小学数学教与学过程需要实施研究性学习,基于研究性学习的小学数学教学需要小学数学教师在具体教学中创设一个类似于科学研究的情境。本文是我为大家整理的浅谈小学数学教学法论文,欢迎阅读! 浅谈小学数学教学法论文篇一 1、研究性学习内涵 小学数学教与学过程需要实施研究性学习,即在教学中,主张教师设定具体的课题,通过一系列活动,学生已掌握的知识与技巧及搜索的相关信息等进行综合,学生自主地建构与更新知识体系,培养学生探索能力及自主学习的精神。基于研究性学习的小学数学教学需要小学数学教师在具体教学中创设一个类似于科学研究的情境,引导同学们通过科研的 方法 搜集与获取大量知识信息,解决课题的疑问与问题,实现学生探索性的建构知识体系,实现学生的学习过程与科学研究过程相结合。 2、基于研究性学习的小学数学教学 措施 2.1营造研究性学习的学习环境 营造研究性学习的学习环境包括两方面,第一,宽松、愉快、平等的环境;第二,合作、探究的环境。前者的作用主要是调动学生研究性学习的兴趣,而后者是加强生生间、师生间的交流。例如,学习“立体图形的认识”章节时,可以通过演示课件“立体图形的认识”章节时,利用汇总的方式向学生展示不同的图形,使学生在动画中提升学习的兴趣。例如,学习“立体图形的认识”时,第一步:(1)教师可以引导同学以组为单位一起回忆:a援长方体的特征援b援想一想你是从那几方面对长方体的特征进行 总结 的。(点:有八个顶点;线:有十二条棱,相对的四条棱的长度相等;面:有六个面都是长方形,有时有相对的两个面都是正方形,每相对的两个面面积相等;)。(2)教师总结:我们通过点、线、面三个方面对长方体的特征进行总结。第二步:(1)教师可以引导同学以组为单位一起回忆:a援正方体的特征。b援想一想你是从那几方面对正方体的特征进行总结的。(点:有八个顶点;线:有十二条棱,每条棱的长度都相等;面:有六个面都是正方形,并且每个面的面积都相等;)。第三步,共同讨论:(1)长方体与正方体有什么共同特征呢(2)长方体与正方体有什么不同之处呢?相同点:长方体与正方体都有6个面,12条棱和8个顶点援不同点:a援“线”上的不同点:长方体的棱分别是相对的4条棱相等,分别叫做长方体的长、宽、高,而正方体的12条棱全部相等,叫做正方体的棱长。b援“面”上的不同点:长方体至少有4个面是长方形,而正方体的6个面都是正方形。(3)长方体与正方体有什么关系?正方体是特殊的长方体。通过这样的环境的研究性学习,使学生进一步认识学过的一些立体图形的特征,掌握不同立体图形之间的异同,使学生能够灵活运用所学过的立体图形的特征解决简单的实际问题,进一步发展学生的空间观念。 2.2列举与搜集与生活联系的例子 数学来源于生活,数学知识解决生活中的问题。列举与搜集与生活联系的例子引导学生进行探究性的学习与解决,从而不断的调动学生学习数学的兴趣和热情,不断的利用自己掌握的知识去积极的解决与探索生活中的相关问题,最终提升学生发现问题与解决问题的能力。例如,学习“量的计量”章节时,教师可以通过“同学们,改革开放以来,我国采用了国际上通用的法定计量单位,你能 说说 这是为什么吗”来导入新课程;利用自学的方式进行具体知识点的简单熟悉;并且利用如下例题来引导学生进行探究性的练习:一枝铅笔长176();一个 篮球 场占地420();一张课桌宽52();一个火柴盒的体积是21();一间教师的面积是48();一种保温瓶的容量是2()10麻袋大米约1();l个鸡蛋约6.5();1棵白菜约2.5();1名六年级学生体重是40();测量两件家具,记录各边的长度,算出表面积和体积;称出两件炊具的质量并记录下来;调查父母的出生年、月、日,算一算平年还是闰年;记录自己从家到学校所用的时间。 2.3创设与给予学生研究性学习的条件 如果教师不能创设与给予学生研究性学习的条件,就不能真正的调动学生探索与实践热情,也不能调动学生的创新能力,学生研究性学习的效果将不明显。所以,基于研究性学习的小学数学教学措施需要包括创设与给予学生研究性学习的条件。例如,学习“条形统计图”章节时,教师可以搜集条形、拆线和扇形统计图等统计图的具体表现形式,并让学生搜集各年级的学生数量且绘制条形统计图:一年级:一班40人,二班38人;二年级:一班40人,二班40人;三年级:一班41人,二班38人,三班36人;四年级:一班36人,二班38人;五年级:一班44人,二班39人;六年级:一班37人,二班42人。或者教师可以给出学生如下数据让学生根据表中的数据。通过此过程,可以使学生有机会主动地绘制条形统计图,掌握制条形统计图的一般步骤,能看图准确地回答问题。 2.4建构学生研究性学习的平台 小学数学研究性学习过程中,需要教师为学生建构学生研究性学习的平台,引领学生观察生活、关注身边数学问题。例如,学习“量的计量”章节时,教师可以专门设置研究性学习的课堂,使学生能够进一步理解采用法定计量单位的重要意义,系统的复习与掌握长度、面积、体积、质量、时间单位,以及具体换算,及各种计量单位间的进率。 3、结论 综合上述的内容我们可知,基于性研究性的学习教学可以使学生实现有效学习,并指导学生怎么运用知识与建立知识联系,有效地获取新知识,形成知识体系。基于性研究性的学习教学这种方法是一项被广泛宣传与运用的 学习方法 。 作者:周小如 工作单位:浙江省温州市龙湾区永昌第三小学 浅谈小学数学教学法论文篇二 一、创新教学法让学生自主学习 小孩子从小就要进入学校里面学习,但是没有人问过他们愿不愿意,换句话说,他们是在老师、家长的压力下才会“认真学习”的。这种学习过程叫做被动学习,学习的效果效率低,且浪费时间。传统的教学就是单纯的“灌输式”学习,没能充分发挥学生们的主动性。采用创新 教学方法 ,让学生成为课堂的主人。一位 教育 家曾经说,最好的教育是让被教育者不知道自己已经受教。数学老师要把问题摆在同学们的面前,让他们去思考解决这些问题。在解决问题的过程中,学生可以向老师寻求帮助,老师给予一定的指导。老师上课之前要给同学们设计好开课的问题,并将学生分为几个小组,让他们先自己选择题目解决,然后老师再做总结。这就要求老师所出题目要蕴含本节课的知识,或者是能够回顾上一节课的知识。小组成员的分配也要合理,不能够顾此失彼,要公平公正。这样能够让学生们进行自主的探索,从各个方面思考解决问题的方案,然后再讨论。这种过程能够增强学生们自主学习和合作学习的能力,还能够加强学生解决问题的能力。 二、创新教学法培养学生的创新能力 虽然说数学是一门严谨的科学,但是,那是对解题的答案或方法的正确性来说的。对于一个数学问题我们可以从多个方面思考,然后采用多种解决方法。但是传统的小学数学教育,严重禁锢了学生的 创新思维 。遇到一个问题,老师就会将标准方法告诉学生,然后同学们按照这个思路进行思考。等下次遇到类似的问题的时候,学生就可以“照葫芦画瓢”,按照之前的解题模式做出正确的答案。虽然这样的方法能够增加同学们做题的正确率,但是却减少了学生创新的机会。如果长此以往,数学问题解题方法永远不可能简单化。创新教学法不但是一种教学方法的创新,更是一种创新思想的传递。就像是“蝴蝶效应”一样,用老师的创新带动学生的创新。采用不同传统教学方法的创新教学法,将数学多维立体地展示在学生的面前,让他们自由地思考、自由地解题。