首页

> 学术论文知识库

首页 学术论文知识库 问题

研究口腔上皮细胞论文摘要

发布时间:

研究口腔上皮细胞论文摘要

呼吸道上皮细胞在过敏原致敏和哮喘发作中起着非常重要的作用上皮组织(epithelialtissue)由密集排列的上皮细胞和极少量细胞间质构成的动物的基本组织。上皮细胞是位于皮肤或腔道表层的细胞。口腔上皮细胞是一种上皮细胞。人的口腔上皮细胞是扁平、多边形的,形状不很规则。人的口腔顶壁前部为硬腭,后部为软腭,两侧壁为颊部。口腔各壁都有黏膜覆盖。口腔上皮细胞主要分布在口腔两侧颊部。

实验一用显微镜观察人的口腔上皮细胞目的要求1.认识人体细胞的基本结构。2.练习制作临时装片和使用显微镜。3.画一个口腔上皮细胞图。材料用具显微镜,载玻片,盖玻片,镊子,消毒牙签,烧杯,吸管,生理盐水,稀碘液(或龙胆紫), 吸水纸。方法步骤一、制作人的口腔上皮细胞的临时装片1.在洁净的载玻片中央,滴一滴生理盐水。2.用消毒牙签的一端,在漱净的口腔侧壁上轻轻地刮几下。3.把牙签上附有碎屑的一端,放在载玻片上的生理盐水滴中涂抹几下。4.用镊子夹起洁净的盖玻片,将它的一边先接触载玻片上的生理盐水滴,然后,轻轻地盖在水滴上。5.在盖玻片的一侧加稀碘液;用吸水纸从盖玻片的另一侧吸引,使用染液浸润到标本的全部。二、用显微镜观察人的口腔上皮细胞先想一想怎样使用低倍显微镜?再将临时装片放在显微镜下,进行观察。用低倍镜观察,在视野中所看到的边缘整齐的扁平细胞,就是人的口腔上皮细胞。重点观察一个口腔上皮细胞,辨认它的细胞膜、细胞质和细胞核。三、绘图依照所观察到的细胞,画一个口腔上皮细胞图,并且注出各部分的名称。

