首页

> 学术论文知识库

首页 学术论文知识库 问题

函数逼近研究现状论文

发布时间:

函数逼近研究现状论文

20世纪初在一批杰出的数学家,包括С.Η.伯恩斯坦、D.杰克森、 瓦莱-普桑、.勒贝格等人的积极参加下,开创了最佳逼近理论蓬勃发展的阶段。这一理论主要在以下几个方面取得了很大进展: 在逼近论中系统地阐明函数的最佳逼近值En(ƒ)(借助于代数多项式来逼近,或者对2π周期函数借助于三角多项式来逼近,或借助于有理函数来逼近等等)的数列当n→∞时的性态和函数ƒ(x)的构造性质(可微性、光滑性、解析性等等)之间内在联系的理论统称为定量理论。下面叙述的定理比较典型地反映出函数的构造性质与其最佳逼近值之间的深刻联系。杰克森、伯恩斯坦、A.赞格蒙证明:2π周期函数ƒ(x)具有满足条件 或 的r阶导数ƒ(r)(r=0,1,2,…)的充分必要条件是,ƒ(x)借助于三角多项式的n阶最佳一致逼近值(简称最佳逼近,简记为)满足条件 ,式中的M,A是不依赖于n的正的常数。对于【α,b】区间上的(不考虑周期性)连续函数借助于代数多项式的逼近值与函数构造性质间的联系也有和上述结果相类似的定理,不过情况比周期函数复杂多了。这一问题是在50年代由苏联数学家Α.Ф.季曼、Β.К.贾德克解决的。杰克森、伯恩斯坦等人的工作对逼近论的发展所产生的影响是深远的。沿着他们开辟的方向继续深入,到20世纪30年代中期出现了.法瓦尔、Α.Η.柯尔莫哥洛夫关于周期可微函数类借助于三角多项式的最佳逼近的精确估计以及借助于傅里叶级数部分和的一致逼近的渐近精确估计的工作。这两个工作把从杰克森开始的逼近论的定量研究提高到一个新的水平。从那时起,直到60年代,以С.М.尼科利斯基、Α.И.阿希耶泽尔等人为代表的很多逼近论学者在定量研究方面继续有许多精深的研究工作。 切比雪夫发现了连续函数的最佳逼近多项式的特征,提出了以切比雪夫交错点组著称的特征定理。最佳逼近多项式是唯一存在的。最佳逼近多项式的存在性、唯一性及其特征定理都是定性的结果,对这些问题的深入研究构成了逼近论定性研究的基本内容。匈牙利数学家A.哈尔在1918年首先研究了用广义多项式在【α,b】上对任意连续函数ƒ的最佳逼近多项式的唯一性问题。在【α,b】上给定n+1个线性无关的连续函。作为逼近函数类,式中α0,α1,…,αn是任意参数。这样的P(x)称为广义多项式。是存在的。哈尔证明,为了对每一连续函数ƒ唯一,必须而且只须任一不恒等于零的广义多项式P(x,α0,α1,…,αn)在【α, b】内至多有n个不同的根。在20世纪20~30年代,伯恩斯坦、М.Γ.克列因等人对满足哈尔条件的函做过很多深入的研究。它在逼近论、插值论、样条分析、矩量论、数理统计中有着比较广泛的应用。关于最佳逼近多项式的切比雪夫特征定理也有很多进一步的研究和推广。其中最重要的一个推广是柯尔莫哥洛夫在1948年做出的,它涉及复平面的闭集上的复值连续函数借助于复值广义多项式的一致逼近问题(见复变函数逼近)。对于lp【α,b】(1≤p<+∞)内的函数ƒ借助于广义多项式在p 次幂尺度下的逼近问题也建立了类似的一套定性理论。到50~60年代,经过一些学者的努力,抽象逼近的定性理论建立起来。 最佳逼近多项式和被逼近函数间的关系除了平方逼近的情形外一般都不是线性关系。线性关系比较简单,线性算子比较容易构造。所以在逼近论发展中人们一直非常重视对线性逼近方法的研究,形成了逼近论中一个很重要的分支──线性算子的逼近理论。针对特定的函数类、特定的逼近问题设计出构造简便、逼近性能良好的线性逼近方法与研究各种类型的线性逼近方法(算子)的逼近性能,一直是线性算子逼近理论的中心研究课题。在这一方面,几十年来取得了十分丰富的成果。比较著名的经典结果有.沃罗诺夫斯卡娅、.洛伦茨等对经典的伯恩斯坦多项式的研究;柯尔莫哥洛夫、尼科利斯基等对周期可微函数的傅里叶级数部分和的逼近阶的渐近精确估计;40~60年代许多逼近论学者对作为逼近方法的傅里叶级数的线性求和过程逼近性能的研究(包括对傅里叶级数的费耶尔平均、泊松平均、瓦莱·普桑平均等经典的线性平均方法的研究)。50年代初期∏.∏.科罗夫金深入研究了线性正算子作为逼近方法的特征,开辟了单调算子逼近理论的新方向(见线性正算子逼近)。40年代中期法瓦尔在概括前人对线性算子逼近的研究成果的基础上,提出了线性算子的饱和性概念做为刻画算子的逼近性能的一个基本概念,开辟了算子饱和理论研究的新方向。 从实际应用的角度来看,要解决一个函数的最佳逼近问题,需要构造出最佳逼近元和算出最佳逼近值。一般说要精确解决这两个问题十分困难。这种情况促使人们为寻求最佳逼近元的近似表示和最佳逼近值的近似估计而设计出各种数值方法。一个数值方法中包含着有限个确定的步骤,借助它对每一个函数ƒ可以在它的逼近函数类P(x,α0,α1,…,αn)中求出一个函数作为最佳逼近元的近似解,并且可以估计出误差。数值方法自然不限于函数的最佳逼近问题。在插值、求积(计算积分的近似值)、函数的展开理论中也都建立了相应的数值方法。近20年来由于快速电子计算机的广泛应用,数值逼近理论和方法的研究发展很快,成为计算数学和应用数学的重要分支。除了以上列举的几个方向外,还发展了插值逼近、借助于非线性集(如有理函数)的逼近、联合逼近、在抽象空间内的逼近等等。 多元函数的逼近问题具有很重要的理论和实践意义。由于在多元函数的逼近问题中包含了很多为单变元情形所没有的新的困难,所以多元函数的逼近论比单变元情形的发展要慢得多和晚得多。在多元逼近的情形下已经研究得比较充分的一个基本问题是函数借助于三角多项式或指数型整函数的最佳逼近阶和函数(在一定意义下的)光滑性之间的关系。这一工作主要是由苏联学者尼柯利斯基和他的学生们于50~60年代完成的。它除了对函数逼近论本身有重要意义之外,还有很多重要应用。例如,对研究多元函数在低维子流形上的性质,多元函数在一定要求下的开拓问题等都有重要作用。后一类问题的研究属于泛函分析中的嵌入定理。近年来,在多元函数的线性算子逼近、插值逼近、样条逼近和用单变元函数的复合近似表示多元函数等方面都有所进展。现在函数逼近论已成为函数理论中最活跃的分支之一。科学技术的蓬勃发展和快速电子计算机的广泛使用给它的发展以强大的刺激。现代数学的许多分支,包括基础数学中象拓扑、泛函分析、代数这样的抽象学科以及计算数学、数理方程、概率统计、应用数学中的一些分支都和逼近论有着这样那样的联系。函数逼近论正在从过去基本上属于古典分析的一个分支发展成为同许多数学分支相互交叉的、密切联系实际的、带有一定综合特色的分支学科。

整理了两篇医学论文开题报告范文,欢迎参考其格式。

医学硕士开题报告范文-《治疗四肢长骨骨折不愈合》

关键词:钢丝环扎 四肢长骨骨折 济南论文 开题报告

一、选题依据、目的和意义:

骨折不愈合是骨科临床常见病症,其中以四肢长骨多发,例如胫骨,股骨,肱骨等,针对四肢长骨骨折不愈合二次手术我院多才用植骨术配合LCP重新内固定。自体髂骨作为植骨材料具有较多的优点:如取材简单、组织相容性好、无移植排斥反应、骨诱导作用强等,这些优点使得髂骨成为一种最佳的植骨供材,这在临床上已形成共识。植骨是治疗骨折不愈合的重要方法,其机制是爬行替代所引起的支架作用与供给矿物质的作用,爬行替代顺利进行的条件要求准确的复位、充分的植骨和坚强的固定。为达到充分的植骨,及早促进骨折愈合,我们采用髓内外360°植骨的方法,外用钢丝环扎,配合LCP坚强内固定,术后3~12个月内进行随访,根据愈合情况和功能恢复情况分析手术的临床疗效。选题目地在于探讨治疗四肢长骨骨折不愈合的手术改进方法和疗效,为临床治疗提供参考。

本课题以导师多年的临床资料为依据,通过对骨折不愈合手术治疗的国内外文献进行系统整理,结合山东中医药大学附属医院骨科病房对四肢长骨骨折不愈合患者的随访调查及回顾性分析,根据骨科特殊生物力学特点和导师治疗骨折不愈合的多年临床体会,分析治疗效果,并对手术中的细节问题做初步探讨与论述。同时也希望可以通过对导师的临床实践的研究、总结,能为今后的临床工作提供一些帮助和指导。

二、本课题目前国内外研究的动态、水平

治疗骨折不愈合,可分为手术治疗和非手术治疗,其中手术治疗最重要的就是植骨术加更改断端内固定。骨折不愈合应用自体骨移植治疗效果显著,已经形成共识。 植骨是治疗骨不连的重要方法,植骨方式临床多采用髓内外联合植骨。沿肌间隙进入, 骨膜下小心剥离显露骨折部位, 取出内固定器械, 清除骨断端间瘢痕, 咬除硬化骨, 打通髓腔, 修整骨折端, 手法复位, 按照骨缺损情况取骨。髓内植骨以比髓腔稍粗的骨棒,贴紧髓腔骨质;髓外上盖植骨宜用螺丝钉固定植骨块;骨碎屑充分填充残余的空隙,这样才能确实达到植骨的目的和要求。自体皮- 松质骨植骨的爬行替代缩短了骨折愈合过程,新鲜的自体骨具有生物活性,不存在免疫排异,无传染疾病的风险,同时存在骨传导和骨诱导能力。

内固定物更换得坚持以下原则,原钢板内固定者,可更换成交锁髓内针或更长的钢板置于张力侧;原交锁髓内针内固定者,可选用更大号髓内针或钢板内固定;原先短钢板内固定者,可改成较长的钢板。所有病例均需植骨。更换内固定物后,,术后石膏外固定者,应及早进行肌肉收缩锻炼活动,骨痂生长良好后,去石膏开始关节屈伸功能锻炼。但是临床上医师应该具体问题具体对待,可以根据骨痂生长情况酌情处理,出院时务必详细医嘱病人注意事项,配合医生,直到骨折完全愈合。LCP钢板内固定适用于四肢长骨骨折不愈合,可用拉力螺钉固定碎骨块及移植骨块, 并对断端行轴向加压锁定。手术关键是将骨折端的瘢痕结缔组织全部切除, 骨端硬化骨全部咬除, 露出正常骨质, 钻通髓腔, 植入的骨块必须牢固的嵌入缺损区, 间隙用松质骨填满,。应积极正确指导术后功能锻炼, 严格定期随访及指导。避免过早的不正确的负重。综上所述,对于骨折不愈合的治疗,自体骨移植疗效确切,安全稳妥,技术成熟,应用广泛,值得提倡。

三、课题研究的主要内容

1.临床资料

病例来源

本研究病例均采集于山东中医药大学附属医院骨科病房

(二)采集时间

2009年5月~2010年12月

(三)病例选择

1.诊断标准[2]

(1)病史:明确的外伤史,骨折后6个月没有愈合,并且没有进一步愈合倾向已有3个月。

(2)症状:患者骨折端成角、旋转、侧移位、短缩畸形或者节段性骨缺损、持重疼痛或不能持重、局部在应力下疼痛等。

(3)体征:局部窦道形成、流脓、假关节形成或伴有局部软组织瘢痕、缺损等

(4)辅助检查:X线表现:骨端硬化,髓腔封闭;骨端萎缩疏松,中间存在较大的间隙;或骨端硬化,相互成为杵臼假关节等这三种形式中的任何一种就可以定为骨折不愈合。

2.纳入病例标准:

(1)符合本病诊断标准;

(2)骨折平均愈合时间超过半年以上,有假关节形成;

(3)骨折平均愈合时间超过半年以上,多次复查X线拍片显示,骨折线

清晰可见,未见内外骨痂或内外骨痂极少;

(4)拍片显示骨折线增宽,骨折端骨面致密性硬化,骨髓腔封闭,骨质疏松,骨痂间无骨小梁形成,或伴有明显的骨缺损;