比起传统的套模板式的做题方法,自己想出的方法可能既复杂又麻烦,但是这是敢于尝试的表现,这种精神才是学习所需要的精神,这种“不做对不放弃”的毅力才是学习所需的毅力。老师在教学时要将自己和学生摆在一样的高度,只有这样老师才会去认真听取学生的解题意见,才会采纳学生的解题方法,这样才能够促进创新。另外对于教学方法的创新,老师也可以听取学生的意见。不要认为学生不懂得教学,他们的观点缺乏实践性。但是毕竟教学的对象是学生,他们了解自己喜欢和能够接受怎样的教学方式,知道怎样的教学才能引起自己的兴趣。也许学生给老师提的建议比较“理想化”,但是只要老师稍加修改,或是将里面可行的元素融入自己的教学当中,那么就能够找到一套适合学生的教学新方法。对于别的老师的创新教学法也要合理利用,绝对不能照搬。因为使用的对象不一样,要根据自己的学生加以修改,因材施教。 作者:唐世明 工作单位:重庆市巫山县石碑小学 浅谈小学数学教学法论文篇三 1.合理分组 合作学习,是体现一个团体的合作能力,可让学生明白团结合作的重要性。合作学习首先一定要合理地分组。一般而言,合作学习小组4人最合适,最好遵循“就近原则”选择小组成员。如果是年纪较小的学生,则可两人一组,即同桌合作。合理建组便于成员合作,同时可以激发各组间的竞争,这样易于形成和谐的学习气氛,同学们之间可以强弱互补,共同进步。建组应注意优、中、差生之间的组合和学生之间的性格、 兴趣 爱好 、学习能力与身高等各种外在因素的互补,同时需遵循“组内异质,组间同质”的原则[1]。在小组分配完成后,要进行民主推荐,选出各个小组的组长,并依照性格特点分配组内其他成员的负责要点与任务,这样的分配保证每个成员都能发挥自己最佳状态,使任务快速圆满完成。在每个成员完成各自的任务后,应让他们尝试另一个角色中的工作,使他们能弥补自己的不足,得到更多的 经验 [2]。例如,在讲授“小小的商店”这一章节中,教师可以在班级内开起“小商店”,学生的各种小玩具、文具等均为商店里的物品,而学生则扮演顾客、店长、店员、收银员等各种用角色,此时教师需对学生进行合理分组,如分为顾客组、收银员组、店员组等。在这个教学活动中,如果不分组或分组不科学,则可易产生混乱的局面,降低合作学习效率。 2.科学开展小组合作 在小学数学教学中,不是每个学习内容都需要合作学习的方式,教师应从实际情况出发,比如学生的接受能力、教学的环境设备、适合的时机等因素,选择适合的方式让学生进行学习。如果教学内容在学生较容易接受的范围内,就让学生个人独立完成学习或进行集体授课;如果知识点多、学习复杂的内容,就可以小组合作完成,即合作学习[3]。学生是否能充分体会合作学习中的乐趣,主要取决教师是否采用了有效的引导方式。教师在展开活动的过程中,要尊重每位参与的学生,无论“差生”或优生,都要做到一视同仁,特别是在学习上成绩比较差的学生,更要尽心保护他们脆弱的心灵,尽量消除他们自卑感等。教师还应及时了解各组学习情况,并对每个小组作出评价、建议与鼓励。而能使合作学习有成效的重要条件之一是:充裕的学习时间。教师让小组进行操作、研究、探讨、交流思考的过程中,要使每个学生都能有发言和提问的机会,使学生能相互补充,互相进步,这需要教师留有充裕的时间让他们进行自主思考,在解决问题后才会豁然开朗,记忆深刻,合作学习才会有显著的成效[4]。例如在讲授“圆的认识”这一章节时,教师可将全班分为五组,让学生分组找出生活中是圆形的物体,看哪组找出的物体最多,在讲解关于“圆”的相关知识后,教师又可分组进行合作学习,即让学生分组进行练习,看哪一组能够较准确地画出圆形,准确地测量出所画的圆形的半径与直径。教师在这个过程中需要对学生进行积极引导。 3.重视个人与小组评价 在合作学习中,教师对学生的评价、建议与鼓励都是至关重要的,这对学生以后的学习起到很大的积极作用,所以教师应该重视对学生的评价,更应慎重考虑才可以说出每一句评语。教师要做到这样,首先要将个人评价与小组评价进行有机结合,既要注重个人评价,又要注重小组评价,肯定个人在小组合作中的重要性,对学生之间出现的合作互助关系给予表扬;其次要注重学习过程中和学习结果的评价,尤其要注重学习过程中的评价,肯定学生合作过程中的表现,并对合作过程中存在的问题给予相应的指导,使学生及时纠正错误[5]。综上所述,小组合作是小学数学课堂教学中有效教学的方法,其不仅可以让小学生学习到基础的数学知识,而且可以培养小学生的合作精神,同时可以活跃课堂氛围,提高学生的学习热情,有助于提高教学效率和质量。 作者:王景坤 工作单位:赤峰市巴林左旗杨家营子寄宿制学校
数学是一门与实际生活联系密切的学科,最终服务于生活,高效率课堂教学模式的建立首要条件是转变教学观念,建立以学生为主体的学习模式。本文是我为大家整理的浅谈小学数学课堂教学论文,欢迎阅读! 浅谈小学数学课堂教学论文篇一 摘要:随着新课改的进行,小学 教育 的形式与内容在一定程度上也得到了继承和发展。数学作为小学基础教学的重要组成部分,其教学形式与教学内容也得到不断的丰富与革新。但是,在实际教学中,仍旧存在一些问题,基于此,本文从小学数学教学的形式、内容等方面展开分析、归纳,探究有效的教学策略,为提高教学效率做好充分准备。 关键词:小学数学;教学现状;对策分析 探究课堂教学的状及问题,针对这些问题对症下药,对顺利推动素质教育的开展,减轻学生的课业负担方面发挥着重要作用。尽管素质教育渗透的主要途径是课堂,但是,仍然有很多问题需要解决,这些问题显然是和素质教育的要求不符的。因此,本文就这些问题,展开有效策略,目的在于推动教学进程。 1常见的课堂教学现状 1.1忽略学生综合能力的培养:在课堂教学中,很多数学教师只重视课堂知识的讲解以及学生的解题能力,但是却忽略了学生综合能力的培养。只是通过大量的习题让学生巩固和掌握学习的知识,但是,并没有让学生自主学习,独立思考,学生的 创新思维 也没有得到有效锻炼。这样教学显然是违背了素质教育的教学要求的。 1.2课堂情境设计流于形式,缺乏针对性:情境教学可以说是新课标教学中非常重要的一项教学形式,通过情境教学为学生营造良好的教学氛围,提高学生的思维活性与参与积极性。但是,现阶段的教师在引入情境教学的过程中,仍旧存在一定的认识误区,造成为了情境而设计情景的教学局面。在设计教学情境时,很多教师盲目地开展活动,制造一些和数学知识不相关的情境,尽管这样的教学能提高学生的学习兴趣,活跃课堂学习气氛,但是,并不能将教学情境和数学学习有机结合起来,导致了课堂资源的浪费,这样的教学也不能取得预期的教学效果。 1.3自主学习变成了放任自流:新课改要求培养学生自主学习的能力,但是并不是要求教师在教学的过程中放任学生自己。但是,很多教师对自主学习的认识过于片面,认为自主学习就是学生自己的事情,教师只要组织了丰富的自主学习的形式,让学生自己进行探究学习就行了,实际上,教师在这个过程中,并没有给学生制定出一定要求和必要的指导,自主学习活动也过于敷衍,目的性不强,学习目标不明确,这样的教学不仅不能达到自主学习的目的,有时候还浪费了课堂宝贵的时间,降低了课堂的教学效果。 2针对现状对症下药 2.1从简教学,不给学生造成学习难的压力:作为教师的我们首先要把课本“吃透”。