首页

> 学术论文知识库

首页 学术论文知识库 问题

遗传算法本科毕业论文

发布时间:

遗传算法本科毕业论文

可以使用,基本上学习遗传算法要大三或大四,甚至是研究生阶段。很多本科生的毕业论文要求用遗传算法来解决实际问题。

目录摘要IAbstractII引言1第一章基本遗传算法遗传算法的产生及发展基本原理遗传算法的特点基本遗传算法描述遗传算法构造流程6第二章遗传算法的实现技术编码方法二进制编码格雷码编码符点数编码参数编码适应度函数选择算子交叉算子单点交叉算子双点交叉算子均匀交叉算子部分映射交叉顺序交叉变异算子运行参数约束条件的处理方法遗传算法流程图14第三章遗传算法在TSP上的应用问题的建模与描述对TSP的遗传基因编码方法针对TSP的遗传操作算子选择算子轮盘赌选择最优保存策略选择交叉算子单点交叉部分映射交叉变异算子的混和遗传算法26第四章实例分析测试数据测试结果结果分析27摘要TSP(TravelingSalesmanProblem)旅行商问题是一类典型的NP完全问题,遗传算法是解决NP问题的一种较理想的方法。文章首先介绍了基本遗传算法的基本原理、特点及其基本实现技术;接着针对TSP问题,论述了遗传算法在编码表示和遗传算子(包括选择算子、交叉算子变异算子这三种算子)等方面的应用情况,分别指出几种常用的编码方法的优点和缺点,并且结合TSP的运行实例详细分析了基本遗传算法的4个运行参数群体大小、遗传算法的终止进化代数、交叉概率、变异概率,对遗传算法的求解结果和求解效率的影响,经过多次的测试设定出了它们一组比较合理的取值。最后,简单说明了混合遗传算法在求解TSP问题中的应用并对遗传算法解决TSP问题的前景提出了展望。关键词:TSP遗传算法遗传算子编码@@@需要的话按我的名字找我吧

应该不会吧但还是自己动手写一份吧

遗传算法研究论文

本科毕业论文

《搜索、优化和机器学习中的遗传算法》。

遗传算法(Genetic Algorithm,GA)最早是由美国的 John holland于20世纪70年代提出,该算法是根据大自然中生物体进化规律而设计提出的。是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。

遗传算法的基本运算过程如下:

(1)初始化:设置进化代数计数器t=0,设置最大进化代数T,随机生成M个个体作为初始群体P(0)。

(2)个体评价:计算群体P(t)中各个个体的适应度。

(3)选择运算:将选择算子作用于群体。选择的目的是把优化的个体直接遗传到下一代或通过配对交叉产生新的个体再遗传到下一代。选择操作是建立在群体中个体的适应度评估基础上的。

(4)交叉运算:将交叉算子作用于群体。遗传算法中起核心作用的就是交叉算子。

(5)变异运算:将变异算子作用于群体。即是对群体中的个体串的某些基因座上的基因值作变动。群体P(t)经过选择、交叉、变异运算之后得到下一代群体P(t+1)。

(6)终止条件判断:若t=T,则以进化过程中所得到的具有最大适应度个体作为最优解输出,终止计算。

详谈改进的遗传算法求解柔性作业车间调度问题论文

0 引言

作业车间调度问题(Job-shop scheduling problem,JSP)是研究生产线调度问题最常用的模型之一,也是实现先进制造和提高生产效率的基础和关键. 柔性作业车间调度问题( Flexible jobshopscheduling problem,FJSP)是传统作业车间调度问题的扩展,在传统的作业车间调度问题中,每个工件的加工工序是确定的,每一道工序的加工机器和加工时间也是确定的,而在柔性作业车间调度问题中,每个工件的每一道工序可以在多个可选择的加工机器上进行加工,并且不同的加工机器所需要的加工时间是不同的,增加了调度的灵活性,比较符合生产的实际情况.

柔性作业车间调度问题已经被证明是更复杂的NP-Hard 问题,因而难以取得最优解. 目前,求解FJSP 的常用方法有禁忌搜索( TS),模拟退火(SA)和遗传算法(GA)等. 其中遗传算法以其操作简单、鲁棒性强、搜索全局最优解速度快等特点,在生产调度领域得到了广泛的应用.

遗传算法是由美国J. Holland 教授于1975 年提出的,是一种模拟自然进化过程的一种优化算法. 由于传统的遗传算法存在着较大的缺陷,国内外学者已从不同角度对其进行了改进,本文对传统遗传算法的初始种群进行了改进,以提高初始解的质量.

1 柔性作业车间调度模型设有n 个待加工工件J(J1,J2,…,Jn),在m台设备上加工M(M1,M2,…,Mm),每个工件Ji有Pi(Pi1,Pi2,…,Pin) 道工序,每道工序可在一台或多台设备上加工,同一道工序在不同设备上加工的时间可能不等,工序Pik的可选机器集为Mik(Mik 罬),每台设备的加工时间从0 开始,加工完所有工件的完成时间为ETMi . 本文以最小化最大完工时间为性能指标,其目标函数为:f(x) = min(max(ETMi)),1 ≤ i ≤ m模型需满足如下约束条件:(1)同一工件的工序加工顺序确定;(2)每道工序必须在它的上一道工序加工完成后才能开始加工;(3)每道工序只能选择一台设备进行操作;(4)每台设备在同一时间只能加工一个工件的一道工序;(5)每道工序在设备上操作时都不允许被中断;(6) 不同工件工序之间没有先后约束条件.一个包含3 个工件、5 台机器的FJSP 的问题.

2 算法的设计

(1) 基因编码

常用的遗传算法编码方案有二进制编码、格雷码编码、矩阵编码、自然数编码等,本文采用自然数编码,每条染色体表示一个可行解,同时采用双层编码,第一层编码为基于工件的工序编码,编码长度为所有工件工序之和,基因值代表工件号,基因值出现的次数代表该工件的工序总数,第二层编码为对应于第一层工件工序的机器编码,所以编码长度也为所有工件工序之和.染色体表示的工序顺序为(O31,O11,O12,O21,O22,O32,O13,O33),染色体表示的机器序列为(M2,M4,M2,M1,M4,M5,M3,M4).

(2)产生初始种群

初始种群的优良对生物进化会产生很大的影响,本文对初始种群的机器选择进行了改进,首先随机生成初始种群的工序编码,工序编码生成后就要对应生成机器编码,每个工件工序在对应可选机器集中选择机器时,是以不同的概率的来选择不同的机器,机器加工时间短的以大概率被选择,相比之下,机器加工时间长的以小概率被选择,这样既保证了机器选择的随机性,也优化了初始种群.