关于什么方面的啊???口腔包括口外 修复 正畸 牙体 粘膜 牙周 你要哪方面的啊??口腔医学研究中实验动物的选择与应用一、常用实验动物口腔解剖生理特点口腔医学和医学其它科学一样正在飞速发展。新的治疗方法、药物、矫形材料等的不断发现,有些可以直接用于临床,有些必须通过动物验证验证后才能应用于临床。因而,实验动物在口腔医学研究中的地位就显得愈来愈重要了。可以选用实验动物进行口腔器官先天畸形、缺损、后天创伤、炎症及肿瘤的研究等。如龋或非龋性的牙体病、牙髓病、尖周病、牙周病、口腔粘膜病、肿瘤以及涎腺、关节、颌骨疾患和错畸形等的病因、病理、病程、诊断、预防及治疗(含镶、补技术)方法的研究等。在选择实验动物进行口腔医学各种研究时首先必然熟悉这些实验动物口腔的解剖、生理特点。(一)常用实验动物牙齿数目和生长特点1.齿式和数目(以恒牙为标准)猴 2(2123/2123)=32狗 2(3142/3143)=42;猫 2(3131/3121)=30兔 2(2033/1033)=28;豚鼠 2(1013/1013)=20地鼠 2(1003/1003)=16;大鼠 2(1003/1003)=16;小鼠 2(1003/1003)=16。常用实验动物牙齿数目见表10-34表10-34 人和常用实验动物的恒牙数目人和动物 门(切)齿 尖(犬)齿 前臼齿 臼齿 恒牙数人 8 4 8 12 32猴 8 4 8 12 32狗 12 4 16 10 42猫 12 4 10 4 30兔 6 0 10 12 28豚 鼠 4 0 4 12 20地 鼠 4 0 0 12 16大 鼠 4 0 0 12 16小 鼠 4 0 0 12 162.牙齿生长特点猴的牙齿生长与脱落有一定规律。新生仔猴一般无齿,偶而长出二个门齿。6个月内乳齿20个出齐,中间生长停止到14~16个月。然后开始生长恒龄换乳齿。恒河猴牙齿生长次序为,乳齿:下中门→上中门→下侧门→上侧门→上犬→下犬→上前臼2→下前臼2→下前臼3→上前臼3;恒齿;下臼1→上臼1→上中门或上侧门(换)→下中门(换)→上侧门(换)→下侧门(换)→上臼2→下臼2→前臼1(换)→前臼2(换)→犬换→臼3。恒河猴年龄与牙齿生长情况见表10-35表10-35 恒河猴牙齿生长情况年龄(月) 牙 齿 生 长 情 况出生 新生仔猴一般无齿,少数偶尔长出二个门牙 四个中门齿于上下颌同时生长 生长快36天就可长8个门齿 上颌犬齿刚冒尖 上颌犬齿,第一前臼齿同时冒尖 上下颌第一前臼齿长出 下颌第二前臼齿冒尖或第1前臼龄全部长出5~6 乳齿全部长齐14~16 下颌右侧第一臼齿先长,下颌左侧第1臼齿后长17~18 第一臼齿生长,情况各不相同19~31 上、下颌第一臼齿长全32~40 换中门齿、侧门齿,次序变化大。换犬齿,并长出第二臼齿42~43 换下颌侧门齿、中门齿。第二臼齿全部长出,换第一前臼齿44~56 换第二前臼齿,换犬齿65~78 下颌第三臼齿长出72~82 上颌第三臼齿长出,至此全部恒齿长齐狗有恒齿42枚,切齿自第1至第3逐渐增大,下切齿比上切齿小。犬齿发达,大而尖锐呈弯形。臼齿的数目也因品种而异,一般的齿式为6/7,但在短头型狗的臼齿常为5/7臼齿的大小也有很大差别,其中以上臼齿的第4齿和下臼齿的第1齿最大,其前后各齿均逐渐变小。仔狗生后十几天即生出乳齿,两个月以后开始由门齿、犬齿、臼齿逐渐换为恒齿,8~10个月齿换齐,但犬齿需要1岁半以后才能生长坚实。狗的年龄与牙齿生长、更换和磨损情况见表10-36。表10-36 狗年龄与牙齿情况年 龄 牙 齿 情 况2个月以下 仅有乳齿(白、细、尖锐)2~4个月 更换门齿4~6个月 更换犬齿(白、牙尖圆钝)6~10个月 更换臼齿1岁 牙长齐,洁白光亮,门齿有尖突2岁 下门齿尖突部分磨平3岁 上下门齿尖突部分都磨平4~5岁 上下门齿开始磨损呈微斜面并发黄6~8岁 门齿磨至根,犬齿发黄磨损唇部,胡须发白10岁以上 门齿磨损,犬齿不齐全,牙根黄,唇边胡须全白(二)常用实验动物口腔内某些解剖生理特点狗、猫和其它肉食动物的犬齿特别发达。猫舌上的丝状乳突被有厚的角质层,成倒钩状,便于舐刮骨上的肉。兔是草食动物,门齿发达用以切断草料,没有犬齿,在口腔顶壁硬腭的表面有平滑的粘膜,在粘膜上有很多横褶。绵羊和山羊的上唇感觉敏锐,运动灵活。狗的唾液腺发达,包括腮腺、颌下腺、舌下腺和眶腺四对。有人认为狗的唾液中不含有淀粉酶,但含有溶菌酶,能杀灭细菌,所以常见狗用舌舐伤口,有清洁消毒作用。由于狗缺乏汗腺,天热时可大量分泌唾液以散热。猫有五对唾液腺,即耳下腺、颌下腺、舌下腺、臼齿腺和眶下腺,均开口于口腔,组成了混合的分泌物-唾液。兔的唾液腺很发达,除具有一般哺乳动物所具有的三对唾液腺(腮腺、颌下腺、舌下腺)外,还有一对眶下腺,此外还有一些分散的小腺体。兔的唾液内含有淀粉酶,但分解淀粉能力很弱。豚鼠有五对唾液腺、腮腺、颌下腺、颧腺、大舌下腺和小舌下腺。此外,唇角附近有唇腺,口腔侧壁的颊内有颊腺。大鼠和小鼠的唾液腺有三对,即耳下腺、颌下腺和舌下腺。兔舌的表面有许多乳头,为味觉感受器,舌尖和两侧分布的最为密集。狗舌前部宽而薄,后部较厚,舌的背面中央有纵沟,表面上覆有一层密集的丝状乳突。舌的两侧缘分布有蕈状乳突,在舌背面的后部,除丝状乳突外还有锥状乳突,它们都是味觉感受器。大鼠门齿后面接近中线处有1对小的唾液腺乳头。靠近舌基部有轮廓乳头,舌背有圆锥乳头和丝状乳头。狗口腔的形状和大小,与其头骨形成有密切关系。长头型的狗口腔长而狭窄,短头型的则口腔短而宽。狗的口裂很大,口角约与第3或4臼齿相对。唇薄而活动灵活,表面长有触毛,上唇中央部有一小区无触毛,而有一中央沟(人中),下唇侧缘有锯齿状突。二、动物的选择与应用(一)猕猴和狨猴猕猴是口腔医学实验研究的首选动物。特别是口腔矫形学和口腔内科学研究更为常用,如用于再植牙的效果观察;组织病理变化;干槽症组织病理变化的研究;以及探讨各种治疗方法、治疗材料组织愈合的影响等,以求得最佳的临床治疗效果。猕猴的牙齿数目和人类一样,牙齿的排列类似于人类,口腔内存在的许多微生物也相同于人类口腔中存在的微生物,如给猕猴的食物中加大糖的含量喂动物后。可以诱发乳牙恒牙龋齿,发生的龋齿变化类似于人类,故可选用猕猴进行龋齿病因、发病和治疗等方面的研究。狨猴的牙周组织对一般的代谢改变极为敏感。老年狨猴的牙周膜改变极类似于老年人的牙周膜改变,另外,狨猴牙周炎的发生过程以及组织病理学改变也类似于人类,所以狨猴作为牙周疾病的研究是极为理想的动物。猕猴也用于牙齿折裂方式、程度以及处理时间、处理方法和组织病理变化的研究,以探讨治疗效果;还常用于补牙材料、镶牙材料对牙髓及牙周组织及骨组织的毒性、致癌性等的研究。(二)家兔家兔颈部和颌面部的血管分布类似人类。人类颈面部的手术常需要结扎颈外动脉,对于结扎后产生的一系例问题如:血液循环障碍、血行恢复时间等,可以选用成年家兔结扎单侧的颈外动脉,观察其分布区域的血管象变化,以探讨血管象的恢复和侧枝循环径路的发展情况。