首页

> 学术论文知识库

首页 学术论文知识库 问题

毕业论文英文文献及其翻译

发布时间:

毕业论文英文文献及其翻译

A Thesis Submitted as a Partial Fulfillment of the Requirement for the Degree of B. A./B. S. in ***这是标准的学士学位毕业论文的说法,.代表文学学士,.代表理学学士,***处填上专业。

这个不用全部翻译的,只要选择自己需要的内容翻译。

翻译的外文文献可以是一篇,也可以是两篇,但英文字符要求不少于2万。选定外文文献后先给指导老师看,得到老师的确认通过后方可翻译。

翻译的外文文献应主要选自学术期刊、学术会议的文章、有关著作及其他相关材料,应与毕业论文(设计)主题相关,并在中文译文首页用“脚注”形式注明原文作者及出处,外文原文后应附中文译文。

扩展资料:

外文翻译需要注意的问题

1、外文文献的出处不要翻译成中文,且写在中文译文的右上角(不是放在页眉处);会议要求:名称、地点、年份、卷(期),等 。

2、作者姓名以及作者的工作单位也不用必须翻译。

3、abstract翻译成“摘要”,不要翻译成“文章摘要”等其他词语。

4、Key words翻译成“关键词” 。

5、introduction 翻译成“引言”(不是导言)。

6、注意排版格式,都是单排版,行距,字号小4号,等(按照格式要求)。

7、各节的标号I、II等可以直接使用,不要再翻译成“第一部分”“第二部分”,等。

8、里面的图可以拷贝粘贴,但要将图标、横纵指标的英文标注翻译成中文。

9、里面的公式、表不可以拷贝粘贴,要自己重新录入、重新画表格。

参考资料:百度百科-毕业论文

就是引用一篇跟你的论文题目相关的英文文献,一般是附在论文后面,你所引用的文献就是原文,引用之后需要在原文之后跟着是你翻译出来的翻译稿,就是译文。一般要求都是在5000单词以上,我做毕业论文的时候对英文文献的题目要求是只要是跟论文题目的所涉及的内容相关就可以。这些东西可以在学校图书馆里或者图书馆网络资料库里找到,就是翻译比较费力,走运的话可以找到带译文的稿子。

“毕业论文”的英文:Graduation Dissertation

Dissertation 读法 英 [,dɪsə'teɪʃ(ə)n]  美 ['dɪsɚ'teʃən]

n. 论文,专题;学术演讲

短语:

1、academic dissertation 学位论文 ; 学术论文

2、Graduation Dissertation 毕业论文

3、Doctorate dissertation 博士论文

4、Dissertation Committee 论文委员会

5、dissertation topics 毕业论文题目

词义辨析:

article, paper,dissertation, essay, prose, thesis这组词都有“文章”的意思,其区别是:

1、article 多指在报刊、杂志上发表的非文艺性的文章,包括新闻报导、学术论文等。

2、paper 正式用词,多指在学术刊物上发表或在学术会议上宣读的专题论文,也指高等学校的学期论文,或学校里的作文练习。

3、dissertation 书面语用词,指独立研究后所写的较为详细的专题文章;也可指学位论文。

4、essay 指任何一种非小说性的,篇幅不长、结构简练的文章,如论说文、报道、评论、讽刺性杂文等。

5、prose 专指散文。

6、thesis 既可指毕业论文、学位论文,又可指一般的为阐述学术观点而写的论文。

例句:

1、Exploring "Trinity Working Mode" of Integrating Graduation Field Work, Graduation Dissertation and Employment on Graduation.

