、氯化钾(KCl)预收缩的胸主动脉平滑肌张力的影响,发现当归挥发油可明显抑制NE、KCl引起的兔离体胸主动脉平滑肌的收缩。

免疫作用APS是当归发挥免疫作用的主要活性成分,对特异性免疫和非特异性免疫均有较强的促进作用。郭振军等_用ELISA方法检测APS剌激M9分泌TNF^a及IL~4的情况。发现APS可以阻断MR介导的M9吞噬作用,且呈现剂量依赖关系。另外,APS能上调乙型肝炎病毒转基因小鼠的树突状细胞功能。说明APS对非特异性免疫有促进作用。APS及其亚组分能显著促进脾细胞、混合淋巴细胞和T细胞的增殖;增加培养的脾细胞中CIM细胞亚群的比率以及剌激小鼠产生特异性IgG类抗体_。说明APS对细胞免疫和体液免疫均有作用。

抗肿瘤作用APS是当归抗肿瘤的主要活性成分,其体内、外实验研究均显示抗肿瘤活性。

在体内,APS的抗肿瘤作用主要是通过增强机体的.免疫功能来间接抑制或杀死肿瘤细胞。吴素珍等m用SM小鼠模型研究硫酸酯化当归多糖(SPAS)在体内的抗肿瘤作用,发现SPAS对SM小鼠的肿瘤生长有抑制作用,40、80、160mg/(kg?d)剂量组的抑瘤率分别为、、,说明SPAS在体内具有显著抗肿瘤活性。

在体外,当归能直接抑制或杀死肿瘤细胞。Gao等?发现当归通过降低MMP名、MMP4、TGF-p1、TIMP4和增加TIMP4来抑制肺癌细胞的增殖和转移。研究还发现,APS不仅在体内对大鼠SM肉瘤细胞、白血病细胞、Ehrlich腹水癌细胞具有抑制作用,而且在体外可抑制肝癌细胞的入侵和转移_。其亚组分ASP4d能抑制宫颈癌细胞增殖,并能诱导这些细胞凋亡,其机制主要是激活了细胞凋亡的线粒体途径_。

对脏器的保护作用当归提取物对肺损伤具有治疗作用。当归多糖是防治肺纤维化的有效成分,能改善肺纤维化大鼠模型的各项肺功能M1〕。当归补血总苷可抑制TGB^诱导的人胚肺成纤维细胞的异常增殖转化和胶原表达,其抑制胶原表达的作用可能是通过增加金属蛋白酶4的表达来实现的M2)。

当归具有防治肾缺血再灌注损伤的作用,其机制可能与当归对TNF^、IL-6和bFGF等细胞因子的调控有关。

APS对不同化学性肝损伤有干预作用,可降低酒精性及四氯化碳性肝损伤的sALT和sAST,减轻肝脏损伤。聂蓉_的研究结果提示,APS可能通过提高肝细胞的抗氧化能力和增强肝能量的储备两种途径缓解四氯化碳对肝脏的毒性,起到对肝脏的保护作用。

抗炎镇痛作用当归提取物具有镇痛、抗炎作用,能明显提高小鼠对热剌激致痛的痛阈,抑制小鼠对化学剌激致痛的扭体反应。沈建芬等_从细胞及基因水平研究当归^部位的抗炎作用机制,发现A;能抑制PGE:产量、环氧化酶4(COX-2)活性以及COX名mRNA和蛋白的表达,提示、抑制PGEi产量可能与抑制C0X4基因的表达有关。其他作用当归具有抗辐射、抗氧化、抗衰老、抗银屑病作用,还能明显降低糖尿病大鼠的血糖,其作用机制可能与促进胰岛素B细胞修复和再生有关。

3结语

当归含有挥发油、有机酸、多糖、黄酮等多种类型的化学成分。其药理作用广泛,涉及机体多个系统。当归的“补血”作用主要作用于造血系统,通过剌激与造血相关的细胞、分子等来发挥对造血系统的作用,从而达到“补血”的效果。当归的“活血”作用主要作用于循环系统,通过抑制血小板凝聚等作用来达到“活血”的效果。另外,当归对神经系统、免疫系统也有作用,并具有抗肿瘤、抗辐射、抗炎镇痛、抗氧化、抗衰老等作用。这些药理学研究结果为当归的临床应用和新产品的开发奠定了基础。近年来,当归治疗糖尿病、银屑病等的研究正在深入展开,虽然机理尚未明确,但是相信随着科学技术的进步,这些难题终将解决,为糖尿病、银屑病等目前无疗效确切药物的病症找到新的治疗药物。同时,也将扩大当归临床应用的范围,提高当归的药用价值。

相关百科

热门百科

首页
发表服务