(3)适应度函数的确定

本文以最小化最大完工时间为目标函数,故选择全部工件完工时间作为评价种群优劣的标准,设n 个待加工工件在m(M1,M2,…,Mm) 台设备上加工,所有加工工件工序在设备上的最后完工时间为ETMi(i = 1,2,…,m),T = max(ETMi),则适应度函数fi = 1 /T,T 越小,则适应度越大,即个体越优.

(4)选择

选择操作的目的是为了保留优良个体,使他们可以遗传到下一代. 本文采用精英保留策略和轮盘赌法相结合的方法,对父代个体和子代个体进行选择时直接将最优个体和次优个体遗传到下一代,然后对剩余的个体采用轮盘赌法进行选择,选择出p - 2 个个体到下一代进行遗传操作. 若种群规模为p,个体i 的适应度为fi,则个体i 被选择的概率pi为pi = fi /Σpk = 1fk即适应度越高的个体被选择的概率就越大.

(5)交叉

交叉操作是产生新个体的主要方法,提高全局搜索能力. 本文采用单点交叉方式,即随机产生一个交叉点,交换交叉点后的基因. 从种群中随机选择两个个体,交换两个个体工序编码的交叉点后面的基因,将交叉后工件多余的工序替换为其他工件缺失的工序;机器部分则按交叉前工件工序所选择的机器进行相应调整以保证其子代染色体的`合法性.

(6)变异

变异操作的目的是改变算法的局部搜索能力,有助于维持进化群体的多样性,防止过早陷入局部最优. 本文采用互换方式,即随机产生两个变异点,交换两点的基因值. 从种群中随机选择一个个体,对该个体的工序编码部分随机产生两个变异点,交换两点的基因值,同时将交换的基因位所对应的机器号也进行交换.

3 仿真实例分析

6 × 6(6 个工件,6 台机器) FJSP的加工工序,机器选择和加工时间矩阵表. 分别用标准遗传算法和本文提出的改进遗传算法对工件最小化最大完工时间进行优化计算,并分析优化计算结果.

遗传算法采用以下参数:种群规模为100,进化代数为100,交叉概率Pc = 0. 8,变异概率Pm =0. 1. 算法运行10 次,标准遗传算法的最大完工时间为20,收敛代数为75 代左右;改进遗传算法的最大完工时间为16,收敛代数为35 代左右. 改进遗传算法既缩短了工件完工时间,也加快了收敛代数. 从而验证了改进遗传算法的可行性

4 结论

传统遗传算法在进行种群初始化时采用的大多是随机选择方式,而本文提出了一种新的种群初始化方法,提高了种群初始解的质量. 最后对改进遗传算法进行了仿真实验,并将结果与标准遗传算法进行比较,结果表明了本算法的优越性和可行性.

推荐你去淘宝的:翰林书店,这个店铺应该能下载到这类论文。我去下过,很及时的

电机转速遗传算法毕业论文

[过程控制] 基于单片机实现单回路智能调节.. [电子通讯] 脉冲数字频率计 [机床仪表] 仪表机床数控系统的设计(论文.. 磁流体发电论文 [电子通讯] 基于VC++的PC机与单片机串行.. [电子通信] 通信毕业翻译(移动通信技术的.. [电子] 利用单片机制作数字式时钟 [电子] 虚拟仪器温室大棚温度测控系统 [电子通讯] 基于MATLAB遗传算法工具箱的控.. [电子通讯] 红外遥控防盗密码锁 [电子工程] 电子电路噪声的研究 [电子] 51系列单片机教学实验板硬件设计 [毕业论文英文资料] 步进电机基本控制电.. [毕业论文英文资料] CAN总线在远程电力抄表系统中的应用 [电子] 管道液化气智能检测与控制系统 [电力] 发电厂继电保护整定和定值管理系统.. [电子工程] R、L、C测量仪 [电子] 家庭取暖燃气锅炉温度控制系统设计 [电子] 塑料大棚保温程序设计 [电力工程设计] 110kV变电站电气一次部分设.. [电子通讯] VHDL 课 程 设 计 [电子通讯] 多参数测井仪单片机编码系统 [电子信息工程] 图像处理,毕业论文答辩文.. [电子信息工程] 图像处理,人脸检测,毕业.. [电子工程] 空调机温度制系统 [电子通讯] 基于PWM的按摩机传动控制电路设.. [光学工程] 铌酸锂晶体光折变性能的提高及.. [电子信息] 移动目标的识别技术 [电子通讯] 数字化星用扩频应答机的设计和.. [图像技术] 基于内容的图象检索的方法研究.. [自动化] 工厂变配电室监测系统 [毕业设计] [毕业设计]异步电机串级调速系.. [毕业设计] [毕业设计]异步电机串级调速系.. [电子通讯] 电子音乐的设计 [管理系统] 知识管理系统 [电子通讯] 多功能视力保护器 电子通讯] [电子通讯] 基于EISA总线的高速数据采集卡.. [课程设计] 数字电路课程设计 [电子通信] 电子软件的研究 [电子通信] 抢答器设计 [电子通讯] 单片机控制音乐播放 [电子通讯] 工业顺序控制子]基于DSP的自适应均衡器的设计及实现 [电工电子课程设计]模拟电路课程设计 , [电子通讯] 带实时日历时钟的温度检测系统 , [电子通讯] 基于PID算法的电机转速控制系统.. [电力电子] 110KV地区变电站保护设计 [电子通讯] 城市流动人口IC卡管理系统, [电子通讯] 防盗报警器的设计 [电子通讯,] 多媒体教室的组建 [电子电路设计] 多功能函数发生器 , [电力电子] 110终端变电站电气部分设计 , [自动化] 退火炉计算机温度控制系统课程设.. [电子信息与工程] 电台节目管理与自动播放.., [电子通讯] 基于PLC的加工中心控制系统的设.., [电子信息工程] PCA与LDA的融合算法在性别.. , [电子通信] 电梯控制系统设计, [自动化] 智能楼宇自动化系统 >, [自动化] 基于嵌入式技术对纺织控制系统改.. [输煤系统] 2X200MW火电机组输煤系统毕业设.. [材料结构] 阻水型电力电缆材料及结构设计 [电子信息与工程专业] 八路音、视频切换开.. [电子信息与工程专业] 电视台播控系统的硬盘化改造 , [电子信息与工程专业] 矿井低压电网过流保护中的相序检测, [电子信息与工程专业] 矿井低压电网过流保护中的相序检测 , [电子通信] 直放站技术, FDTD法在单极天线特性分析中的应用, [电力电子] 35KV变电站的电气部分设计书 , [电力电子] 110KV变电站的电气部分设计 , [电力电子] 110KV变电站的电气部分设计,

我给你一个题目,如果你写出来了,我保你论文得优秀。因为当年我就是选这个题目得的优秀。刚才我在网上搜了一下,网上还是没有与这个系统相关的论文。 《高考最低录取分数线查询系统》基本思想很简单,现在的高考分数线查询是很繁琐的,需要先把分数查出来,然后根据录取指南再找你的分数能被录取的学校,高考过的都知道,高考报考指南是一本多么厚的书。所以,这个系统的思想就是:你用所有高校近十年的录取分数线建立一个数据库,然后开发一个系统,当你输入查询命令的时候(查询命令可以用1,2,3这三个数来代替,用flog实现;输入1,查询的是符合你所输入的分数以下的所有高校信息;输入2,查询的是符合你所输入分数段之间的所有高校信息;输入3,查询大于你所给的分数线的高校信息。)当然,你可以再加上一些附加的功能。大致思想就这些。 郑州今迈网络部竭诚为你解答,希望我的答案能帮到你!