毕业实习、毕业论文与学生就业三位一体工作模式探索。

2、On Problems in Writing Graduation Dissertation

关于撰写毕业论文应该注意的问题。

asp毕业论文的外文及其翻译

SQL (sometimes expanded as Structured Query Language) is a computer language used to create, retrieve, update and delete data from relational database management systems. SQL has been standardized by both ANSI and is commonly spoken either as the names of the letters ess-cue-el (IPA: [ˈɛsˈkjuˈɛl]), or like the word sequel (IPA: [ˈsiːkwəl]). The official pronunciation of SQL according to ANSI is ess-cue-el. However, each of the major database products (or projects) containing the letters SQL has its own convention: MySQL is officially and commonly pronounced "My Ess Cue El"; PostgreSQL is expediently pronounced postgres (being the name of the predecessor to PostgreSQL); and Microsoft SQL Server is commonly spoken as influential paper, A Relational Model of Data for Large Shared Data Banks, by Dr. Edgar F. Codd, was published in June 1970 in the Association for Computing Machinery (ACM) journal, Communications of the ACM, although drafts of it were circulated internally within IBM in 1969. Codd's model became widely accepted as the definitive model for relational database management systems (RDBMS or RDMS).During the 1970s, a group at IBM's San Jose research center developed a database system "System R" based upon Codd's model. Structured English Query Language ("SEQUEL") was designed to manipulate and retrieve data stored in System R. The acronym SEQUEL was later condensed to SQL because the word 'SEQUEL' was held as a trademark by the Hawker Siddeley aircraft company of the UK.[citation needed] Although SQL was influenced by Codd's work, Donald D. Chamberlin and Raymond F. Boyce at IBM were the authors of the SEQUEL language design. Their concepts were published to increase interest in first non-commercial, relational, non-SQL database, Ingres, was developed in 1974 at . 1978, methodical testing commenced at customer test sites. Demonstrating both the usefulness and practicality of the system, this testing proved to be a success for IBM. As a result, IBM began to develop commercial products based on their System R prototype that implemented SQL, including the System/38 (announced in 1978 and commercially available in August 1979), SQL/DS (introduced in 1981), and DB2 (in 1983).At the same time, Relational Software, Inc. (now Oracle Corporation) saw the potential of the concepts described by Chamberlin and Boyce and developed their own version of a RDBMS for the Navy, CIA and others. In the summer of 1979, Relational Software, Inc. introduced Oracle V2 (Version2) for VAX computers as the first commercially available implementation of SQL. Oracle V2 beat IBM's release of the System/38 to the market by a few was adopted as a standard by ANSI (American National Standards Institute) in 1986 and ISO (International Organization for Standardization) in 1987. However, since the dissolution of the NIST data management standards program in 1996 there has been no certification for compliance with the SQL standard so vendors must be relied on to SQL standard is not freely available. SQL:2003 and SQL:2006 may be purchased from ISO or ANSI. A late draft of SQL:2003 is available as a zip archive from Whitemarsh Information Systems Corporation. The zip archive contains a number of PDF files that define the parts of the SQL:2003 is designed for a specific purpose: to query data contained in a relational database. SQL is a set-based, declarative programming language, not an imperative language such as C or extensions such as Oracle Corporation's PL/SQL bridge this gap to some extent by adding procedural elements, such as flow-of-control constructs. Another approach is to allow programming language code to be embedded in and interact with the database. For example, Oracle and others include Java in the database, and SQL Server 2005 allows any .NET language to be hosted within the database server process, while PostgreSQL allows functions to be written in a wide variety of languages, including Perl, Tcl, and to and variations of the standards exist. Commercial implementations commonly omit support for basic features of the standard, such as the DATE or TIME data types, preferring variations of their own. SQL code can rarely be ported between database systems without major modifications, in contrast to ANSI C or ANSI Fortran, which can usually be ported from platform to platform without major structural , IBM's SQL PL (SQL Procedural Language) and Sybase / Microsoft's Transact-SQL are of a proprietary nature because the procedural programming language they present are for lack of portabilityThere are several reasons for this lack of portability between database systems: * The complexity and size of the SQL standard means that most databases do not implement the entire standard. * The standard does not specify database behavior in several important areas (. indexes), leaving it up to implementations of the database to decide how to behave. * The SQL standard precisely specifies the syntax that a conforming database system must implement. However, the standard's specification of the semantics of language constructs is less well-defined, leading to areas of ambiguity. * Many database vendors have large existing customer bases; where the SQL standard conflicts with the prior behavior of the vendor's database, the vendor may be unwilling to break backward keywordsQueriesThe most common operation in SQL databases is the query, denoted with the SELECT keyword. SQL SELECT queries are declarative: * SELECT retrieves data from tables in a database. While often grouped with Data Manipulation Language statements, SELECT is considered by many to be separate from SQL DML. SELECT queries allow the user to specify a description of the desired result set, but it is left to the devices of the database management system (DBMS) to plan, optimize, and perform the physical operations necessary to produce that result set. A SQL query includes a list of columns to be included in the final result immediately following the SELECT keyword. An asterisk ("*") can also be used as a "wildcard" indicator to specify that all available columns of a table (or multiple tables) are to be returned. SELECT is the most complex statement in SQL, with several optional keywords and clauses: o The FROM clause indicates the source tables from which the data is to be drawn. The FROM clause can include optional JOIN clauses to join related tables to one another. o The WHERE clause includes a comparison predicate, which is used to narrow the result set. The WHERE clause eliminates all rows from the result set for which the comparison predicate does not evaluate to True. o The GROUP BY clause is used to combine rows with related values into elements of a smaller set of rows. o The HAVING clause is used to identify which of the "combined rows" (combined rows are produced when the query has a GROUP BY clause or when the SELECT part contains aggregates), are to be retrieved. HAVING acts much like a WHERE, but