唇裂俗称兔唇,家兔是研究唇裂和腭裂病因(如遗传、药物、环境等)与其它先天缺陷(如脑水肿、脊柱裂、呆小症、软骨发育不良等)关系的极好动物。兔下颌骨突出已有报导,引起突出的原因与人相似。可以用于下颌骨突出原因(如遗传、咬合不正、肢端肥大症)的研究,以及下颌骨突出措施的探讨,以指导临床。家兔是观察牙髓Arthus炎症反应的敏感动物。Arthus反应是给已接触过抗原的动物皮内注入同种抗原后,数小时内局部出现水肿、红斑、硬结、坏死等为特征的炎症反应,其反应机理属于Ⅲ型变态反应,临床上常用于检测体内是否有特异性循环抗体。实验选用雄性,用O溶血素致敏家兔,直到抗体效价上升,出现Arthus皮肤反应之后,再用同一抗原在切牙髓作局部攻击,此后不同时间取出牙髓,用组织学方法和免疫萤光技术进行观察,光镜检查证实牙髓中存在急性炎症,免疫萤光证实牙髓组织中有免疫复合物,特异萤光主要在血管壁,证实牙髓中存在着Arthus炎症反应,借助此反应,说明机体若通过牙髓再次受到同种抗原的作用,骨髓组织就出现炎症,这种炎症是抗原一抗体局部反应的结果。家兔的建立口腔粘膜溃疡病的模型动物。口腔粘膜溃疡极为多见,一般认为是由于自身免疫或免疫功能受损所致。抗原选用正常产死婴(死亡时间不超过2~3小时),在无菌条件下采集口腔粘膜,生理盐水冲洗干净后放入的磷酸盐缓冲液中,将粘膜剪碎研磨成组织勾浆,加入等量福氏完全佐剂或不完全佐剂,混匀呈乳状液,家兔脊柱二侧皮内注射该液,其注8~10个点,每隔1周注1次,共4次,第1次,第2~4次注1~3ml。第4次注后第3天即开始出现口腔粘膜溃疡,以后反复发生,直到观察到第4个月仍有溃疡出现。家兔适宜进行碎松质一骨髓移植的实验研究。碎松质骨一骨髓(Particulate Cancellous Bone and Marrow,PCBM)移植术是用髂嵴挖取的碎松质骨,内骨膜及骨髓等成分作移植物修复颌面部骨缺损。常选用健康家兔麻醉后右髂嵴切取×髂骨块,并挖取适量PCBM,然后再进行修复术。家兔还适用于作口腔整形材料的毒性实验。聚四氟乙烯复合材料是颌面外科及整形外科中一种比较理想的、应用范围比较广泛的人工骨材料,既可代替骨,又可代替软骨及软组织。常选大白耳家兔作毒性实验。家兔也用于口腔粘膜病、牙周病的病因、病理变化的研究,如损伤家兔三叉神经的上颌支或下颌支,可造成家兔唇部的实验性营养性溃疡。也可用于矫形科的实验研究,如垫实验,探讨牙功能调整机制。(三)狗狗在口腔医学研究中应用很广泛,如狗2、3、4前磨牙拔除后,如去除根间骨隔,颇似人类的拔牙创,用于干糟症动物模型的研究。拔除狗牙时,具牙周韧带坚韧,牙髓腔较大,往往牙齿折断或牙槽骨折,牙周韧带仍不易断离,拔牙时应先以细窄蛾眉凿沿牙周反复增隙,尽可能凿断牙周韧带,然后以窄牙挻将牙齿挻松,最后以牙钳夹紧牙齿,顺牙长轴方向以锤叩击牙钳,将牙冲出,如以牙钳拔除,往往造成断根,拔牙后一般出血较多,应认真将拔牙窝刮净,以纱卷止血,方可进行以后的实验。狗的牙周膜的组织学、牙周炎的组织病理学以及牙周病的流行病因与人的相类似,所以狗作为牙周病动物模型的研究是极为理想的。在自体牙移植和放射治疗的研究问题上,狗是常用的动物。狗的一些先天性疾病,如唇裂、腭裂、下颌骨突出等,有一定的遗传因素。狗的下颌骨突出的方式相似于人下颌髂突出,所以,狗也可作为颌面部畸形的动物模型研究。(四)金黄地鼠金黄地鼠颊囊部涂抹致癌剂二甲基苯并蒽(DMBA),6周后全部动物诱发生成上皮异常增生性白斑,与临床病人口腔粘膜白斑病时病理变化相似,所以金黄地鼠是研究上皮异常增生性白斑较适宜的动物,一般选60g体重金黄地鼠容易成功。慢性机械损伤烟酒刺激金黄地鼠或大鼠的硬腭后部软腭前部,可成功地诱发出与人类相同的口腔粘膜白斑,所形成的动物粘膜白斑和人类口腔粘膜白斑的临床及病理均基本相似,其恒定期较长,病损在实验期内未恶变,停止刺激后,在短期内也不消退。金黄地鼠也用于舌癌的研究,1973年Fujita等在采用根管拔髓针搔伤舌体后,再涂抹含有DMBA的丙酮液,经13~25周,使100%的动物产生了舌癌。(五)大鼠和小鼠大鼠的切牙基底部迅速增生的上皮和间叶造牙本质细胞对环磷酰胺最为敏感,其靠釉上皮可耐受40mg/kg环磷酰胺的细胞毒作用,可以用此来探讨环磷酰胺细胞毒性对切牙生长的影响。大鼠腭粘膜下含有大量腭腺,导管开口于粘膜表面,此结构可以作为致癌剂侵入的极好门户。通过手术,把致癌剂植入大鼠下颌骨,可以成功地诱发下颌骨的骨肉癌,作为骨肉癌的动物模型研究。大鼠舌部涂沫DMBA诱发的白班形成的潜伏短期,比例高,100%的动物能生成白斑,但难以诱发生成上皮异常增生性白斑,而且病变形成后,逐渐消退,可能与大鼠抗病强、口腔内唾液分泌、舌运动对所涂药品有清洁作用等有关。实验的部位不同,其结果也不同。然而,可通过人工方法减少大鼠对所涂药物的清洁作用,提高致癌率,如设计下唇粘膜上皮衬里的人工育袋,再涂上致癌剂,以延长致癌物质对粘膜作用的持续时间,这样可以成功地诱发大鼠口腔粘膜癌。大鼠是念珠菌性白斑变化的适宜动物。念珠菌感染与某些类型白斑,特别是颗粒型白斑的产生有一定关系。常选用6月龄大鼠,舌背接种白念菌后,舌正常乳头结构消失,白念菌丝侵入正常角化上皮的角质层,并引起增生和炎症改变,上皮逐渐变成或不全角化上皮,最后的外类似人念珠菌性白斑变化,但唇粘膜末出现不全角化层。小鼠的唇裂和腭裂与人的相似。据报导,其遗传情况也相类似,因此,小鼠非常适合于做唇裂和腭裂的动物模型。鼠类牙齿的釉质厚度较人齿薄,而且鼠类无制龋的功能,故一旦发生龋齿,其发展较快,损坏严重,所以,在实验分析时需注射这一特性。另外,鼠的门齿是不断生长的,因此,其门齿不适宜于龋齿的研究。鼠类的品种、品系、年龄不同,对龋齿易感性也不同。如幼年NIH大鼠的敏感性显著低于Sprague-Dawley大鼠;变形链珠菌致小鼠的龋齿变范围远不如地鼠和大鼠,而变形链球菌诱发地鼠的平滑面龋比大鼠更为广泛。随着年龄的增长,鼠类对龋齿变得不敏感,这可能是由于釉质成熟的原因。因此,多数龋齿实验需在动物17~24日龄开始。不同品系小鼠对牙周病的感受性不同。如STR/N小鼠对牙周病易感,而DBA/2A小鼠对牙周病有抗力。小鼠和大鼠的唾液腺较为发达,可用来复制唾液腺疾病的动物模型。巴豆油对单纯疱疹病毒诱发小白鼠唇癌有促进作用,常选用2月龄小鼠进行实验。Sprague-Dawley大鼠、Charles River COBC大鼠、Fisher大鼠、Osborn-Mendel大鼠、Wistar大鼠和金黄地鼠、猕猴、猪等动物的磨牙面有窝沟,解剖形态与人类磨牙相似,若给致病菌丛和致龋食物可以产生肉眼和组织病理方面与人牙一样的龋损,利用这些动物可以建立研究龋齿的动物模型。请注明丁香园转帖。