你的论文准备往什么方向写,选题老师审核通过了没,有没有列个大纲让老师看一下写作方向?老师有没有和你说论文往哪个方向写比较好?写论文之前,一定要写个大纲,这样老师,好确定了框架,避免以后论文修改过程中出现大改的情况!!学校的格式要求、写作规范要注意,否则很可能发回来重新改,你要还有什么不明白或不懂可以问我,希望你能够顺利毕业,迈向新的人生。(一)选题毕业论文(设计)题目应符合本专业的培养目标和教学要求,具有综合性和创新性。本科生要根据自己的实际情况和专业特长,选择适当的论文题目,但所写论文要与本专业所学课程有关。(二)查阅资料、列出论文提纲题目选定后,要在指导教师指导下开展调研和进行实验,搜集、查阅有关资料,进行加工、提炼,然后列出详细的写作提纲。(三)完成初稿根据所列提纲,按指导教师的意见认真完成初稿。(四)定稿初稿须经指导教师审阅,并按其意见和要求进行修改,然后定稿。一般毕业论文题目的选择最好不要太泛,越具体越好,而且老师希望学生能结合自己学过的知识对问题进行分析和解决。不知道你是否确定了选题,确定选题了接下来你需要根据选题去查阅前辈们的相关论文,看看人家是怎么规划论文整体框架的;其次就是需要自己动手收集资料了,进而整理和分析资料得出自己的论文框架;最后就是按照框架去组织论文了。你如果需要什么参考资料和范文我可以提供给你。还有什么不了解的可以直接问我,希望可以帮到你,祝写作过程顺利毕业论文选题的方法:一、尽快确定毕业论文的选题方向 在毕业论文工作布置后,每个人都应遵循选题的基本原则,在较短的时间内把选题的方向确定下来。从毕业论文题目的性质来看,基本上可以分为两大类:一类是社会主义现代化建设实践中提出的理论和实际问题;另一类是专业学科本身发展中存在的基本范畴和基本理论问题。大学生应根据自己的志趣和爱好,尽快从上述两大类中确定一个方向。二、在初步调查研究的基础上选定毕业论文的具体题目在选题的方向确定以后,还要经过一定的调查和研究,来进一步确定选题的范围,以至最后选定具体题目。下面介绍两种常见的选题方法。 浏览捕捉法 :这种方法就是通过对占有的文献资料快速地、大量地阅读,在比较中来确定论文题目地方法。浏览,一般是在资料占有达到一定数量时集中一段时间进行,这样便于对资料作集中的比较和鉴别。浏览的目的是在咀嚼消化已有资料的过程中,提出问题,寻找自己的研究课题。这就需要对收集到的材料作一全面的阅读研究,主要的、次要的、不同角度的、不同观点的都应了解,不能看了一些资料,有了一点看法,就到此为止,急于动笔。也不能“先入为主”,以自己头脑中原有的观点或看了第一篇资料后得到的看法去决定取舍。而应冷静地、客观地对所有资料作认真的分析思考。在浩如烟海,内容丰富的资料中吸取营养,反复思考琢磨许多时候之后,必然会有所发现,这是搞科学研究的人时常会碰到的情形。 浏览捕捉法一般可按以下步骤进行: 第一步,广泛地浏览资料。在浏览中要注意勤作笔录,随时记下资料的纲目,记下资料中对自己影响最深刻的观点、论据、论证方法等,记下脑海中涌现的点滴体会。当然,手抄笔录并不等于有言必录,有文必录,而是要做细心的选择,有目的、有重点地摘录,当详则详,当略则略,一些相同的或类似的观点和材料则不必重复摘录,只需记下资料来源及页码就行,以避免浪费时间和精力。 第二步,是将阅读所得到的方方面面的内容,进行分类、排列、组合,从中寻找问题、发现问题,材料可按纲目分类,如分成: 系统介绍有关问题研究发展概况的资料; 对某一个问题研究情况的资料; 对同一问题几种不同观点的资料; 对某一问题研究最新的资料和成果等等。 第三步,将自己在研究中的体会与资料分别加以比较,找出哪些体会在资料中没有或部分没有;哪些体会虽然资料已有,但自己对此有不同看法;哪些体会和资料是基本一致的;哪些体会是在资料基础上的深化和发挥等等。经过几番深思熟虑的思考过程,就容易萌生自己的想法。把这种想法及时捕捉住,再作进一步的思考,选题的目标也就会渐渐明确起来。

基于视频的人流量监测系统设计与实现 图像水印识别微信小程序设计与实现 基于重力传感器的飞机大战游戏开发 手机平台加减乘除口算训练游戏开发 基于Android平台的个人移动地图软件开发 面向多种数据源的爬虫系统的设计与实现 基于Zabbix的服务器监控系统的设计与实现 基于新浪微博的分布式爬虫以及对数据的可视化处理 基于分布式的新闻热点网络爬虫系统与设计 舆情分析可视化系统的设计与实现 基于大数据的用户画像的新闻APP设计 基于Android平台的语言翻译程序设计与实现 基于SSH的水电信息管理系统的设计与实现 基于SSM的学科竞赛管理系统

遗传算法程序设计研究论文

遗传算法[56,53]研究的兴起是在20世纪80年代末和90年代初期,但它的历史起源可追溯到20世纪60年代初期。早期的研究大多以对自然遗传系统的计算机模拟为主。早期遗传算法的研究特点是侧重于对一些复杂的操作的研究。虽然其中像自动博弈、生物系统模拟、模式识别和函数优化等给人以深刻的印象,但总的来说这是一个无明确目标的发展时期,缺乏带有指导性的理论和计算工具的开拓。这种现象直到20世纪70年代中期由于Holland和De Jong的创造性研究成果的发表才得到改观。当然,早期的研究成果对于遗传算法的发展仍然有一定的影响,尤其是其中一些有代表性的技术和方法已为当前的遗传算法所吸收和发展。