所谓“吃透”,既要熟悉相关的知识点,而且还能用学生普遍都能接受的方式表达出来使学生轻松接受。对于课下作业,要遵循着少而精的原则,不能一味地采用多做题的手段来使学生强化记忆。教师也要多联系学生家长,共同谈论学生的学习存在的问题与困惑。和家长配合好,不要让家长一味给学生报补习班增大学生压力。在 学习 方法 ,学习空间与学习理念上尽可能保持一致,传授给学生一些科学的学习方法,尽量少给他们增添心理上的学习负担。 2.2转变教学观念:数学是一门与实际生活联系密切的学科,最终服务于生活,高效率课堂教学模式的建立首要条件是转变教学观念,要建立以学生为主体的学习模式,引导学生想学、会学、善学。小学生不能单纯地对数学学习和教学活动进行模拟,更不能依赖教师讲解和习题模拟,在新课改理念背景的引导下,应提倡小学生要动手实践、自主探索以及合作交流,教师要带领学生走出课堂,使学生感受到数学和生活的联系,用数学思维观察周围的实物,提高学生的学习能力。此外,教师还也将具有实际生活意义的教学方式引入到课堂教学当中,目的是为了培养学生的发散性思维,促进学生的全面发展服务的。 2.3更新教育理念,明确教学目标:时代的快速发展要求学校以培养创新型的素质人才为目标,教育系统、学校、教师都应该深化素质教育的理念。每一位教师首先都要明白自己的责任,在教学的过程中也要主动使用正确的知识结构,在教授专业知识的同时注重对学生全方位的培养。例如,在实际教学过程中,教师要注意对学生的情感引导,注重激发他们的创新能力,为增强学生的学习自信心打下坚实的基础。 2.4丰富课堂活动,强化学生能力培养:教师在教学过程中也要把握住讲课的时间、节奏,严防教学中出现机械的讲解,让学生感到枯燥,被动接受知识的灌输等现象的发生。要主动将新教学模式带进课堂教学中,结合实际课堂教学目标匹配出恰当的教学形式,这样,既能提高学生的学习兴趣,同时还不会偏离原有的教学目标,有助于提高课堂的教学效果。此外,也能帮助学生提高学生的积极动手能力,让学生都有激情主动探究知识,不至于因为乏味而上课不认真、开小差。 2.5实施合作学习:合作学习可以将学生联系在一起,每个小组在完成任务中,小组成员之间也要相互探讨,彼此分析。在这种环境下,学生的创新思维与独立思考问题的能力很大程度上都能得到锻炼,团队合作意识也会得到有效发展。合作学习的有效开展还能促使学生参与到活动中来,有利于培养他们的自主学习意识,提高学习成绩。综上所述,数学教师在指导教学中,必须具备完备的数学学科知识以及丰富的教学手段,与时俱进,及时吸收新的教学理念,掌握新的教学思想和方法,不断提高教学水平,结合现状,对症下药,为促进小学生综合素质的全面发展做好准备。 作者:朱雪松 单位:河北省沧州市盐山县实验小学 参考文献: [1]陈金晶,张国秀.因地制宜因材施教———农村山区小学拼音教学现状分析与对策[J].教育革新2011年12期. [2]孙江波.以培养科学素养为宗旨的科学教育———小学科学教学现状分析与建议[J].湖南教育(上)2016年01期. [3]李柳英.小学数学“简便计算”教学现状分析与策略研究[J].小学教学参考2014年26期. 浅谈小学数学课堂教学论文篇二 摘要:近年来在新课程标准的不断推进中,我国小学数学课堂的 教学方法 一直在创新。其中,对话教学就是一种新的教学理念。对话视角下的小学数学课堂教学能够有效突出学生的主体地位,提高课堂教学的活跃性,同时还有利于培养小学生的数学 逻辑思维 ,优化小学数学课堂,提高数学教学质量。 文章 就从对话视角下分析小学数学课堂教学的模式,并提出几点优化课堂教学的策略。 关键词:对话视角;分析;小学数学;课堂教学 小学数学是小学教育中一门重要的基础学科,这阶段学生的数学学习情况将直接影响着学生将来的数学发展。但是小学数学教材中蕴含着大量抽象性、难理解的知识,导致学生的学习兴趣不高。而对话视角下的小学数学教学,充分抓住了学生的兴趣点,为学生与教师建立了一个互相平等的沟通平台,在教学中通过师生对话、生生对话、教材对话等开展教学活动。在这种教学环境中,学生有自由的发言权、主动权,从而可以有效地提高学生的数学学习效率,提升学生的数学学习能力。 一、创设情境,设置悬念 传统的小学数学教学中,教师的教学方法单一、枯燥,导致学生的学习兴趣不高,且在课堂教学中时常会出现跑神的现象,这样的教学模式与教学观念不利于学生的学习。对此,在对话教学中,教师可以通过创设问题境为学生设置悬念,引发 学生的好奇心,激发学生的学习兴趣,增强师生间在课堂上的交流。例如,教师在讲到“认识周长”这一教学内容时,讲课前可以为学生创设问题情境:“同学们知道‘周’是什么意思吗?”这时学生可能回答“姓氏”“星期”“周围”“一圈儿”等,教师据此可为学生引出教学内容“周长”。在讲课之前,教师可以让学生回答周长是什么意思,以了解学生对周长的理解情况。在学生回答之后,教师可以对学生的回答做出 总结 ,并引出周长的概念:“首尾相连的封闭图形一周的长度叫周长。”教师可以借助多媒体制作出相关动画,如:出示一张长方形的图片,然后用红色的笔标出长方形的周长,并告知学生红色笔标出的长度,就是该长方形的周长。在讲解之后,为了解学生的理解情况,教师可以设置问题:“你能指出我们身边物理表面的周长吗?”从学生的回答中了解学生对数学知识的掌握情况,然后根据学生的掌握情况做出有针对性的讲解。通过这种师生对话式的教学方式,可以提高学生学习数学的效率。 二、联系生活,激活思维 教育来自于生活,而又高于生活。所以在小学数学课堂教学中,教师可以根据教学内容,联系生活实际,并考虑到学生的认知规律,为其做出有针对性的教学设计。通过具体的策略,让学生从数学教材中发现问题,引导学生将自己的生活 经验 与课堂教学知识联系起来,从而激活学生对教材之间的对话,最终使学生通过探究解决问题。例如,在“小数的初步认识”这一节中,事实上,三年级的学生对小数已经不陌生了,如超市物品的价位表都是以小数的形式呈现的,对此,教师可以在课前为学生布置任务:“发现并搜集生活中的小数。”学生在任务的完成过程中,可能会思考小数为什么这样写?然后,教师可以充分抓住学生的好奇心理为学生布置自学任务:“预习课本,也可以查阅相关学习资料,讲一讲小数为什么这样写?小数点前、后的数字分别有什么意义?”通过这样的教学方式,可以增加学生与教材之间的对话,使学生在自习的过程中对生活中常见的一些数学现象有初步的理解,如超市价位表、自己的成绩等。另外,在课堂教学中,教师可以为学生设置一些思考性的问题,如“2.50与2.5的哪个大哪个小”激发学生的数学思维。这时学生在之前的自习中会发现“小数末尾去掉或加上0,小数的大小不变”。由此,学生可以知道2.50与2.5是一样大的。通过这样的方式可将学生的生活与教学相联系,从而有利于学生学以致用。 三、巧设疑问,启发思维 在小学数学教学中,教师应明确小学数学课堂教学的目标之一,就是培养学生的质疑能力。所以,在小学数学教学中,教师可以为学生设置探究性的话题,引导学生在小组合作中学习,加强学生与学生之间的对话,为学生营造和谐的学习氛围,然后引导学生之间互相提问、互相启发,在合作学习与合作探究中提升学生数学学习的有效性。