细胞研究期刊

《细胞》(Cell)为一份同行评审科学期刊,主要发表生命科学领域中的最新研究发现。《细胞》刊登过许多重大的生命科学研究进展,与《自然》和《科学》并列,是全世界最权威的学术杂志之一。其2010年的影响因子为,高于《科学》的影响因子(),接近《自然》的影响因子(),表明它所刊登的文章广受引用。

2020年发表的细胞生物学杂志包括:1. Cell:《细胞》(Cell)是一本由美国细胞生物学会出版的期刊,主要发表细胞生物学领域的研究论文。2. Molecular Cell:《分子细胞》(Molecular Cell)是一本由美国细胞生物学会出版的期刊,主要发表分子细胞生物学领域的研究论文。3. Developmental Cell:《发育细胞》(Developmental Cell)是一本由美国细胞生物学会出版的期刊,

细胞研究重要。1、细胞研究需要寄生在其它细胞内完成,是第一完成要素,比细菌研究重要。2、细菌研究作为第二大研究体系,没有细胞研究重要。《细胞研究》是中国科学院上海生命科学研究院主办的基础科学类期刊,全英文刊登国内外细胞生物学及其相关领域的原创性研究论文、综述、快报和述评的国际性期刊。

癌细胞研究论文

m6A RNA甲基化是最常见、最丰富的真核生物mRNA转录后修饰。研究表明,m6A 在不同组织,细胞系中是一个复杂的调控网路,m6A RNA 甲基化参与 RNA 的代谢过程,并与肿瘤的发生和发展密切相关。本期着重解读两篇癌症中的 m6A 研究,看一下 m6A RNA 甲基化如何玩转高分期刊。 2020年10月,南京医科大学汪秀星课题组和美国 UCSD Jeremy Rich 等课题组在Cancer Discovery上发表题为“The RNA m6A reader YTHDF2  maintains oncogene expression and is a targetable dependency in glioblastoma stem cells”的研究论文。该研究为靶向治疗胶质母细胞瘤提供了新的治疗机会。 研究背景 胶质母细胞瘤(GBM)代表了最常见的原发性,内在性脑肿瘤,患者的平均生存期限制在一年以上。鉴于胶质母细胞瘤干细胞(GSC)在治疗抗性,血管生成,免疫逃逸和侵袭中的作用,临床和临床前观察表明,靶向GSC可以改善肿瘤预后神经肿瘤学上的精准医学研究。 研究方法 研究结果 1. 在 GSC 中上调的致癌转录本以 RNA m6A 修饰为标志 作者利用 MeRIP-seq 对 GSC 和神经干细胞(NSC)进行 m6A 标记的检测,结果发现,与非肿瘤对应物相比,GSCs 的m6A 分布发生了改变。通过38个 GSCs 和5个 NSCs 的队列中的 RNA-seq 数据进行 GSEA 分析,具有 m6A 峰的基因在GSC 高度富集,而且在 GSC 中获得的具有 m6A 峰的基因均被上调。相反,相对于 NSC、GSC 中丢失 m6A 峰的基因通常在 GSC 中被下调。而且,在 GSC 中,与癌症干细胞相关的重要基因上获得了 m6A 峰,包括表达增加的 OLIG2  和 MYC 。 2.  YTHDF2  在 GSC 中表达上调,对 GSC 的维持至关重要 作者为研究 m6A YTHDF  在胶质母细胞瘤中的功能作用,利用 CRIPR 技术检测了 YTHDF2 ,相对于对照 sgRNA,敲除 YTHDF2  会降低细胞活力及减少 GSCs 中细胞球形成。为研究了 YTHDF2  耗竭是否会诱导 GSC 分化,正交实验发现,shRNA 介导的 YTHDF2  敲低会降低 GSC 的活性,过表达的 YTHDF2  可以挽救 GSC 的活性。结果表明, YTHDF2  是胶质母细胞瘤维持的一个特异性和有效的调节因子。 3.  YTHDF2  通过 m6A RNA 修饰支持 GSCs 中的基因表达 作者利用 RNA-seq 检测 YTHDF2  的下游靶点,敲除 YTHDF2  可引起 GSCs 中广泛基因表达的改变, MYC  靶点显著富集,而且,GSCs 中获得 m6A 峰的基因更频繁地下调。通过 qPCR 也验证了 YTHDF2  敲除对 MYC、VEGFA  mRNA 水平降低的作用。为了预测 YTHDF2  在 GSCs 中的作用,作者结合 TCGA 胶质母细胞瘤基因表达数据,发现 YTHDF2  相关基因 MYC  和 E2F  靶点以及 G2M  调节因子和氧化磷酸化介质高度富集。这些数据表明 YTHDF2  作为与 m6A 差异修饰相关的转录程序的调节因子。 4.  YTHDF2  通过保持  MYC  转录稳定发挥 GSC 特异性依赖作用 为了确定 YTHDF2  介导作用于 GSCs 中 MYC 的特异性,作者比较了在 NSCs 和 GSCs 之间 YTHDF2  缺失的影响。NSCs 中 YTHDF2  敲低并不影响 MYC mRNA 水平,但降低了 GSCs 中 MYC mRNA 水平。而且, YTHDF2  耗竭降低了GSC 的活性,而不影响 NSCs。因此, YTHDF2  代表了一种 GSC 特异性依赖,通过 MYC  基因的特异性稳定支持胶质母细胞瘤的生存。 5.  IGFBP3  是 GSCs 中  YTHDF2-MYC  轴的下游靶点 因为 IGFBP3  是 YTHDF2  耗尽后最高下调基因之一,作者研究了 IGFBP3  是否调控 YTHDF2-MYC  轴下游的细胞活力。 IGFBP3  的缺失降低了 GSC 的活性和细胞球形成。 IGFBP3  过表达挽救了 GSCs 免于 YTHDF2  下调介导的细胞死亡。最后,作者利用20个胶质母细胞瘤和20个非肿瘤脑组织中 IGFBP3  的表达进行验证,观察到 GSC 中 IGFBP3  mRNA 表达升高。结果表明, IGFBP3  是 GSCs 中 YTHDF2-MYC  信号轴的关键下游效应子。 6.  YTHDF2-MYC-IGFBP3  轴促进体内肿瘤生长 为了探讨在体内靶向 YTHDF2  治疗的潜在益处,作者利用 CRISPR 敲除技术对原位异种移植物的小鼠进行检测。结果表明,与携带对照 sgRNA 的 GSCs 的小鼠相比,敲除 YTHDF2  延长了肿瘤潜伏期并减少了肿瘤体积。 IGFBP3 过 表达恢复了 YTHDF2  缺失的 GSCs 体内成瘤能力。 研究结论 通过结合体外和体内的 GSCs 研究,该研究阐明了 m6A 介质在 GSCs 中的功能,并确定 YTHDF2  是 GSCs 特异性依赖,通过稳定 MYC  转录物调控 GSCs 中的葡萄糖代谢。这些发现为靶向治疗胶质母细胞瘤提供了新的治疗机会。 2020年4月,上海交通大学医学院附属仁济医院洪洁团队在 Molecular Cancer 上发表了题为“m6A-dependent glycolysis enhances colorectal cancer progression”的研究论文。研究表明,靶向 METTL3  及其通路为高糖代谢的 CRC 患者提供了另一种合理的治疗靶点。 研究背景 结直肠癌 (CRC) 是全球第四大常见恶性肿瘤和第三大癌症死亡原因,而以乳酸作为糖酵解的最终产物,被认为是治疗癌症的一种有前途的方法。m6A 调控基因的改变在多种人类疾病的发病机制中起着重要的作用,但 m6A 修饰是否在 CRC 的葡萄糖代谢中起作用尚不清楚。 研究方法 研究结果 1.  METTL3 与结直肠癌糖酵解密切相关 为了探讨结直肠癌(CRC)中 m6A 修饰与糖酵解代谢之间的相关性,作者对47例 CRC 患者进行 RT-PCR分析,CRC患者中FDG 摄取与 METTL3  表达之间存在最显着的相关性。进一步分析发现 CRC 患者中 FDG 摄取与 METTL3  免疫组化染色存在显著相关性。最后,作者利用 RNA-seq 比较 METTL 3 敲除和野生型(WT) HCT116 CRC 细胞的基因表达谱, METTL3 敲除细胞表现出更高的 METTL3 表达。这些结果表明 METTL3  可能介导 CRC 患者糖溶解代谢和癌变。 2. METTL3  在结直肠癌中促进糖酵解代谢 为了弄清 METTL3  的改变是否直接影响糖酵解代谢,研究发现敲除 METTL3  可显著降低 HCT116 和 SW480 细胞的胞外酸化速率(ECAR)水平,过表达 METTL3 显著提高了 DLD1 细胞的乳酸生成、葡萄糖吸收和 ECAR  水平。为了阐明 Mettl3  诱导的 CRC 糖酵解是否依赖于其甲基转移酶功能,作者通过 Mettl3  野生型和突变型的研究,发现 Mettl3  的 MTase 结构域的缺失阻断了 Mettl3  诱导的糖酵解过程。这些数据表明 Mettl3 通过其甲基转移酶结构域调控结直肠癌糖酵解代谢。 3. 在结直肠癌中, METLC3  诱导的增殖依赖于糖酵解的激活 METLC3  的敲除消除了 HCT116 细胞的细胞增殖和集落形成,并且降低了 HCT116 肿瘤的生长和异种移植小鼠模型中的肿瘤重量。在功能分析中, METTL3  的过表达增加细胞增殖、集落形成、肿瘤的生长和肿瘤的重量。2-DG(糖酵解途径的抑制剂)处理在体外和体内显着阻断了 METTL3  诱导的细胞增殖和菌落形成,这些结果表明 Mettl3 通过调控结直肠癌糖代谢促进 CRC 进展。 4. METTL3  在结直肠癌中的潜在靶点 为了鉴定 METTL 3 的潜在靶标,作者选择了 METTL3  敲除和 WT HCT116 细胞进行 MeRIP-seq和RNA-seq,最常见的motif ' GGAC '在 m6a 峰中显著富集,大部 分 METTL3  结合位点位于 CDS区,在 5'UTR 和 3'UTR 高度富集,并且 m6A在转录水平上发生了全局低甲基化。联合RNA-seq数据,确定了429个低甲基化的 m6A 基因,其 mRNA 转录被下调,595个低甲基化的 m6A 基因,其 mRNA 转录被上调。基于甲基化水平与 mRNA 表达水平都下降,找到与糖酵解密切相关的靶基因 HK2  和 SLC2A1(GLUT1) 。 6.  HK2  和  SLC2A1  是  METTL3  在 CRC 中重要的功能靶基因 作者通过 HCT116 WT 和 mettl3  敲除细胞转染 control、 HK2  或 SLC2A1  过表达实验发现, HK2  或 SLC2A1  的异位表达部分恢复了敲除 mettl3  细胞的增殖、集落形成能力和肿瘤生长,而且,也能恢复 HCT116 mettl3  敲除细胞中乳酸产量的下降。同时,在体外和体内,过表达 SLC2A1  显著恢复了 HCT116 mettl3  敲除细胞葡萄糖摄取下降的趋势。因此, HK2  和 SLC2A1 介导了 CRC 细胞中 METLL3 的调节功能。 研究结论 METTL3  是 CRC 的一种功能性和临床致癌基因。 METTL3  通过 m6A- IGF2BP2/3— 依赖机制稳定 CRC 中 HK2  和 SLC2A1 的表达。靶向 METTL3  及其通路为高糖代谢的 CRC 患者提供了另一种合理的治疗靶点。 参考文献 [1] Dixit D, Prager B, GimpleShen R, et al. The RNA m6A reader YTHDF2  maintains oncogene expression and is a targetable dependency in glioblastoma stem cells[J]. Cancer Discovery, 2020. [2] Shen C, Xuan B, Yan T, et al. M6A-dependent glycolysis enhances colorectal cancer progression[J]. Molecular Cancer, 2020, 19(1).

在一项新的研究中,来自美国普林斯顿大学的研究人员惊奇地发现,他们以为是对癌症如何在体内扩散---癌症转移---的直接调查却发现了液-液相分离的证据:这个生物学研究的新领域研究生物物质的液体团块如何相互融合,类似于在熔岩灯或液态水银中看到的运动。相关研究结果作为封面文章发表在2021年3月的Nature Cell Biology期刊上,论文标题为“TGF-β-induced DACT1 biomolecular condensates repress Wnt signalling to promote bone metastasis”。

论文通讯作者、普林斯顿大学分子生物学教授Yibin Kang说,“我们相信这是首次发现相分离与癌症转移有关。”

他们的研究不仅将相分离与癌症研究联系在一起,而且融合后的液体团块产生了比它们的部分之和更多的东西,自组装成一种以前未知的细胞器(本质上是细胞的一个器官)。

Kang说,发现一种新的细胞器是革命性的。他将其比作在太阳系内发现一颗新的星球。“有些细胞器我们已经认识了100年或更久,然后突然间,我们发现了一种新的细胞器!”