it operates on the results of the GROUP BYand can include aggregate functions. o The ORDER BY clause is used to identify which columns are used to sort the resulting data. Unless an ORDER BY clause is included, the order of rows returned by SELECT is never retrieval is very often combined with data projection; usually it isn't the verbatim data stored in primitive data types that a user is looking for or a query is written to serve. Often the data needs to be expressed differently from how it's stored. SQL allows a wide variety of formulas included in the select list to project 1:SELECT * FROM booksWHERE price > BY titleThis is an example that could be used to get a list of expensive books. It retrieves the records from the books table that have a price field which is greater than . The result is sorted alphabetically by book title. The asterisk (*) means to show all columns of the books table. Alternatively, specific columns could be 2:SELECT , count(*) AS AuthorsFROM booksJOIN book_authors ON = BY could also be written asSELECT title, count(*) AS AuthorsFROM books NATURAL JOIN book_authors GROUP BY titleunder the precondition that book_number is the only common column name of the two tables and that a column named title only exists in 2 shows both the use of multiple tables in a join, and aggregation (grouping). This example shows how many authors there are per book. Example output may resemble:Title Authors---------------------- -------SQL Examples and Guide 3The Joy of SQL 1How to use Wikipedia 2Pitfalls of SQL 1How SQL Saved my Dog 1Data manipulationFirst, there are the standard Data Manipulation Language (DML) elements. DML is the subset of the language used to add, update and delete data: * INSERT is used to add rows (formally tuples) to an existing table. * UPDATE is used to modify the values of a set of existing table rows. * MERGE is used to combine the data of multiple tables. It is something of a combination of the INSERT and UPDATE elements. It is defined in the SQL:2003 standard; prior to that, some databases provided similar functionality via different syntax, sometimes called an "upsert". * DELETE removes zero or more existing rows from a Example:INSERT INTO my_table (field1, field2, field3) VALUES ('test', 'N', NULL);UPDATE Example:UPDATE my_table SET field1 = 'updated value' WHERE field2 = 'N';DELETE Example:DELETE FROM my_table WHERE field2 = 'N';Transaction controlsTransactions, if available, can be used to wrap around the DML operations: * BEGIN WORK (or START TRANSACTION, depending on SQL dialect) can be used to mark the start of a database transaction, which either completes completely or not at all. * COMMIT causes all data changes in a transaction to be made permanent. * ROLLBACK causes all data changes since the last COMMIT or ROLLBACK to be discarded, so that the state of the data is "rolled back" to the way it was prior to those changes being and ROLLBACK interact with areas such as transaction control and locking. Strictly, both terminate any open transaction and release any locks held on data. In the absence of a BEGIN WORK or similar statement, the semantics of SQL are WORK;UPDATE inventory SET quantity = quantity - 3 WHERE item = 'pants';COMMIT;Data definitionThe second group of keywords is the Data Definition Language (DDL). DDL allows the user to define new tables and associated elements. Most commercial SQL databases have proprietary extensions in their DDL, which allow control over nonstandard features of the database system. The most basic items of DDL are the CREATE,ALTER,RENAME,TRUNCATE and DROP commands: * CREATE causes an object (a table, for example) to be created within the database. * DROP causes an existing object within the database to be deleted, usually irretrievably. * TRUNCATE deletes all data from a table (non-standard, but common SQL command). * ALTER command permits the user to modify an existing object in various ways -- for example, adding a column to an existing TABLE my_table ( my_field1 INT, my_field2 VARCHAR (50), my_field3 DATE NOT NULL, PRIMARY KEY (my_field1, my_field2) );Data controlThe third group of SQL keywords is the Data Control Language (DCL). DCL handles the authorization aspects of data and permits the user to control who has access to see or manipulate data within the database. Its two main keywords are:GRANT Authorizes one or more users to perform an operation or a set of operations on an Removes or restricts the capability of a user to perform an operation or a set of SELECT, UPDATE ON my_table TO some_user, * ANSI-standard SQL supports double dash, --, as a single line comment identifier (some extensions also support curly brackets or C-style /* comments */ for multi-line comments).Example:SELECT * FROM inventory -- Retrieve everything from inventory table * Some SQL servers allow User Defined FunctionsCriticisms of SQLTechnically, SQL is a declarative computer language for use with "SQL databases". Theorists and some practitioners note that many of the original SQL features were inspired by, but in violation of, the relational model for database management and its tuple calculus realization. Recent extensions to SQL achieved relational completeness, but have worsened the violations, as documented in The Third addition, there are also some criticisms about the practical use of SQL: * Implementations are inconsistent and, usually, incompatible between vendors. In particular date and time syntax, string concatenation, nulls, and comparison case sensitivity often vary from vendor to vendor. * The language makes it too easy to do a Cartesian join (joining all possible combinations), which results in "run-away" result sets when WHERE clauses are mistyped. Cartesian joins are so rarely used in practice that requiring an explicit CARTESIAN keyword may be warranted. * It is also possible to misconstruct a WHERE on an update or delete, thereby affecting more rows in a table than desired. * SQL—and the relational model as it is—offer no standard way for handling tree-structures, . rows recursively referring other rows of the same table. Oracle offers a "CONNECT BY" clause, Microsoft offers recursive joins via Common Table Expressions, other solutions are database functions which use recursion and return a row set, as possible in PostgreSQL with PL/PgSQL.=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=Active Server Pages (ASP) is Microsoft's server-side script engine for dynamically-generated web pages. It is marketed as an add-on to Internet Information Services (IIS). Programming ASP websites is made easier by various built-in objects. Each object corresponds to a group of frequently-used functionality useful for creating dynamic web pages. In ASP there are six such built-in objects: Application, ASPError, Request, Response, Server, and Session. Session, for example, is a cookie-based session object that maintains variables from page to ASP pages are written in VBScript, but any other Active Scripting engine can be selected instead by using the @Language directive or the