选择自己感兴趣并且了解的。研究的区域选择首先应该是自己了解的,并且在此方面具有一定的知识储备。其次自己应该对这个选题区域有兴趣。最后选一些小众有意义新颖的。论文研究区域的思路:提出问题,包括对问题的概念界定、问题研究的重要性或意义的解释。分析问题,概括研究对象或问题的现状、利弊、指明存在哪些问题,并分析其产生的原因与危害性。解决问题,提出本文论点和解决这些问题的途径、对策与建议等。
最近需要绘制与地学有关论文、文献中的 研究区域概况图 。对于这一类图片,我个人比较喜欢基于 ArcMap 与 PPT 结合的方式来绘制,具体操作如下。
当然,首先这里要提一句:大家一定需要注意,绘制我国相关的地图时(尤其是论文中我国的地图),一定注意 南海诸岛、十段线、藏南、阿克赛钦 等细节部分。
先来看看成果图:
话不多说,开始绘制,首先我们先做副图。在ArcMap中导入全国矢量图层(包括南海诸岛);随后,修改地图符号系统,并记得导入十段线。
接下来,导入本文研究区域,同时修改符号系统。
完成后,我们切换到“ Layout View ”这一视图,调整好范围和大小,用如下方法导出地图即可。因为是副图,暂时不需要调整地图要素、地图边框等内容。
设置输出属性。
随后,新建一个PPT文件,并将上述新生成的图片导入到PPT中。
如果PPT中图片不清楚,可以按照如下方式设置一下PPT文件内图片的压缩选项。
接下来,我们进行主图的绘制。导入研究区域与水体等相关图层,并配置符号系统。
导入指北针、比例尺、图例等。
我的比例尺属性设置情况如下。
接下来,我们需要设置图片边框上的格网。在研究区域图层上右键,选择属性。
选择“ New Grid ”。
我们选择第一个即可。
这里先大概设置一个间隔就好,反正后期可以调整。
完成后我们可以看到,图片边框格网有点密集,不美观。
我们就在属性界面,选择“ Properties ”。
选择“ Intervals ”,配置合适的经纬度间隔即可。
此时可以看到,间隔已经修改完毕,但是字号很小。
在以下界面可以修改字体、字号。
然后在以下界面,修改经纬度格网符号出现的区域;因为不用一幅图的四个边框都带着经纬度,会显得比较臃肿,选择其中的两条边即可。
为了美观,将格网伸出的那一条线朝向图片内部。
随后,由于我的研究区域比较大,经纬度的度数变化很大,没有必要再看分、秒的数据,因此直接选择不显示为0的分、秒数据。
此外,添加图例时,可以直接在图层属性中修改图例框中该图层所显示的内容。
最终成图如下:
然后将其导出即可。主图的 dpi 可以设置稍微大一点,分辨率高一些。然后将新生成的图同样导入到PPT中。
随后,我们用箭头来显示主图与副图的关系。
如下所示。
我们还可以用矩形工具来在副图中框选研究区域,显得更加直观。
最后,将PPT中全部内容全选并组合,后期导出或复制成为图片格式即可。
我帮你按照计划,实现原创内容!
一般用word、PPT、画板、Photoshop、Illustrator、Visio、SmartDraw。
知识延展
91卫图助手下载器永久免费啦!!免费版就能轻松下载Google Earth等几十种无偏移影像、历史影像,及使用包含在线标注、投影转换(支持54,80,2000坐标系以及地方独立坐标系)在内的数十种功能,而且是永久免费的!!本软件可下载Google Earth影像、历史影像、陆地及海洋高程,矢量路网建筑地名点,全国乡镇及街区行政区划,影像无google字样水印, 并且有明确的拍摄日期。支持坐标系转换、在线标注(勾绘)、等高线生成、图幅下载、格式转换、矢量套合等多种功能,支持与AutoCAD, CASS, ArcGIS, MapGIS,Eardas,GoogleEarth等主流软件无缝对接。获取免费软件请加入91卫图官方QQ群(群号: 938385057)或登录91卫图官方网站详询。
我帮你按照计划,实现原创内容!
文里面研究区概况图怎么制作通过
1、打开ArcMap,加载水系数据。2、在内容面板双击水系符号,弹出“符号选择器”。3、在“符号选择器”打开“编辑符号”,弹出“符号属性编辑器”。打开APP查看高清大图4、添加多一个线图层。5、将最上面的图层类型属性设置为“制图线符号”。6、将最上线图层做如下设置。拖动灰色表示线的间隔,点白色即出黑色表示线的标记。7、设置下线颜色。用吸色工具把天地图上水系的颜色吸下来,我这截图软件Snipast自带吸色功能。
我帮你按照计划,实现原创内容!
问题一:word文档里的框架图怎么生成 不知道你是哪个版本。按07的说吧,插入-SMARA锭T调出图片中的窗口,选择你要的 问题二:word怎么画框架图 从菜单栏中找到“视图”,再从中找到“工具栏”,再“绘图”前单击一下。WORD下面便有了绘图工具。从“自选图形”里选择您需要的,在文档中画出即可。 问题三:毕业论文中如何按要求画流程图、结构图 普通的毕业流程图,用Microsoft Office Visio,我的毕业设计论文用的Microsoft Office Visio 2003,更多怎么画、论文插图教程直接在附件,因为图太多了、字数太多了,就不举例了。 问题四:写论文word里做一个框架图怎么做 用SmartArt试一下 问题五:论文逻辑框架怎样用word制作 1明确研究内容。制作技术路线图之前首先要明确论文的写作内容,拟定研究逻辑,使得最终制作的技术路线图清晰明了,给阅读者一目了然的感觉! 2.新建绘图画布。新建绘图画布的原因是可以固定制作技术路线图的区域,便于后续的复制、粘贴、修改等操作和格式的编排。如果简单的直接在文本编辑中制作,则在操作时会很麻烦!新建绘图画布在插入-形状-新建绘图画布中。 3.插入文本框。在绘图画布中,顺次插入文本框,其中文本框的形状可以自选,一般采用长方形等比较正统的图形,看起来大方美观,切忌花里胡哨!文本框插入后,点击鼠标右键编辑文字,输入需要的章节内容。 4.插入链接箭头。为了使得最终的技术路线图更有逻辑性,一般采用带箭头的连接符来串联各个文本框,以表明文章的一个逻辑思路与写作框架。部分章节可能还包括多个核心内容,也可以用多样化的连接符来说明其中的相互关系。 5.调整整体格式。作为论文中的技术路线图,肯定要达到一定的美观的要求。因此,在制作完初步技术路线图后,还需要进一步调整整体格式,如文本框的大小、字体大小格式等等。细节决定成败,不可忽视最后的工作。 问题六:word论文框架图怎么变成这样了 变成一坨 拉不大 10分 1,首先,要保证下载下来的文件是word支持的格式; 2,而后,才到尝试更改编码格式或者字体的步骤; 问题七:毕业论文的研究结构框架图怎么写 毕业论文的写作框架、流程与写作技巧 广义来说,凡属论述科学技术内容的作品,都称作科学著述,如原始论著(论文)、简报、综合报告、进展报告、文献综述、述评、专著、汇编、教科书和科普读物等。