论文第一作者、Kang实验室博士后研究员Mark Esposito说,这将改变人们对细胞是什么和做什么的一些基本看法,“每个人上学,他们都会学到‘线粒体是细胞的能量工厂’,以及其他一些有关细胞器的知识,但是如今,我们对细胞内部的经典定义,对细胞如何自我组装和控制自己的行为的经典定义开始出现转变。我们的研究标志着在这方面迈出了非常具体的一步。”

这项研究源于普林斯顿大学三位教授实验室的研究人员之间的合作。这三位教授是Kang、Ileana Cristea(分子生物学教授,活体组织质谱学的领先专家);Cliff Brangwynne(普林斯顿大学生物工程计划主任,生物过程中相分离研究的先驱)。

Kang说,“Ileana是一名生物化学者,Cliff 是一名生物物理学者和工程师,而我是一名癌症生物学家和细胞生物学者。普林斯顿大学刚好是一个让人们联系和合作的美妙地方。我们有一个非常小的校园。所有的科研部门都紧挨着。Ileana实验室实际上与我的实验室在Lewis Thomas的同一层楼! 这些非常紧密的关系存在于非常不同的研究领域之间,让我们能够从很多不同的角度引入技术,让我们能够突破性地理解癌症的代谢机制--它的进展、转移和免疫反应--也能想出新的方法来靶向它。”

这项最新的突破性研究,以这种尚未命名的细胞器为特色,为Wnt信号通路的作用增加了新的理解。Wnt通路的发现导致普林斯顿大学分子生物学教授Eric Wieschaus于1995年获得诺贝尔奖。Wnt通路对无数有机体的胚胎发育至关重要,从微小的无脊椎动物昆虫到人类。Wieschaus已发现,癌症可以利用这个通路,从本质上破坏了它的能力,使其以胚胎必须的速度生长,从而使肿瘤生长。

随后的研究揭示,Wnt信号通路在 健康 的骨骼生长以及癌症转移到骨骼的过程中发挥着多重作用。Kang和他的同事们在研究Wnt、一种名为TGF-b的信号分子和一个名为DACT1的相对未知的基因之间的复杂相互作用时,他们发现了这种新的细胞器。

Esposito说,把它想象成风暴前的恐慌购物。事实证明,在暴风雪前购买面包和牛奶,或者在大流行病即将到来时囤积洗手液和卫生纸,这不仅仅是人类的特征。它们也发生在细胞水平上。

下面是它的作用机制:惊慌失措的购物者是DACT1,暴风雪(或大流行病)是TGF-ß,面包和洗手液是酪蛋白激酶2(CK2),在暴风雪面前,DACT1尽可能多地抓取它们,而这种新发现的细胞器则把它们囤积起来。通过囤积CK2,购物者阻止了其他人制作三明治和消毒双手,即阻止了Wnt通路的 健康 运行。

通过一系列详细而复杂的实验,这些研究人员拼凑出了整个故事:骨肿瘤最初会诱导Wnt信号,在骨骼中传播(扩散)。然后,骨骼中含量丰富的TGF-b激发了恐慌性购物,抑制了Wnt信号传导。肿瘤随后刺激破骨细胞的生长,擦去旧的骨组织。( 健康 的骨骼是在一个两部分的过程中不断补充的:破骨细胞擦去一层骨,然后破骨细胞用新的材料重建骨骼)。这进一步增加了TGF-b的浓度,促使更多的DACT1囤积和随后的Wnt抑制,这已被证明在进一步转移中很重要。

通过发现DACT1和这种细胞器的作用,Kang和他的团队找到了新的可能的癌症药物靶点。Kang说,“比如,如果我们有办法破坏DACT1复合物,也许肿瘤会扩散,但它永远无法‘长大’成为危及生命的转移瘤。这就是我们的希望。”

Kang和Esposito最近共同创立了KayoThera公司,以他们在Kang实验室的合作为基础,寻求开发治疗晚期或转移性癌症患者的药物。Kang说,“Mark所做的那类基础研究既呈现了突破性的科学发现,也能带来医学上的突破。”

这些研究人员发现,DACT1还发挥着许多他们才开始 探索 的其他作用。Cristea团队的质谱分析揭示了这种神秘细胞器中600多种不同的蛋白。质谱分析可以让科学家们找出在显微镜玻片上成像的几乎任何物质的确切成分。

Esposito说,“这是一个比控制Wnt和TGF-b更动态的信号转导节点。这只是生物学新领域的冰山一角。”

Brangwynne说,相分离和癌症研究之间的桥梁仍处于起步阶段,但它已经显示出巨大的潜力。

他说,“生物分子凝聚物在癌症---它的生物发生,特别是它通过转移进行扩散---中发挥的作用仍然不甚了解。这项研究为癌症信号转导通路和凝聚物生物物理学之间的相互作用提供了新的见解,它将开辟新的治疗途径。”(生物谷 )

参考资料: Esposito et al. TGF-β-induced DACT1 biomolecular condensates repress Wnt signalling to promote bone metastasis. Nature Cell Biology, 2021, doi:. D. Patel et al. Condensing and constraining WNT by TGF-β. Nature Cell Biology, 2021, doi:.

细胞分化与干细胞的研究进展论文

近期的科学研究新进展,科学家们已经十分接近量产血球细胞了!这个新进展将能解决血液供给不足,以及骨髓疾病患者的问题,将彻底改变需要频繁输血的疾病治疗模式。

近年来,干细胞的相关研究逐渐扩展,除了生物科学的研究外,更尝试应用于人类医学治疗上。干细胞与体内一般细胞不同,他具有特殊的编程,可以透过自然或诱导的方式,分化成为其他细胞。主要可分为两种,一为胚胎干细胞,具有较强的分化能力,可分化成为多种不同的细胞。另一种为成体干细胞,分化能力较为受限,仅能分化成特定几种细胞,用于修复组织或是汰换掉旧的细胞。2006年时,科学家首次将小鼠的细胞,经过诱导后转变成为iPS多能性干细胞。自此之后开启干细胞领域的大量研究。而从此时开始,科学家就不断尝试利用干细胞来生产新的血液细胞,然而,这是首次这么接近将干细胞分化成为完整功能的血球细胞。

利用干细胞生产血液细胞的目标,是希望可以透过提取患者自身的细胞,将其转变为iPS多能性干细胞后,利用此干细胞不断分化产生新的血液细胞,这样患者就可以自己生产无限供给的血球,不需要倚靠其他健康人们的捐赠。另外,这样的作法也能应用在一般的血液捐赠上,可以使用一般健康捐血者的细胞并将其转变为iPS多能性干细胞,这样将能大幅增加血液供给,提供需要输血的病患使用。来自波士顿儿童医院的Rio Sugimura研究员表示,遗传性的血液疾病患者,甚至可以利用基因编辑的方式,修复遗传缺陷,并成功制造出健康的血球细胞。

第一个发表相关研究的论文中,研究人员使用了iPS和胚胎干细胞,给予他们特殊的化学信号,使干细胞转化为血球前驱细胞,接着再给细胞转录因子,使其成为真正具功能的血球细胞。研究人员发现需要五种转录因子,分别为RUNX1、ERG、LCOR、HOXA5和HOXA9,来强制细胞进入正确的分化程序。波士顿儿童医院的研究负责人Gee Daley表示:「我们非常接近能够产生真正的人类血球细胞,这项工作是20多年努力的结果。」

第二篇研究的作法略有不同,来自纽约威尔康奈尔医学中心(Weill Cornell Medicine)的一个小组不再使用iPS多能性干细胞或胚胎干细胞,而是使用从小鼠肺壁获取的成体干细胞,培养于含有四种转录因子Fo *** 、Gfi1、Runx1和Spi1,且模拟人类血管内环境的培养皿中,此方法能够将成体干细胞直接分化为血球细胞,无需经过iPS的过程。带领团队完成研究的Shahin Rafii表示,他们的实验方法有如直航班机,可以挑过中间的复杂程序。而Daley团队的技术则是转机后才到达目的地。虽说如此,但目前结果仅止于动物实验,哪一种方法在人体中会有更好的效果暂时还不得而知。不过可以期待的是,未来人类或许可以透过简单的方式,自给自足需要的血液供给,在医疗上不再需要仰赖他人捐赠,并且可以修复遗传性的血液或骨髓疾病。