(5)临床表现有骨的感染、缺损、畸形、肢体不等长、局部窦道形成、流脓等。

3.排除病例标准:

(1)不符合上述诊断标准者

(2)患者有严重的内科疾病,不能够耐受手术者

(3)精神疾病患者

(4)资料不全影响判断者

2.疗效观察方法

对骨不连愈合的评价应包括骨愈合和功能恢复双重评价:

(1)骨愈合评价标准:本评价结果决定于四项指标:骨愈合、感染、畸形和肢体长度,其中骨愈合标准为X线示骨折线模糊,有连续骨痴通过骨折线,拆除或试行松动外固定物后骨折无异常活动,下肢可无痛行走,上肢持物骨折处有稳定感。 评价标准:

优:骨折愈合,无感染,断端畸形<7°,双侧肢体不等长<2 CM。

良:骨折愈合及其他三标准中两项。

可:骨折愈合及其他三标准中一项。

差:骨折未愈合或再骨折或虽愈合但不具备其他三标准中任何一个。

(2)功能评价标准

功能的评价分上肢与下肢的不同,上肢主要考虑其灵活性,而下肢主要功能为负重行走。

将下肢评价指标定为以下五项:①明显跛行;②踝或膝任何一关节僵硬(完全伸膝或踝完全背伸时,活动范围较正常或对侧丧失15°以上):③软组织情况不良;④有限制活动或影响睡眠的疼痛存在:⑤丧失工作能力或生活不能自理。

优:存在工作能力且无其他四项指标。

良:存在工作能力且具以上四指标中一至二项。

可:存在工作能力并具以上指标中三至四项。

差:丧失工作能力或生活不能自理,不考虑是否具备其他指标。

对上肢功能评价参照“Steuart和Hdlly对上肢功能评价标准”[3]

观察指标为三项:疼痛、关节活动范围、日常活动能力。

l:上肢功能评价标准

分数 痛疼 任一关节活动受限 日常活动

优 无 <20° 完全不受限

良 用力或疲劳后 20~40° 轻微受限

差 持续性 >40° 严重受限

5.课题进度及安排:

2009-05——2010-12 收集病例及随访

2010-10——2010-12 资料汇总及数据分析

2011-01——2011-03 撰写论文、定稿

四、本课题特色、预期取得的结果

骨折不愈合应用自体骨移植治疗效果显著已经形成共识,治疗过程中的经验总结需要不断的进行,更要求开展回顾性工作及进行系统的整理。因此,骨折不愈合的临床资料分析就显得尤为重要。

本课题通过搜集整理山东中医药大学附属医院骨科2009至2010年期间的患者临床资料,对于自体骨移植治疗骨折不愈合的相关性问题进行临床研究与总结。应用统计分析评分进行术前、术后及相关方面比较,对自体骨移植治疗骨折不愈合的临床疗效获得客观、真实、准确的评价,并进一步指导临床工作。

五、可行性分析

山东中医药大学附属医院骨科是山东省中医管理局评定的重点学科、重点科室,在省内知名度较高,病人来源广泛。导师王明喜主任医师从事临床工作30余年,具有丰富的临床经验,对治疗骨折不愈合做过大量研究、临床工作,并取得了良好的效果。本课题搜集整理山东中医药大学附属医院骨科近几年的临床资料,并在导师指导下对这些一手资料进行研究与总结。

四肢长骨骨折不愈合由于并发症较多,治愈比较困难,手术后功能恢复过程漫长,因此在治疗过程中,经验的总结是非常必需的,也是可行的。本课题主要研究山东省中医院近年应用钢丝环扎360°植骨配合LCP内固定治疗四肢长骨骨折不愈合的治疗效果分析情况,因此在选题上可行性较强。课题的研究也得到了学校、附院等各部门、科室的大力支持。相信可以圆满地完成课题。

主要参考文献

[1] 胥少汀,葛宝丰,徐印坎,等.实用骨科学[M]. 北京人民军医出版社,2007

[2] 王亦璁,等.骨与关节损伤[M].人民卫生出版社,2007

[3] 夏和桃.组合式外固定器简介[EB/OL].北京骨外固定技术研究所,2005

[4] 蒋协运.骨科临床疗效评价标准[M].人民卫生出版社, 2005

[5] Boyd HB, Lipinski SW, Wiley JH J Bone Joint Surg Am, 1961; 43(2):159—168

[6] Audige L,Griffin D,Bhandari M,et al. Path analysis of factors for delayed healing and nonunion in 416 operatively treated tibial shaft fractures [J].Orthop Relat Res, 2005; 438:221~232.

[7] James J McCarthy, John Nonunions [J/OL]. eMedicine, Apr 9, 2004

[8] 周来喜,林本丹,钟志刚,等.胫骨骨折三种固定器械的生物力学比较和临床研究[J].骨与关节损伤杂志,2000;15 ( 5 ): 428 ~430

[9] 李峰,欧阳跃平.骨不连临床研究进展[J]. 国际骨科学杂志, 2007;28(2):117~119

[10] Harvey EJ,Henley MB,Swiontkowsid MF,et al. Iryury,2003; 34(2):111~116

[11] 任可,张春才,赵建宁,等.持续动态压应力下骨折愈合时软骨内骨化的特点及其机制[J]. 解剖学杂志,2008;31(4):570~574

[12] 李兴华.交锁髓内钉治疗胫骨骨折不愈合[J].中医正骨,2007;19(2):43~44

[13] 吴国华.4种固定方法治疗胫腓骨双骨折的疗效对比[J].现代中西医结合杂志,2004;13( 1): 47~48

[14] 权毅,潘显明,王元山,等.交锁髓内钉断钉与骨不连的力学研究及临床意义[J]. 中国矫形外科杂志,2003;11(3,4):207~209

[15] Streeker W, Suger G, Kinzl L. Local complications of in-tramedullary nailing[J].Othopade,1996;25:274~291.

[16] Farmanullah, Muhammad Shoaib Khan ,Syed Muhammad OF MANAGEMENT OF TIBIAL NON-UNION DEFECT WITH ILIZAROV FIXATOR [J]. Ayub Med Coll Abbottabad, 2007; 19(3)

[17] Davies R,Holt N,Nayagam care of pin sites with external fixation[J].http:// Journalof bone and Joint Surgery,2005;87:716~719

[18] 李起鸿.骨外固定技术临床应用中的几个问题[J]. 中华骨科杂志,1996;16: 604.

[19] 杨立民.当今骨科感染的特点与对策[J].骨与关节损伤杂志,1999;14: 139

[20] 陈文红,史振满,陈建常,等.感染性胫骨骨折不愈合的外固定架治疗[J].中国骨与关节损伤杂志,2007;22(8):691~692

[21] Sluzalek M,Gazdzik T S,M rozek S et al. External fixation in thetreatment of severe tibial fractures complicated by soft tissue injury [J]. Ortop traumato1 Rehabil,2004;6( 1): 103 ~112

[22] 胡蕴玉,陆裕朴,刘伟.异种骨移植修复骨缺损实验研究[J].中华骨科杂志,1990;10: 33~36

[23] Lu WJ,L B,B NR, et al. Chin ,2006; 9(5):272~275

医学论文开题报告范文:细胞信号转导与靶向抗肿瘤药物的研发

一、 选题的目的和意义

定量结构活性关系(Quantitative Structure-Activity Relationships,简称 QSAR)是20世纪60年代发展起来的一门新兴学科,是由结构活性关系(Structure-Activity Relationship,简称 SAR )发展而来的。QSAR 是通过对已知结构且有生物活性系列化合物(如一系列有相同药理作用的结构相似的化合物)进行化学信息学的计算, 选用适当的数学模型建立活性与化合物结构之间定量关系,解释由于分子结构的变化影响化合物生物活性的改变,推测其可能的作用机理。然后建立有效的QSAR模型,如果有新化合物的出现,且其结构数据已知,可以预测其生物活性,也可以优化结构改变现有化合物的结构以提高其生物活性。这种方法广泛应用于药物、农药、化学毒剂等生物活性分子的合理设计。在经历40多年的发展过程中,定量构效活性关系在国际上已成为一个相当活跃的研究领域。

尽管肿瘤的化学治疗已取得重大进展,新的抗肿瘤药物不断出现,但肿瘤的化学治疗仍存在着许多问题,这主要是因为实体肿瘤占恶性肿瘤的90%但多数实体瘤如肺癌、肝癌、结肠癌及胰腺癌等还缺乏有效的药物;现有的抗肿瘤药物毒副反应太大,缺乏选择性;肿瘤细胞对抗肿瘤药物产生抗药性[1]。

QSAR主要侧重于药物早期的研究和发展,为新药物分子的筛选的和设计开拓了新的途径[2],在受体结构已知的情况下,对抗肿瘤药物进行定量构效活性关系研究,用生成与受体结构互补的配体的方法来发现可以针对特定肿瘤、特定靶点的非细胞毒类药物,使之更具有选择性和针对性。随着新QSAR模型的建立,极大地缩短了新药合成的时间,降低了开发成本,并能在某种程度上预测药物对特定肿瘤人群的有效性。为肿瘤治疗起到了积极地推动作用。

二、国内外研究现状

肿瘤的化学治疗药物发展很快,每年都有大量抗肿瘤药物研究文献发表,各国对抗肿瘤药物的开发也予以高度重视和大量投资,美国就此专门成立了美国国立癌症研究(National Cancer Institute,简称NCI),成为了世界抗肿瘤的权威机构。

国内研发方向主要以含中草药及其活性成分的抗肿瘤药物,可以归纳为以下几个方面:(1)对现有药物进行结构改造以改善其药理学特性,如增加水溶性、降低毒副作用等;(2)以新的作用机理或作用靶点为指导寻找新的活性物质作为先导化合物;(3)发现新的作用靶点。在当前生物学的后基因时代,科学家们要面对数千个潜在的药物靶点,探讨它们与小分了化合物的相互作用;(4)加强定量构效活性构关系研究.

近年来随着分子生物学和计算机技术的迅速发展,使得开发新药的技术路线发生了重大变革。国际上越来越多的研究机构在新抗肿瘤药物的开发中使用计算机辅助分子设计,它大大加快了新药设计的速度,节省了创制新药工作的人力和物力,使药物学家能够以理论作指导,有目的地开发新药。计算机辅助分子设计主要分两种情况:一种是在受体结构已知的情况下,采用生成与受体结构互补的配体的方法来寻找新药物;另一种是在受体结构未知的情况下,采用对一组具有类似活性的化合物建立定量结构活性关系,在此模型基础上进行结构修饰来预测生成新的化合物。

QSAR作为抗肿瘤药物设计研究中的一个重要计算方法和常用手段,在新药的开发和研制过程中占据了重要位置。近半个世纪以来,QSAR研究对有机合成化学、药物化学及药物设计的发展起了巨大的推动作用,已经成为研究物质理化性质与生物活性以寻求分子解释的一个强有力工具。下面就定量活性结构活性关系研究的一些常见方法作简要地介绍如下。

1、二维定量结构活性关系方法(2D-QSAR)传统的二维定量结构活性关系方法很多,有Hansch法、基团贡献法和分子连接性指数法等[3] 。

其中最为著名、应用最为广泛的是Hansch 法。 它假设同系列化合某些生物活性的变化是和它们某些可测量的物理化学性质(疏水性、电性质和空间立体性质等)的变化相联系的,并假定这些因子是彼此孤立的,采用多重自由能相关法,借助多重线性回归等统计方法就可以得到定量结构活性关系模型。

基团贡献法是Free-Wilson 在对有机物亚结构信息和生物毒性的相关研究基础上建立的一种方法。这种模式认为有机物与受体间的毒性效应是该有机物特定位置上不同取代基团毒性贡献的加和。Free-Wilson 法仅适用于具有相同母体结构的有机物,常被用来对有机物进行毒性初评。

分子连接性指数法(Molecular connective index ,MCI) 是由Kier 和Hall 提出的。它是根据分子中各个骨架原子排列或相连接的方式来描述分子的结构性质。MCI 是一种拓扑学参数,有零阶项(0Xv )、易阶项(1Xv )、二阶项(2Xv ) 等等,可以根据分子的结构式和原子的点价(δ) 计算得到,与有机物的毒性数据有较好的相关性。MCI 能较强地反映分子的立体结构,但反映子电子结构的能力较弱,因此缺乏明确的物理意义,但由于其具有方便、简单且不依赖于实验等优点,近年来得到广泛应用和发展[4~8]。