但其中只有原始论著及其简报是原始的、主要的、第一性的、涉及到创造发明等知识产权的。其它的当然也很重要,但都是加工的、发展的、为特定应用目的和对象而撰写的。下面仅就论文的撰写谈一些体会。在讨论论文写作时也不准备谈有关稿件撰写的各种规定及细则。主要谈的是论文写作中容易发生的问题和经验,是论文写作道德和书写内容的规范问题。 论文写作的要求 下面按论文的结构顺序依次叙述。 (一)论文――题目科学论文都有题目,不能“无题”。论文题目一般20字左右。题目大小应与内容符合,尽量不设副题,不用第1报、第2报之类。论文题目都用直叙口气,不用惊叹号或问号,也不能将科学论文题目写成广告语或新闻报道用语。 (二)论文――署名科学论文应该署真名和真实的工作单位。主要体现责任、成果归属并便于后人追踪研究。严格意义上的论文作者是指对选题、论证、查阅文献、方案设计、建立方法、实验操作、整理资料、归纳总结、撰写成文等全过程负责的人,应该是能解答论文的有关问题者。现在往往把参加工作的人全部列上,那就应该以贡献大小依次排列。论文署名应征得本人同意。学术指导人根据实际情况既可以列为论文作者,也可以一般致谢。行政领导人一般不署名。 (三)论文――引言 是论文引人入胜之言,很重要,要写好。一段好的论文引言常能使读者明白你这份工作的发展历程和在这一研究方向中的位置。要写出论文立题依据、基础、背景、研究目的。要复习必要的文献、写明问题的发展。文字要简练。 (四)论文――材料和方法 按规定如实写出实验对象、器材、动物和试剂及其规格,写出实验方法、指标、判断标准等,写出实验设计、分组、统计方法等。这些按杂志 对论文投稿规定办即可。 (五)论文――实验结果 应高度归纳,精心分析,合乎逻辑地铺述。应该去粗取精,去伪存真,但不能因不符合自己的意图而主观取舍,更不能弄虚作假。只有在技术不熟练或仪器不稳定时期所得的数据、在技术故障或操作错误时所得的数据和不符合实验条件时所得的数据才能废弃不用。而且必须在发现问题当时就在原始记录上注明原因,不能在总结处理时因不合常态而任意剔除。废弃这类数据时应将在同样条件下、同一时期的实验数据一并废弃,不能只废弃不合己意者。 实验结果的整理应紧扣主题,删繁就简,有些数据不一定适合于这一篇论文,可留作它用,不要硬行拼凑到一篇论文中。论文行文应尽量采用专业术语。能用表的不要用图,可以不用图表的最好不要用图表,以免多占篇幅,增加排版困难。文、表、图互不重复。实验中的偶然现象和意外变故等特殊情况应作必要的交代,不要随意丢弃。 (六)论文――讨论 是论文中比较重要,也是比较难写的一部分。应统观全局,抓住主要的有争议问题,从感性认识提高到理性认识进行论说。要对实验结果作出分析、推理,而不要重复叙述实验结果。应着重对国内外相关文献中的结果与观点作出讨论,表明自己的观点,尤其不应回避相对立的观点。 论文的讨论中可以提出假设,提出本题的发展设想,但分寸应该恰当,不能写成“科幻”或“畅想”。 (七)论文――结语或结论 论文的结语应写出明确可靠的结果,写出确凿的结论。论文的文字应简洁,可逐条写出。不要用“小结”之类含糊其辞的词。 (八)论文――参考义献 这是论文中很重要、也是存在问题较多的一部分。列出论文参考文献的目的是让读者了解论文研究命题的来龙去脉,便于查找,同时也是尊......>> 问题八:word 里面绘制 研究框架图 这要看你用哪个版本的word,一般这个可以去流程图里找,如果不一样的话,可以插入图形,文字可以用插入文本框,等都做好了,把这些组合一下就可以了。 问题九:毕业论文中如何按要求画流程图、结构图等,要求如下。 大神哦 ,能把要求直接发我么,可以做的、 问题十:框架图 流程图用什么软件做 10分 可以用专门的Visio画图软件啊,非常简单好用,简直是与word无缝对接,直接粘贴到word上,也可以直接双击在Visio中编辑
现在很多期刊对图片的分辨率、格式和文字标注都有明确的要求。因此确定好目标期刊后,应该根据期刊的《投稿须知》来修改文章的图片。
处理照片的工具
文章里的图片一般来自照片、作图软件或者数学处理软件做出来的图形。用合适的工具来处理不同类型的图,可以达到事半功倍的效果。处理照片的工具,重量级的有Photoshop,轻量级的有ACDSee跟画图板,个人是比较推荐GIMP。因为它不仅是个功能非常强大的开源软件,而且还支持很多种格式的导入和导出。常用的数学处理软件有MatLab 跟Origin。其中Origin可以做出非常专业的图形。当然Excel也是个很不错的选择。流程图用Visio或者PPT就差不多满足所有需求了。
在图片的使用上,有一些地方容易出问题,需要注意:
其他小细节:
最後最後
交给专业的论文润色公司处理,也不失为一种省心的好方法。英论阁的
图表编辑制作服务()协助编辑各种图形检查项目。
以上
祝论文顺利!
本文译自Environmental Geology,2002(41)∶765~775。
Alberto Pistocchi1Lucia Luzi2Paola Napolitano3著
朱汝烈4译校
(1Studio di Ingegneria per I'Ambiente e il Territorio,Viale Cesena,Italy;2IRRS-CNR,MiLan,Italy;3ACTA Studio Associato,Naples,Italy;4中国地质调查局水文地质工程地质技术方法研究所,河北保定,071051)
【摘要】此案例研究,源于将不同概率的预测模型[贝叶斯(Bayesian)概率、模糊逻辑、“与”、“或”、“总和”、“产出”、“灰度(非线性)”运算以及必然性因素等],用于编制意大利亚平宁山脉北部的丘陵和山岳地区滑坡灾害地图。利用7个数据层来检验非常脆弱的区域:岩性、与地质构造线的距离、年降雨量数值、土地覆盖类型、地形坡度和坡向,以及与水文网络段的距离。与用预测率指数预测的不同结果进行了对比和缜密的讨论,以评价这种易于运用、适宜有效的数据库在土地规划中使用价值的可能性。
【关键词】支持性函数整体化模拟滑坡灾害空间数据库
1导言及一般论点
近几年来,全欧洲各地方及规划部门在建立空间数据库方面有了长足进展。然而,很多数据库似乎对决策支持仍然不起作用,而且其使用的有效数据经常是纯粹土化的。特别是,最终数据使用者和决策者对于有关地理信息系统(Geographic Information Systems——GIS)的模拟能力,近乎于毫不知晓的状况。极少有地方政府机构在日常的决策中采用预测模型作为其有效支撑。
地理信息系统为详细的空间特征模拟带来巨大的能力,并且许多地方政府现在已拥有GIS技术,为其使用提供了方便条件。人们在对自然界现象进行日常习惯性观察时,这一重要信息有变成一种更有力的方法手段的潜在可能吗?