例如,教师在讲到“三角形中三角形的三边关系”这一知识点时,课前,教师可以将班级学生分成若干小组,在分组时应根据学生的学习情况、性别、性格等将与班级学生相近水平的学生平均分在各组,且尽量保证各组学生男女比例相同、性格互补,以保证教学活动的顺利进行。然后教师可以给每组学生每人准备三根小木棍,并向学生提出问题:“三根不同长度的小木棍可以拼成一个三角形吗?”教师可以引导学生动手操作一下。这时,有的学生发现可以拼成,而有的学生发现不能拼成。这时教师可以再次提出问题:“这是为什么呢?”让学生提出自己的猜想,学生1猜想:两根小木棍的总和等于第三根才可以拼成;学生2猜想:随便两根小木棍的和大于第三根长度才可以拼成。教师可以让学生互相讨论之后,再次通过实验验证猜想,这时学生就能得出正确的结论。在实验结束后,教师可以根据学生的实验情况做出总结。通过这样的小组合作实验形式,可以增加学生之间的对话交流。四、设计对话,延伸知识在对话视角下进行小学数学课堂教学,教师可设计对话主题进行知识的延伸,构建新旧知识之间的联系,培养学生的创造意识与创新能力。小学生内心往往充满了对知识的好奇和探索,渴望从学习过程中有所发现和收获,得到教师和学生的肯定与认可。为此,小学数学教师需明确对话主题,让学生主动学习和探究新知识,以促进其数学能力的提升。比如,在“通分(最小公倍数;通分)”教学实践中,教师可设计这样一个对话主题:3/8-2/7=____,他们在学习通分知识之前,接触到的分数加减法都在分母相同的情况下计算,在遇到这种分母不同的现象时,往往难以着手,不知道该如何计算。要想解决这一习题,小学生需要运用新的数学知识,探究欲望被激发,教师可顺利引出新知识——通分,让他们在遇到此类问题时,可寻求两个分母的最小公倍数,从而可以很快得出8和7的最小公倍数是56,然后将3/8转化为21/56,2/7转化为16/56,很快得出计算结果。通过这样的对话教学,可让学生主动回顾旧知识,拓展新能力,主动参与对话,利用探究性的数学练习题还能够锻炼他们的思维能力,引发小学生建立新旧知识的关联,并构建完善的数学知识体系,使他们的学习思路得以拓展,知识得以延伸。总而言之,对话视角下的小学数学课堂教学中,教师可以通过情景的创设增加师生间的对话;通过联系生活实际,加强学生与教材之间的对话,然后通过探究问题,加强生生间的对话。同时在课堂教学中,教师应注意引导学生的对话形式,为学生构建多元化对话平台,从而提高学生的数学学习效率。 作者:陈艳 单位:甘肃省山丹县城关小学 参考文献: [1]夏李平.对话视角下的小学数学课堂教学策略分析[J].数学学习与研究,2015(24). [2]陈惠芳.小学数学生态课堂“对话式教学”的实践与思考[J].教育理论与实践,2014(5). 浅谈小学数学课堂教学论文篇三 【摘要】讲求教学艺术的目的,是为了提高学生的学习兴趣,实现教育教学的高效.教师如何把知识“呈现”给学生,其中大有学问,需要不断的理论学习和实践探索.小学数学与其他学科相比,显得比较单调和枯燥,这就需要我们数学教师要更加勤奋,深入钻研,用多种多样艺术化的教学方法来激发学生的学习兴趣,提高学生的感悟能力,把“知识教育”真正变为“启智教育”. 【关键词】小学数学;教学艺术;激趣;启智 小学生一般都是7—13岁之间的孩子,喜欢游戏、玩耍、娱乐,习惯于形象化、直观化的思维模式.这就需要数学教师要用适合小学生年龄特点的方式和方法把单调、抽象的数学知识“呈现”给学生,让他们能够乐于接受,趣在其中,美在其中,乐在其中.教师如何把知识“呈现”给学生,其中大有学问,需要不断的理论学习和实践探索.小学数学与其他学科相比,显得比较单调和枯燥,这就需要我们数学教师要更加勤奋,深入钻研,用多种多样艺术化的教学方法来激发学生的学习兴趣,提高学生的感悟能力,把“知识教育”真正变为“启智教育”. 一、问题设计的趣味化 孔子曰:“学之者,不如好之者;好之者,不如乐之者”.数学是从问题开始的,是以解决生产和生活中的现实问题为目的的.有趣的提问能够激发学生的学习兴趣,引导学生的思维,成为学生积极思考的桥梁.好奇心是孩子的天性,小孩子思维活跃,对新鲜事物特别感兴趣,总想探个究竟,弄懂其中的奥妙所在.尤其是在导入新课的时候,有趣的提问能够勾住学生的魂,让学生如饥似渴地想弄明白其中的道理.比如,我在上《比例尺》一节时,首先向学生提问:同学们,你们谁知道自己的家乡距离首都北京有多远?学生纷纷推断和猜测,但都很不准确.这时我亮出了中国地图,并且说:那就让我们来量一量吧.学生听说在地图上可以量出从家乡到首都北京的距离,都表现得大为惊奇,兴趣盎然.这时我们顺利地进入新课讲解,就能够牢牢地吸引住孩子们的注意力,让他们把老师讲的每一句话都视为金科玉律,并且牢牢地记在心里,印入脑海. 二、情境设计的生活化 有用才是真理,有用才是真知.要想让学生对数学知识感兴趣,就必须让学生感到数学知识有用,能够切实解决现实生活中的疑难问题.理论来源于实践,又反过来应用于实践.为此,数学教师在讲授数学知识的时候,要遵循“从实践中来,到实践中去”的唯物辩证法原理,把抽象的数学概念和公式、公理建立在现实生活中的具体应用之上.比如,我在讲授《圆的周长》一节时,首先向学生提出了这样的问题:同学们,六一 儿童 节即将来临,我们学校要开 田径运动 会.你们可知道:如何才能够精确地测量出我们学校操场跑道的长度呢?学生相互讨论,大家一致认为:用米尺实测是最好的办法.接着我又说:操场跑道将分为内外6圈,怎样才能够又快又精确地测量出各圈跑道的精确长度呢?这下子大家都傻眼了,面 面相 觑,不知所云.他们其中有人不得不发出这样的感叹:4个边的直线距离容易丈量,而4个圆角处的跑道长度就很难快速丈量出来.这时我就告诉同学们说:我这里有一种最便捷、最快速的丈量和计算方法,大家愿不愿意学呢?这时同学们都异口同声地回答:愿意!这样学生的兴趣就被充分地调动了起来,注意力高度集中,教学效果必然是最理想的. 三、教学方法的多样化 长期的、丰富多彩的教育教学实践,形成了多种多样的教学方法,比如自主探究法、小组讨论法、拼图法、实践操作法、游戏活动法、情境教学法、多媒体演示法,等等.其实,不同的教学方法就是对不同教学内容的最佳“呈现”方式,是能够最大限度地体现教育效果的方式方法.数学教师要灵活应用各种教学法,把不同类型的数学知识最有效地传授给学生,以锻炼学生的自主探究能力、实践操作能力、观察想象能力和逻辑思维能力等.比如,在教学《2、3、5的倍数的特征》时,我采用了让学生自主探究的学习方法;在教学《梯形面积的计算》时,我采用的是拼图法和实践操作法;在教学《三角形的分类》时,我采用的是多媒体演示法.教师所拥有的知识的多少与教学能力是不相同的,教师专业成长需要实践性的量的积累,是一个厚积薄发的过程.什么样的知识应该采取什么样的教学方法,不仅要课前精心预设,而且要观察效果;不仅要进行广泛的实践交流,而且要进行深刻的教学 反思 ,以便总结经验,不断丰富自己的实践性知识.数学课堂应该是丰富多彩的,教师要结合教材内容,借助多样化的教学方法来构建高效的数学课堂.数学课堂应该是张弛有度的,既要让学生学到知识,又能够让学生轻松愉快、心情舒畅. 四、施教对象的分层化 由于每一名学生的基础知识不同,智力方面存在着差异,在数学学习过程中必然会表现出优劣来.对于相同的问题和作业,优等生早已算出了答案,还有空闲时间,中等学生还在求解之中,而学困生却显得抓耳挠腮,无可奈何.针对学生客观存在的差异,就要采取差别化原则,有针对性地进行分层施教.在授课方面,在对教材内容的学习和领会上,对不同层次的学生应该有不同的要求,不能千篇一律,整齐划一.对于优等生,要以放为主,鼓励他们独立学习,多元求解,积极进行高难度的拓展练习.对于中等生,应该半扶半放,在教师点拨、合作交流的基础上进行提高性练习.对于学困生,要以扶为主,在师生讨论、小组交流的基础上进行巩固练习.教师的评价对学生的学习情绪有着很大的影响,在实施分层教学的过程中,评价标准也要有区别,尤其是对学困生,要让他们感到有收获,有成就感,以提高他们的学习信心和参与度. 作者:王晓红 单位:临泽县城关小学