2、三维定量结构活性关系方法(3D-QSAR)随着结构活性关系理论和统计方法的进一步发展,20 世纪80 年代,三维结构信息被陆续引入到定量结构活性关系研究中, 即3D-QSAR。与2D-QSAR 比较,3D-QSAR 方法在物理化学上的意义更为明确,能间接反映药物分子和靶点之间的非键相互作用特征。因此,近十多年来3D - QSAR 方法得到了迅速的发展和广泛的应用,研究方法也很多[9] ,比如分子形状分(molecular shape analysis ,MSA) ,距离几何方法( distance geometry , DG ,比较分子力场分析(comparative molecular field analysis ,CoMFA) ,比较分子相似因子分析( comparative molecular similarityindices analysi CoMSIA) 以及虚拟受体( phesudo receptor) 等方法。其中应用最为广泛的CoMFA 方法。

3、随着技术的发展和生产技术的进步,又出现了一些先进的方法来构建QSAR模型,都具有很好的预测能力。其中又以启发发(heuristic method,简称HM),支持向量机(Support Vector Machine,简称SVM),基因表达式编程(Gene Expression Programming,简称GEP)比较常见。支持向量机(Support Vector Machine)是Vapnik[10]等人根据统计学理论提出的一种新的通用学习方法,它是建立在统计学理论的VC维理论和结构风险最小原理基础上的,能较好地解决小样本、非线性、高维数等实际问题[11-12],已成功地应用于分类、函数逼近和时间序列预测等方面[13-15];基因表达式编程(GEP)是基于生物学遗传思想,保持了生物学的特性,具有良好的结果重现性,同时也能够进行“遗传变异”控制,最终能获得可靠的实验效果。

三、主要研究内容

1、查阅中外文文献选取数据来源。

2、理化参数与结构参数的计算。

3、具体的结构参数的分析。

4、SVM与GEP的方法研究。

5、定量结构关系式的建立。

6、定量结构关系式的验证。

7、得出结论和总结。

四、论文工作计划

3月中旬—4月初:选题。

4月初—4月底:查阅资料,熟悉实验原理及方法,准备开题报告。

5月10日: 开题。

5月初日—5月底日:进行毕业设计实验,记录数据,撰写论文。

6月初日—6月中旬日:进行毕业论文答辩。

五、参考文献

[1] 任华益. 中华综合临床医学杂志(山东) , 2005, 7(2): 28 -33.

[2] 徐娟,王林编译. 计算机辅助药物设计中的QSAR和QSMR研究. 国外医学•药学分册, 2003, 30(3): 135-138.

[3] 郭宗儒. 药物化学总论. 北京:中国医药科技出版社, 1994. 108.

[4] Bakulh H Rao, Shyam R, Asolekar. QSAR models to predict effect of ionic strength on sorption of chlorinated benzenes and phenols at sediment-water interface. Water Research, 200l, 35(14): 3391-3401.

[5] 冯长君, 堵锡华, 唐自强. 取代芳烃对发光菌、大型蚤、呆鲦鱼急性毒性的QSAR研究. 应用化学, 2002, 19(11): 1037 -1042.

[6]秦正龙, 冯长君. 取代苯酚的定量结构-活性P性质相关性研究. 有机化学, 2003, 23(7): 654-658.

[7] 堵锡华. 取代芳香族化合物生物活性的拓扑学 . 南昌大学学报(理学版), 2005, 29(2): 155-160.

[8] Aleksandar Sablji C. QSAR models for estimating properties of persistent organic pollutants required in evaluation of their environmental fate and risk. Chemosphere, 2001, 43(3): 363 -375.

[9] 徐筱杰, 侯廷军,乔学斌,章威. 计算机辅助药物分子设计. 北京: 化学工业出版社, 2004.

[10] Vapnik Nature of Statistical Learning Theory.

NY: Springer-Verlag,1995.

[11] 阎辉,张学工,李衍达. 应用SVM方法进行沉淀微相识别.物探化探计算技术, 2000, (2): 158 -164.

[12] 张学工. 关于统计学习理论与支持向量机. 自动化学报, 2000, (1): 32 -42.

[13] Vapnik V, Golowich S, Smola A. Supportvector method for function approximation, regression estimation, and signal processing. In: Mozer M, Jordan M, Petsche Teds. Neural Information Processing System, MIT Press, 1997-09.

[14]马云潜,张学工. 支持向量机函数拟合在分形插值中的应用.清华大学学报(自然科学版) , 2000, (3): 76- 78.

[15] Muller K-R, Smola A J, Ratsch G . Predicting time series with support vector machines. In:Proc of ICANN 97, Springer Lecture Notes In Computer Science, 1997: 999-1005.

孙永生早在莫斯科学习期间就在函数逼近论的研究中获得了优异的成绩,在前苏联科学院的重要学术刊物上发表了研究论文。他从1978年开始招收研究生,1981年成为我国第一批博士研究生导师。他带领学生们研究学术领域中的大问题、难问题。函数逼近论中的宽度理论是一个重要研究方向,也是一个非常艰深的领域。孙先生在这个领域中,在K-宽度、G-宽度、线性宽度等方面都做出了第一流的工作。特别是解决了美国数学家Melkman 和Micchelli的一个重要猜想,受到国内外同行和高度称赞。在全国第三届函数逼近论会议上,徐利治教授向大会介绍我国逼近论研究的进展时,专门介绍了孙永生在宽度理论中的重要成果。1978年以来,他每年至少亲自撰写并发表两篇高水平的研究论文,至今已发表了数十篇学术论文,分别发表在《中国科学》,《科学通报》,《数学学报》,《数学年刊》,《逼近论及其应用》等国内学术期刊和《构造逼近》,《复杂度杂志》,《数学评论》等国际学术期刊杂志上。其中多篇被收入国际著名期刊索引SCI。他出版的译著《逼近论中的极值问题》已成为我国逼近论界广泛使用的教材。他以身作则的工作作风为他所领导的研究集体树立了极好的表率。到目前为止,孙永生已培养了15名博士和18名硕士,还培养了一大批进修教师。他培养的学生,大都已成为我国各高校和研究单位的学术骨干,有的已成为博士生导师。他在多年研究工作的基础上写出了专著《函数逼近论》上、下两册(下册与他的学生合著)。这部书目前已成为我国函数论研究生广泛使用的一部权威性的教科书,并于1992年获国家教委颁发的高等学校出版社优秀学术著作特等奖。他主持的研究课题曾5次获得国家自然科学基金的资助,3次获得国家教委博士点基金的资助。以他为首的研究项目《逼近论中的极值问题和调和分析中若干逼近问题》,获1988年国家教委科技进步奖一等奖和1989年国家自然科学奖四等奖。

三角函数相关研究现状论文

三角学与天文学 早期三角学不是一门独立的学科,而是依附于天文学,是天文观测结果推算的一种方法,因而最先发展起来的是球面三角学.希腊、印度、 *** 数学中都有三角学的内容,可大都是天文观测的副产品.测量天体之间的距离不是一件容易的事. 天文学家把需要测量的天体按远近不同分成好几个等级.离我们比较近的天体,它们离我们最远不超过100光年(1光年=万亿1012公里),天文学家用三角视差法测量它们的距离.三角视差法是把被测的那个天体置于一个特大三角形的顶点,地球绕太阳公转的轨道直径的两端是这个三角形的另外二个顶点,通过测量地球到那个天体的视角,再用到已知的地球绕太阳公转轨道的直径,依靠三角公式就能推算出那个天体到我们的距离了.稍远一点的天体我们无法用三角视差法测量它和地球之间的距离,因为在地球上再也不能精确地测定它们的视差了. 〔河内天体的距离又称为视差,恒星对日地平均距离(a)的张角叫做恒星的三角视差(p),则较近的恒星的距离D可表示为:sinπ=a/D〕 若π很小,π以角秒表示,且单位取秒差距(pc),则有:D=1/π 用周年视差法测定恒星距离,有一定的局限性,因为恒星离我们愈远,π就愈小,实际观测中很难测定.三角视差是一切天体距离测量的基础,至今用这种方法测量了约10,000多颗恒星.因此从天文学中又衍生出了三角学,而三角学则为天文研究奠定了基础. 三角学起源于古希腊.为了预报天体运行路线、计算日历、航海等需要,古希腊人已研究球面三角形的边角关系,掌握了球面三角形两边之和大于第三边,球面三角形内角之和大于两个直角,等边对等角等定理.印度人和 *** 人对三角学也有研究和推进,但主要是应用在天文学方面.15、16世纪三角学的研究转入平面三角,以达到测量上应用的目的.16世纪法国数学家韦达系统地研究了平面三角.他出版了应用于三角形的数学定律的书.此后,平面三角从天文学中分离出来,成了一个独立的分支.平面三角学的内容主要有三角函数、解三角形和三角方程. 而三角学的发展历程又是十分漫长的. 最早,古希腊门纳劳斯(Menelaus of Alexandria)著《球面学》,提出了三角学的基础问题和基本概念,特别是提出了球面三角学的门纳劳斯定理;50年后,另一个古希腊学者托勒密(Ptolemy)著《天文学大成》,初步发展了三角学.而在公元499年,印度数学家阿耶波多(ryabhata I)也表述出古代印度的三角学思想;其后的瓦拉哈米希拉(Varahamihira)最早引入正弦概念,并给出最早的正弦表;公元10世纪的一些 *** 学者进一步探讨了三角学.当然,所有这些工作都是天文学研究的组成部分.直到纳西尔丁(Nasir ed-Din al Tusi,1201~1274)的《横截线原理书》才开始使三角学脱离天文学,成为纯粹数学的一个独立分支.而在欧洲,最早将三角学从天文学独立出来的数学家是德国人雷格蒙塔努斯(J•Regiomontanus,1436~1476). 雷格蒙塔努斯的主要著作是1464年完成的《论各种三角形》.这是欧洲第一部独立于天文学的三角学著作.全书共5卷,前2卷论述平面三角学,后3卷讨论球面三角学,是欧洲传播三角学的源泉.雷格蒙塔努斯还较早地制成了一些三角函数表. 雷格蒙塔努斯的工作为三角学在平面和球面几何中的应用建立了牢固的基础.他去世以后,其著作手稿在学者中广为传阅,并最终出版,对16世纪的数学家产生了相当大的影响,也对哥白尼等一批天文学家产生了直接或间接的影响. 最先使用三角学一词的是文艺复兴时期的德国数学家皮蒂斯楚斯(B.Pitiscus,1561~1613),他在1595年出版的《三角学:解三角形的简明处理》中创造这个词.其构成法是由三角形(tuiangulum)和测量(metuicus)两字凑合而成.要测量计算离不开三角函数表和三角学公式,它们是作为三角学的主要内容而发展的. 三角测量在中国也很早出现,公元前一百多年的《周髀算经》就有较详细的说明,例如它的首章记录“周公曰,大哉言数,请问用矩之道.商高曰,平矩以正绳,偃矩以望高,复矩以测深,卧矩以知远.”(商高说的矩就是今天工人用的两边互相垂直的曲尺,商高说的大意是将曲尺置于不同的位置可以测目标物的高度、深度与广度)1世纪时的《九章算术》中有专门研究测量问题的篇章. 16世纪三角函数表的制作首推奥地利数学家雷蒂库斯(G.J.Rhetucus,1514~1574).他1536年毕业于滕贝格(Wittenbery)大学,留校讲授算术和几何.1539年赴波兰跟随著名天文学家哥白尼学习天文学,1542年受聘为莱比锡大学数学教授.雷蒂库斯首次编制出全部6种三角函数的数表,包括第一张详尽的正切表和第一张印刷的正割表. 17世纪初对数发明后大大简化了三角函数的计算,制作三角函数表已不再是很难的事,人们的注意力转向了三角学的理论研究.不过三角函数表的应用却一直占据重要地位,在科学研究与生产生活中发挥着不可替代的作用. 三角公式是三角形的边与角、边与边或角与角之间的关系式.三角函数的定义已体现了一定的关系,一些简单的关系式在古希腊人以及后来的 *** 人中已有研究. 文艺复兴后期,法国数学家韦达(F.Vieta)成为三角公式的集大成者.他的《应用于三角形的数学定律》(1579)是较早系统论述平面和球面三角学的专著之一.其中第一部分列出6种三角函数表,有些以分和度为间隔.给出精确到5位和10位小数的三角函数值,还附有与三角值有关的乘法表、商表等.第二部分给出造表的方法,解释了三角形中诸三角线量值关系的运算公式.除汇总前人的成果外,还补充了自己发现的新公式.如正切定律、和差化积公式等等.他将这些公式列在一个总表中,使得任意给出某些已知量后,可以从表中得出未知量的值.该书以直角三角形为基础.对斜三角形,韦达仿效古人的方法化为直角三角形来解决.对球面直角三角形,给出计算的完整公式及其记忆法则,如余弦定理,1591年韦达又得到多倍角关系式,1593年又用三角方法推导出余弦定理. 1722年英国数学家棣莫弗(A.De Meiver)得到以他的名字命名的三角学定理 ?(cosθ±isinθ)n=cosnθ+isinnθ, 并证明了n是正有理数时公式成立;1748年欧拉(L.Euler)证明了n是任意实数时公式也成立,他还给出另一个著名公式 ?eiθ=cosθ+isinθ, 对三角学的发展起到了重要的推动作用. 近代三角学是从欧拉的《无穷分析引论》开始的.他定义了单位圆,并以函数线与半径的比值定义三角函数,他还创用小写拉丁字母a、b、c表示三角形三条边,大写拉丁字母A、B、C表示三角形三个角,从而简化了三角公式.使三角学从研究三角形解法进一步转化为研究三角函数及其应用,成为一个比较完整的数学分支学科.而由于上述诸人及19世纪许多数学家的努力,形成了现代的三角函数符号和三角学的完整的理论. 如今,人们从更高、更深的角度来认识“三角学”,是由于复数的引入.人们对复数的思考由来已久,例如对方程x2+1=0的根的思考,但人们认真地将虚数=i引入数学则是16世纪的事了.之后欧拉建立了著名的欧拉公式:eiθ=cosθ+isinθ,使得三角学中的问题都可以化归为复数来讨论,于是三角学中一大批问题得以轻松地解决.有了复数与欧拉公式,使人们对三角学的已有理论的理解更为深刻,并可以把一些原始的、复杂的处理三角学的方法与工具“抛到一边”. 事实上,三角学是一门实用的数学分支,尽管源自于天文学,但在很多其他学科中都有用. 百年前,希尔伯特在他那著名的讲演中,用以下这段话作为结束语:“数学的有机统一,是这门科学固有的特点,因为它是一切精确自然科学知识的基础,为了圆满实现这个崇高的目标,让新世纪给这门科学带来天才的大师和无数热诚的信徒吧!”我深信,只要我们从现在开始,学好数学,用好数学,21世纪一定会“给这门科学带来天才的大师”,而且其中肯定有许多来自我们90后! 注:简单的将网上的排了一下序,仍需修改!