1999年12月,Science杂志公布了当今世界科学发展的评定结果,干细胞的研究成果名列十大科学进展榜首。胚胎干细胞研究的科学价值在于其诱人的应用前景。如果最终能够成功诱导和调控胚胎干细胞的分化与增殖,将对胚胎干细胞的基础研究和临床应用带来积极的影响,使之有可能在以下领域发挥重要作用。 1.揭示人及动物的发育机制及影响因素 生命最大的奥秘便是人是如何从一个细胞发展为复杂得不可思议的生物体的。人胚胎细胞系的建立及人胚胎干细胞研究,可以帮助我们理解人类发育过程中的复杂事件,使人深刻认识数十年来困扰着胚胎学家的一些基本问题,促进对人胚胎发育细节的基础研究。人胚胎干细胞的体外可操作性,可以一种伦理上可接受的方式,提供在细胞和分子水平上研究人体发育过程中极早期事件的方法。这种研究不会引起与胎儿实验相关联的伦理问题,因为仅靠自身胚胎干细胞是无法形成胚胎的。 2. 药学研究方面 胚胎干细胞系可分化为多种细胞类型,又是能在培养基中不断自我更新的细胞来源。它发展为胚体后的生物系统,可模拟体内细胞与组织间复杂的相互作用,这在药物研究领域具有广泛的用途。胚胎干细胞有望在短期内就能体现的优势在于药物筛选中。目前用于药物筛选的细胞都来源于动物或癌细胞这样非正常的人体细胞,而胚胎干细胞可以经体外定向诱导,为人类提供各种组织类型的人体细胞,这使得更多类型的细胞实验成为可能。虽不会完全取代在整个动物和人体上的实验,但会使药品研制的过程更为有效。当细胞系实验表明药品是安全的且效果良好,才有资格在实验室进行动物和人体的进一步实验。 在候选药物对各种细胞的药理作用和毒性试验中,胚胎干细胞提供了对新药的药理、药效、毒理及药代等研究的细胞水平的研究手段,大大减少了药物检测所需动物的数量,降低了成本。另外,由于胚胎干细胞类似于早期胚胎的细胞,它们有可能用来揭示哪些药物干扰胎儿发育和引起出生缺陷。人胚胎干细胞还可以用于其它用途。由于这类细胞本质上可以无限量地产生人体细胞,它们对于旨在发现稀有人蛋白的研究计划理应有用。国际上许多制药公司、学者都瞄准了这一重要的研究领域。 3. 细胞替代治疗和基因治疗的载体 胚胎干细胞最诱人的前景和用途是生产组织和细胞,用于“细胞疗法”,为细胞移植提供无免疫原性的材料。任何涉及丧失正常细胞的疾病,都可以通过移植由胚胎干细胞分化而来的特异组织细胞来治疗。如用神经细胞治疗神经退行性疾病(帕金森病、亨廷顿舞蹈症、阿尔茨海默病等),用胰岛细胞治疗糖尿病,用心肌细胞修复坏死的心肌等。 胚胎干细胞还是基因治疗最理想的靶细胞。这里的基因治疗是指用遗传改造过的人体细胞直接移植或输入病人体内,达到控制和治愈疾病的目的。这种遗传改造包括纠正病人体内存在的基因突变,或使所需基因信息传递到某些特定类型细胞。 当然,干细胞技术的最理想阶段是希望在体外进行“器官克隆”以供病人移植。如果这一设想能够实现,将是人类医学中一项划时代的成就,它将使器官培养工业化,解决供体器官来源不足的问题;使器官供应专一化,提供病人特异性器官。人体中的任何器官和组织一旦出现问题,可像更换损坏的零件一样随意更换和修理。

研究的目的要说明问题是如何发现的,即该研究的研究背景是什么,是根据什么、受什么启发而搞这项研究。也要说明该选题在理论上的创新性,来突出自己选题与各个主流观点的差异。而研究的意义,要对所研究问题的实际用处有所了解从生活实际出发进行解读。

你看看这是不是你需要的类型论文,不过我还是建议只是参考,自己写最好了。 干细胞作为一种既有自我更新能力、又有多分化潜能的细胞,具有非常重要的理论研究意义和临床应用价值。近几年来,干细胞的研究取得了重大突破, 1999和2000年,世界最权威的美国《Science》杂志连续2年将干细胞和人类基因组计划列为当年的10大科学突破之首。美国《时代》周刊认为干细胞和人类基因组计划将同时成为新世纪最具有发展和应用前景的领域。为抢占这一科技制高点,世界各国纷纷投入大量的人力、物力和财力加紧研究开发,并已取得应用性成果:2005年10月,美国食品和药物管理局(FDA)也已批准将神经干细胞移植入人体大脑;2005年11月,美国心脏协会报道了干细胞治疗心肌梗塞的204例临床病例的研究报告,其结论是干细胞对心脏功能的改善效果,是没有任何现有临床药物能达到的;日本在2000年启动的“千年世纪工程”中,将干细胞工程作为四大重点之一,于第一年度就投入了108亿日元的巨额资金;瑞典、巴西也于2005年通过立法继续支持干细胞研究,并于2005年进行一项多中心1200病例的用干细胞治疗心脏病的临床应用研究。干细胞技术作为生物技术领域最具有发展前景和后劲的前沿技术,将可能导致一场医学和生物学革命,给无数疑难病症治疗带来了新的希望。 按照科学家描绘的美妙蓝图,通过干细胞技术的有效应用,今后更换人体器官就像给汽车换零件一样简单,血细胞、脑细胞、骨骼和内脏都将可以更换,即使患上绝症也能绝处逢生。其实,干细胞技术不仅在疾病治疗方面有着极其诱人的前景,而且其对动物克隆、植物转基因生产、发育生物学、新药物的开发与药效、毒性评估等领域也将产生极其重要的影响。干细胞技术是世纪之交最为引人注目的科技成果,被认为是人类生命科学研究的重要里程碑,预示着生命科学研究将进入快速发展时期。 参考资料:

干细胞的研究论文

1995年以来我国造血干细胞工程与相关的生物学领域的研究发展迅速。有关造血干/祖细胞基因表达的研究,上海国家人类基因组研究中心陈竺、陈赛娟等为正常和急性白血病人骨髓造血干祖细胞cDNA文库的基因表达建立了一套先进的工作体系。他们在许多白血病细胞系的干/祖细胞中发现了300个新的相关基因。中山大学医学院李树浓、黄绍良等从人的桑葚期胚胎干细胞成功地诱导出造血细胞等。北京输血研究所裴雪涛等从成人和胎儿的骨髓分离出成年源干细胞,又进一步诱导分化为骨、软骨、脂肪和神经原细胞等。他们成功地构建了胎儿和成人间充质干细胞cDNA扣除文库,获得了胎儿和成人间充质干细胞的差异表达基因及在胎儿特异表达基因。中国医学科学院天津血液学研究所、国家血液学重点实验室赵春华等证实从胚胎胰腺、骨髓和肝脏中都可以分离出人间充质干细胞,又证明G-CSF可以使输注的间充质干细胞在体内促造血重建。北京基础医学研究所毛宁等的实验不支持间充质干细胞可以“横向分化“。最近他们发现小鼠胚胎干细胞的体外分化重现了胚胎早期造血发生的生物学程序以及Smad5基因调控在胚胎造血发生中的必要性和多样性,又表明其上游配体TGF-beta家族分子在胚胎发生中的作用和特点。本文针对干细胞可塑性研究作了评论。国际上曾风靡一时的“横向分化“有关的实验都没有用完全纯化的胚层干细胞或组织干细胞来证实。然而,完全纯的胚层或组织定向的干细胞克隆是无法制备的。成年或胎儿全身各类组织中混有一些定向某胚层的或某组织的干细胞,甚至还混有桑葚胚干细胞。它们是胚胎发育过程的每个阶段中停止参与胚胎发育而残留下来的。它们在体内处于静止期,寿命长,长期存留在成人的各种组织中。各胚层和组织干细胞混杂在一起,它们都没有特异的形态、表型和功能,无法分离纯化,甚至和成人组织细胞也很难分开。它们在体外实验适当的条件诱导下可分化为各种组织细胞。在那些想证明组织干细胞“横向分化“的实验中,都无法排除上述可能。本专论指出,只有桑葚胚干细胞是全能的胚胎干细胞,具有向各个胚层分化的潜能,即具有全能分化的可塑 性。当它发育成为各个胚层的或各种组织的干细胞时,它的分化潜能只限于本胚层或本组织,不能向其它胚层其它组织分化。本专论又指出间充质干细胞的制备过程很长,经过许多次的换代。等到出现许多分化抗原标志时,已经是后代的各种不同的成熟间充质细胞了。当然,它们的存在可证实最初培养的是间充质干细胞。大量扩增后所获得的集落主要是各种成熟的间充质细胞,其中也包含一些未来参与分化的间充质干细胞和中胚层干细胞。间充质干细胞和造血干细胞都是来自中胚层。然而它们都是培养中的贴壁幼儿,无法区分也无法分离它们。因此在实验中无法排除所制备的间充质干细胞样品中,绝对没有中胚层或其它胚层干细胞的存在。至今,完全纯化的间充质干细胞是不可能制备的。所以,很可能从间充质干细胞体外诱导出各类不同的,甚至内、外胚层的组织细胞,切不可轻率地推率为“横向分化“。临床支持造血干/祖细胞移植的,主要是成熟而有调控功能的各种间充质细胞。总之,“横向分化“等的推论缺乏实验证据,在生物自然界和人类疾病史中都找不到佐证。想要推翻经无数科学家实践充分证明了的细胞遗传学的最基本原理,必须在生物自然界找到非常充足的科学证据唐佩弦 军事医学科学院基础医学研究所 我国造血干细胞基础研究的新进展兼论干细胞可塑性

研究的目的要说明问题是如何发现的,即该研究的研究背景是什么,是根据什么、受什么启发而搞这项研究。也要说明该选题在理论上的创新性,来突出自己选题与各个主流观点的差异。而研究的意义,要对所研究问题的实际用处有所了解从生活实际出发进行解读。

细胞生物是指所有具有细胞结构的生物。这是我为大家整理的关于细胞生物学术论文,仅供参考!

细胞因子的生物学活性

关键字: 细胞因子

细胞因子具有非常广泛的生物学活性,包括促进靶细胞的增殖和分化,增强抗感染和细胞杀伤效应,促进或抑制其它细胞因子和膜表面分子的表达,促进炎症过程,影响细胞代谢等。

一、免疫细胞的调节剂

免疫细胞之间存在错综复杂的调节关系,细胞因子是传递这种调节信号必不可少的信息分子。例如在T-B细胞之间,T细胞产生IL-2、4、5、6、10、13,干扰素γ等细胞因子刺激B细胞的分化、增殖和抗体产生;而B细胞又可产生IL-12调节TH1细胞活性和TC细胞活性。在单核巨噬细胞与淋巴细胞之间,前者产生IL-1、6、8、10,干扰素α,TNF-α等细胞因子促进或抑制T、B、NK细胞功能;而淋巴细胞又产生IL-2、6、10,干扰素γ,GM-CSF,巨噬细胞移动抑制因子(MIF)等细胞因子调节单核巨噬细胞的功能。许多免疫细胞还可通过分泌细胞因子产生自身调节单核巨噬细胞的功能。许多免疫细胞还可通过分泌细胞因子产生自身调节作用。例如T细胞产生的IL-2可刺激T细胞的IL-2受体表达和进一步的IL-2分泌,TH1细胞通过产生干扰素γ抑TH2细胞的细胞因子产生。而TH2细胞又通过IL-10、IL-4和IL-13抑制TH1细胞的细胞因子产生。通过研究细胞因子的免疫 网络调节,可以更好地理解完整的免疫系统调节机制,并且有助于指导细胞因子做为生物应答调节剂(biologicalresponsemodifier’BRM)应用于临床 治疗免疫性疾病。图4-1 细胞因子与TH1、TH2的相互关系(略)

二、免疫效应分子

在免疫细胞针对抗原(特别是细胞性抗原)行使免疫效应功能时,细胞因子是其中重要效应分子之一。例如TNFα和TNFβ可直接造成肿瘤细胞的凋零(apoptosis)’使瘤细胞DNA断裂’细胞萎缩死亡;干扰素α、β、γ可干扰各种病毒在细胞内的复制,从而防止病毒扩散;LIF可直接作用于某些髓性白血病细胞,使其分化为单核细胞,丧失恶性增殖特性。另有一些细胞因子通过激活效应细胞而发挥其功能,如IL-2和IL-12刺激NK细胞与TC细胞的杀肿瘤细胞活性。与抗体和补体等其它免疫效应分子相比,细胞因子的免疫效应功能,因而在抗肿瘤、抗细胞内寄生感染、移植排斥等功能中起重要作用。

三、造血细胞刺激剂

从多能造血干细胞到成熟免疫细胞的分化发育漫长道路中,几乎每一阶段都需要有细胞因子的参与。最初研究造血干细胞是从软琼脂的半固体培养基开始的,在这种培养基中,造血干细胞分化增殖产生的大量子代细胞由于不能扩散而形成细胞簇,称之为集落,而一些刺激造血干细胞的细胞因子可明显刺激这些集落的数量和大小因而命名为集落刺激因子(CSF)。根据它们刺激的造血细胞种类不同有不同的命名,如GM-CSF、G-CSF、M-CSF、multi-CSF(IL-3)等。目前的研究表明,CSF和IL-3是作用于粒细胞系造血细胞,M-CSF作用于单核系造血细胞,此外Epo作用于红系造血细胞,IL-7作用于淋巴系造血细胞,IL-6、IL-11作用于巨核造血细胞等等。由此构成了细胞因子对造血系统的庞大控制 网络。某种细胞因子缺陷就可能导致相应细胞的缺陷,如肾性贫血病人的发病就是肾产生Epo的缺陷所致,正因如此,应用Epo 治疗这一疾病收到非常好的效果。目前多种刺激造血的细胞因子已成功地用于临床血液病,有非常好的 发展前景。

四、炎症反应的促进剂

炎症是机体对外来刺激产生的一种病理反应过程,症状表现为局部的红肿热痛,病理检查可发现有大量炎症细胞如粒细胞、巨噬细胞的局部浸润和组织坏死,在这一过程中,一些细胞因子起到重要的促进作用,如IL-1、IL-6、IL-8、TNFα等可促进炎症细胞的聚集、活化和炎症介质的释放’可直接刺激发热中枢引起全身发烧’IL-8同时还可趋化中性粒细胞到炎症部位’加重炎症症状.在许多炎症性疾病中都可检测到上述细胞因子的水平升高.用某些细胞因子给动物注射’可直接诱导某些炎症现象’这些实验充分证明细胞因子在炎症过程中的重要作用.基于上述理论研究结果’目前已开始利用细胞因子抑制剂治疗炎症性疾病’例如利用IL-1的受体拮抗剂(IL-1receptor antagonist’IL-lra)和抗TNFα抗体治疗败血性休克、类风湿关节炎等,已收到初步疗效。

五、其它

许多细胞因子除参与免疫系统的调节效应功能外,还参与非免疫系统的一些功能。例如IL-8具有促进新生血管形成的作用;M-CSF可降低血胆固醇IL-1刺激破骨细胞、软骨细胞的生长;IL-6促进肝细胞产生急性期蛋白等。这些作用为免疫系统与其它系统之间的相互调节提供了新的证据。