论文提纲格式如下:
一、论文题目。论文题目应能概括整个论文最重要的内容,言简意赅,引人注目,一般不宜超过20个字。毕业论文的标题一般分为总标题、副标题、分标题几种。
二、目录。既是论文的提纲,也是论文组成部分的小标题,应标注相应页码。
三、摘要。摘要是全文内容的缩影。在这里,作者以极经济的笔墨,勾画出全文的整体面目;提出主要论点、揭示论文的研究成果、简要叙述全文的框架结构。
四、关键词或主题词。关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“摘要”的左下方。主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。
五、引言(或序言)。内容应包括本研究领域的国内外现状,本论文所要解决的问题及这项研究工作在经济建设、科技进步和社会发展等方面的理论意义与实用价值。
六、正文。正文是论文的主体,正文应包括论点、论据、论证过程和结论。主体部分包括以下内容:a.提出-论点;b.分析问题-论据和论证;c.解决问题-论证与步骤;d.结论。论文结论要求明确、精炼、完整,应阐明自己的创造性成果或新见解,以及在本领域的意义。
七、参考文献和注释。按论文中所引用文献或注释编号的顺序列在论文正文之后,参考文献之前。图表或数据必须注明来源和出处。
参考文献是期刊时,书写格式为:
[编号]、作者、文章题目、期刊名(外文可缩写)、年份、卷号、期数、页码。
参考文献是图书时,书写格式为:
[编号]、作者、书名、出版单位、年份、版次、页码。
八、附录。包括放在正文内过份冗长的公式推导,以备他人阅读方便所需的辅助性数学工具、重复性数据图表、论文使用的符号意义、单位缩写、程序全文及有关说明等。
数学建模论文格式模板以及要求
导语:伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,成为人们生活中非常重要的一门学科。下面是我分享的数学建模论文格式模板及要求,欢迎阅读!
(一)论文形式:科学论文
科学论文是对某一课题进行探讨、研究,表述新的科学研究成果或创见的文章。
注意:它不是感想,也不是调查报告。
(二)论文选题:新颖,有意义,力所能及。
要求:
有背景.
应用问题要来源于学生生活及其周围世界的真实问题,要有具体的对象和真实的数据。理论问题要了解问题的研究现状及其理论价值。要做必要的学术调研和研究特色。
有价值
有一定的应用价值,或理论价值,或教育价值,学生通过课题的研究可以掌握必须的科学概念,提升科学研究的能力。
有基础
对所研究问题的背景有一定了解,掌握一定量的参考文献,积累了一些解决问题的方法,所研究问题的数据资料是能够获得的。
有特色
思路创新,有别于传统研究的新思路;
方法创新,针对具体问题的特点,对传统方法的改进和创新;
结果创新,要有新的,更深层次的结果。
问题可行
适合学生自己探究并能够完成,要有学生的特色,所用知识应该不超过初中生(高中生)的能力范围。
(三)(数学应用问题)数据资料:来源可靠,引用合理,目标明确
要求:
数据真实可靠,不是编的数学题目;
数据分析合理,采用分析方法得当。
(四)(数学应用问题)数学模型:通过抽象和化简,使用数学语言对实际问题的一个近似描述,以便于人们更深刻地认识所研究的对象。
要求:
抽象化简适中,太强,太弱都不好;
抽象出的数学问题,参数选择源于实际,变量意义明确;
数学推理严格,计算准确无误,得出结论;
将所得结论回归到实际中,进行分析和检验,最终解决问题,或者提出建设性意见;
问题和方法的进一步推广和展望。
(五)(数学理论问题)问题的研究现状和研究意义:了解透彻
要求:
对问题了解足够清楚,其中指导教师的作用不容忽视;
问题解答推理严禁,计算无误;
突出研究的特色和价值。
(六)论文格式:符合规范,内容齐全,排版美观
1. 标题:是以最恰当、最简明的词语反映论文中主要内容的逻辑组合。
要求:反映内容准确得体,外延内涵恰如其分,用语凝练醒目。
2. 摘要:全文主要内容的简短陈述。
要求:
1)摘要必须指明研究的主要内容,使用的主要方法,得到的主要结论和成果;
2)摘要用语必须十分简练,内容亦须充分概括。文字不能太长,6字以内的文章摘要一般不超过3字;
3)不要举例,不要讲过程,不用图表,不做自我评价。
3. 关键词:文章中心内容所涉及的重要的单词,以便于信息检索。
要求:数量不要多,以3-5各为宜,不要过于生僻。
(七). 正文
1)前言:
问题的背景:问题的来源;
提出问题:需要研究的内容及其意义;
文献综述:国内外有关研究现状的回顾和存在的问题;
概括介绍论文的内容,问题的结论和所使用的方法。
2)主体:
(数学应用问题)数学模型的组建、分析、检验和应用等。
(数学理论问题)推理论证,得出结论等。
3)讨论:
解释研究的结果,揭示研究的价值, 指出应用前景, 提出研究的不足。
要求:
1)背景介绍清楚,问题提出自然;
2)思路清晰,涉及到得数据真是可靠,推理严密,计算无误;
3)突出所研究问题的难点和意义。
5. 参考文献:
是在文章最后所列出的文献目录。他们是在论文研究过程中所参考引用的主要文献资料,是为了说明文中所引用的的论点、公式、数据的来源以表示对前人成果的尊重和提供进一步检索的线索。
要求:
1)文献目录必须规范标注;
2)文末所引的文献都应是论文中使用过的文献,并且必须在正文中标明。
(七)数学建模论文模板
1. 论文标题
摘要
摘要是论文内容不加注释和评论的简短陈述,其作用是使读者不阅读论文全文即能获得必要的信息。
一般说来,摘要应包含以下五个方面的内容:
①研究的主要问题;
②建立的什么模型;
③用的什么求解方法;
④主要结果(简单、主要的);
⑤自我评价和推广。
摘要中不要有关键字和数学表达式。
数学建模竞赛章程规定,对竞赛论文的评价应以:
①假设的合理性
②建模的创造性
③结果的正确性
④文字表述的清晰性 为主要标准。
所以论文中应努力反映出这些特点。
注意:整个版式要完全按照《全国大学生数学建模竞赛论文格式规范》的要求书写,否则无法送全国评奖。
一、 问题的重述
数学建模竞赛要求解决给定的问题,所以一般应以“问题的重述”开始。
此部分的目的是要吸引读者读下去,所以文字不可冗长,内容选择不要过于分散、琐碎,措辞要精练。
这部分的内容是将原问题进行整理,将已知和问题明确化即可。
注意:在写这部分的内容时,绝对不可照抄原题!