原文链接:几何中的两个基本量是:线段的长度和角的大小.三角函数的本质就是用线段长度之比来表示角的大小,从而将两个基本量联系在一起,使我们可以借助三角变换或三角计算来解决一些较难的几何问题.三角函数不仅是一门有趣的学问,而且是解决几何问题的有力工具. 1. 角函数的计算和证明问题 在解三角函数问题之前,除了熟知初三教材中的有关知识外,还应该掌握: (1)三角函数的单调性 当a为锐角时,sina与tga的值随a的值增大而增大;cosa与ctga随a的值增大而减小;当a为钝角时,利用诱导公式转化为锐角三角函数讨论. 注意到sin45°=cos45°=,由(1)可知,当时0<a<45°时,cosa>sina;当45°<a<90°时,cosa<sina. (2)三角函数的有界性|sina|≤1,|cosa|≤1,tga、ctga可取任意实数值(这一点可直接利用三角函数定义导出). 例1(1986年全国初中数学竞赛备用题)在△ABC中,如果等式sinA+cosA=成立,那么角A是( ) (A)锐角 (B)钝角 (C)直角 分析 对A分类,结合sinA和cosA的单调性用枚举法讨论. 解当A=90°时,sinA和cosA=1; 当45°<A<90°时sinA>,cosA>0, ∴sinA+cosA> 当A=45°时,sinA+cosA= 当0<A<45°时,sinA>0,cosA> ∴sinA+cosA> ∵1, 都大于. ∴淘汰(A)、(C),选(B). 例2(1982年上海初中数学竞赛题)ctg67°30′的值是( ) (A)-1 (B)2- (C)-1 (D) (E) 分析 构造一个有一锐角恰为67°30′的Rt△,再用余切定义求之.

泰勒展开式逼近的研究论文

只要去搜英文版的 数学分析 就行了,上面肯定会有,《Mathematical Analysis》。搜英文的文献最好去Google

f(x)=f(x0)+f'(x0)*(x-x0)+f''(x0)/2!*(x-x0)^2+...+f(n)(x0)/n!*(x-x0)^n (泰勒公式,最后一项中n表示n阶导数) f(x)=f(0)+f'(0)*x+f''(x)/2!*x^2+...+f(n)(0)/n!*x^n (麦克劳林公式公式,最后一项中n表示n阶导数) 泰勒中值定理:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x.)多项式和一个余项的和: f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!•(x-x.)^2,+f'''(x.)/3!•(x-x.)^3+……+f(n)(x.)/n!•(x-x.)^n+Rn 其中Rn=f(n+1)(ξ)/(n+1)!•(x-x.)^(n+1),这里ξ在x和x.之间,该余项称为拉格朗日型的余项。 (注:f(n)(x.)是f(x.)的n阶导数,不是f(n)与x.的相乘。) 证明:我们知道f(x)=f(x.)+f'(x.)(x-x.)+α(根据拉格朗日中值定理导出的有限增量定理有limΔx→0 f(x.+Δx)-f(x.)=f'(x.)Δx),其中误差α是在limΔx→0 即limx→x.的前提下才趋向于0,所以在近似计算中往往不够精确;于是我们需要一个能够足够精确的且能估计出误差的多项式: P(x)=A0+A1(x-x.)+A2(x-x.)^2+……+An(x-x.)^n 来近似地表示函数f(x)且要写出其误差f(x)-P(x)的具体表达式。设函数P(x)满足P(x.)=f(x.),P'(x.)=f'(x.),P''(x.)=f''(x.),……,P(n)(x.)=f(n)(x.),于是可以依次求出A0、A1、A2、……、An。显然,P(x.)=A0,所以A0=f(x.);P'(x.)=A1,A1=f'(x.);P''(x.)=2!A2,A2=f''(x.)/2!……P(n)(x.)=n!An,An=f(n)(x.)/n!。至此,多项的各项系数都已求出,得:P(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!•(x-x.)^2+……+f(n)(x.)/n!•(x-x.)^n. 接下来就要求误差的具体表达式了。设Rn(x)=f(x)-P(x),于是有Rn(x.)=f(x.)-P(x.)=0。所以可以得出Rn(x.)=Rn'(x.)=Rn''(x.)=……=Rn(n)(x.)=0。根据柯西中值定理可得Rn(x)/(x-x.)^(n+1)=Rn(x)-Rn(x.)/(x-x.)^(n+1)-0=Rn'(ξ1)/(n+1)(ξ1-x.)^n(注:(.)^(n+1)=0),这里ξ1在x和x.之间;继续使用柯西中值定理得Rn'(ξ1)-Rn'(x.)/(n+1)(ξ1-x.)^n-0=Rn''(ξ2)/n(n+1)(ξ2-x.)^(n-1)这里ξ2在ξ1与x.之间;连续使用n+1次后得出Rn(x)/(x-x.)^(n+1)=Rn(n+1)(ξ)/(n+1)!,这里ξ在x.和x之间。但Rn(n+1)(x)=f(n+1)(x)-P(n+1)(x),由于P(n)(x)=n!An,n!An是一个常数,故P(n+1)(x)=0,于是得Rn(n+1)(x)=f(n+1)(x)。综上可得,余项Rn(x)=f(n+1)(ξ)/(n+1)!•(x-x.)^(n+1)。一般来说展开函数时都是为了计算的需要,故x往往要取一个定值,此时也可把Rn(x)写为Rn。 泰勒 18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒(Brook Taylor), 于1685 年8月18日在米德尔塞克斯的埃 德蒙顿出生。1709年后移居伦敦,获法学硕士学位。他在 1712年当选为英国皇家学 会会员,并于两年后获法学博士学位。同年(即1714年)出任 英国皇家学会秘书,四年 后因健康理由辞退职务。1717年,他以泰勒定理求解了数值方程。 最后在1731年1 2月29日于伦敦逝世。 泰勒的主要着作是1715年出版的《正 的和反的增量方法》,书内以下列形式陈述出他已于 1712年7月给其老师梅钦(数学家 、天文学家)信中首先提出的着名定理——泰勒定理:式内v为独立变量的增量, 及 为流数。他假定z随时间均匀变化,则 为常数。上述公式以现代 形式表示则为:这公式是从格雷戈里-牛顿插值公式发展而成 的,当x=0时便称作马克劳林定理。1772年 ,拉格朗日强调了此公式之重要性,而且 称之为微分学基本定理,但泰勒于证明当中并没有考虑 级数的收敛性,因而使证明不严谨, 这工作直至十九世纪二十年代才由柯西完成。 泰勒定理开创 了有限差分理论,使任何单变量 函数都可展成幂级数;同时亦使泰勒成了有限差分理论的奠基者 。 泰勒于书中还讨论了微积分对一系列物理 问题之应用,其中以有关弦的横向振动之结果尤为重要 。他透过求解方程 导出了基本频率公式,开创了研究弦振问题之先 河。此外,此书还包括了他于 数学上之其他创造性工作,如论述常微分方程的奇异解,曲率 问题之研究等。 1715年,他出版了另一名着《线性透 视论》,更发表了再版的《线性透视原理》(1719) 。他以极严密之形式展开其线性透 视学体系,其中最突出之贡献是提出和使用「没影点」概念, 这对摄影测量制图学之发展有 一定影响。另外,还撰有哲学遗作,发表于1793年。