细胞衰老的分子生物学机制

摘要:细胞衰老(cellular aging)是细胞在其生命过程中发育到成熟后,随着时间的增加所发生的在形态结果和功能方面出现的一系列慢性进行性、退化性的变化。细胞衰老是基因与环境共同作用的结果,是细胞生命活动过程的客观规律。为研究细胞衰老分子生物学机制,本文就此展开研究。

关键词:细胞衰老;分子生物学;机制研究

细胞的衰老和死亡与个体的衰老和死亡是两个不同的概念,个体的衰老并不等于所有细胞的衰老,但是细胞的衰老又是同个体的衰老紧密相关的。细胞衰老是个体衰老的基础,个体衰老是细胞普遍衰老的过程和结果。

细胞衰老是正常环境条件下发生的功能减退,逐渐趋向死亡的现象。衰老是生界的普遍规律,细胞作为生物有机体的基本单位,也在不断地新生和衰老死亡。生物体内的绝大多数细胞,都要经过增殖、分化、衰老、死亡等几个阶段。可见细胞的衰老和死亡也是一种正常的生命现象。我们知道,生物体内每时每刻都有细胞在衰老、死亡,同时又有新增殖的细胞来代替它们。

衰老是一个过程,这一过程的长短即细胞的寿命,它随组织种类而不同,同时也受环境条件的影响。高等动物体细胞都有最大增殖能力(分裂)次数,细胞分裂一旦达到这一次数就要死亡。各种动物的细胞最大裂次数各不相同,人体细胞为50~60次。一般说来,细胞最大分裂次数与动物的平均寿命成正比。通过细胞衰老的研究可了解衰老的某些规律,对认识衰老和最终找到延缓或推迟衰老的方法都有重要意义。细胞衰老问题不仅是一个重大的生物学问题,而且是一个重大的社会问题。随着科学发展而不断阐明衰老过程,人类的平均寿命也将不断延长。但也会出现相应的社会老龄化问题以及呼吸系统疾病、心血管系统疾病、脑血管病、癌症、关节炎等老年性疾病发病率上升的问题。因此衰老问题的研究是今后生命科学研究中的一个重要课题。

1 细胞衰老的特征

科学研究表明,衰老细胞的细胞核、细胞质和细胞膜等均有明显的变化:①细胞内水分减少,体积变小,新陈代谢速度减慢;②细胞内酶的活性降低;③细胞内的色素会积累;④细胞内呼吸速度减慢,细胞核体积增大,核膜内折,染色质收缩,颜色加深。线粒体数量减少,体积增大;⑤细胞膜通透性功能改变,使物质运输功能降低。形态变化总体来说老化细胞的各种结构呈退行性变化。

衰老细胞的形态变化表现有:①核:增大、染色深、核内有包含物;②染色质:凝聚、固缩、碎裂、溶解;③质膜:粘度增加、流动性降低;④细胞质:色素积聚、空泡形成;⑤线粒体:数目减少、体积增大;⑥高尔基体:碎裂;⑦尼氏体:消失;⑧包含物:糖原减少、脂肪积聚;⑨核膜:内陷。

2 分子水平的变化

①从总体上DNA复制与转录在细胞衰老时均受抑制,但也有个别基因会异常激活,端粒DNA丢失,线粒体DNA特异性缺失,DNA氧化、断裂、缺失和交联,甲基化程度降低;②mRNA和tRNA含量降低;③蛋白质含成下降,细胞内蛋白质发生糖基化、氨甲酰化、脱氨基等修饰反应,导致蛋白质稳定性、抗原性,可消化性下降,自由基使蛋白质肽断裂,交联而变性。氨基酸由左旋变为右旋;④酶分子活性中心被氧化,金属离子Ca2+、Zn2+、Mg2+、Fe2+等丢失,酶分子的二级结构,溶解度,等电点发生改变,总的效应是酶失活;⑤不饱和脂肪酸被氧化,引起膜脂之间或与脂蛋白之间交联,膜的流动性降低。

3 细胞衰老原因

迄今为止,细胞衰老的本质尚未完全阐明,难以给明确的定义,只能根据现有的认识,从不同的角度概括细胞衰老的内涵。细胞衰老是各种细胞成分在受到内外环境的损伤作用后,因缺乏完善的修复,使“差错”积累,导致细胞衰老。根据对导致“差错”的主要因子和主导因子的认识不同,可分为不同的学说,这些学说各有其理论基础和实验证据[1]。

差错学派 有以下七种学说,有代谢废物积累学说、大分子交联学说、自由基学说、体细胞突变学说、DNA损伤修复学说、端粒学说、生物分子自然交联说等。其中最主要的自由基学说和端粒学说。

自由基学说 自由基是一类瞬时形成的含不成对电子的原子或功能基团,普遍存在于生物系统。其种类多、数量大,是活性极高的过渡态中间产物。正常细胞内存在清除自由基的防御系统,包括酶系统和非酶系统。前者如:超氧化物歧化酶(SOD),过氧化氢酶(CAT),谷胱甘肽过氧化物酶(GSH-PX),非酶系统有维生素E,醌类物质等电子受体。机体通过生物氧化反应为组织细胞生命活动提供能量,同时在此过程中也会产生大量活性自由基。自由基的化学性质活泼,可攻击生物体内的DNA、蛋白质和脂类等大分子物质,造成损伤,如DNA的断裂、交联、碱基羟基化。实验表明DNA中OH8dG(8-羟基-2‘-脱氧鸟苷)随着年龄的增加而增加。OH8dG完全失去碱基配对特异性,不仅OH8dG被错读,与之相邻的胞嘧啶也被错误复制。大量实验证明实,超氧化物岐化酶与抗氧化酶的活性升高能延缓机体的衰老。Sohal等(1994、1995),将超氧化物岐化酶与过氧化氢酶基因导入果蝇,使转基因株比野生型这两种酶基因多一个拷贝,结果转基因株中酶活性显著升高,平均年龄和最高寿限有所延长。

英国学者提出的自由基理论认为自由基攻击生命大分子造成组织细胞损伤,是引起机体衰老的根本原因,也是诱发肿瘤等恶性疾病的重要起因。自由基就是一些具有不配对电子的氧分子,它们在机体内漫游,损伤任何于其接触的细胞和组织,直到遇到如维生素C、维生素E、β-胡萝卜素、OPC(原花青素)之类的生物黄酮等抗氧化剂将其中和掉或被机体产生的一些酶(如SOD)将其捕获。自由基可破坏胶原蛋白及其它结缔组织,干扰重要的生理过程,引起细胞的DNA突变。此外还可引起器官组织细胞的破坏与减少[2]。例如神经元细胞数量的明显减少,是引起老年人感觉与记忆力下降、动作迟钝及智力障碍的又一重要原因。器官组织细胞破坏或减少主要是由于自由基因突变改变了遗传信息的传递,导致蛋白质与酶的合成错误以及酶活性的降低。这些的积累,造成了器官组织细胞的老化与死亡。

生物膜上的不饱和脂肪酸易受自由基的侵袭发生过氧化反应,氧化作用对衰老有重要的影响,自由基通过对脂质的侵袭加速了细胞的衰老进程[3]。 自由基作用于免疫系统,或作用于淋巴细胞使其受损,引起老年人细胞免疫与体液免疫功能减弱,并使免疫识别力下降出现自身免疫性疾病。

端粒学说 染色体两端有端粒,细胞分裂次数多,端粒向内延伸,正常DNA受损。

遗传学派 认为衰老是遗传决定的自然演进过程,一切细胞均有内在的预定程序决定其寿命,而细胞寿命又决定种属寿命的差异,而外部因素只能使细胞寿命在限定范围内变动。

参考文献:

[1]郭齐,李玉森,陈强,等.脱氧核苷酸钠抗人肾脏细胞衰老的分子机制[J].中国老年学杂志,2013,33(15):3688-3690.

[2]胡玉萍,吴建平.细胞衰老与相关基因的关系[J].中外健康文摘,2012,09(14):35-37.

[3]孔德松,魏东华,张峰,等.肝纤维化进程中细胞衰老的作用及相关机制的研究进展[J].中国药理学与毒理学杂志,2012,26(05):688-691.

相关百科

热门百科

首页
发表服务