出于参与规划和目标共享的需要,地学家已经注意到确定的共享资源在用于规划和决策支持中做出的评估具有何等重要性的有关阐述。一些人强调地球科学地图在制定政策和土地使用规划过程中的作用。据他们的观点,灾害地图(hazard maps)的主要作用是,为决策者提供有关土地开发规章条例定义问题的正确观点。
基于自然现象之间因果关系的预测模型,已被水文工作者、地球科学家、环境分析家和工程师广泛地应用于自然风险评估、自然资源管理、污染防治与土壤改良及环境影响评估等领域。然而,就诸如滑坡这一自然灾害场合而言,要建立一个能在区域规模内可靠适用的模式似乎相当困难。一些人探究产生这一困难的原因,认为主要是受模型和数据的限制。与其他风险管理的角度不同,很少有管理者探索过有关定量模型的应用问题。
滑坡灾害制图的传统方法,依赖地质学家和地貌学家的经验观察、鉴定(通过对现场特性的直接观察和远距离的检测报告)来解释滑坡发生的特征。这样虽有相当可能判明既往事件,但是在撇开专家主观性及定性判断的情况下,几乎不能支持任何预测。
近几年来,已经提出了基于成带现象的大地构造模型。然而,基于大地构造模型的计算方法,或者说实际上是基于指数叠加的方法,限于数据不足或数据质量的低下,尽管其自然基础相当稳固,仍经常是不可靠的。
另一方面,通过“客观”的可复制模型进行的预测,分析家对可能的、有限的随机选择感到兴趣。特别是下列这些情况:
·当具有相当重要性的规划设想涉及到社会冲突时;
·当现象不容易觉察时;
·当对覆盖整个所关心区域的现象做详细测图所耗费用过于高昂,因而有必要对那些需更深一步了解的区域进行“筛选范围”模拟的时候。
一般说来,模拟过程与决策很相似,而且其工作具协调性和基础性。灾害地图之所以合理的一个理由,是通过专家的专门鉴别,可用模拟方法学的手段再现、复制,可以有助于认识的社会构成,亦即在管理者、社区公众以及科学家之间分享正确的决策准则。
这一原因导致开展使用概率进行预测的可能性的调查研究。在这些探索过程中,充分运用有关滑坡事件的先验性知识,通过合理地确定参数,用模糊的、或随机的地图套叠方法进行概率预测。
在最近几年,对这种方法做了很多探索。所有这些方法已经比较广泛地使用于敏感性分析或不同方法的性能对相同案例的研究。目前,在这些应用中存在的主要困难是不同的地图的对比。
有人提出了一种解决问题的构想,以完善绘图功能。在那些作者们的工作中,显示了概率、模糊的范畴,并可用现象发生地区最支持性的探测功能——例如滑坡或者矿藏——来证明。这些技术通过推测、校核而发挥效用;对其他诸如神经和贝叶斯(Bayesian)网络等方法,其共通特征与一般的数学模拟近似。以这种方法能轻易地找出一种称之为预测比率的独特标准,它主要用于比较不同预测地图,堪称使模型具有良好性能的有效措施。对其解释如下:支持性函数的用途在于以产生至少包含科学家基于规章的判断,即可从现场经验获得的、预测大部分正确的地图为目标。当然,随后由于专家对现象认识和理解的逐步深化在评估期间必然要求选择多种模拟。同时,由于协调不当而产生变量的假定概率,以及数据缺乏和不可靠,也可引起谬误的结果。不过,运用定量法可以使模型的校准和确认能够支持预测的透明度和合理性。支持性函数模拟方法最近已在专门为其安排的某些案例研究中应用。
本文目的在于,探讨支持性函数模拟对用现有的数据库标准认定的滑坡事件,编制灾害地图的可应用性,并且检查这种方法在现有的数据库里信息的运用中如何改进,以与其他技术(例如,每个岩性单位的滑坡频率编图或者纯粹的滑坡目录清单似的绘图)相比较。
支持性函数模拟也可用于构建数据库的概念性设置:数据的收集严格依赖于在理论框架上对最佳可用信息的准确理解。
2理论背景
很多作者指出,数值技术的使用与那些对相关现象自身属性的局部价值认为值得关注的事件相联系。属性被认为是事件的证据因素,“或然性”、“可能性”或者发现事件的“可能”程度,在一定意义上与每个相关属性的存在非常符合。假定 A是已进行分析的定义域,而 F是被检查的事件现象。若 r数据层为有效数据,则对于每一个属性种类中的mk来说,设定k=1,…r,便可对每个数据层定义一个分配函数:
地质灾害调查与监测技术方法论文集
它将 A的每个象素分配到k层序列中的一层中;可以为每层确定另一个函数:
地质灾害调查与监测技术方法论文集
在这种情况下,地图在每个层里出现一个数值下降的间隔[a,b]。在此,a和b取决于分析者(如稍后将指出的那样)所做的进一步假定。这个数值代表支持性(favorability),即假定一旦遭遇某种特殊种类属性现象出现时的可靠程度。
对作为每个数据层的函数成分 V和R被定义后,支持性函数可表示为:
地质灾害调查与监测技术方法论文集
间隔极值 a,b必须由分析家据其“可靠性”的解释而定,若认为可靠性与“可能性”相同,则 a=0,b=1。若令可靠性范围等于确定性系数,则 a=-1,b=1。如果选择不同的方法,则可能需要另外的数值。
支持性函数在本项目中的不同用法将在本报告中予以陈述。
若支持性假设为与特定现象 F相关,设定与事件的可能性一致的属性种类为E1,…,E。,然后根据贝斯定理,按 E1,…,E。独立条件假说,可写为:
地质灾害调查与监测技术方法论文集
在ppsI中,I=1,…,n,是发生必然属性种类的优先概率,并且可用该属性种类存在的总面积的百分比进行估算。pps1至n作为属性种类的先期共同可能性考虑;这可以作为全部种类共同发生的总面积的百分比。ppaI,I=1,…,n是观察到的F对于属性种类Ei事件的可能性;这可以根据公式计算。ppaI=1-(1-(areaI)-1)nb(I),其中areaI是符合i系列条件的面积,而nb(i)是与F条件也符合的i系列的面积。psF是所有覆盖整个区域的F的优先概率,并可用所有符合F条件面积的百分数算出。
按此法则,一张地图可以由发生的属性种类的每种组合的计算编制出。这可以通过常规交叉作业程序,在GIS的栅格内操作完成。
如果使用确定性系数,则运算法则作如下相应变动:
(1)一种属性种类的确定性系数可以定义为:
地质灾害调查与监测技术方法论文集
式中:I=1,…,n;n是作为原因因数的主题数据种类的数量。
(2)对两个数据种类来说,确定性系数根据下列法则计算:
当 CF1和CF2均为正号,那么 CF1+2=CF1+CF2-(CF1×CF2);
若 CF1和CF2符号相反,则 CF1+2=CF1+CF2/{1-min(|CF1|,|CF2|));
若 CF1和CF2均为负号,则 CF1+2=CF1+CF2+(CF1×CF2)。
(3)程序通过首先计算 CF1+2=CF12,然后 CF13=CF12+3等等,按此重复操作可获得更多的图件。
作为最后的方法,采用模糊集合论通过计算“模糊总和”、“模糊产出”,“模糊与”、“模糊或”以及“模糊非线性函数”。所有这些函数都是在假设 F存在的可能性预测值等于给定的种类EI(即 ppaI)的条件下进行运算的。它们是:
·“模糊与”=min(ppaI),I=1,…n;
·“模糊或”=max(ppaI),I=1,…n;
·“模糊结果”=Ⅱ(ppaI),I=1,…n;
·“模糊总和”=1-Ⅱ(1-ppaI),I=1,…n;
·“模糊非线性计算”=(模糊总和)(模糊结果)1-γ,γ是0:1范围的参数。
按此方法,可确定编制覆盖层地图的法则,以便分析家能评价覆盖整个研究地区的不同事件属性数据差别,并有助于进一步识别存在更多现象的场地。这些计算结果代表与被认为属于有利性的现象相关指标的数目。必须注意到,除已描述之外,根据相应的资料证据分量、可信功能、线性回归覆盖概率以及其他诸多条件,可采用不同的技术。
必须指出,优先概率psF需要对确定性系数的估计测定而计算获得,但将它用于绝对边界条件是无意义的,因为要预知未来的滑坡事件的可能性实际上几乎是不可能的。预测根据的理由必须在概括全部条件求得支持性指标后,方可确认,而不能以对灾害的数字计算结果为依据。