公式定义 泰勒公式(Taylor's formula) 泰勒中值定理:若函数f(x)在含有x的开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x.)多项式和一个余项的和: f(x)=f(x。)+f'(x。)(x-x。)+f''(x。)/2!*(x-x。)^2,+f'''(x。)/3!*(x-x。)^3+……+f(n)(x。)/n!*(x-x。)^n+Rn(x) 其中Rn(x)=f(n+1)(ξ)/(n+1)!*(x-x.)^(n+1),这里ξ在x和x.之间,该余项称为拉格朗日型的余项。 (注:f(n)(x.)是f(x.)的n阶导数,不是f(n)与x。的相乘。)编辑本段证明 我们知道f(x)=f(x.)+f'(x.)(x-x.)+α(根据拉格朗日中值定理导出的有限增量定理有limΔx→0 f(x.+Δx)-f(x.)=f'(x.)Δx),其中误差α是在limΔx→0 即limx→x.的前提下才趋向于0,所以在近似计算中往往不够精确;于是我们需要一个能够足够精确的且能估计出误差的多项式: P(x)=A0+A1(x-x.)+A2(x-x.)^2+……+An(x-x.)^n 来近似地表示函数f(x)且要写出其误差f(x)-P(x)的具体表达式。设函数P(x)满足P(x.)=f(x.),P'(x.)=f'(x.),P''(x.)=f''(x.),……,P(n)(x.)=f(n)(x.),于是可以依次求出A0、A1、A2、……、An。显然,P(x.)=A0,所以A0=f(x.);P'(x.)=A1,A1=f'(x.);P''(x.)=2!A2,A2=f''(x.)/2!……P(n)(x.)=n!An,An=f(n)(x.)/n!。至此,多项的各项系数都已求出,得:P(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!?(x-x.)^2+……+f(n)(x.)/n!?(x-x.)^n. 接下来就要求误差的具体表达式了。设Rn(x)=f(x)-P(x),于是有Rn(x.)=f(x.)-P(x.)=0。所以可以得出Rn(x.)=Rn'(x.)=Rn''(x.)=……=Rn(n)(x.)=0。根据柯西中值定理可得Rn(x)/(x-x.)^(n+1)=(Rn(x)-Rn(x.))/((x-x.)^(n+1)-0)=Rn'(ξ1)/(n+1)(ξ1-x.)^n(注:(.)^(n+1)=0),这里ξ1在x和x.之间;继续使用柯西中值定理得(Rn'(ξ1)-Rn'(x.))/((n+1)(ξ1-x.)^n-0)=Rn''(ξ2)/n(n+1)(ξ2-x.)^(n-1)这里ξ2在ξ1与x.之间;连续使用n+1次后得出Rn(x)/(x-x.)^(n+1)=Rn(n+1)(ξ)/(n+1)!,这里ξ在x.和x之间。但Rn(n+1)(x)=f(n+1)(x)-P(n+1)(x),由于P(n)(x)=n!An,n!An是一个常数,故P(n+1)(x)=0,于是得Rn(n+1)(x)=f(n+1)(x)。综上可得,余项Rn(x)=f(n+1)(ξ)/(n+1)!?(x-x.)^(n+1)。一般来说展开函数时都是为了计算的需要,故x往往要取一个定值,此时也可把Rn(x)写为Rn。麦克劳林展开式 :若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于x多项式和一个余项的和: f(x)=f(0)+f'(0)x+f''(0)/2!?x^2,+f'''(0)/3!?x^3+……+f(n)(0)/n!?x^n+Rn 其中Rn=f(n+1)(θx)/(n+1)!?x^(n+1),这里0<θ<1。 证明:如果我们要用一个多项式P(x)=A0+A1x+A2x^2+……+Anx^n来近似表示函数f(x)且要获得其误差的具体表达式,就可以把泰勒公式改写为比较简单的形式即当x.=0时的特殊形式: f(x)=f(0)+f'(0)x+f''(0)/2!?x^2,+f'''(0)/3!?x^3+……+f(n)(0)/n!?x^n+f(n+1)(ξ)/(n+1)!?x^(n+1) 由于ξ在0到x之间,故可写作θx,0<θ<1。麦克劳林展开式的应用 : 1、展开三角函数y=sinx和y=cosx。 解:根据导数表得:f(x)=sinx , f'(x)=cosx , f''(x)=-sinx , f'''(x)=-cosx , f(4)(x)=sinx…… 于是得出了周期规律。分别算出f(0)=0,f'(0)=1, f''(x)=0, f'''(0)=-1, f(4)=0…… 最后可得:sinx=x-x^3/3!+x^5/5!-x^7/7!+x^9/9!-……(这里就写成无穷级数的形式了。) 类似地,可以展开y=cosx。 2、计算近似值e=lim x→∞ (1+1/x)^x。 解:对指数函数y=e^x运用麦克劳林展开式并舍弃余项: e^x≈1+x+x^2/2!+x^3/3!+……+x^n/n! 当x=1时,e≈1+1+1/2!+1/3!+……+1/n! 取n=10,即可算出近似值e≈。 3、欧拉公式:e^ix=cosx+isinx(i为-1的开方,即一个虚数单位) 证明:这个公式把复数写为了幂指数形式,其实它也是由麦克劳林展开式确切地说是麦克劳林级数证明的。过程具体不写了,就把思路讲一下:先展开指数函数e^z,然后把各项中的z写成ix。由于i的幂周期性,可已把系数中含有土i的项用乘法分配律写在一起,剩余的项写在一起,刚好是cosx,sinx的展开式。然后让sinx乘上提出的i,即可导出欧拉公式。有兴趣的话可自行证明一下。编辑本段泰勒展开式原理 e的发现始于微分,当 h 逐渐接近零时,计算 之值,其结果无限接近一定值 ...,这个定值就是 e,最早发现此值的人是瑞士著名数学家欧拉,他以自己姓名的字头小写 e 来命名此无理数. 计算对数函数 的导数,得 ,当 a=e 时, 的导数为 ,因而有理由使用以 e 为底的对数,这叫作自然对数. 若将指数函数 ex 作泰勒展开,则得 以 x=1 代入上式得 此级数收敛迅速,e 近似到小数点后 40 位的数值是 将指数函数 ex 扩大它的定义域到复数 z=x+yi 时,由 透过这个级数的计算,可得 由此,De Moivre 定理,三角函数的和差角公式等等都可以轻易地导出.譬如说,z1=x1+y1i, z2=x2+y2i, 另方面, 所以, 我们不仅可以证明 e 是无理数,而且它还是个超越数,即它不是任何一个整系数多项式的根,这个结果是 Hermite 在1873年得到的. 甲)差分. 考虑一个离散函数(即数列) R,它在 n 所取的值 u(n) 记成 un,通常我们就把这个函数书成 或 (un).数列 u 的差分 还是一个数列,它在 n 所取的值以定义为 以后我们干脆就把 简记为 (例):数列 1, 4, 8, 7, 6, -2, ... 的差分数列为 3, 4, -1, -1, -8 ... 注:我们说「数列」是「定义在离散点上的函数」如果在高中,这样的说法就很恶劣.但在此地,却很恰当,因为这样才跟连续型的函数具有完全平行的类推. 差分算子的性质 (i) [合称线性] (ii) (常数) [差分方程根本定理] (iii) 其中 ,而 (n(k) 叫做排列数列. (iv) 叫做自然等比数列. (iv)' 一般的指数数列(几何数列)rn 之差分数列(即「导函数」)为 rn(r-1) (乙).和分 给一个数列 (un).和分的问题就是要算和 . 怎么算呢 我们有下面重要的结果: 定理1 (差和分根本定理) 如果我们能够找到一个数列 (vn),使得 ,则 和分也具有线性的性质: 甲)微分 给一个函数 f,若牛顿商(或差分商) 的极限 存在,则我们就称此极限值为 f 为点 x0 的导数,记为 f'(x0) 或 Df(x),亦即 若 f 在定义区域上每一点导数都存在,则称 f 为可导微函数.我们称 为 f 的导函数,而 叫做微分算子. 微分算子的性质: (i) [合称线性] (ii) (常数) [差分方程根本定理] (iii) Dxn=nxn-1 (iv) Dex=ex (iv)' 一般的指数数列 ax 之导函数为 (乙)积分. 设 f 为定义在 [a,b] 上的函数,积分的问题就是要算阴影的面积.我们的办法是对 [a,b] 作分割: ;其次对每一小段 [xi-1,xi] 取一个样本点 ;再求近似和 ;最后再取极限 (让每一小段的长度都趋近于 0). 若这个极限值存在,我们就记为 的几何意义就是阴影的面积. (事实上,连续性也「差不多」是积分存在的必要条件.) 积分算子也具有线性的性质: 定理2 若 f 为一连续函数,则 存在.(事实上,连续性也「差不多」是积分存在的必要条件.) 定理3 (微积分根本定理) 设 f 为定义在闭区间 [a,b] 上的连续函数,我们欲求积分 如果我们可以找到另一个函数 g,使得 g'=f,则 注:(1)(2)两式虽是类推,但有一点点差异,即和分的上限要很小心! 上面定理1及定理3基本上都表述着差分与和分,微分与积分,是两个互逆的操作,就好像加法与减法,乘法与除法是互逆的操作一样. 我们都知道差分与微分的操作比和分与积分简单多了,而上面定理1及定理3告诉我们,要计算 (un) 的和分及 f 的积分,只要去找另一个 (vn) 及 g 满足 , g'=f (这是差分及微分的问题),那么对 vn 及 g 代入上下限就得到答案了.换句话说,我们可以用较简单的差分及微分操作来掌握较难的和分及积分操作,这就是"以简御繁"的精神.牛顿与莱布尼慈对微积分最大的贡献就在此. 甲)Taylor展开公式 这分别有离散与连续的类推.它是数学中「逼近」这个重要想法的一个特例.逼近想法的意思是这样的:给一个函数 f,我们要研究 f 的行为,但 f 本身可能很复杂而不易对付,于是我们就想法子去找一个较「简单」的函数 g,使其跟 f 很「靠近」,那么我们就用 g 来取代 f.这又是以简御繁的精神表现.由上述我们看出,要使用逼近想法,我们还需要澄清 两个问题:即如何选取简单函数及逼近的尺度. (一) 对于连续世界的情形,Taylor 展式的逼近想法是选取多项函数作为简单函数,并且用局部的「切近」作为逼近尺度.说得更明白一点,给一个直到到 n 阶都可导微的函数 f,我们要找一个 n 次多项函数 g,使其跟 f 在点 x0 具有 n 阶的「切近」,即 ,答案就是 此式就叫做 f 在点 x0 的 n 阶 Taylor 展式. g 在 x0 点附近跟 f 很靠近,于是我们就用 g 局部地来取代 f.从而用 g 来求得 f 的一些局部的定性行为.因此 Taylor 展式只是局部的逼近.当f是足够好的一个函数,即是所谓解析的函数时,则 f可展成 Taylor 级数,而且这个 Taylor 级数就等于 f 自身. 值得注意的是,一阶 Taylor 展式的特殊情形,此时 g(x)=f(x0)+f'(x0)(x-x0) 的图形正好是一条通过点 (x0,f(x0)) 而且切于 f 的图形之直线.因此 f 在点 x0 的一阶 Taylor 展式的意义就是,我们用过点 (x0,f(x0)) 的切线局部地来取代原来 f 曲线.这种局部化「用平直取代弯曲」的精神,是微分学的精义所在. 利用 Taylor 展式,可以帮忙我们做很多事情,比如判别函数的极大值与极小值,求积分的近似值,作函数表(如三角函数表,对数表等),这些都是意料中事.事实上,我们可以用逼近的想法将微积分「一以贯之」. 复次我们注意到,我们选取多项函数作为逼近的简单函数,理由很简单:在众多初等函数中,如三角函数,指数函数,对数函数,多项函数等,从算术的观点来看,以多项函数最为简单,因为要计算多项函数的值,只牵涉到加减乘除四则运算,其它函数就没有这么简单. 当然,从别的解析观点来看,在某些情形下还另有更有用更重要的简单函数.例如,三角多项式,再配合上某种逼近尺度,我们就得到 Fourier 级数展开,这在应用数学上占有举足轻重的地位.(事实上,Fourier 级数展开是采用最小方差的逼近尺度,这在高等数学中经常出现,而且在统计学中也有应用.) 注:取 x0=0 的特例,此时 Taylor 展式又叫做 Maclaurin 展式.不过只要会做特例的展开,欲求一般的 Taylor 展式,作一下平移(或变数代换)就好了.因此我们大可从头就只对 x=0 点作 Taylor 展式. (二) 对于离散的情形,Taylor 展开就是: 给一个数列 ,我们要找一个 n 次多项式数列 (gt),使得 gt 与 ft 在 t=0 点具有 n 阶的「差近」.所谓在 0 点具有 n 阶差近是指: 答案是 此式就是离散情形的 Maclaurin 公式. 乙)分部积分公式与Abel分部和分公式的类推 (一) 分部积分公式: 设 u(x),v(x) 在 [a,b] 上连续,则 (二) Abel分部和分公式: 设(un),(v)为两个数列,令 sn=u1+......+un,则 上面两个公式分别是莱布尼慈导微公式 D(uv)=(Du)v+u(Dv),及莱布尼慈差分公式 的结论.注意到,这两个莱布尼慈公式,一个很对称,另一个则不然. (丁)复利与连续复利 (这也分别是离散与连续之间的类推) (一) 复利的问题是这样的:有本金 y0,年利率 r,每年复利一次,要问 n 年后的本利和 yn= 显然这个数列满足差分方程 yn+1=yn(1+r) 根据(丙)之(二)得知 yn=y0(1+r)n 这就是复利的公式. (二) 若考虑每年复利 m 次,则 t 年后的本利和应为 令 ,就得到连续复利的概念,此时本利和为y(t)=y0ert 换句话说,连续复利时,t 时刻的本利和 y(t)=y0ert 就是微分方程 y'=ry 的解答. 由上述我们看出离散复利问题由差分方程来描述,而连续复利的问题由微分方程来描述.对于常系数线性的差分方程及微分方程,解方程式的整个要点就是叠合原理,因此求解的办法具有完全平行的类推. (戊)Fubini 重和分定理与 Fubini 重积分定理(也是离散与连续之间的类推) (一) Fubini 重和分定理:给一个两重指标的数列 (ars),我们要从 r=1 到 m,s=1到 n, 对 (ars) 作和 ,则这个和可以这样求得:光对 r 作和再对 s 作和(反过来亦然).亦即我们有 (二)Fubini 重积分定理:设 f(x,y) 为定义在 上之可积分函数,则 当然,变数再多几个也都一样. (己)Lebesgue 积分的概念 (一) 离散的情形:给一个数列 (an),我们要估计和 ,Lebesgue 的想法是,不管这堆数据指标的顺序,我们只按数值的大小来分堆,相同的分在一堆,再从每一堆中取一个数值,乘以该堆的个数,整个作和起来,这就得到总和. (二)连续的情形:给一个函数 f,我们要定义曲线 y=f(x) 跟 X 轴从 a 到 b 所围出来的面积. Lebesgue 的想法是对 f 的影域 作分割: 函数值介 yi-1 到 yi 之间的 x 收集在一齐,令其为 , 于是 [a,b] 就相应分割成 ,取样本点 ,作近似和 让影域的分割加细,上述近似和的极限若存在的话,就叫做 f 在 [a,b] 上的 Lebesgue 积分.余项 泰勒公式的余项f(x)=f(a) + f'(a)(x-a)/1! + f''(a)(x-a)^2/2! + …… + f(n)(a)(x-a)^n/n! + Rn(x) [其中f(n)是f的n阶导数] 泰勒余项可以写成以下几种不同的形式: 1.佩亚诺(Peano)余项: Rn(x) = o((x-a)^n) 2.施勒米尔希-罗什(Schlomilch-Roche)余项: Rn(x) = f(n+1)(a+θ(x-a))(1-θ)^(n+1-p)(x-a)^(n+1)/(n!p) [f(n+1)是f的n+1阶导数,θ∈(0,1)] 3.拉格朗日(Lagrange)余项: Rn(x) = f(n+1)(a+θ(x-a))(x-a)^(n+1)/(n+1)! [f(n+1)是f的n+1阶导数,θ∈(0,1)] 4.柯西(Cauchy)余项: Rn(x) = f(n+1)(a+θ(x-a))(1-θ)^n (x-a)^(n+1)/n! [f(n+1)是f的n+1阶导数,θ∈(0,1)] 5.积分余项: Rn(x) = [f(n+1)(t)(x-t)^n在a到x上的积分]/n! [f(n+1)是f的n+1阶导数]