应为:在仔细理解了问题的基础上,用自己的语言重新将问题描述一篇。应尽量简短,没有必要像原题一样面面俱到。
二、 模型假设
作假设时需要注意的问题:
①为问题有帮助的所有假设都应该在此出现,包括题目中给出的假设!
②重述不能代替假设! 也就是说,虽然你可能在你的问题重述中已经叙述了某个假设,但在这里仍然要再次叙述!
③与题目无关的假设,就不必在此写出了。
三、 变量说明
为了使读者能更充分的理解你所做的工作,
对你的模型中所用到的变量,应一一加以说明,变量的输入必须使用公式编辑器。 注意:
①变量说明要全 即是说,在后面模型建立模型求解过程中使用到的所有变量,都应该在此加以说明。
②要与数学中的习惯相符,不要使用程序中变量的写法
比如:一般表示圆周率;cba,, 一般表示常量、已知量;zyx,, 一般表示变量、未知量
再比如:变量21,aa等,就不要写成:a[0],a[1]或a(1),a(2)
四、模型的建立与求解
这一部分是文章的重点,要特别突出你的创造性的工作。在这部分写作需要注意的事项有:
①一定要有分析,而且分析应在所建立模型的前面;
②一定要有明确的模型,不要让别人在你的文章 中去找你的模型;
③关系式一定要明确;思路要清晰,易读易懂。
④建模与求解一定要截然分开;
⑤结果不能代替求解过程:必须要有必要的求解过程和步骤!最好能像写算法一样,一步一步的.写出其步骤;
⑥结果必须放在这一部分的结果中,不能放在附录里。
⑦结果一定要全,题目中涉及到的所有问题必须都有详细的结果和必须的中间结果!
⑧程序不能代替求解过程和结果!
⑨非常明显、显而易见的结果也必须明确、清晰的写在你的结果中!
⑩每个问题和问题之间以及5个小点之间都必须空一行。
问题一:
1.建模思路:
①对问题的详尽分析;
②对模型中参数的现实解释;这有助于我们抓住问题的本质特征,同时也会使数学公式充满生气,不再枯燥无味
③完成内容阐述所必需的公式推导、图表等
2.模型建立:
建立模型并对模型作出必要的解释
对于你所建立的模型,最好能对其中的每个式子都给出文字解释。
3.求解方法:
给出你的求解思路,最好能想写算法一样,写出你的算法。
4.求解结果:
你的求解结果必须精心设计(最好使用表格的形式),使人一目了然。
结果必须要全,对于你求解的一些必须的中间结果,也必须在这里反映出来。
5.模型的分析与检验
在计算出相应的结果之后,你必须对你的结果做出相应的解释。 因为你的结果往往是数学的结果,一般人无法理解。 你必须归纳出你的结论和建议。 这里主要应包括:
①这个结果说明了什么问题?
②是否达到了建模目的?
③模型的适用范围怎样?
④模型的稳定性与可靠性如何?
问题二:
问题三:
问题四:
问题五:
五、模型的评价与推广
这一部分应包括:
①你的模型完成了什么工作?达到了什么目的?得出了什么规律?
②你的建模方法是否有创造性?为今后的工作提供了什么思路?结果有什么理论或实际用途?
③模型中有何不足之处?有何改进建议?
④模型中有何遗留未解决的问题?以及解决这些问题可能的关键点和方向。
这一部分一定要有!
六、参考文献
引用别人的成果或其他公开的资料(包括网上查到的资料)必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中
书籍的表述方式为:
[编号] 作者,书名,出版地:出版社,出版年。
参考文献中期刊杂志论文的表述方式为:
[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。
参考文献中网上资源的表述方式为:
[编号] 作者,资源标题,网址,访问时间(年月日)。
七、附录
不便于编入正文的资料都收集在这里。 应包括:
①某一问题的详细证明或求解过程; ②流程图;
③计算机源程序及结果;
④较繁杂的图表或计算结果(一般结果只要不超过A4一页,尽量都放在正文中)。
免责声明:本站文章信息来源于网络转载是出于传递更多信息之目的,并不意味着赞同其观点或证实其内容的真实性。不保证信息的合理性、准确性和完整性,且不对因信息的不合理、不准确或遗漏导致的任何损失或损害承担责任。本网站所有信息仅供参考,不做交易和服务的根据,如自行使用本网资料发生偏差,本站概不负责,亦不负任何法律责任,并保证最终解释权。
数学小论文写作提纲
很多同学在准备比赛时,把自己的主要精力放在阅读往年优秀论文,精通某种软件和算法上面。但在比赛时,你的想法再好,如果文字表达不清楚,很有可能使你的论文前功尽弃,因此学会如何写数模论文就很有必要了。
摘要 5-6
Abstract 6-7
第1章 引言 10-12
第2章 国内外研究综述 12-16
2.1 拖延综述 12-14
2.1.1 拖延的起源 12
2.1.2 拖延分类 12-14
2.1.3 拖延的研究方法 14
2.2 学习拖延综述 14-16
第3章 数学拖延概述 16-18
3.1 数学拖延研究的必要性 16
3.2 数学拖延概念的界定 16-17
3.3 数学拖延的研究方法 17-18
第4章 诊断性拖延问卷和数学拖延量表的编制 18-34
4.1 诊断性拖延问卷的编制 18-20
4.1.1 问卷说明 18
4.1.2 诊断对象 18-19
4.1.3 诊断程式 19
4.1.4 诊断结论 19-20
4.2 数学拖延量表的编制 20-34
4.2.1 数学拖延量表(公测版)的编制 20-25
4.2.1.1 量表说明 20-22
4.2.1.2 量表对象 22-23
4.2.1.3 量表程式 23
4.2.1.4 CR分析 23-24
4.2.1.5 区分度分析 24-25
4.2.2 数学拖延量表的编制 25-34
4.2.2.1 析出阻碍因子 27-32
4.2.2.2 信度检验 32-34
第5章 数学拖延阻碍系数 34-41
5.1 阻碍因子权值的确认 34-38
5.1.1 阻碍因子标准化 34
5.1.2 特尔斐法权值的确定 34-38
5.2 拖延阻碍系数的确定 38-41
第6章 案例分析 41-51
6.1 问题分析 41-44
6.1.1 填写并计算中学生拖延量表 41-43
6.1.2 分析其数学拖延原因 43-44
6.2 问题解决 44-51
第7章 结论 51-53
7.1 总结论 51
7.2 创造性结论 51-52
7.3 不足之处及其展望 52-53
致谢 53-54
参考文献 54-56
附录 56-59
中文摘要 3-4
Abstract 4-5
1 绪论 8-12
1.1 研究背景 8-9
1.2 本研究的必要性 9-12
2 文献综述 12-20
2.1 关于教师知识 12-16
2.1.1 教师知识 12-15
2.1.2 数学教师知识 15-16
2.2 数学教师知识评价 16-20
2.2.1 国外数学教师知识评价理论 16-18
2.2.2 国内数学教师知识评价理论 18-20
3 研究设计 20-23
3.1 概念的界定 20-21
3.2 问卷编制 21
3.3 研究内容 21
3.4 研究对象 21
3.5 研究方法 21-23
4 新疆初中数学教师知识评价分析 23-27
4.1 “水平测试”简介 23-25
4.1.1 测试对象及范围 23-24
4.1.2 测试目的和意义 24-25
4.1.3 测试内容 25
4.2 等级评定办法 25
4.3 “水平测试”的'影响 25-27
4.3.1 对初中数学教师专业发展的影响 25
4.3.2 对初中数学教师师资培养的影响 25-26
4.3.3 对新疆初中数学教师职务评聘的影响 26-27
5 研究结果 27-43
5.1 两次测试简介 27-28
5.2 教师基本信息的统计及分析 28-29
5.3 初中数学教师专业基础知识掌握的现状 29-37
5.3.1 数学史知识及数学学科前沿知识匮乏 29-31
5.3.2 教师的数学学科专业基础知识薄弱 31-36
5.3.3 对于课标只是形式上的记忆,不能很好地理解其本质内涵 36-37
5.4 问题分析 37-38
5.4.1 “水平测试”的试卷结构尚不完善 37-38
5.4.2 “水平测试”的专业性不突出 38
5.4.3 “水平测试”尚未得到充分重视 38
5.5 “水平测试”评价本身的得适性与国内、国际数学教师知识评价的差异分析 38-39
5.5.1 “水平测试”评价本身的得适性与国际数学教师知识评价的差异分析 38-39
5.5.2 “水平测试”评价本身的得适性与国内教师知识评价的差异分析 39
5.6 对策与建议 39-43
5.6.1 完善“水平测试”试卷结构,适当提升考试题目难度 39-41
5.6.2 重视考核结果的处理,充分体现考试的反馈作用 41
5.6.3 完善评价的形式,对教师进行多方面考核 41-43
6 结束语 43-44
参考文献 44-47
附录 47-54
附录 1 47-51
附录 2 51-54
在读期间发表论文情况 54-55
后记 55