在遗传算法作为搜索方法用于人工智能系统中之前,已有不少生物学家用计算机来模拟自然遗传系统。尤其是Fraser的模拟研究,他于1962年提出了和现在的遗传算法十分相似的概念和思想。但是,Fraser和其他一些学者并未认识到自然遗传算法可以转化为人工遗传算法。Holland教授及其学生不久就认识到这一转化的重要性,Holland认为比起寻找这种或那种具体的求解问题的方法来说,开拓一种能模拟自然选择遗传机制的带有一般性的理论和方法更有意义。在这一时期,Holland不但发现了基于适应度的人工遗传选择的基本作用,而且还对群体操作等进行了认真的研究。1965年,他首次提出了人工遗传操作的重要性,并把这些应用于自然系统和人工系统中。

1967年,Bagley在他的论文中首次提出了遗传算法(genetic algorithm)这一术语,并讨论了遗传算法在自动博弈中的应用。他所提出的包括选择、交叉和变异的操作已与目前遗传算法中的相应操作十分接近。尤其是他对选择操作做了十分有意义的研究。他认识到,在遗传进化过程的前期和后期,选择概率应合适地变动。为此,他引入了适应度定标(scaling)概念,这是目前遗传算法中常用的技术。同时,他也首次提出了遗传算法自我调整概念,即把交叉和变异的概率融于染色体本身的编码中,从而可实现算法自我调整优化。尽管Bagley没有对此进行计算机模拟实验,但这些思想对于后来遗传算法的发展所起的作用是十分明显的。

在同一时期,Rosenberg也对遗传算法进行了研究,他的研究依然是以模拟生物进化为主,但他在遗传操作方面提出了不少独特的设想。1970年Cavicchio把遗传算法应用于模式识别中。实际上他并未直接涉及到模式识别,而仅用遗传算法设计一组用于识别的检测器。Cavicchio对于遗传操作以及遗传算法的自我调整也做了不少有特色的研究。

Weinberg于1971年发表了题为《活细胞的计算机模拟》的论文。由于他和Rosenberg一样注意于生物遗传的模拟,所以他对遗传算法的贡献有时被忽略。实际上,他提出的多层次或多级遗传算法至今仍给人以深刻的印象。

第一个把遗传算法用于函数优化的是Hollstien。1971年他在论文《计算机控制系统中的人工遗传自适应方法》中阐述了遗传算法用于数字反馈控制的方法。实际上,他主要是讨论了对于二变量函数的优化问题。其中,对于优势基因控制、交叉和变异以及各种编码技术进行了深入的研究。

1975年在遗传算法研究的历史上是十分重要的一年。这一年,Holland出版了他的著名专著《自然系统和人工系统的适配》。该书系统地阐述了遗传算法的基本理论和方法,并提出了对遗传算法的理论研究和发展极为重要的模式理论(schemata theory)。该理论首次确认了结构重组遗传操作对于获得隐并行性的重要性。直到这时才知道遗传操作到底在干什么,为什么又干得那么出色,这对于以后陆续开发出来的遗传操作具有不可估量的指导作用。

同年,De Jong完成了他的重要论文《遗传自适应系统的行为分析》。他在该论文中所做的研究工作可看作是遗传算法发展进程中的一个里程碑,这是因为他把Holland的模式理论与他的计算实验结合起来。尽管De Jong和Hollstien一样主要侧重于函数优化的应用研究,但他将选择、交叉和变异操作进一步完善和系统化,同时又提出了诸如代沟(generation gap)等新的遗传操作技术。可以认为,De Jong的研究工作为遗传算法及其应用打下了坚实的基础,他所得出的许多结论迄今仍具有普遍的指导意义。

进入20世纪80年代,遗传算法迎来了兴盛发展时期,无论是理论研究还是应用研究都成了十分热门的课题。尤其是遗传算法的应用研究显得格外活跃,不但它的应用领域扩大,而且利用遗传算法进行优化和规则学习的能力也显著提高,同时产业应用方面的研究也在摸索之中。此外一些新的理论和方法在应用研究中亦得到了迅速的发展,这些无疑均给遗传算法增添了新的活力。

随着应用领域的扩展,遗传算法的研究出现了几个引人注目的新动向:一是基于遗传算法的机器学习(Genetic Base Machine Learning),这一新的研究课题把遗传算法从历来离散的搜索空间的优化搜索算法扩展到具有独特的规则生成功能的崭新的机器学习算法。这一新的学习机制对于解决人工智能中知识获取和知识优化精炼的瓶颈难题带来了希望。二是遗传算法正日益和神经网络、模糊推理以及混沌理论等其他智能计算方法相互渗透和结合,这对开拓21世纪中新的智能计算技术将具有重要的意义。三是并行处理的遗传算法的研究十分活跃。这一研究不仅对遗传算法本身的发展,而且对于新一代智能计算机体系结构的研究都是十分重要的。四是遗传算法和另一个称为人工生命的崭新研究领域正不断渗透。所谓人工生命即是用计算机模拟自然界丰富多彩的生命现象,其中生物的自适应、进化和免疫等现象是人工生命的重要研究对象,而遗传算法在这方面将会发挥一定的作用。五是遗传算法和进化规划(Evolution Programming,EP)以及进化策略(Evolution Strategy,ES)等进化计算理论日益结合。EP和ES几乎是和遗传算法同时独立发展起来的,同遗传算法一样,它们也是模拟自然界生物进化机制的智能计算方法,既同遗传算法具有相同之处,也有各自的特点。

随着遗传算法研究和应用的不断深入和发展,一系列以遗传算法为主题的国际会议十分活跃。从1985年开始,国际遗传算法会议,即ICGA(International Conference on Genetic Algorithm)每两年举行一次。在欧洲,从1990年开始也每隔一年举办一次类似的会议,即 PPSN(Parallel Problem Solving from Nature)会议。除了遗传算法外,大部分有关ES和EP的学术论文也出现在PPSN中。另外,以遗传算法的理论基础为中心的学术会议有FOGA(Foundation of Genetic Algorithm)。它也是从1990年开始,隔年召开一次。这些国际学术会议论文集中反映了遗传算法近些年来的最新发展和动向。