泰勒公式的余项f(x)=f(a) + f'(a)(x-a)/1! + f''(a)(x-a)^2/2! + …… + f(n)(a)(x-a)^n/n! + Rn(x) [其中f(n)是f的n阶导数] 泰勒余项可以写成以下几种不同的形式: 1.佩亚诺(Peano)余项: Rn(x) = o((x-a)^n) 2.施勒米尔希-罗什(Schlomilch-Roche)余项: Rn(x) = f(n+1)(a+θ(x-a))(1-θ)^(n+1-p)(x-a)^(n+1)/(n!p) [f(n+1)是f的n+1阶导数,θ∈(0,1)] 3.拉格朗日(Lagrange)余项: Rn(x) = f(n+1)(a+θ(x-a))(x-a)^(n+1)/(n+1)! [f(n+1)是f的n+1阶导数,θ∈(0,1)] 4.柯西(Cauchy)余项: Rn(x) = f(n+1)(a+θ(x-a))(1-θ)^n (x-a)^(n+1)/n! [f(n+1)是f的n+1阶导数,θ∈(0,1)] 5.积分余项: Rn(x) = [f(n+1)(t)(x-t)^n在a到x上的积分]/n! [f(n+1)是f的n+1阶导数]

中国近现代校训研究现状论文

“自强不息,厚德载物”作为清华“校训”,至少在1917年9月就已明朗。当时出版的英文校报的封面上,据今考证是首次出现了大礼堂主席台上方的那个老校徽。在此之前清华学校的行政领导是否有立此校训的正式决策,存疑待考。有的老校友称此为“校箴”,说明存在“校训”为约定俗成的可能性。 《说文解字》中,解“训”为“说教也”。在《辞源》、《辞海》中,“训”的多种涵义都是由“说教”引申而来,作为动词,其基本涵义是“教诲”、“教导”,作为名词,它是指教诲、教导的话语。另外,在旧的教育词汇中有“训育”、“训导”等,都是针对学生品行而言的。因此,我们理解“校训”就是学校在育人方面,在人品的塑造方面,或如梁启超所言在“养成国民之人格”方面的最高要求。 在面临新世纪的今天,我国正在有中国特色社会主义的道路上阔步前进。我校跟随祖国前进的步伐,正在努力创建世界一流大学。以新时代的眼光审视清华大学的老校训,它对于我们全面推进素质教育,培养有理想、有道德、有文化、有纪律的社会主义新人,仍具有十分积极的现实意义。 清华人要发扬“自强不息”的精神。在对客观必然性的无尽探索中,在面对知识经济时代的挑战和市场经济大潮的考验时,清华人要自强,就要有一流意识和创新意识。“自强不息”不仅是一种个人精神,而且是体现于集体奋斗中的民族精神。为使中华民族自立于世界先进民族之林,实现祖国的社会主义现代化,我们必须树立民族自尊心和自信心,努力攀登科学技术高峰,争创自主知识产权,赶超世界先进水平。 清华人要继承“厚德载物”的传统。在实践活动中尊重客观规律性,自觉地以自然、社会发展的规律和规范约束自己的行为。坚持将德育放在首位,在全面素质的培养中把思想政治素质作为最重要的素质,树立正确的世界观、人生观、价值观。“厚德载物”是中华民族传统美德的高度概括,以注重群体利益的无私奉献为其内涵。清华人要模范遵守社会主义的社会公德、职业道德和家庭美德,弘扬集体主义,全心全意为人民服务。 “自强不息,厚德载物”作为我国传统文化的重要内涵,体现了一种健全的人格。它集刚健和柔顺两种不同的特质于一身,标志着人格发展上的一种全面性。清华人要追求人格塑造上的全面性,既勇于竞争又善于合作,既出类拔萃又守于纯朴,既疾恶如仇又与人为善,既长于用脑又精于动手,既仗义执言又埋头苦干……在“自强不息,厚德载物”的教导下,努力把自己塑造成人民的骄子,祖国的栋梁。

《中国近代史纲要》 ——论中国共产党是历史和人民的选择关键词:鸦片战争 十月革命 马克思主义思想 中国共产党《中国近代史纲要》主要讲授中国近代以来抵御外来侵略、争取民族独立、推翻反动统治、实现人民解放的历史。其主要目的是帮助学生了解国史、国情,深刻领会历史和人民怎样选择了马克思主义,怎样选择了中国共产党,怎样选择了社会主义道路。如何把“80后”大学生的思想带回到近代,让他们从历史中有所感悟,接受先进思想,激发爱国之情,成了任课教师肩上的重任。通过对《中国近代史纲要》的学习,我更加深刻了认识了中国近代的这段血写的屈辱和抗争史。这是一段有关民主生死存亡的整容抗争岁月,无数的仁人志士抛头颅、洒热血,为了中华民族的自强和复兴做出了艰辛的努力和巨大的牺牲,我们应该牢记历史,牢记历史赋予我们的使命。通过对中国近代史的学习,我也明白了今天幸福生活得来之不易,所以我们要倍加珍惜,珍惜历史的人民的选择。以下我将就中国共产党是历史和人民的选择谈谈我的认识。首先,历史告诉我们中国共产党是历史和人民的必然选择,中国要独立和自强就必须接受中国共产党的领导。中国特色社会主义发展道路,是人民的选择和历史的必然,是中国共产党领导人民选择的符合国情的唯一正确道路,是我国发展社会主义民主政治的唯一正确道路。鸦片战争,打破了长期封闭的中国社会,使延续了几千年的封建自然经济开始解体。在中华民族危难之际,一代民族精英觉醒:林则徐“苟利国家生死以,岂因祸福避趋之。”龚自珍“智者受三千年史氏之书,则能以良史之忧忧天下”。林则徐、魏源的“师夷之长技以制夷”;洪秀全领导的反清农民起义;康有为、梁启超的“变法图强”;孙中山的国民革命。正是他们在民族生死存亡的紧要关头,挺身而出,为反对外来侵略,争取民族独立和解放,同仇敌忾,英勇奋斗,前赴后继,拼搏不息,谱写了中国近代史上可歌可泣的悲壮篇章。这让我们看到了民族的内部团结和力量凝聚是抵抗外辱和实现复兴的基本前提。中国共产党就是在这种历史条件下应运而生的。共产党最初登上历史舞台时就是无产阶级(即工人阶级)利益的代表。鸦片战争,打破了长期封闭的中国社会,但是,由于外国资本主义的侵略和国内封建势力的压迫,中国没有走上独立发展的资本主义道路,而逐步沦为半殖民地半封建的国家。这就决定了帝国主义和中华民族的矛盾、封建主义和人民大众的矛盾,是近代中国社会的主要矛盾。因而,要完成推翻帝国主义和封建主义在中国反动统治的任务,就不能不经过一个长期的艰苦奋斗过程。从鸦片战争到1919年五四运动前夕,中国人民进行了近80年的不屈不挠的英勇斗争。其中包括太平天国革命、洋务运动、义和团运动、戊戌维新等,这些斗争不同程度地打击了帝国主义及其走狗的统治,但最终都失败了。 1911年孙中山领导的辛亥革命,推翻了清王朝,结束了几千年来的封建君主专制制度,建立了中华民国。但辛亥革命没有把反帝反封建的革命斗争进行到底,最终以同旧势力妥协而告终。中国旧民主主义革命的失败,给人们以重要的启示:在半殖民地半封建的中国,农民阶级、小资产阶级和民族资产阶级都不能领导革命取得最终胜利,要推翻帝国主义和封建主义在中国的反动统治,完成资产阶级民主革命任务,必须有新的阶级领导和新的思想指导。 十月革命一声炮响,给中国送来了马克思列宁主义。一批先进的知识分子,迅速接受了马克思主义,从激进的民主主义者转变为共产主义者,开始用马克思主义的思想武器来考察中国社会的历史和现状。五四运动后马克思主义的进一步的传播和工人运动的进一步发展,以及两者走向结合的初步实践,表明建立共产党的阶级基础和思想基础已经具备,促进了中国共产党的诞生。中国共产党是马克思列宁主义和中国工人运动相结合的产物。他与以往任何政党不同,一开始便旗帜鲜明地表示自己是中国工人阶级利益的代表,也是中国广大人民和整个中华民族利益的代表。他为中国革命指明了方向,在长期斗争的实践中找到了使革命走向胜利的道路,并且把被外国列强视为“一盘散沙”的中国人民团结在一起,最终取得革命的胜利。选择共产党的必然性:中国共产党的成立,给因辛亥革命失败而迷茫的人民群众带来了光明和希望,为他们的斗争开拓了通向胜利的新航道。从此,领导反帝反封建的革命斗争、争取民族独立和人民解放、实现振兴中华的伟大使命,历史地落到了中国共产党的身上。自从有了中国共产党,中国革命的面貌就为之一新.中国共产党的成立是“开天辟地的大事变”,从此以后,“中国改换了方向”。选择共产党的正确性:中国共产党一开始便旗帜鲜明地以马克思主义的阶级斗争观点来观察和分析中国的问题,并且深入到工人中做群众工作,它作为最先进的阶级——工人阶级的政党,不仅代表着中国工人阶级的利益,而且代表着中国广大人民和整个中华民族的利益,是同帝国主义、封建主义根本对立的;它掌握着马克思主义这个锐利的思想武器,正是马克思主义的阶级斗争理论,为中国人民对于中国社会问题的解决指出了一条基本线索,指明了走向胜利的道路。中国共产党破天荒地第一次提出了反帝反封建的民主革命纲领,为中国人民指示了明确的斗争目标。中国共产党作为工人阶级的先锋队,它的全部活动都是为工人阶级和人民群众谋利益的,是为他们的解放事业服务的,它就敢于相信、发动和依靠群众。中国共产党采取群众路线的革命方法,这是资产阶级、小资产阶级政党和政治派别没有也不可能采取的。这个情况表明,它能够胜利地担当起领导中国革命的历史。毛泽东说:“中国产生了共产党,这是开天辟地的大事。”“自从有了中国共产党,中国革命的面目就焕然一新了。”由此可见,没有共产党,就没有新中国。中国人民选择了共产党的领导,走上社会主义的道路,是历史发展的必然。社会主义是中国历史道路是中国的必然出路。一个国家、一个民族要选择什么样的社会制度,都是与其历史发展走向密切相关的,都有其历史决定性。 总之,社会主义制度在中国的确立、巩固和发展,体现了中国近现代社会运动的客观规律,是中国历史上最伟大、最深刻的变革。只有社会主义才能救中国,这是一百多年来中国近现代历史发展得出的必然结论。此外,社会主义制度有着无比的优越性。作为共产主义初级阶段的社会主义社会,是针对资本主义的弊病而产生的一种崭新的社会制度。现实社会主义发展的实践证明,社会主义制度具有无比的优越性。第一,社会主义的产生,彻底改变了人民群众受压迫受剥削的社会地位,无产阶级和劳动人民成为国家的主人,从根本上保证了工人、农民、知识分子和一切爱国人士管理国家、社会事务的权力和他们的民主权利。第二,社会主义不是建立在私有制的基础上,而主要是在公有制的基础上发展生产力,从根本上解决了生产的社会化与生产资料私人占有之间的矛盾,从而为生产力的发展开辟了广阔的道路。第三,社会主义提倡按劳分配为主体的分配方式,不断扩大社会福利,实现社会平等,避免两极分化。第四,资本主义的发展,建立在对内剥削、对外掠夺的基础上,并用低价商品摧毁弱小国家的民族企业,用坚船利炮把它们变为自己的附属,尤其是对第三世界国家实行不等价交换。而我们的社会主义,主要靠自力更生,艰苦奋斗,实行对内改革,对外开放,通过充分利用本土资源,不断完善和发展自己。 如今拥有中国共产党已经拥有7000多万名党员的共产党员,中国共产党以全心全意为人民服务为宗旨。在总结改革开放30多年来的经验和教训的基础上,我们党提出了适应新的时代要求的科学发展观。要求我们把聚精会神搞建设、一心一意谋发展落实到坚持以人为本,实现全面、协调、可持续发展上来,把满足人民群众日益增长的物质文化需要作为发展的出发点和落脚点,重视调整国民收入分配格局,努力解决城乡困难群众的基本问题上来。总的来说,党的性质、宗旨,坚定了我们中国特色社会主义事业必须坚持以党为领导核心。党的执政地位不是与生俱来的,但也不是一劳永逸的。长期执政是所有政党追求的目标,共产党也不例外.面对新世纪新阶段国内外环境的深刻变化,中国共产党已经在适应执政环境,加强执政能力方面,做出了相当的努力,而且取得了一定的经验。面对新世纪、新阶段国内外环境的深刻变化,中国共产党站在时代和战略高度,把科学执政、民主执政、依法执政作为加强党的执政能力建设的总体目标之一鲜明地提出来,自觉加强执政能力建设,体现了中国共产党是与时俱进的先进的政党。 由此可见,历史和现实告诉我们一个不可争辩的事实,中国共产党的执政地位是历史和人民的选择。这是百度文档上下载的,有三千多字,你可以稍作修改。