楼上说的似乎都太小儿科了,楼主想必是要发表的那种,当然要正式一点.http://ptc3.fjpt.cn.net/sxx/jingpin/teachersemail/paper/5-guojunmo.doc这里的一篇是偏向交作业的下面一个是正式发表的双语版本张彧典人工证明四色猜想 山西盂县党校数学高级讲师用25年业余时间研究四色猜想的人工证明。在借鉴肯普链法和郝伍德范例正反两方面做法的基础上,独创了郝——张染色程序和色链的数量组合、位置(相交)组合理论,确立了仅包含九大构形的不可免集合,从而弥补了肯普证明中的漏洞。现贴出全文(中——英文对照)及参考文献的英译汉全文。欢迎各位同仁批评指正。最后特别感谢英国兰开斯特大学A.lehoyd、兰州交大张忠辅、清华大学林翠琴、上海师大吴望名四位教授的无私帮助。附:论文用“H·Z—CP“求解赫伍德构形张彧典 (山西省盂县县委党校 045100)摘要:本文根据色链的数量和位置组合理论,用赫伍德染色程序(简称H—CP)和张彧典染色程序(简称Z—CP)找到一个赫伍德构形的不可避免集。关键词:H—CP Z—CP H·Z—CP《已知的赫伍德范例》〔1〕对求解赫伍德构形有两大贡献。其一,提供了H—CP,使我们用它找到了赫伍德染色非周期转化的赫伍德构形组合;其二,范例2提供了赫伍德染色周期转化的赫伍德构形,使我们发现了Z—CP,解决了这种构形的正确染色。为下面讨论方便,先给出〔1〕文中赫伍德构形的最简单模型。如图1所示:四色用A、B、C、D表示,待染色区V用小圆表示,其五个邻点染色用A1、B1、B2、C1、D1表示,形成的五边形区域叫双B夹A型中心区。中心区外有A1—C1链、A1—D1链(因它们的首尾分别被V连成环,故叫环,以便与开放链区分),其中还有B1—D2链、B2—C2链,A1、A2被C2—D2链隔开。其余赫伍德构形类同。在我们所设的模型中,再添加一些不同的色链后就构成许多不同的标准三角剖分图(记为G′)。当借助H—CP对它们求解时发现,其中色链的不同数量组合和相交组合直接影响解法上的差异。现在具体确立赫伍德构形的不可避免集。在后面图解中,画小横线者表示环,画粗线者表示两点以上染色互换的链,B(D)等表示一个点的染色互换。如图2: 设图1中有B1-A2链、D1-C2链(也可以是B2-A2链)存在时。其解法是:在A1—C1环内作B、D互换,生成新的A—D环(生不成情形归于下一种构形),再作A—D环外的C、B互换,可给V染C色。如图3:设图1中有C1-D2链、D1-C2链存在时。其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成新的A—C环(生不成情形归于下一种构形);再作A—C环内的B、D互换,可给V染B色。如图4:设图1中有C1-D2链、B2-A2链存在时。其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成新的B—C环(生不成情形归于下一种构形);再作B—C环内的D、A互换,可给V染D色。如图5:设图4中B1-D2链与A1-D1环相交,这时有B1-A3、C1-A3生成。其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成新的B—D环(生不成情形归于下一种构形);再作B—D环外的A、C互换,可给V染A色。如图6:设图5中C1-D2链与A1-C1环相交,为简单起见,将C1-D2链在A1-C1环外的D色点均改染B色,见图中B(带圈子的)。其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成A—C环;作A—C环外的B、D互换,生成新的A—D环(生不成情形归于下一种构形);再作A—D环内的C、B互换,可给V染C色。如图7:设图6中B1-D2链再与B1-A3链相交,为简单起见,将B1-A3链在B1-D2链内侧的A色点均改染C色,见图中C(带圈子的)。其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成A—C环;作A—C环外的B、D互换,生成B—C环;作B—C环内的D、A互换生成新的A—C环(生不成情形归于下一种构形);再作A—C环内的B、D互换,可给V染B色。如图8:设图7中有B1-D2链与C1-D2链在A1-C1环内相交。其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成A—C环;作A—C环外的B、D互换,生成B—C环;作B—C环内的D、A互换生成B—D环;作B—D环外的A、C互换,生成新的B—C环(生不成情形归于下一种构形);再作B—C环内的D、A互换,可给V染D色。图9:设图8中有B2-A2链与A1-D1环相交。其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成A—C环;作A—C环外的B、D互换,生成B—C环;作B—C环内的D、A互换生成B—D环;作B—D环外的A、C互换,生成A—D环;作A—D环内的C、B互换,生成新的B—D环;(生不成情形归于下一种构形)再作B—D环内的A、C互换,可给V染A色。如图10:这是一个十折对称的赫伍德构形。即在图3中,按图6的相交组合方式设C1—D2链与A1—C1环相交,D1—C2链与A1—D1环相交,C1—D2链在A1—C1环外的D色点与D1—C2链在A1—D1环外的C色点均改染B色,见图中B(带圈子的)。;再设改染成的C—B链、D—B链对称相交。这个赫伍德构形就是〔1〕文中范例2的拓扑变换形式。对于图10如果沿用图2—9的求解方法,就会产生四个周期转化的赫伍德构形,无法得解。但是,四个连续转化的赫伍德构形有一个共同的染色特征,即都包含A—B环,于是产生了如下特殊的Z—CP:若已知的是第一(或三)图时,先作A—B环外的C,D互换,生成新的A—C,A—D(或B—C、B—D)环,再作B(D)、B(C)[或A(D)、A(C)]互换,使五边形五个顶点染色数减少到3。解如图10(1)和图10(3)。若已知的是第二(或四)图时,先作A—B环外的C,D互换,生成了新的B—C(或A—D)链,再作B—C(或A—D)链一侧的A(D)[或A(C)〕互换,使五边形五个顶点染色数减少到3。解如图10(2)和10(4)。下面从理论上证明图2—10组成的不可避免集的完备性。在已四染色的G’中,由A、B、C、D四色中任意二色组成的不同色链共C42(=6) 种。反映在赫伍德构形中,有始点终点均在中心区且相交的A1-C1环、A1-D1环,还有始点在中心区,终点在A1-C1、A1-D1二环交集区域边缘上的B1-D2、B1-A2(B2-A2)、B2-C2、C1-D2(D1-C2)四种链。这四种链在赫伍德构形中的不同数量组合共四组:B1-A2、B1-D2、B2-C2、B2-A2B1-A2、B1-D2、B2-C2、D1-C2C1-D2、B1-D2、B2-C2、B2-A2C1-D2、B1-D2、B2-C2、D1-C2而六种色链中任意两种色链的不同位置组合共C62(=15)组。其中有三组不可相交组合:A-B与C-D、A-C与B-D、A-D与B-C;还有12组可相交组合:A-B与A-C、A-D、B-C、B-D;A-C与A-D、B-C、C-D ;A-D与B-D、C-D;B-C与B-D、C-D;B-D与C-D。我们把上述六种色链的不同数量组合(4组)及不同位置组合(12组可相交的)作为两大变量,一共可得到16种不同组合的赫伍德构形;然后在“结构最简”和“解法相同”的约束条件下逐一检验,具体归纳为:图2——4体现四种不同数量组合,其中图2体现前两种组合;图5——9体现依次增多的相交组合,其中图9已包含了12种相交组合;图10体现特殊的数量组合和相交组合。到此,我们用“H·Z—CP”成功地解决了赫伍德构形的正确染色,从而弥补了肯普证明中的漏洞。参考文献:〔1〕、Holroyd,F.C.and Miller,R.G..The example that heawood shold have given Quart J Math.(1992). 43 (2),67-71附英文版Using H·Z-CP Solves Heawood ConfigurationZhang Yu-dianYu Xian Party School, Yu Xian 045100, Shanxi, ChinaAbstract: In this text, One Heawood configuration’s inevitable sets is found by using Heawoods-clouring procedure (abbreviated as H-CP) and Zhang Yu-dian clouring procedure (abbreviated as Z-CP), based on quantity and poison combination theory of coloring chain. And, one new procedure is found, which is named as H·Z-CP.Key words: H-CP Z-CP H·Z-CPIntroduceThesis [1] made two main contributions to solving Heawood configuration. One is H-CP, by using it Heawood-coloring aperiodic transform’s Heawood configuration sets was found. The other one, in example II[1], provided Heawood-coloring periodic transform’s Heawood configuration. With it, Z-CP was