当前科学技术正进入多学科互相交叉、互相渗透、互相影响的时代,生命科学与工程科学的交叉、渗透和相互促进是其中一个典型例子,也是近代科学技术发展的一个显著特点。遗传算法的蓬勃发展正体现了科学发展的这一特点和趋势。制造机器智能一直是人类的梦想,人们为此付出了巨大的努力。人工智能技术的出现,就是人们得到的成果。但是,近年来,随着人工智能应用领域的不断拓广,传统的基于符号处理机制的人工智能方法在知识表示、处理模式信息及解决组合爆炸等方面所碰到的问题已变得越来越突出,这些困难甚至使某些学者对强人工智能提出了强烈批判,对人工智能的可能性提出了质疑。众所周知,在人工智能领域中,有不少问题需要在复杂而庞大的搜索空间中寻找最优解或准优解。像货朗担问题和规划问题等组合优化问题就是典型的例子。在求解此类问题时,若不能利用问题的固有知识来缩小搜索空间则会产生搜索的组合爆炸。因此,研究能在搜索过程中自动获得和积累有关搜索空间的知识,并能自适应地控制搜索过程,从而得到最优解或准有解的通用搜索算法一直是令人瞩目的课题。遗传算法就是在这种背景下产生并经实践证明特别有效的算法。遗传算法(Genetic Algorithm, GA)是近年来迅速发展起来的一种全新的随机搜索与优化算法,其基本思想是基于Darw in的进化论和Mendel的遗传学说。该算法由密执安大学教授Holland及其学生于1975年创建。此后,遗传算法的研究引起了国内外学者的关注。自1985年以来.国际上已召开了多次遗传算法的学术会议和研讨会.国际遗传算法学会组织召开的ICGA( International Conference on Genetic Algorithms)会议和FOGA( Workshop on Foundation of Genetic Algorithms)会议。为研究和应用遗传算法提供了国际交流的机会。作为一种通用的问题求解方法,遗传算法采用简单的编码技术来表示各种复杂的结构并通过对一组编码表示进行简单的遗传操作和优胜劣汰的自然选择来指导学习和确定搜索的方向。近年来,遗传算法已被成功地应用于下业、经济答理、交通运输、工业设计等不同领域.解决了许多问题。例如,可靠性优化、流水车间调度、作业车间调度、机器调度、设备布局设计、图像处理以及数据挖掘等。本文将从遗传算法的理论和技术两方而概述目前的研究现状。描述遗传算法的主要特点、基木原理以及各种改进算法,介绍遗传算法的程序设计。遗传程序设计是借鉴生物界的自然选择和遗传机制,在遗传算法的基础上发展起来的搜索算法,它己成为进化计算的一个新分支。在标准的遗传算法中,由定长字符串(问题的可行解)组成的群体借助于复制、交叉、变异等遗传操作不断进化找到问题的最优解或次优解。遗传程序设计运用遗传算法的思想,常采用树的结构来表示计算机程序,从而解决问题。对于许多问题,包括人工智能和机器学习上的问题都可看作是需要发现一个计算机程序,即对特定输入产生特定输出的程序,形式化为程序归纳,那么遗传程序设计提供了实现程序归纳的方法。把遗传算法和计算机程序结合起来的思想出现在遗传算法中,Holland把产生式语言和遗传算法结合起来实现分类系统,还有一些遗传算法应用领域的研究者将类似于遗传算法的遗传操作施加于树结构的程序上。近年来,遗传程序设计运用遗传算法的思想自动生成计算机程序解决了许多问题,如预测、分类、符号回归和图像处理等,作为一种新技术它己经与遗传算法并驾齐驱。 1996年,举行了第1次遗传程序设计国际会议,该领域己引起越来越多的相关学者们的兴趣。1967年,Holland的学生在博士论文中首次提出“遗传算法(Genetic Algorithms)”一词。此后,Holland指导学生完成了多篇有关遗传算法研究的论文。1971年,在他的博士论文中首次把遗传算法用于函数优化。1975年是遗传算法研究历史上十分重要的一年。这一年Holland出版了他的著名专著《自然系统和人工系统的自适应》(Adaptation in Natural and Artificial Systems),这是第一本系统论述遗传算法的专著,因此有人把1975年作为遗传算法的诞生年。Holland在该书中系统地阐述了遗传算法的基本理论和方法,并提出了对遗传算法的理论研究和发展极其重要的模式理论(schema theory)。该理论首次确认了结构重组遗传操作对于获得隐并行性的重要性。同年, Jong完成了他的博士论文《一类遗传自适应系统的行为分析》(An Analysis of the Behavior of a Class of Genetic Adaptive System)。该论文所做的研究工作,可看作是遗传算法发展进程中的一个里程碑,这是因为,他把Holland的模式理论与他的计算实验结合起来。尽管De Jong和Hollstien 一样主要侧重于函数优化的应用研究,但他将选择、交叉和变异操作进一步完善和系统化,同时又提出了诸如代沟(generation gap)等新的遗传操作技术。可以认为,De Jong的研究工作为遗传算法及其应用打下了坚实的基础,他所得出的许多结论,迄今仍具有普遍的指导意义。进入八十年代,遗传算法迎来了兴盛发展时期,无论是理论研究还是应用研究都成了十分热门的课题。1985年,在美国召开了第一届遗传算法国际会议(International Conference on Genetic Algorithms ,ICGA),并且成立国际遗传算法学会(International Society of Genetic Algorithms ,ISGA),以后每两年举行一次。1989年,Holland的学生出版了专著《搜索、优化和机器学习中的遗传算法》(Genetic Algorithms in Search , Optimization, and Machine Learning)。该书总结了遗传算法研究的主要成果,对遗传算法及其应用作了全面而系统的论述。同年,美国斯坦福大学的Koza基于自然选择原则创造性地提出了用层次化的计算机程序来表达问题的遗传程序设计( genetic programming, GP)方法,成功地解决了许多问题。在欧洲,从1990年开始每隔一年举办一次Parallel Problem Solving from Nature 学术会议,其中遗传算法是会议主要内容之一。此外,以遗传算法的理论基础为中心的学术会议还有Foundations of Genetic Algorithms,该会也是从1990年开始隔年召开一次。这些国际会议论文,集中反映了遗传算法近些年来的最新发展和动向。1991年,编辑出版了《遗传算法手册》(Handbook of Genetic Algorithms),其中包括了遗传算法在工程技术和社会生活中的大量应用实例。1992年,Koza发表了他的专著《遗传程序设计:基于自然选择法则的计算机程序设计》”。1994年,他又出版了《遗传程序设计,第二册:可重用程序的自动发现》深化了遗传程序设计的研究,使程序设计自动化展现了新局面。有关遗传算法的学术论文也不断在《Artificial Intelligence》、《Machine Learning》、《Information science》、《Parallel Computing》、《Genetic Programming and Evoluable Machines》\《IEEE Transactions on Neural Networks》,《IEEE Transactions on Signal Processing》等杂志上发表。1993年,MIT出版社创刊了新杂志《Evolutionary Computation》。1997年,IEEE又创刊了《Transactions on Evolutionary Computation》。《Advanced Computational Intelligence》杂志即将发刊,由模糊集合创始人教授为名誉主编。目前,关于遗传算法研究的热潮仍在持续,越来越多的从事不同领域的研究人员已经或正在置身于有关遗传算法的研究或应用之中。