中国近现代史,就其主流和本质来说,是中国一代又一代的仁人志士和人民群众为救亡图存和实现中华民族的伟大复兴而英勇奋斗、艰苦探索的历史;尤其是全国各族人民在中国共产党的领导下,进行伟大艰苦的斗争,经过新民主主义革命,赢得民族独立和人民解放的历史;经过社会主义革命、建设和改革,把一个极度贫弱的中国逐步变成一个初步繁荣昌盛、充满生机和活力的社会主义新中国的历史。 近代,西方列强掀起了瓜分中国的狂潮。不仅从军事、经济对中国进行侵略,还从政治文化加以侵略控制,人民陷入了水深火热之中,民不聊生,经济凋敝,一片国将不国的惨状。压迫侵略,必然导致反抗,中国人民积极开展了各中形式的反抗斗争。 三元里人民的抗英斗争,台湾高山族人民的英勇抵抗等,无不体现了在民族存亡的危机关头,中国人民强烈的爱国主义精神。尤其是太平天国起义,极大地打击了清王朝的封建统治,使得统治中国几千年的封建君主专制制度受到了极大的冲击,加速了清王朝的灭亡。同时它提出了均分制度,在一定程度上具有一定的先进性。更重要的是在太平天国并不承认清政府签订的丧权辱国的卖国条约,在面对列强的侵略与压迫时,并没有采取像清政府一样懦弱的外交政策,而是积极同外国侵略者展开了斗争,并取得了巨大的胜利,这是极其鼓舞人心的。虽然太平天国由于内部的种种原因失败了,但它却对中国近代史的发展产生了极大的推动作用,它是中国农民起义战争史的最高峰,它建立了属于自己的政权,曾经在一定程度上代表广大农民群众的利益。 帝国主义的侵略给中华民族带来了巨大的灾难。但是,列强发动的侵略战争以及中国反侵略战争的失败从反面教育了中国人民,极大地促进了中国人民的思考、探索和奋起。鸦片战争以后,先进的中国人开始睁眼看世界了;他们翻译外国书籍,学习西方先进的现代科学知识,在一定程度上推进了中国的现代化。 甲午中日战争以后,中国的民族意识开始普遍觉醒,开始有了较为强烈的民族危机感。于是出现了早期的维新思想,出现了一大批以救亡图存和振兴中华为己任的仁人志士。甲午战争以后的戊戌维新、辛亥革命,都是在救亡图存、振兴中华这面爱国主义大旗下发生的。这些斗争和探索,使中华民族燃烧起了新的希望,标志着中华民族的进一步觉醒。 五四运动是在新的社会力量成长壮大的基础上,在新文化运动掀起的思想解放潮流的思想基础之上发生的反帝反封建的爱国运动,这次运动表现了反帝反封建的彻底性,是一次真正意义上的群众运动,具有广泛的群众基础,促进了马克思主义在中国的传播及其与工人运动的结合。它标志着工人阶级作为一支独立的力量登上了历史的舞台。从此中国革命真正找到了它所必须依赖的力量基础,五四运动具有划时代的历史意义。在“五四”以后,中国产生了完全崭新的文化生力军,即中国共产党所领导的共产主义的文化思想,即共产主义的宇宙观和社会革命论。五四运动发生在一九一九年,中国共产党的成立和劳动运动的真正开始是在一九二一年,均在第一次世界大战和十月革命之后,即民族问题和殖民地革命运动在世界范围内改变了过去面貌之时,五四运动的历史意义以及其在世界历史中的的地位都是十分明显的。 农村包围城市、武装夺取政权是被历史证明了的马克思主义同中国实际相结合的典范。取得了巨大的胜利! 中国人民的抗日战争在世界反法西斯战争中占有中要的地位,是反法西斯战争的东方主战场,在残酷的战争中,全国各族人民紧紧团结在一起,战胜一切艰难困苦,中华民族形成了广泛的统一战线,显示了空前的大团结,形成了真正意义上的全民族抗战。没有全国各族人民的大团结就没有抗日战争的伟大胜利;以爱国主义为核心的伟大民族精神是中国人民团结奋进的精神动力。抗日战争大大丰富和升华了以爱国主义为核心的中华民族精神,这正是抗日战争得以坚持和胜利的重要思想保证。同时使中国人民认识到提高综合国力是中华民族屹立于民族之林的根本保证。一个国家只有首先自强,才能在世界上自立。在反法西斯战争中同时也体现了中国人民热爱和平,反对侵略战争,同时又不惧怕战争的可贵品质,中国人民进行反侵略战争,是为了捍卫中华民族生存和发展的权利,是对世界反法西斯战争和人类和平进步事业的重大贡献。 通过艰苦卓绝的奋斗和几代人的不懈努力,最终确立了社会主义基本制度,为祖国的繁荣打下了坚定的基石。同时积极开展了各领域的改革并取得了显著的成效,国民经济飞速发展,人民生活水平日益提高,无不体现了中国共产党的正确领导。尤其是近代以来,科技文化事业飞速发展,值得一提的是航天领域的重大突破——神州系列成功升空,嫦娥一号的成功发射——圆了华夏民族几千年来的飞天梦。看着一个个举世瞩目的成就,国人无不倍感自豪与骄傲。我们的国家强大了,我们的经济繁荣了,我们不会在屈于强权,不会再忍受屈辱,我们以我们的祖国为荣。 当然,放眼今朝,停滞不前便是落后,因此,我们更应发扬艰苦奋斗的作风,努力不懈,使我国保持飞速发展。尤其作为年轻一代,作为大学生,我们更应使强国富民为己任,认清我们在新时期的责任和使命对于我们每一个大学生都有着非同寻常的意义——因为,我们的民族正在腾飞!

自强不息,厚德载物托尔斯泰没有获得诺贝尔奖,可有谁敢否定《战争与和平》的伟大?毕加索生前贫困潦倒,无人看好,可有谁能否定他那一双隐藏着美与智慧的眼睛?李杜、苏辛都曾仕途坎坷,不被重用,可有谁敢否定他们在中国文坛上的地位?还有那些在各个领域默默无闻无私奉献的现当代人民,没有奖杯,没有奖金,可有谁能否认他们为人类做出的贡献呢?诺贝尔奖,奥斯卡奖,格莱梅奖,太多太多的奖项充斥着这个世界,可又有谁敢保证,没有获奖的人真的没有才能吗?而那些被桂冠掌声包围的赢家真的就是才华过人,身价万千吗?诚然,得奖是对一个人自身价值的肯定,获得荣誉也是对个人为社会做贡献的鼓励,这无可非议.但我们却不能忽视,那些在领奖台下默默奉献的人,他们拥有比拿到奖杯的人更令人崇敬的品质.天行健,君子以自强不息.真正的人才,不论得奖与否,都具有自强不息的精神.自强的人,才会有远大的理想;自强的人,才会朝着理想不断努力;自强的人,才会在各种艰难险阻面前挑战自我.只有这样,才会有人类技能的不断提高,才会有社会的不断进步.从这一点来看,那些所谓的"第四十一席者"与前"四十席者"一样的可敬!地势坤,君子以厚德载物.同样出自于<<周易>>,这一点却往往被人们所忽视.真正的人才,除了具有专业技术的贡献外,还应具有包容世间万物的博大胸怀.有的人,经过不懈努力,终于站上了领奖台,得到世人的肯定.有的人,甚至付出比常人更多的血汗,可依然默默的尽着本职.但是我们能说他们不优秀不杰出吗?正相反,他们甘心在别人耀眼的光辉下刻苦钻研,他们愿意在不为人知的角落用止水般的心去从事平凡而有伟大的事业.正是这样千千万万的幕后英雄,才有星光大道上的光彩与荣誉.正是这样淡泊宁静的心胸,包容旷达的厚德,才承载着人类历史发展的一切一切.在这一点上,"第四十一席者们"比前"四十席者"更可敬!!然而,在这个物欲横流,追名逐利的商业世界,又有多少奖是公平清白的呢?钱权交易,内定名额,商业炒作,这些名词早已不再陌生.而那些"假作真时真亦假"的绯闻更是如浪花翻卷,一波波汹涌来袭.面对这一切,我倒真为那些榜上无名的实干家庆幸.因为老祖先教育我们的是"博学笃志""知行合一".正是因为如此,孔子的言传身教赢得后人的尊崇,曹雪芹的历经坎坷留下世界文化瑰宝,鲁迅的弃医从文引导青年解放思想.这一切,都源于止于至善的实际行动!在华灯锦衣的光芒下,别忘了幕后的千万英雄!在繁华扰攘的尘世上,别忘了"自强不息,厚德载物"!这些,才是人生最大的奖赏!!

数列论文的研究现状

论文研究现状怎么写如下:

第一,写国内外研究现状的时候首先需要具备的是研究国内的现状,需要举出一系列的数据,同时这些数据必须是来源于正规的数据平台,这样的平台国家已经很多,中国知网是一个全国比较大家的数据库大家可以在这里查找,这个方法大家要记住。

第二,大家写国外研究的时候,需要明白的是国外的整体情况,需要了解具体国家的整体数据,同时对这个国家的文化要有了解,这样才可以引述正确。这些资料可以各大国际知名网站查找,美国的很多大学网站对外开放一部分,可以去那里研究一下。

论文的介绍如下:

论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,简称之为论文。它既是探讨问题进行学术研究的一种手段,又是描述学术研究成果进行学术交流的一种工具。它包括学年论文、毕业论文、学位论文、科技论文、成果论文等。

2020年12月24日,《本科毕业论文抽检办法》提出,本科毕业论文抽检每年进行一次,抽检比例原则上应不低于2% 。

论文一般由名称、作者、摘要、关键词、正文、参考文献和附录等部分组成,其中部分组成可有可无。

就是目前的研究成果,可以找一篇硕士论文,里面的国内外研究现状就是

研究课题申报中“目前的研究状况”是指研究课题目前国内外有些什么研究成果,以及对这些成果的观点综述。写国内外研究现状应注意:

1、文中反映最新研究成果。预期成果一般是论文或调查(实验)报告等形式。成果表达方式是通过文字、图片、实物和多媒体等形式来表现。

2、如果没有与毕业论文选题直接相关的文献,选择一些与毕业论文选题比较靠近的内容来写。另外,还应提出该课题目前已做了哪些工作,还存在哪些困难和问题,在哪些方面需要得到学校和老师帮助等。

写研究状况方法

1、 研究背景研究背景即提出问题,阐述研究该课题的原因。研究背景包括理论背景和现实需要。还要综述国内外关于同类课题研究的现状。

2、目的意义目的意义是指通过该课题研究将解决什么问题(或得到什么结论),而这一问题的解决(或结论的得出)有什么意义。有时将研究背景和目的意义合二为一。

3、成员分工成员分工应是指课题组成员在研究过程中所担负的具体职责,要人人有事干、个个担责任。组长负责协调、组织。

4、实施计划实施计划是课题方案的核心部分,它主要包括研究内容、研究方法和时间安排等。研究内容是指可操作的东西,一般包括:研究方向;子课题(数目和标题);与研究方案有关的内容,即要通过什么、达到什么等等;研究方法要写明是文献研究还是实验、调查研究。

5、可行性论证可行性论证是指课题研究所需的条件,即研究所需的信息资料、实验器材、研究经费、学生的知识水平和技能及教师的指导能力。

数学中,数列的教学思想是一座桥梁,能够将复杂的问题巧妙地转化成简单的解题方法,让教师在教学中和学生学习的过程中更清晰、更简洁。下面是我为你整理的高中数学数列论文,一起来看看吧。

【摘要】随着新课标在我国的全面实施,高中数学教学中心课改的理念如何体现,才能适应新课改的要求?成为高中数学教学实践的重点目标。高中数学数列方面的内容,是高中数学的基础内容,很多重要的数学问题通过数列都可得到圆满解决。因此教好数列、学好数列对提高学生未来解决数学问题的能力有重要的实践意义。从教师角度看,优良的数列教学课堂设计对教学目标和教学效果的实现举足轻重。

【关键词】高中数学;数列;课堂教学

高中数学中,数列占有很重要的教学地位,数列在数学领域隶属于离散函数的范畴,是解决现实中很多数学问题的重要工具。数列问题是高二年级数学教学的基础。数列问题学习可以培养学生对数学问题的思考、分析和归纳的能力。并对以后阶段的数学知识有启蒙作用。数学教师必须重视数列教学实践对学生的启发作用。