3应用
用于本案例研究的地区在意大利(图1)北部的萨维(Savio)河流域。区域地质概况基本上为泥灰岩和沙岩组成的一个沉积盆地。可更详细分为以下3种主要的地质岩层:
图1研究区位置图
(1)托尔顿阶(Tortonian N1)为灰色砂质和泥质浊流沉积岩,是主要地质岩层,并出露于这条主要溪流两侧。
(2)由微晶质石膏与泥质粘土和沙层互层组成,而其基底为含硫石灰岩地层。
(3)由泥质岩、砂质岩和砾岩3层构成,全部含有灰岩层。
此外,还有淤泥质泥灰岩层、晚始新世砂岩地层、上新世粘土以及混杂堆积的粘土层出露地表。
该地区被大量滑坡覆盖,在不同的地质单元内,大多数情况下是以滑移型或泥石流型的运动形式发生。而且,有的地区有岩石崩落,并存在块体平移运动,然而对它们均未做过分析。研究过程中使用的数据由埃米利亚·罗马格纳地区地质调查所(Regione Emilia Romagna Geological Survey)提供。
用于本案例研究的数据库由若干主题层构成,它们涉及:
·线性构造(断层,向斜和背斜),比例尺1:50000;
·岩性单元,比例尺1:50000;
·根据CORINE欧洲工程指南协议,从TM陆地卫星映像获得的土地覆盖情况,比例尺1∶50000:
·数字地形模型(DTM),根据从Regione Emilia Romagna地方当局的地图数据库中获得的、通过计曲等高线内插、等高距为50m的等值线制成;
·整个地区的7个降雨计量站的降雨测量数据;
·数字化水文网,比例尺1:10000。
必须强调,数据库的分辨度非常低劣,另外,数据在比例尺上很不均匀。有人会认为特别是当与平均滑坡面积进行对比时,地形信息明显很不精确,因而成为非实际滑动的运动学的代表。这项研究的目的是评价现实世界数据库的预测能力(前已阐述),必须意识到,重要的不是做出可靠的灾害地图,因为最好的信息虽已被应用殆尽,但不可能有任何更深远范围的调查和数据可供获取。正如在以下内容所强调的那样,与土地计划的预测相比较,评估的结果将为数据库的改进给予更多的输入内容。
从DTM数字地形模型中形成了坡度和坡向地图,并用固定的数值间隔对坡度做了分级。
对线性构造的距离做了计算,目的在于评价构造干扰对坡体稳定性的可能影响。以对栅格地图和栅格化作为计算结果。
分析了降雨资料,以查明高程与年降雨量之间的关系。从这两个变量的一个回归方程发现:y=(R2=),x为海拔高程(m),y是超过30年的长时间级数降雨量的总平均值(mm/a)。后来用该方程式做了一幅连续降雨地图,结果明确显示,DTM既像降雨特征的指示剂,同时也犹如位能释放的一个显示器。
应当注意,过高的高程与降雨的相互关系相当微弱,而更进一步的分析则要求更好地描述该地区的实际降雨分布情况。然而,依据现有数据,仅能说明已经适当地查明了降雨分布的一般趋势而已。
尽管概念上的差异特性可以在滑坡的现象情况与所需的因素之间梳理出来,然而,当其他所需要特征都存在的情况下,恰恰只是“要素”触发了滑坡。可以认为,所有这些数据层都可能具有优先意义。
至于存在滑坡可能性的数据,只能依赖地方当局的土地不稳定情况报表获得。应着重指出,数据库适用于构建GIS的长时间序列分析。而且,其数据的密度和分布,按统计学来看,属具典型意义的现实滑坡分布。可以证明,事实上,当为贝叶斯程序培养的数据集不是足够大(并且排列也不足够随机)——这关系到对分区性随机变量的获得——的时候,按定量评价的观点衡量概率综合模拟,是毫无意义的。本案例中,滑坡发生的优先总和有利性条件(级别—特殊)的概率ppa1和psf,需由专家们判定。而且,选择滑坡的类型和年龄以便培养数据系列是重要的,这样的系列可照顾到同类滑坡。已有人进行了关于“泥石流”和“崩滑泥石流”类型滑坡的分析,认为通常发生在局部地区。在本研究项目中,仅在编制一些图件时有效地应用。
地区土地不稳定性报表记录也考虑了岩石崩落、块体滑动以及潜在不稳定的地段,但是这些没包括在分析过程中。图2显示了用于分析的数据层。
被考虑的全部主题的数据原则上有相互关联的可能性。由于多余的信息将可能导致无效结果,因而做一些尝试性计算。为了分析的目的,已进行了一次对7个主题条件(即,降雨地图、岩石学、土地覆盖、坡度、坡向、与水文网的距离及与线性构造的距离)的联合性试验。7个主题条件分类列入独立的图例内,并作为促使滑坡体产生活动的条件在地图上的识别标准。
对每一个地图偶对做了4个指数的联合计算:
·x平方(x2)指数;
·克拉默(Cramers)指数;
·意外事故指数;
·共同信息不确定性得分。
这里,第一个指数被确定为:
图2用于预测的原因因素主题图
地质灾害调查与监测技术方法论文集
式中
地质灾害调查与监测技术方法论文集
而 T=象素的总数,Ti=地图1中 i类象素的数量,Tj=地图2中 j类象素的数量。指数 n和m分别是在地图1和地图2中的种类数目。
克拉默指数(V)和意外事故指数(C)确定如下:
地质灾害调查与监测技术方法论文集
相同符号的含义相应同前,同时 M取(m-1,n-1)的最小值,而 n和m分别是两幅图中每一幅中的数据种类的数目。
图幅偶对 A和B的共同信息不确定性得分取决于:
地质灾害调查与监测技术方法论文集
其中
地质灾害调查与监测技术方法论文集
n、m分别是在地图A和地图B里种类的数量,而Pij则是在地图A和B的交会线上i和j种类的像素数量分别对像素总量的比率。Pj是地图A中种类j的像素总数量,而 Pi表示种类i在地图B中的总像素。
上述指标可判断一个地图偶对之间的协调性尺度。x平方指数给出协调性(无上边界的)绝对尺度,而对其本身没用;V和C表示区域内预防标准的尺度[0,1],它们越是接近1,则两张地图之间的联系越强。这3个指标结合使用,可提供关于联系性的一个综合尺度标准,并允许我们超越一套地图从不同角度去比较像对的联系性。通常,可能注意到3个指标呈现如所期望那样非常相似的反应。不确定性共同信息记录也可用于确定由前面的指标测定的联系性模型,并假定在0(完全独立的地图)和1(完全联系的地图)之间改变。表1展示了如上所述的地图计算的指标。
表1数据层之间的联系性指标
尽管未使用计算的指标,在严格条件下,对于确定贝叶斯条件(比非联系性质更强)的独立性,这些由全部数据层推断而得出的联系性指标,可能应当是独立的。
正如分析所指出的,必须被注意到,滑坡显示出与岩石学的某种联系(只有一个滑坡,岩石学主题由于共同信息的不确定性,具有非相关性),并与海拔高程/雨量以及地表覆盖存在空间联系趋势。
应当指出,若从因果关系以外的因素看来,岩石学与海拔高程/雨量和土地覆盖是相关的,而与坡度之间的联系较弱,与其他主题的联系则极少或无联系。提供给研究项目的不甚适用的DTM似乎是造成这一现象的首要原因。除在坡度和降雨量/海拔高程之间的微弱的联系外,其他联系可能均未予考虑。
根据当地地质调查所的分析似乎也得出同样的结论,岩性的因素仅仅用于编制滑坡灾害图以及拟定作为滑坡灾害指标的每个岩性单位的滑坡频率。
在每次运算期间,只有已知滑坡(通过随意抽样选择)的一半用来生成预测地图,然而剩下的东西,应当视为同样有效的数据群。作为滑坡灾害预测尝试,最先使用潜在原因因素,而在第2次试验过程中,只使用了3个最为相关的因素,这将在后面的章节中予以解释。
4结果讨论
支持性函数的计算如以下将予以描述的那样,是在不同的模拟假定前提下进行的。每一幅由计算生成的良好地图的预测能力,用曲线的预测比率进行测试。这种曲线,是通过研究地区的累积百分率标定分类,以支持性评定数值的递减量(遵循上面提到的各种法则)作为横坐标,以滑坡地区的累积百分率作为纵坐标而做成的。据说,当预测的滑坡百分比与区域最大值的20%相一致时,便是对模型预测能力的良好评估。更广泛的观念是,曲线越是有规则的接近纵轴,则预测越加吻合。相反,若更多的曲线靠近45°直线,则说明组合因素造成预测靠近支持性数值的随机分布范围,这种预测的有用价值极小。在因果因素中,已经认识到水文网络所起的作用较小,这是因为为其所拟定的细节,要比其他因素的精密度高得多。乍看起来河流切割“遍布”各地,因而不便于将滑坡分布与它和水文网络的距离加以联系。因此,在因果因素中没有包括河流水系。