以下是近些年将遗传算法应用于图像匹配的一些论文推荐:

数学建模遗传算法模板论文

我去年就参加了全国大学生数学建模竞赛,这些资料是我去年暑假整理的论文模板,如果资料不足的话,再联系我………………全国大学生数学建模竞赛论文格式规范 本科组参赛队从A、B题中任选一题,专科组参赛队从C、D题中任选一题。 论文用白色A4纸单面打印;上下左右各留出至少厘米的页边距;从左侧装订。 论文第一页为承诺书,具体内容和格式见本规范第二页。 论文第二页为编号专用页,用于赛区和全国评阅前后对论文进行编号,具体内容和格式见本规范第三页。 论文题目和摘要写在论文第三页上,从第四页开始是论文正文。 论文从第三页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。 论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。 论文题目用三号黑体字、一级标题用四号黑体字,并居中;二级、三级标题用小四号黑体字,左端对齐(不居中)。论文中其他汉字一律采用小四号宋体字,行距用单倍行距,打印时应尽量避免彩色打印。 提请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),在整篇论文评阅中占有重要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文)。全国评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。 引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为:[编号] 作者,书名,出版地:出版社,出版年。参考文献中期刊杂志论文的表述方式为:[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。参考文献中网上资源的表述方式为:[编号] 作者,资源标题,网址,访问时间(年月日)。 在不违反本规范的前提下,各赛区可以对论文增加其他要求(如在本规范要求的第一页前增加其他页和其他信息,或在论文的最后增加空白页等);从承诺书开始到论文正文结束前,各赛区不得有本规范外的其他要求(否则一律无效)。 本规范的解释权属于全国大学生数学建模竞赛组委会。[注]赛区评阅前将论文第一页取下保存,同时在第一页和第二页建立“赛区评阅编号”(由各赛区规定编号方式),“赛区评阅纪录”表格可供赛区评阅时使用(各赛区自行决定是否在评阅时使用该表格)。评阅后,赛区对送全国评阅的论文在第二页建立“全国统一编号”(编号方式由全国组委会规定,与去年格式相同),然后送全国评阅。论文第二页(编号页)由全国组委会评阅前取下保存,同时在第二页建立“全国评阅编号”。全国大学生数学建模竞赛组委会2009年3月16日修订数学建模论文一般结构1摘要 (单独成页)主要理解 、主要方法、 主要结果、 主要特点 (不要图、不要表)作用:了解文件重要性,对文件有大致认识最佳页副:页面2/3。2、问题重述和分析3、问题假设假设是建模的基础,具有导向性,容易被忽视。常犯错误有缺少假设或假设不切实际。对一些关键性的或对结果有重大影响的条件或参数应该在假设中明确约定。作假设的两个原则:① 简化原则:抓住主要矛盾,舍弃次要因素,方便 数学处理。② 贴近原则:贴近实际。以上两个原则是相互制约的,要掌握好“度”。通常是先建模后假设。4、符号说明 (可以合并)5、模型建立与求解(重要程度 :60%以上)6、模型检验(误差一般指均方误差)7、结果分析 (可以合并)8、模型的进一步讨论 或 模型的推广9、模型优缺点10、参考文件11、附件(结果千万不能放在附件中)论文最佳页面数:15-21页 论文结构一题目摘要1.问题的重述2.合理假设3.符号约定4.问题的分析5.模型的建立与求解6.模型的评价与推广1、误差分析2、模型的改进与推广对XXXX切实可行的建议和意见:1.……2.…………7.参考文献8.附录 数学建模论文一般格式 摘要(主要理解、主要方法、主要结果、主要特点)或(背景、目标、方法、结果、结论、建议) 问题重述与分析 问题假设 符号说明 模型建立与求解 模型检验 结果分析 模型的进一步讨论 模型优缺点优秀论文要点:1. 语言精练、有逻辑性、书写有条理2. 文字与图形相结合,使内容直观、清晰、明了、容易理解3. 切忌只用文字进行说明,多运用图形或表格,并对图形或表格做精简的分析,毕竟文字性东西太过于枯燥、乏味,没人有耐性去看那么冗长的文章4. 对论文中所引用或用到的知识、软件要清晰地予以说明。5. 在附录中附上论文所必须要的一些数据(图形或表格),并将论文中所编写的程序附上去各步骤解释摘要:主要理解 、主要方法、 主要结果、 主要特点 (不要图、不要表)作用:了解文件重要性,对文件有大致认识最佳页副:页面2/3问题重述与分析: 一向导、对题意的理解、 建模的创造性创造性是灵魂,文章要有闪光点。好创意、好想法应当既在人意料之外,又在人意料之中。新颖性(独特性)与合理性皆备。误区之一:数学用得越高深,越有创造性。解决问题是第一原则,最合适的方法是最好的方法。误区之二:创造性主要体现在建模与求解上。创造性可以体现在建模的各个环节上,并且可以有多种表现形式。误区之三:好创意来自于灵感,可遇不可求。好创意来自于对数学方法的掌握程度与对问题理解的透彻程度。 表达的清晰性好的文章 = 好的内容 + 好的表达 替读者着想。该交代的要交代,如对题目的理解,关键指标或参数的引入,建模的思路,结果的分析等。 写好摘要,包括:建模主要方法、主要结果,模型主要优点。 专人负责写作,及早动手。考虑写作的过程也是构思框架、理清思路的过程,有利于从总体上把握建模的思路,反过来促进建模。 适当采用图表,增加可读性。求采纳为满意回答。

数学建模论文范文一篇,带例题,结构格式要求有摘要、关键词、问题背景、建模过程、模型解释、小结、参考文献点一下就可以进去了,希望你早日完成论文。祝你顺利资料什么的都有,论文相关的。加油!