一、数列部分教学内容概述

数列这一部分主要介绍了数列的概念,并对数列根据其特点进行了分类。接着引出了数列通项的概念。高中二年级主要学习等差、等比数列的概念,通项公式,前n项和。并对数列在现实生活中的意义进行了介绍,主要有分期付款等储蓄问题。本章介绍的数学公式较多,主要涉及数列的通项公式和前n项和公式。教学中,对公式的推导过程和变形种类要重点讲解。以便让学生从数学原理的角度对数列的相关概念做深入理解。如何灵活的运用数列的性质来对综合性题目进行解答是本章的重点教学任务。数列的相关问题的认识,要贯穿函数的思想来向学生传递。

二、数列教学的有效性策略简析

数列的教学应该遵循有效性原则来进行。我们在教学中应该用先进的教学理念来指导教学。数学的思维模式主要是逻辑性思维为主,因此有效的方式方法一旦为学生所领会,那教学的过程会变得相当的容易。

1.对比数学问题,归纳共性特点,培养探究习惯和能力

在认识数列时,应该同时引入函数的动态认识数列的方法,利用对函数的研究方法来类比到数列问题中来。对于数列的表示法的讲解,可通过函数的表示方法引申过来。而对等差数列,等比数列的单调性性质,也可通过以往学过的函数的相关性质来类比讲解;在求和问题的最值研究中,可从抛物线等二次函数中的变量演化过程类比讲解求函数最值。等差数列和等比数列的概念、性质、通项等,我们可通过两个类型数列的异同点来进行研究。如:从数列的特点来说,前一项与后一项的之间的差异对等差数列来说,两项间是加减法的关系,每两项之间都相差一个固定的数值,而对等比数列来说,则是乘除法的关系,每相邻两项之间是倍数的关系。对中项的概念来说,等差中项概念与相邻项的关系同样的加减法的规则,而等比数列的中项则是插入一个固定比例的关系。而两个等差数列,仍然为等差数列。而两个等比数列的对应项的乘积也为等比数列。这种数列之间的项与项的数量关系的实质要为学生开解明白。

2.与其他数学知识相综合,建立数学知识体系的网络化综合化

数学中任何一个概念都不了独立的,在整个的数学知识体系里面,每个知识点都与其他的结点有关联性,因此在数列教学中,要把数列、函数、不等式、解析几何等概念有机的结合起来进行讲解。数列其实是函数的特殊化,研究函数有普遍性的意义,而研究数列是研究函数的特殊化。因此在数列教学中建立函数的概念,有助于改变学生的静态思维。另外还有,数列与不等式,数列与导数,数列与算法等的综合运用,都要在数列教学中对学生加以讲解。

3.通过练习和小测试来巩固课堂教学的效果

传统教学模式中,有一项是“题海战术”,可见习题在数学教学中的作用是不容忽视的。尽管目前的教育模式不支持教师对学生施以题海战术,但选取具有代表性的习题,开拓学生的数学思想和知识点延伸,是有极大好处的。首先通过习题,可以巩固学生的基础知识结构,加强知识点之间的有机结合,从而提高学生对数学问题的分析能力。举个简单的例子,求数列an-n。通过前面的知识的学习,我们可以知道,这道题目,分为两部分数列的综合计算而成。前半部分是一个等比数列,而后半部分,我们可以看成负自然数的数列。等比数列的求和公式是形成的,而自然数的和在初中的高斯定理就已学过,通过这样的拆解,为学生解答综合性的问题提供了行之有效的途径。其次,同样一个题目如果能,应当鼓励学生用更多的方法来进行解答,这样可以培养学生的发散性思维,在考试中碰到的问题即使一时想不出来,至少学生能够想到很多种解题的方案,这其中说不定就有通往正确答案的途径。第三,公式的变形要加强练习,只有这样,学生才能够触类旁通,同一类问题的解决途径往往稍加变形,但其解法本质上是殊途同归的,通过这种锻炼,学生解题的能力得到了很大的提高,学到的知识体系也进一步得到巩固。第四,题目解决了,并不是学习的终结,要培养学生“回头看题”的习惯。这种习惯的养成有助于学生对题目的知识点进行全面把握。

三、高中数学数列部分课堂教学设计要点

课堂教学设计是高中教学中的重中之重,课堂教学设计的水平在某种意义上决定了课堂教学的效果和学生学习的成果。在课堂教学方案的设计中,笔者通过多年的教学经验和实践认为应该包括以下要素:

1.要细致了解学生在数列学习和解决数列问题中的切身体验

应该说,学生之间对数学问题的认知和理解能力确实存在着差异性。到了高中阶段,学生们都经历了近十年的数学学习经历,长期的学习中会对某一类知识点相当的敏感,而对另外的一些知识点却有盲点。有的学生在逻辑思维方面有特长,而另外的一些学生对计算情有独钟,对知识点掌握程度的不同会造成学生解题习惯和解题思路的差异。教师在课堂教学设计中也充分考虑大部分学生的群体差异。

2.要注重数列部分概念本质的强化记忆和理解,对基础知识的传授要夯实,避免短板

数学中,不仅仅是数列,其他的概念也如此,其描述的方式,往往通过文字性的描述来说明。这种方式比较抽象,我们在设计课堂教学时,对概念性的东西要注意辅以实例来讲解。以便激发学生的猎奇心理和探索问题的欲望。

3.重视数学史渗透和用数学工具解决实际问题的能力

数学的发展史源远流长,每种数学问题的提出和最后的解决都有其历史的背景。数列教学中穿插数学史知识的传授,有利于学生对知识的来龙去脉在熟稔中学习。另外数学问题的提出往往有其实践的背景,或者是人民集体智慧的结晶,或者是某一时期特殊问题的解决之道,教师在课堂教学的过程中要努力挖掘现实问题的应用。学以致用,当学生认识到自己学习的数列知识在现实生活中确实能解决很多问题的时候,学习的欲望和学习的效果自然而然就出来了。

4.重视数列学习中组合学习的魅力

人以群分,物以类聚。在数学学习的过程中,教师应该将不同层次的学生进行分组,这种分组的教学行为,可以让学生在相同的起点上进行学习。通过对班级内不同的学生的特点和能力进行分析,对其学习的目标,任务等精心设置,发挥团队学习的效用。

5.教师应该注重自我提高,从别人的课堂教学中汲取营养

老师在教学中不能固步自封,应该走出去,在同事中加强听课和学习。完善自我的课程教学缺陷,在不断的学习中,但课堂教学方案日趋完美。

四、结束语

高中数学中数列的教学内容虽然比较少,但其教学思想却在高中数学中占有很重要的地位,数学教学,应当立足于学生对数学知识的学习特点,以先进的教学理论为指导,对课堂教学方案设计精益求精,才能获得应有的教学效果。

摘要:数列是高中数学教学中重要的内容,其在高中数学中占据着重要的地位,同时在生活中也具有非常大的应用价值。本文介绍了高中数学学习数列的重要性及新时期如何提高高中数学数列教学质量和学习能力。

关键词:高中数学;数列;教学

一、引言

在高中数学的数列教学的过程中,教师不但要让学生懂得数列问题的知识点,还要让学生能够根据掌握的相关知识熟练地解决数学问题。困此教师要以生为本,以学定教,让学生在不同的数学环境巾积极思考,推进能力的提升,并让学生在各种数学数列问题的训练中学会自主学习数学的能力。

二、高中数学数列教学体会

1、以生为本,以学定教

1)以生为本,实时掌握在数学教学过程中学生的基本的数学能力在高中数学数列教学的过程中不但每一个班的综合数学能力不同,而且就是同一个班级中的学生的数学能力也不尽相同。在这种条件下,教师不论是在新接手班级还是在教学的过程中,都要通过各种有效的数学考查方式掌握学生的实际能力,确定学生的数学层次。在这个基础上教师将不同的数学层次的学生组合成组,方便学生进行合作交流的学习。

2)以学定教,采用适合本班同学的数学教学方式进行有效教学

在高中数学数列教学的过程中,教师在选择教学方法以及教学策略的时候,要能根据本班同学的不同数学层次特点进行确定,教师要紧紧把握住学生旧知与新知的链接点,寻找能够激发学生主动思维的教学方式进行教学。同时教师还要善于选择学生喜欢的教学模式,引发学生主动探究、合作交流,并在教学的过程中要巧妙使用课堂生成,使教学能够在师生之间、生生之间的思维碰撞中引领学生对数学知识的掌握。

2、善用多媒体课件辅助教学,促使学生能够更好地理解数学知识

1)多媒体课件辅助教学具有传统的课堂教学所无法比拟的教学优势,在数列教学的过程中,很多数列问题如数列与不等式综合问题中的放缩问题、解决递推数列问题等数学问题,单凭教师一张嘴,一支粉笔并不容易将抽象的数学知识让学生透彻地理解。而在这个过程中随着信息时代的到来,计算机以及互联网络的使用让多媒体课件走入了高中数列教学的课堂。

2)多媒体课件辅助教学可以让学生更加直观地理解数学知识

教师巧妙利用多媒体课件进行教学,使原有的抽象的数学问题变得可观可感,能够最大限度地调动学生多种感官的有效参与,极大地提高了学生学习的积极性,使得学生能够在课堂上跟着教师的引导积极思维、主动探究。如:在人教版高中数学数列教学“等差数列的前n项和”的教学过程中,教师通过多媒体课件出尔:“有一堆钢管,最底下放了15根,上一层是14根,再上一层是13根,……最顶层是3根。这堆钢管共有多少根?”这个问题,同时教师出示钢管的图像,并在和学生讨论思考的过程中将讨论的结果逐步出示,或者将学生解决问题的不同方案通过多媒体课件有效地呈现出来,引发学生的积极思考,让学生能够更直观地看到不同的解题方法的过程,并在这个过程中获得数学能力的不断提升。如果教师只是采用传统的教学方式进行讲解的话,那么学生也许很难理解教师的教学思路。多媒体课件辅助教学大大提高了教师的教学效率,解决了学生对抽象的数学知识无法理解的难题,并促使学生能够在这个过程中,形成数学架构的时间的缩短。

3、高中数学数列教学的创新

数列、一般数列、等差数列、等比数列是高中数学数列教学的主要内容。其中,等差数列和等比数列是数列教学内容中的重点。主要包括对数列的定义、基本特点、通项公式、分类方法、具体应用等知识点的学习。传统的教学观念中,教学设计作为一种系统化过程,是用系统的教学方法将数列教学理论,同学习理论原理进行转换,使之成为教学活动和教学资料的具体计划。创新理念的数列教学设计解决了“教学成果”、“教学方法”、“教学目的”等问题,通过教学设计来解决教学问题,探究总结问题的解决方法和步骤,形成新的教学方案。并在新的教学方案实施以后及时的对教学效果进行分析,规划操作其过程程序,判断其实施的价值。这一过程也是教学优化的的过程,能够提高教学成果,创造出更加合理高效的教学方案。

(一)数列教学应注重问题情境的创设

为调动学生主动、合作、探索学习的积极性,实现师生互动,我们教师营造自主、合作、探索的学习环境显得很重要。在数列的教学中首先要注重数学问题情境的创设。我们创设问题情况可以考虑以下方面:学生的已有知识与生活经验及数学的趣味性、教学内容、新旧知识的衔接点以及自身的教学特色。

(二)创新理念下的“数学概念”

对数学对象本质属性进行反映的思维方式,是数列的数学概念。我们知道数列的概念是按一定次序排列的一列数称为数列。对一个数学概念的学习,应记住其名称、了解其涉及到的范围、简述其本质属性并运用其概念进行判断。数学概念包括等差数列、等比数列、通项公式和数列。

在对这些陈述性概念进行设计时,设计者应对上述概念体现的概念特点进行描述。并且在高中数学数列教学中,为了能够激发学生对数列学习的兴趣,体会数列实际应用的价值,则可以通过将生活中实际的问题引入到课程教学中,从而将抽象的数学知识转变为实际需要解决的问题,使学生学生对所要研究的内容有所认识。并且在数列学习中可以结合其他知识点进行学习。比如数列中蕴含的函数思想是研究数列的指导思想,应及早引导学生发现数列与函数的关系.在教学中强调数列的项是按一定顺序排列的,“次序”便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列,这样不仅能够引导学生通过多方面解决问题,而且对提高学生运用知识的能力也具有重要的意义。我们还以等差数列的定义教学为例,如:增加判断某数列是否成等差数列的题目来促进概念理解。再如:把一次函数和等差数列通项公式相联系,利用函数概念同化等差数列的概念,凸显函数思想;让学生自己列表、画图象,用“形”感受函数与数列之间联系;用方程与等差数列基本量的运算相结合来加深了对概念的理解和巩固。此外我们在教学中还要明理强化,实践探究,注重激励评价,引申探究。

相关百科

热门百科

首页
发表服务