在图3中对已考虑的6个因果因素的预测比率,逐个予以显示。本项目中,预测者估计的条件频率ppaI,I=1,…n(发生滑坡事件的条件概率,给定的种类 i)适于每个主题内的每一个种类。
图3原因因素预测的比率——使用整个滑坡封闭折线和条件频率
第一步计算用作证据的数据,来自图解滑坡活动的全部封闭折线。滑坡被分解成两个随机取样组,其中一个用于标定,而另一个用于证实。计算作业使用了3个最相关的主题(岩性、土地覆盖以及海拔高程/雨量),遵照先前描述的指标。预测比率曲线用图4显示。
进一步使用所有的6个指标进行了计算,其预测比率用图5显示。
我们注意到,由于整个滑坡体均被绘制,因而这可能会含有一些精确性的偏差;由于因果因素的集合,致使滑坡触发点和滑坡前缘不相同。因此,在每个滑坡封闭折线内预测,只使用最高点;若从物质运动的运动学原理考虑,触发点应当在最高位置。6个因果指标在此假定前提下计算的预测比率,如图6所示。
图47位预测者预测的比率——使用3个因果指标
(岩石学、降雨量和土地覆盖)和整个滑坡封闭折线
图57位预测者预测的比率——使用所有6个相关的原因指标和整个滑坡封闭折线
7位预测者使用3个和6个因果指标的预测比率,分别用图7和图8显示。
就输入数据的相关性而论,表明使用坡度、坡向和雨量分布(即更准确的DTM和雨量——由更区域化的降雨计量器获得的数据)具有更好的代表性,将使结果得到改进。一旦得到新数据,分析者们便可重新评价其对预测的潜在影响。
从预测比率的比较中可以确定:
·当使用6种因果指标代替3种与滑坡关联性更好的指标(岩石学、土地覆盖以及雨量)时,似乎没有明显的改进;在两种情况下的预测表现得非常近似,这恰似对种类群用了修整清除器,然而更多的指标是被应用了的。
·更进一步的清除效果可由只用触发点,而无需考虑滑坡整体来作为证据。这不至于带来地图总体预测能力的恶化;但同时也须顾及到,过量的清除有可能会导致绘图的可靠程度降低乃至消失。
图6只使用触发点因果指标预测的比率
图77个预测者只使用3个因果指标(岩石学、土地覆盖和降雨量)和触发点预测的比率
图87个预测者使用6个相关因果指标和滑坡触发点预测的比率
·岩石学在原因指标的预测比率图解中,无论如何显然具有更高的预测能力(如此则可理解,为何当地地质调查所单独选择了将这个主题层用于灾害制图),当然还包括土地覆盖和降雨。然而并非其他全部主题都与预测相关。
·在本案例研究过程中,除贝叶斯可能性的情况外,7位预测者所用的预测表现得极其近似。然而数据的有效分布性是非常敏感的,当整个滑坡体被用作证据,并处于模糊“或”、“与”的某些场合时,则预测均近乎为随机性的。通常,似乎确定性系数是预测者在这一具体案例的研究中最有用的手段,虽然在每种情况下,一些预测者以预测比率曲线和预测地图所作出的预测实际上相同。
图9显示了在本案例中,进一步显示了将3个因素与作为主题证据的触发点共同配合使用时的7种预测。这是本案例研究过程中探讨的情况之一,它具有更好的预测比率,并且可能对滑坡灾害成带性作出最佳的基础性思考,显现了当前的认识状态。
图9根据7种预测做出的预测地图
5结论
本文讨论的方法是使用数字模型(较少需要专家的主观判断),依据滑坡灾害来划分土地等级。这似乎表明,当客观预测可从空间数据库中提炼出来时,则可以说明其主题有一些“系统”增加的价值,即全部数据都共同使用比仅只使用某些主题的效果更好。
必须强调,这种方法从现有数据库的开发入手,且保留对每个主题认识的开放、完善。在最好的预测者们各种各样的测试(确定性系数、贝叶斯可能性、模糊的操作和其他可能的技术)中,仅能根据各种测试技术的预测能力做出选择,最后则慎重地使用了预测比率曲线进行预测。
这些分析已经引发了现有的数据库尚属不健全的认识,当然,仅指为了生成预测模拟使用目的的地形数据不甚适当而言。这寄希望于未来投入进一步的调查研究并捕获数据,以确定一种更佳的数字化地形模型。只要改进的原因因素地图一旦产生,或者一个新的原因因素被确认与现象相关,便可能重新进行计算,从而可能产生新的预测图。预测比率使用的有效性可按实际和有效改进进行检查,也可用来对数据收集和岩土工程监测的进一步努力指明方向。例如,在本案例研究中,岩性、土地覆盖以及降雨(如上所述,按高程描述)显然是滑坡的最相关的因素,因而到目前为止,分析主要致力于这些因素的调查和编图。更进一步说,准备并使用具有合适解读能力的DTM显得很有必要,其目的是为了更详细地检查地形数据的影响。分析也很重视其他主题条件,例如水体高程,对用于危险绘图时,它可能就变得相当重要。
最近,端到端场景文本识别已成为一个流行的研究主题,因为它具有全局优化的优点和在实际应用中的高可维护性。大多数方法试图开发各种感兴趣的区域(RoI)操作,以将检测部分和序列识别部分连接到两阶段的文本识别框架中。然而,在这样的框架中, 识别部分对检测到的结果高度敏感(例如,文本轮廓的紧凑性)。 为了解决这个问题,在本文中,我们提出了一种新颖的“Mask Attention Guided One-stage”文本识别框架,称为MANGO,在该框架中无需RoI操作就可以直接识别字符序列。具体而言:
值得注意的是,MANGO自有地适应于任意形状的文本识别,并且仅使用粗略的位置信息(例如矩形边界框)和文本注释就可以进行端到端的训练。实验结果表明,该方法在规则和不规则文本识别基准(即ICDAR 2013,ICDAR 2015,Total-Text和SCUT-CTW1500)上均达到了有竞争力甚至最新性能。
场景文本识别由于其各种实际应用而备受关注,例如发票/收据理解中的关键实体识别,电子商务系统中的产品名称识别以及智能运输系统中的车牌识别。传统的场景文字识别系统通常分三步进行:定位文字区域,从原始图像中裁剪文字区域并将其识别为字符序列。然而尽管这种文本识别模型带来了许多可考虑的问题,例如: (1)错误将在多个单独的任务之间累 (2)维护多个单独的模型的成本很高 (3)该模型难以适应各种应用程序。
因此,提出了许多工作以端到端的方式来最终优化文本识别过程。这些方法通常使用各种兴趣区域(RoI)操作以可微分的方式桥接文本检测和识别部分,从而形成了两阶段框架。粗略地说,早期的端到端方法将轴对齐的矩形RoI用作连接模块。这些方法处理不规则的(例如,透视图或弯曲的)文本实例能力有限,因为这种类型的RoI可能会带来背景或其他文本的干扰。为了解决这个问题,后来的方法(设计了一些形状自适应RoI机制来提取不规则物体。文本实例并将其校正为规则形状。
图1:传统的两阶段文本识别过程和提出的MANGO的图示。 图(a)显示了通过RoI操作连接检测和识别部分的两阶段文本识别策略。 图(b)是一种提出的单阶段文本识别方法,它可以直接输出最终的字符序列。
在两阶段方法中,识别部分高度依赖于定位结果,这就要求检测部分必须能够捕获准确的文本边界以消除背景干扰。因此,训练鲁棒的文本检测模型依赖于准确的检测注释,例如在不规则文本识别中使用的多边形或蒙版注释。自然地,标记这种注释是费力且昂贵的。另一方面,要确保紧紧封闭的文本区域(由检测注释进行监督)对于以下识别任务而言是最佳形式,这并不容易。例如,在图1(a)中,紧密的文本边界可能会擦除字符的边缘纹理并导致错误的结果。 通常,需要手动扩展这些严格的检测结果,以适应实际应用中的识别。 此外,在proposals之后执行带有非极大抑制(NMS)的复杂RoI操作也很耗时,尤其是对于任意形状的区域。尽管(Xing et )提出了一种单阶段采用字符分割策略的字符级别的识别框架, 但很难扩展到具有更多字符类别(例如汉字)的情况。 它还会丢失角色之间的关键上下文信息。