随着科学技术特别是信息技术的高速发展,数学建模的应用价值越来越得到众人的重视,

数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,以下是一篇关于数学建模教育开展策略探究的论文 范文 ,欢迎阅读参考。

大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和 创新思维 ,提高其素质和创新能力,实现向素质教育的转化和深入。

一、数学建模的含义及特点

数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学 方法 及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。一般来说",数学建模"包含五个阶段。

1.准备阶段

主要分析问题背景,已知条件,建模目的等问题。

2.假设阶段

做出科学合理的假设,既能简化问题,又能抓住问题的本质。

3.建立阶段

从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。

4.求解阶段

对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。

5.验证阶段

用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。

二、加强数学建模教育的作用和意义

(一) 加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质

数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题, 因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。数学修养和素质自然而然得以培养并提高。

(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力

数学建模问题来源于社会生活的众多领域,在建模过程中,学生首先需要阅读相关的文献资料,然后应用数学思维、数学逻辑及相关知识对实际问题进行深入剖析研究并经过一系列复杂计算,得出反映实际问题的最佳数学模型及模型最优解。因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。

(三)加强数学建模教育有助于培养学生的创造性思维和创新能力

所谓创造力是指"对已积累的知识和 经验 进行科学地加工和创造,产生新概念、新知识、新思想的能力,大体上由感知力、 记忆力 、思考力、 想象力 四种能力所构成"[1].现今教育界认为,创造力的培养是人才培养的关键,数学建模活动的各个环节无不充满了创造性思维的挑战。

很多不同的实际问题,其数学模型可以是相同或相似的,这就要求学生在建模时触类旁通,挖掘不同事物间的本质,寻找其内在联系。而对一个具体的建模问题,能否把握其本质转化为数学问题,是完成建模过程的关键所在。同时建模题材有较大的灵活性,没有统一的标准答案,因此数学建模过程是培养学生创造性思维,提高创新能力的过程[2].

(四)加强数学建模教育有助于提高学生科技论文的撰写能力

数学建模的结果是以论文形式呈现的,如何将建模思想、建立的模型、最优解及其关键环节的处理在论文中清晰地表述出来,对本科生来说是一个挑战。经历数学建模全过程的磨练,特别是数模论文的撰写,学生的文字语言、数学表述能力及论文的撰写能力无疑会得到前所未有的提高。

(五)加强数学建模教育有助于增强学生的团结合作精神并提高协调组织能力建模问题通常较复杂,涉及的知识面也很广,因此数学建模实践活动一般效仿正规竞赛的规则,三人为一队在三天内以论文形式完成建模题目。要较好地完成任务,离不开良好的组织与管理、分工与协作[3].

三、开展数学建模教育及活动的具体途径和有效方法

(一)开展数学建模课堂教学

即在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模,介绍建模的过程和思想方法及建模中要注意的问题。案例教学法的关键在于把握两个重要环节:

案例的选取和课堂教学的组织。

教学案例一定要精心选取,才能达到预期的教学效果。其选取一般要遵循以下几点。

1. 代表性:案例的选取要具有科学性,能拓宽学生的知识面,突出数学建模活动重在培养兴趣提高能力等特点。

2. 原始性:来自媒体的信息,企事业单位的 报告 ,现实生活和各学科中的问题等等,都是数学建模问题原始资料的重要来源。

3. 创新性:案例应注意选取在建模的某些环节上具有挑战性,能激发学生的创造性思维,培养学生的创新精神和提高创造能力。

案例教学的课堂组织,一部分是教师讲授,从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,介绍如何通过合理的假设和简化建立优化的数学模型。还要强调如何用求解结果去解释实际现象即检验模型。另一部分是课堂讨论,让学生自由发言各抒己见并提出新的模型,简介关键环节的处理。最后教师做出点评,提供一些改进的方向,让学生自己课外独立探索和钻研,这样既突出了教学重点,又给学生留下了进一步思考的空间,既避免了教师的"满堂灌",也活跃了课堂气氛,提高了学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的[4].

(二)开展数模竞赛的专题培训指导工作

建立数学建模竞赛指导团队,分专题实行教师负责制。每位教师根据自己的专长,负责讲授某一方面的数学建模知识与技巧,并选取相应地建模案例进行剖析。如离散模型、连续模型、优化模型、微分方程模型、概率模型、统计回归模型及数学软件的使用等。学生根据自己的薄弱点,选择适合的专题培训班进行学习,以弥补自己的不足。这种针对性的数模教学,会极大地提高教学效率。

(三)建立数学建模网络课程

以现代 网络技术 为依托,建立数学建模课程网站,内容包括:课程介绍,课程大纲,教师教案,电子课件,教学实验,教学录像,网上答疑等;还可以增加一些有关栏目,如历年国内外数模竞赛介绍,校内竞赛,专家点评,获奖心得交流;同时提供数模学习资源下载如讲义,背景材料,历年国内外竞赛题,优秀论文等。以此为学生提供良好的自主学习网络平台,实现课堂教学与网络教学的有机结合,达到有效地提高学生数学建模综合应用能力的目的。[5,6]

(四)开展校内数学建模竞赛活动

完全模拟全国大学生数模竞赛的形式规则:定时公布赛题,三人一组,只能队内讨论,按时提交论文,之后指导教师、参赛同学集中讨论,进一步完善。笔者负责数学建模竞赛培训近 20 年,多年的实践证明,每进行一次这样的训练,学生在建模思路、建模水平、使用软件能力、论文书写方面就有大幅提高。多次训练之后,学生的建模水平更是突飞猛进,效果甚佳。

如 2008 年我指导的队荣获全国高教社杯大学生数学建模竞赛的最高奖---高教社杯奖,这是此赛设置的唯一一个名额,也是当年从全国(包括香港)院校的约 1 万多个本科参赛队中脱颖而出的。又如 2014 年我校 57 队参加全国大学生数学建模竞赛,43 队获奖,获奖比例达 75%,创历年之最。

(五)鼓励学生积极参加全国大学生数学建模竞赛、国际数学建模竞赛

全国大学生数学建模竞赛创办于 1992 年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛, 国际大学生数学建模竞赛是世界上影响范围最大的高水平大学生学术赛事。参加数学建模大赛可以激励学生学习数学的积极性,提高运用数学及相关工具分析问题解决问题的综合能力,开拓知识面,培养创造精神及合作意识。

四、结束语

数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,而高校数学教学改革的目的之一是要着力培养学生的创造性思维,提高学生的创新能力。因此应将数学建模思想融入教学活动中,通过不断的数学建模教育和实践培养学生的创新能力和应用能力从而提高学生的基本素质以适应社会发展的要求。

参考文献:

[1]辞海[M].上海辞书出版社,2002,1:237.

[2]许梅生,章迪平,张少林。 数学建模的认识与实践[J].浙江科技学院学报,2003,15(1):40-42.

[3]姜启源,谢金星,一项成功的高等教育改革实践[J].中国高教研究,2011,12:79-83.

[4]饶从军,王成。论高校数学建模教学[J].延边大学学报(自然科学学版),2006,32(3):227-230.

[5]段璐灵。数学建模课程教学改革初探[J].教育与职业,2013,5:140-142.

[6]郝鹏鹏。工程网络课程教学的实践与思考[J]科技视界,2014,29:76-77.

大部分数学知识是抽象的,概念比较枯燥,造成学生学习困难,而数学建模的运用,在很大程度上可以将抽象的数学知识转化成实体模型,让学生更容易理解和学习数学知识。教师要做的就是了解并掌握数学建模的方法,并且把这种 教学方法 运用到数学教学中。

对教师来说,发现好的教学方法不是最重要的,而是如何把方法与教学结合起来。通过对数学建模的长期研究和实践应用,笔者 总结 了数学建模的概念以及运用策略。

一、数学建模的概念

想要更好地运用数学建模,首先要了解什么是数学建模。可以说,数学建模就像一面镜子,可以使数学抽象的影像产生与之对应的具体化物象。

二、在小学数学教学中运用数学建模的策略

1.根据事物之间的共性进行数学建模

想要运用数学建模,首先要对建模对象有一定的感知。教师要创造有利的条件,促使学生感知不同事物之间的共性,然后进行数学建模。

教师应做好建模前的指导工作,为学生的数学建模做好铺垫,而学生要学会尝试自己去发现事物的共性,争取将事物的共性完美地运用到数学建模中。在建模过程中,教师要引导学生把新知识和旧知识结合起来的作用,将原来学习中发现的好方法运用到新知识的学习、新数学模型的构建中,降低新的数学建模的难度,提高学生数学建模的成功率。如在教学《图形面积》时,教师可以利用不同的图形模板,让学生了解不同图形的面积构成,寻找不同图形面积的差异以及图形之间的共性。这样直观地向学生展示图形的变化,可以加深学生对知识的理解,提高学生的学习效率。

2.认识建模思想的本质

建模思想与数学的本质紧密相连,它不是独立存在于数学教学之外的。所以在数学建模过程中,教师要帮助学生正确认识数学建模的本质,将数学建模与数学教学有机结合起来,提高学生解决问题的能力,让学生真正具备使用数学建模的能力。

建模过程并不是独立于数学教学之外的,它和数学的教学过程紧密相连。数学建模是使人对数学抽象化知识进行具体认识的工具,是运用数学建模思想解决数学难题的过程。因此,教师要将它和数学教学组成一个有机的整体,不仅要帮助学生完成建模,更要带领学生认识数学建模的本质,领悟数学建模思想的真谛,并逐渐引导学生使用数学建模解决数学学习过程中遇到的问题。

3.发挥教材在数学建模上的作用

教材是最基础的教学工具,在数学教材中有很多典型案例可以利用在数学建模上,其中很大一部分来源于生活,更易于小学生学习和理解,有助于学生构建数学建模思想。教师要利用好教材,培养学生的建模能力,帮助学生建造更易于理解的数学模型,从而提高学生的学习效率。如在教学加减法时,教材上会有很多数苹果、香蕉的例题,这些就是很好的数学模型,因为贴近生活,可以激发学生的学习兴趣,培养学生数学建模的能力,所以教师应该深入研究教材。

数学建模是一种很好的数学教学方法,教师要充分利用这种教学方法,真正做到实践与理论完美结合。

1、层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。

2、多属性决策是现代决策科学的一个重要组成部分,它的理论和方法在工程设计、经济、管理和军事等诸多领域中有着广泛的应用,如:投资决策、项目评估、维修服务、武器系统性能评定、工厂选址、投标招标、产业部门发展排序和经济效益综合评价等.多属性决策的实质是利用已有的决策信息通过一定的方式对一组(有限个)备选方案进行排序或择优.它主要由两部分组成:(l) 获取决策信息.决策信息一般包括两个方面的内容:属性权重和属性值(属性值主要有三种形式:实数、区间数和语言).其中,属性权重的确定是多属性决策中的一个重要研究内容;(2)通过一定的方式对决策信息进行集结并对方案进行排序和择优。

3、灰色预测模型(Gray Forecast Model)是通过少量的、不完全的信息,建立数学模型并做出预测的一种预测方法.当我们应用运筹学的思想方法解决实际问题,制定发展战略和政策、进行重大问题的决策时,都必须对未来进行科学的预测.预测是根据客观事物的过去和现在的发展规律,借助于科学的方法对其未来的发展趋势和状况进行描述和分析,并形成科学的假设和判断。

4、Dijkstra算法能求一个顶点到另一顶点最短路径。它是由Dijkstra于1959年提出的。实际它能出始点到 其它 所有顶点的最短路径。

Dijkstra算法是一种标号法:给赋权图的每一个顶点记一个数,称为顶点的标号(临时标号,称T标号,或者固定标号,称为P标号)。T标号表示从始顶点到该标点的最短路长的上界;P标号则是从始顶点到该顶点的最短路长。

5、Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。

6、模拟退火算法是模仿自然界退火现象而得,利用了物理中固体物质的退火过程与一般优化问题的相似性从某一初始温度开始,伴随温度的不断下降,结合概率突跳特性在解空间中随机寻找全局最优解。

7、种群竞争模型:当两个种群为争夺同一食物来源和生存空间相互竞争时,常见的结局是,竞争力弱的灭绝,竞争力强的达到环境容许的最大容量。使用种群竞争模型可以描述两个种群相互竞争的过程,分析产生各种结局的条件。

8、排队论发源于上世纪初。当时美国贝尔电话公司发明了自动电话,以适应日益繁忙的工商业电话通讯需要。这个新发明带来了一个新问题,即通话线路与电话用户呼叫的数量关系应如何妥善解决,这个问题久久未能解决。1909年,丹麦的哥本哈根电话公司.埃尔浪(Erlang)在热力学统计平衡概念的启发下解决了这个问题。

9、线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。决策变量、约束条件、目标函数是线性规划的三要素。

10、非线性规划:非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。20世纪50年代初,库哈() 和托克 () 提出了非线性规划的基本定理,为非线性规划奠定了理论基础。这一方法在工业、交通运输、经济管理和军事等方面有广泛的应用,特别是在“最优设计”方面,它提供了数学基础和计算方法,因此有重要的实用价值。

数学建模全国优秀论文相关 文章 :

★ 数学建模全国优秀论文范文

★ 2017年全国数学建模大赛获奖优秀论文

★ 数学建模竞赛获奖论文范文

★ 小学数学建模的优秀论文范文

★ 初中数学建模论文范文

★ 学习数学建模心得体会3篇

★ 数学建模论文优秀范文

★ 大学生数学建模论文范文(2)

★ 数学建模获奖论文模板范文

★ 大学生数学建模论文范文

无忧在线有很多数学建模论文,你去搜一下就行

相关百科

热门百科

首页
发表服务