实际上,当人们阅读时,他们不需要描绘文本实例的准确轮廓。通过视觉注意力关注的粗略文本位置来识别文本实例就足够了。在这里,我们将场景文本识别重新考虑为注意力和阅读的问题,即,一次直接读出粗略注意的文本区域的文本内容。
在本文中,我们提出了一种名为MANGO的“Mask Attention Guided One stage”文本监视程序,称为MANGO,这是一种紧凑而强大的单阶段框架,可直接从图像中同时预测所有文本,而无需进行任何RoI操作。具体来说,我们引入了一个位置感知蒙版注意力(PMA)模块以在文本区域上生成空间注意力,该模块包含实例级蒙版注意力(IMA)部分和字符级蒙版注意力(CMA)部分。 IMA和CMA分别负责感知图像中文本和字符的位置。可以通过位置感知注意力谱直接提取文本实例的特征,而不必进行显式的裁剪操作,这尽可能保留了全局空间信息。 在这里,使用动态卷积将不同文本实例的特征映射到不同的特征谱通道(Wang等人,2020c),如图1(b)所示。之后,应用轻量级序列解码器一次批量生成字符序列特征。
请注意,MANGO可以仅使用粗略的位置信息(例如,矩形边界框,甚至是文本实例的中心点)进行端到端优化,还可以使用序列注释。 受益于PMA,该框架可以自适应地识别各种不规则文本,而无需任何纠正机制,并且还能够了解任意形状的文本的阅读顺序。
本文的主要贡献如下: (1)我们提出了一种名为MANGO的紧凑而强大的一阶段文本识别框架, 该框架可以以端到端的方式进行训练。 (2)我们开发了位置感知蒙版注意力模块,以将文本实例特征生成为一个batch,并与最终字符序列建立一对一的映射。 只能使用粗略的文本位置信息和文本注释来训练该模块。 (3)广泛的实验表明,我们的方法在规则和不规则文本基准上均获得了有竞争甚至最新的性能。
早期场景文本发现方法(Liao,Shi,and Bai 2018; Liao et ; Wang et )通常首先使用训练有素的检测器来定位每个文本,例如(Liao et ; Zhou et ; He et ; Ma et ; Xu et ; Baek et ),然后使用序列解码器识别裁剪后的文本区域(Shi et ; Shi,Bai和Yao 2017; Cheng et ; Zhan and Lu 2019; Luo,Jin and Sun 2019)。为了充分利用文本检测和文本识别之间的互补性,已经提出了一些工作以端到端的方式优化场景文本发现框架,其中使用了模块连接器(例如RoI Pooling(Ren等人,2015a))在(Li,Wang,and Shen 2017; Wang,Li,and Shen 2019)中,(He等人2018)中使用的RoI-Align和(Liu等人2018)中使用的RoI-Rotate的开发是为了文本检测和文本识别部分。请注意,这些方法无法发现任意形状的文本。 为了解决不规则问题,已经提出了许多最近的工作来设计各种自适应RoI操作以发现任意形状的文本。 Sun等人(2018年)采用了透视图RoI转换模块来纠正透视图文本,但是该策略仍然难以处理弯曲度较大的文本。 (Liao et )提出了受两阶段Mask-RCNN启发的mask textspotter,用于逐个字符地检测任意形状的文本,但是这种方法会丢失字符的上下文信息,并且需要字符级位置注释。 Qin等人(2019)直接采用Mask-RCNN和基于注意力的文本识别器,该模型使用RoI-Masking模块在识别之前消除了背景干扰。 (Feng et )将文本实例视为一组特征块,并采用RoI-Slide操作来重建直线特征图。 (Qiao et al。2020)和(Wang et al。2020a)都检测到文本周围的关键点,并应用薄板样条变换(Bookstein 1989)纠正不规则实例。为了获得弯曲文本的平滑特征(Liu et ),使用Bezier曲线表示文本实例的上下边界,并提出了Bezier-Align操作以获取校正后的特征图。 上述方法在两阶段框架中实现了端到端场景文本点,其中需要设计基于RoI的连接器(例如RoI-Align,RoI-Slide和Bezier-Align等),以实现以下目的:明确裁剪特征图。 在两阶段框架中,性能很大程度上取决于RoI操作获得的文本边界精度。但是,这些复杂的多边形注释通常很昂贵,并且并不总是适合识别部分,如前所述。
在一般的对象定位领域,许多最新进展证明了在对象检测中研究的一阶段框架的效率和有效性(Redmon等人2016; Liu等人2016; Lin等人2017b; Tian等人2019;段等人(2019)或实例分割(Wang等人2019b; Tian,Shen和Chen 2020; Wang等人2020c; Xie等人2020; Chen等人2020)。但是,场景文本发现是一项更具挑战性的任务,因为它涉及序列识别问题而不是单个对象分类。这是因为场景文本具有许多特殊特征:任意形状(例如,曲线,倾斜或透视图等),数百万个字符组合,甚至是不受限制的阅读顺序(例如,从右到左)。最近,(Xing et )提出了一种通过直接分割单个字符的一种舞台场景文本识别方法。但是,它丢失了各个字符之间的序列上下文信息,并且很难传递给更多的字符类。据我们所知,以前没有工作可以在一个阶段的框架中处理序列级别的场景文本发现任务。
图2:MANGO的工作流程。 我们以S = 6为例。 将输入特征输入到位置感知蒙版注意力模块中,以将实例/字符的不同特征映射到不同通道。 识别器最终一次全部输出字符序列。 Centerline Segmentation分支用于生成所有文本实例的粗略位置。 前缀“ R-”和“ C-”分别表示网格的行和列。
我们提出了一个名为MANGO的单阶段场景文本查找器,如图2所示。其深层特征是通过ResNet-50(He等人,2016)和特征金字塔网络(FPN)(Lin等人,2017a)的主干提取的。 然后将生成的特征图馈送到三个可学习的模块中: (1)用于学习单个文本实例的位置感知蒙版注意力(PMA)模块,其中包括实例级蒙版注意力( IMA)子模块和字符级掩码注意力(CMA)子模块。 (2)识别器用于将注意力实例特征解码为字符序列。 (3)全局文本中心线分割模块,用于在推理阶段提供粗略的文本位置信息。
单阶段的文本识别问题可以视为原始图像中的纯文本识别任务。关键步骤是在文本实例到最终字符序列之间以固定顺序建立直接的一对一映射。在这里,我们开发了位置感知注意力(PMA)模块,以便为接下来的序列解码模块一次捕获所有表示文本的特征。受(Wang等人2019b)中使用的网格映射策略的启发,我们发现可以将不同的实例映射到不同的特定通道中,并实现实例到特征的映射。也就是说,我们首先将输入图像划分为S×S的网格。然后,通过提出的PMA模块将网格周围的信息映射到特征图的特定通道中。
具体来说,我们将特征提取后获得的特征图表示为x∈R C×H×W ,其中C,H和W分别表示为特征图的通道数量,宽度和高度。然后我们将特征图x送入PMA(包括IMA和CMA模块)模块,以生成文本实例的特征表示(如下所述)。
Instance-level Mask Attention MA负责生成实例级注意力蒙版遮罩,并将不同实例的特征分配给不同的特征图通道。 它是通过在切片网格上操作一组动态卷积内核(Wang等人2020c)来实现的,表示为G S×S×C 。卷积核大小设置为1×1。
因此可以通过将这些卷积核应用于原始特征图来生成实例级注意力掩码:
Character-level Mask Attention 正如许多工作 (Chenget等人2017; Xing等人2019)所表明的那样, 字符级位置信息可以帮助提高识别性能。 这激励我们设计全局字符级注意力子模块, 以为后续的识别任务提供细粒度的特征。
如图2所示,CMA首先将原始特征图x和实例级注意力蒙版x ins 连接在一起,然后是两个卷积层(卷积核大小= 3×3)遵循下式来预测字符级注意力蒙版:
由于将不同文本实例的注意蒙版分配给不同的特征通道,因此我们可以将文本实例打包为一批。 一个简单的想法是进行(Wang等人2020b)中使用的注意力融合操作,以生成批处理的连续特征x seq ,即
该模型现在能够分别输出S 2 网格的所有预测序列。 但是,如果图像中有两个以上的文本实例,我们仍然需要指出哪个网格对应于那些识别结果。
由于我们的方法不依赖准确的边界信息,因此我们可以应用任何文本检测策略(例如RPN(Ren等人2015b)和YOLO(Redmon等人。 2016)),以获取文本实例的粗略的几何信息。 考虑到场景文本可能是任意形状的,我们遵循大多数基于分割的文本检测方法(Long等人2018; Wang等人2019a)来学习单个文本实例的全局文本中心线区域分割(或缩小ground truth)。
IMA和CMA模块都用于使网络聚焦于特定的实例和字符位置,这在理论上只能通过最后的识别部分来学习。 但是,在复杂的场景文本场景中,如果没有位置信息的辅助,网络可能难以收敛。 但是,我们发现,如果模型已经在合成数据集上进行了预先的字符级监督,则可以轻松转移模型。 因此,可以分两步对模型进行优化。
首先,我们可以将IMA和CMA的学习视为纯分割任务。 结合中心线区域分割,所有分割任务都使用二进制Dice系数损失进行训练(Milletari,Navab和Ahmadi 2016),而识别任务仅使用交叉熵损失。 全局优化可以写成
请注意,预训练步骤实际上是一次性的任务,然后将主要学习CMA和IMA以适应该识别任务。 与以前需要平衡检测和识别权重的方法相比,MANGO的端到端结果主要由最终识别任务监督。
在推断阶段,网络输出一批(S×S)概率矩阵(L×M)。 根据中心线分割任务的预测,我们可以确定哪些网格应视为有效。 我们首先进行“广度优先搜索”(BFS),以找到各个相连的区域。 在此过程中,可以过滤许多类似文本的纹理。 由于每个连接区域可能与多个网格相交,因此我们采用字符加权投票策略来生成最终的字符串,如图3所示。
具体来说,我们计算连接区域i与网格j之间的连接率o i,j 作为每个字符的权重。 对于实例i的第k个字符,其字符加权投票结果通过
我们列出了本文使用的数据集如下:训练数据。我们使用SynthText 800k(Gupta,Vedaldi和Zisserman 2016)作为预训练数据集。利用实例级注释和字符级注释对PMA模块进行预训练。在微调阶段,我们旨在获得一个支持常规和非常规场景文本读取的通用文本点。在这里,我们构建了一个用于微调的通用数据集,其中包括来自Curved SynthText的150k图像(Liu等人2020),从COCO-Text过滤的13k图像(Veitet等人2016),从ICDAR-MLT过滤的7k图像(Nayefet等人2019)以及ICDAR2013(Karatzas等人2013),ICDAR2015(Karatzas等人2015)和Total-Text(Ch'ng and Chan 2017)中的所有训练图像。请注意,这里我们仅使用实例级别的注释来训练网络。测试数据集。我们在两个标准文本点标基准ICDAR2013(Karatzas等人2013)(IC13)和ICDAR2015(Karatzas等人2015)(IC15)中评估了我们的方法,其中主要包含水平和透视文本,以及两个不规则的基准Total-Text(Ch'ng和Chan 2017)和SCUT-CTW1500(Liu等人2019)(CTW1500),其中包含许多弯曲文本。车牌识别数据集CCPD中我们方法的能力(Xuet )。
所有实验均在Pytorch中使用8×32 GB-Tesla-V100 GPU进行。网络详细信息。特征提取器使用ResNet-50(He等人2016)和FPN(Lin等人2017a)从不同的特征图中获取融合特征水平。这里,C = 256的(4×)特征图用于执行后续的训练和测试任务.Lis设置为25以覆盖大多数场景文本单词。 BiLSTM模块有256个隐藏单元,训练详细信息,所有模型均由SGDoptimizer进行训练,批处理大小= 2,动量= 和重量衰减= 1×10−4。在预训练阶段,以10个周期的初始学习比率1×10-2训练网络。每3个周期将学习率除以10.在微调阶段,初始学习率设置为1×10-3。为了平衡每批中的合成图像和真实图像的数量,我们将Curved SynthText数据集与其他真实数据集的采样比率保持为1:1。微调过程持续250k次迭代,其中学习率在120k迭代和200k迭代时除以10.我们还对所有训练过程进行数据扩充,包括1)将输入图像的较长边随机缩放为长度在[720,1800]范围内,2)将图像随机旋转[-15°,15°]范围内的角度,以及3)对输入图像应用随机的亮度,抖动和对比度。在不同的数据集中,我们将IC15的评估值设置为S = 60,将IC13,Total-Text和CTW1500的评估值设置为S = 40。我们将所有权重参数简单地设置为λ1=λ2=λ3=λ= 1。测试细节。由于输入图像的尺寸是重要的重要影响性能,因此我们将报告不同输入比例下的性能,即保持原始比例和将图像的较长边调整为固定值。所有图像都在单一尺度上进行测试。由于当前的实现方式仅提供了粗略的定位,因此,我们通过考虑IoU> 的所有检测结果,修改(Wang,Babenko和Belongie 2011)的端到端评估指标。在这种情况下,由于某些低等级的建议匹配而导致精度下降,先前方法的性能甚至会下降。
常规文本的评估我们首先根据常规评估指标(Karatzas等,2015)对IC13和IC15的方法进行评估,然后基于三种不同的lexi-cons(强)对两个评估项目( 端到端''和 单词斑点'')进行评估,弱和通用)。表1显示了评估结果。与使用常规词典评估的先前方法相比,我们的方法在“通用”项目上获得了最佳结果(除了IC15的端到端通用结果之外),并在其余评估项目上获得了竞争结果(强”和“弱”)。与最近使用特定词典的最新MaskMaskTextSpotter(Liao et )相比,我们的方法在所有评估项目上均明显优于该方法。尽管推理速度很高,但FOTS的FPS最高(帧数第二),它无法处理不正常的情况。与基于不规则的方法相比,我们的方法获得了最高的FPS。不规则文本的评估我们在Total-Text上测试了我们的方法,如表2所示。我们发现我们的方法比最先进的方法高出%和 “无”和“满”指标中的百分比。请注意,即使没有明确的纠正机制,我们的模型也只能在识别监督的驱动下才能很好地处理不规则文本。尽管在1280的测试规模下,推理速度约为ABCNet的1/2,但我们的方法取得了显着的性能提升。我们还在CTW1500上评估了我们的方法。报告端到端结果的作品很少,因为它主要包含行级文本注释。为了适应这种情况,我们在CTW1500的训练集上对检测分支进行了重新训练,以学习线级中心线分割,并确定主干和其他分支的权重。请注意,识别不会受到影响,仍然会输出单词级序列。最终结果将根据推断的连接区域简单地从左到右连接起来。汉字设置为NOT CARE。结果如表3所示。我们发现,在“无”和“满”度量标准下,我们的方法明显比以前的提升了%和%。因此,我们相信,如果只有行级注解的数据足够多,我们的模型就可以很好地适应这种情况。
图4可视化了IC15和Total-Text上的端到端文本发现结果。 我们详细显示了字符投票之前每个正网格(oi,j> )的预测结果。 我们看到我们的模型可以正确地专注于相应的位置并学习任意形状(例如弯曲或垂直)文本实例的字符序列的复杂读取顺序。 采取字符投票策略后,将生成具有最高置信度的单词。我们还用可视化的CMA演示了CTW1500的一些结果,如图5所示。请注意,我们仅根据数据集的位置微调线级分割部分 标签,同时固定其余部分。在这里,我们通过将所有网格的注意图覆盖在相同的字符位置(k)上来可视化CMA的特征图:
网格编号的消除网格编号S2是影响最终结果的关键参数。如果太小,则占据相同网格的文本太多。否则,太大的S会导致更多的计算成本。在这里,我们进行实验以找到不同数据集的S的可行值。从表4中,我们发现IC13和TotalText的bestS均为40。 IC15的值为60。这是因为IC15包含更多密集和较小的实例。总而言之,当S> = 40时,总体性能随沙的增加而稳定。当然,FPS随S的增加而略有下降。信息。为了证明这一点,我们还进行了实验,以矩形边框的形式转移所有本地化注释。我们仅采用RPN头作为检测分支。表5显示了IC15和Total-Text的结果。即使进行严格的位置监控,MANGO的性能也只能降低0%到3%,并且可以与最新技术相比。请注意,粗略位置仅用于网格选择,因此可以根据特定任务的要求尽可能简化它。
为了证明模型的泛化能力,我们进行了实验以评估CCPD公共数据集上的端到端车牌识别结果(Xu et )。为了公平起见,我们遵循相同的实验设置,并使用带有250k图像的数据集的初始版本。 CCPD-Base数据集分为两个相等的部分:用于训练的100k样本和用于测试的100k样本。有6个复杂的测试集(包括DB,FN,旋转,倾斜,天气和挑战)用于评估算法的鲁棒性,总共有50k张图像。由于CCPD中的每个图像仅包含一个板,因此可以通过删除来进一步简化我们的模型检测分支直接预测最终字符序列。因此,网格数减少为S = 1,最大序列长度设置为L =8。我们直接对模型进行微调(已通过SynthText进行了预训练)在CCPD训练集上仅使用序列级注释,然后评估上述七个测试数据集的最终识别准确性。测试阶段是对尺寸为720×1160的原始图像执行的。 表6显示了端到端识别结果。尽管所提出的方法不是为车牌识别任务设计的,但仍然可以轻松地转移到这种情况下。我们看到,提出的模型在7个测试集中的5个中优于以前的方法,并达到了最高的平均精度。图6显示了CCPD测试集的一些可视化结果。故障样本主要来自图像太模糊而无法识别的情况。该实验表明,在许多情况下,只有一个文本实例(例如,工业印刷识别或仪表拨盘识别),可以使用良好的端到端模型无需检测注释即可获得。
在本文中,我们提出了一种名为MANGO的新颖的单阶段场景文本查找器。 该模型删除了RoI操作,并设计了位置感知注意模块来粗略定位文本序列。 之后,应用轻量级序列解码器以将所有最终字符序列成批获取。 实验表明,我们的方法可以在流行基准上获得具有竞争力的,甚至最先进的结果。
之前也是为论文苦恼了半天,网上的范文和能搜到的资料,大都不全面,一般能有个正文就不错了,而且抄袭的东西肯定不行的,关键是没有数据和分析部分,我好不容易搞出来一篇,结果还过不了审。 还好后来找到文方网,直接让专业人士帮忙,效率很高,核心的部分帮我搞定了,也给了很多参考文献资料。哎,专业的事还是要找专业的人来做啊,建议有问题参考下文方网吧 下面是之前文方网王老师发给我的题目,分享给大家: 基于深度学习的无人机地面小目标算法研究 基于视觉的智能汽车面向前方车辆的运动轨迹预测技术研究 模拟射击训练弹着点检测定位技术研究 基于深度卷积神经网络的空中目标识别算法的研究 基于可见光图像的飞行器多目标识别及位置估计 无人驾驶车辆手势指令识别研究与实现 车载毫米波雷达目标检测技术研究 基于多传感融合的四足机器人建图方法 中老年人群跌倒风险评估的数据采集系统 基于深度学习的视觉SLAM闭环检测方法研究 真实图片比较视觉搜索任务的年龄效应及对策研究 室内复杂场景下的视觉SLAM系统构建与研究 基于双目内窥镜的软组织图像三维重建 学习资源画面色彩表征影响学习注意的研究 毫米波雷达与机器视觉双模探测关键技术的研究 语义地图及其关键技术研究 多重影响因素下的语音识别系统研究 基于卷积神经网络的自主空中加油识别测量技术研究 基于视觉语义的深度估计、实例分割与重建 重复视觉危险刺激——本能恐惧反应的“二态型”调控机制研究 低成本视觉下的三维物体识别与位姿估计 面向非规则目标的3D视觉引导抓取方法及系统研究 基于物体识别地理配准的跨视频行人检测定位技术研究 基于结构光的非刚体目标快速三维重建关键技术研究 基于机器视觉的动物交互行为与认知状态分析系统 关于单目视觉实时定位与建图中的优化算法研究 动态场景下无人机SLAM在智慧城市中的关键技术研究 面向视觉SLAM的联合特征匹配和跟踪算法研究 基于深度学习的显著物体检测 基于平面波的三维超声成像方法与灵长类动物脑成像应用研究 基于物体检测和地理匹配的室内融合定位技术研究 基于多模态信息融合的人体动作识别方法研究 基于视觉惯性里程计的SLAM系统研究 基于语义信息的图像/点云配准与三维重建 基于种子点选取的点云分割算法研究 基于深度学习的场景文字检测与识别方法研究 基于运动上下文信息学习的室内视频烟雾预警算法研究 基于深度学习的垃圾分类系统设计与实现 面向手机部件的目标区域检测算法的设计与实现 电路板自动光照检测系统的设计与实现 基于机器视觉的工件识别与定位系统的设计与实现 基于深度学习的物件识别定位系统的设计与实现 基于视觉四旋翼无人机编队系统设计及实现 基于视觉惯导融合的四旋翼自主导航系统设计与实现 面向城市智能汽车的认知地图车道层生成系统 基于深度学习的智能化无人机视觉系统的设计与仿真 基于知识库的视觉问答技术研究 基于深度学习的火灾视频实时智能检测研究 结构化道路车道线检测方法研究 基于机器视觉的带式输送机动态煤量计量研究 基于深度学习的小目标检测算法研究 基于三维激光与视觉信息融合的地点检索算法研究 动态环境下仿人机器人视觉定位与运动规划方法研究 瓷砖铺贴机器人瓷砖空间定位系统研究 城市街景影像中行人车辆检测实现 基于无线信号的身份识别技术研究 基于移动机器人的目标检测方法研究 基于深度学习的机器人三维环境对象感知 基于特征表示的扩展目标跟踪技术研究 基于深度学习的目标检测方法研究 基于深度学习的复杂背景下目标检测与跟踪 动态扩展目标的高精度特征定位跟踪技术研究 掩模缺陷检测仪的图像处理系统设计 复杂场景下相关滤波跟踪算法研究 基于多层级联网络的多光谱图像显著性检测研究 基于深度结构特征表示学习的视觉跟踪研究 基于深度网络的显著目标检测方法研究 基于深度学习的电气设备检测方法研究 复杂交通场景下的视频目标检测 基于多图学习的多模态图像显著性检测算法研究 基于面部视频的非接触式心率检测研究 单幅图像协同显著性检测方法研究 轻量级人脸关键点检测算法研究 基于决策树和最佳特征选择的神经网络钓鱼网站检测研究 基于深度学习的场景文本检测方法研究 RGB-D图像显著及协同显著区域检测算法研究 多模态融合的RGB-D图像显著目标检测研究 基于协同排序模型的RGBT显著性检测研究 基于最小障碍距离的视觉跟踪研究 基于协同图学习的RGB-T图像显著性检测研究 基于图学习与标签传播优化模型的图像协同显著性目标检测 姿态和遮挡鲁棒的人脸关键点检测算法研究 基于多模态和多任务学习的显著目标检测方法研究 基于深度学习的交通场景视觉显著性区域目标检测 基于生物视觉机制的视频显著目标检测算法研究 基于场景结构的视觉显著性计算方法研究 精神分裂症患者初级视觉网络的磁共振研究 基于fMRI与TMS技术研究腹侧视觉通路中结构优势效应的加工 脑机接口游戏神经可塑性研究 基于YOLOV3算法的FL-YOLO多目标检测系统 基于深度与宽度神经网络显著性检测方法研究 基于深度学习的零件识别系统设计与研究 基于对抗神经网络的图像超分辨算法研究 基于深度学习复杂场景下停车管理视觉算法的研究与实现 镍电解状态视觉检测与分析方法研究 跨界训练对提升舞者静态平衡能力的理论与方法研究 施工现场人员类型识别方法的研究与实现 基于深度学习的自然场景文字检测方法研究 基于嵌入式的交通标志识别器的设计 基于视觉感知特性与图像特征的图像质量评价