found, and solved correct coloring for this configuration.For the convenience of discuss, the simplest Heawood configuration model is given in [1] as follows.As shown in Fig. 1, A, B,C ,D denote four colors, one roundlet denotes section V to be dyed, A1, B1, B2,C1 ,D1, denote five adjacent points border upon V, the pentagon area that forms is defined as pairs of B & A embedded area. Outside of V is A1-C1 chain and A1-D1 chain (because the head and trail is looped by V separately, so called loop, in order to distinguish with others). And there are B1-D2 chain and B 2-C2 chain also. A1, A2 is separated by C2-D2 chain. The other Heawood configuration is similar.In this model, if add another coloring chain, many distinct normal triangle section map is formed(is G′). When to find the solution of map, it is found that distinct quantity combination and intersectant combination have effect on solution’s difference.As follows, the detailed Heawood configuration’s inevitable sets is given.ResultIt is defined in latter figure as: a small transverse thread denotes a loop, a thick thread denotes a chain in which two or more coloring changed. B(D) etc. denotes that one point’s coloring is changed.As shown in Fig. 2, if there are B1-A2 chain and D1-C2 chain in Fig. 1(can also be B2-A2 chain):Its solution is: in A1-C1 loop, B and D is interchanged, a new A-D loop is formed (if it can’t be formed, belongs to another configuration). Then, C and B outside A-D loop is interchanged, and then V can be dyed with C color.As shown in Fig. 3, if there are C1-D2 chain and D1-C2 chain in Fig. 1:Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new A-C loop is formed (if it can’t be formed, belongs to another configuration). Then, in A-C loop, B and D is interchanged, and then V can be dyed with B color.As shown in Fig.4, if there are C1-D2 chain and B2-A2 chain in Fig. 1:Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed , in B-D loop, A and C is interchanged, a new B-C loop is formed, (if it can't be formed, belongs to another configuration). Then, in B-C loop, D and A is interchanged, and then V can be dyed with D color.As shown in Fig.5, if B1-D2 chain and A1-D1 loop is intersectant in Fig. 4, new B1-A 3 loop and C1-A 3 loop are formed.Its solution is:in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new B-D loop is formed, (if it can't be formed, belongs to another configuration). Then, A and C outside B-D loop is interchanged, and then V can be dyed with A color.As shown in Fig.6, if C1-D2 chain and A1-C1 loop is intersectant in Fig. 5, for simplicity, D can be dyed with B color in C1-D2 chain outside A1-C1 loop. See ○B in Fig.6.Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new A-C loop is formed, B and D outside A-C loop is interchanged, a new A-D loop is formed, (if it can't be formed, belongs to another configuration). Then, in A-D loop, C and B is interchanged, and then V can be dyed with C color.As shown in Fig.7, if B1-D2 chain and B1-A3 loop is intersectant in Fig. 6, for simplicity, A can be dyed with C color in B1-A3 chain inside B1-D2 chain. See ○C in Fig. 7.Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new A-C loop is formed, B and D outside A-C loop is interchanged, a new B-C loop is formed, in B-C loop, D and A is interchanged, a new A-C loop is formed, (if it can't be formed, belongs to another configuration). Then, in A-C loop, B and D is interchanged, and then V can be dyed with B color.As shown in Fig.8, if B1-D2 chain and C1-D2 chain is intersectant inside A1-C1 loop in Fig. 7.Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new A-C loop is formed, B and D outside A-C loop is interchanged, a new B-C loop is formed, in B-C loop, D and A is interchanged, a new B-D loop is formed, A and C outside B-D loop is interchanged, a new B-C loop is formed, (if it can't be formed, belongs to another configuration). Then, in B-C loop, D and A is interchanged, and then V can be dyed with D color.As shown in Fig.8, if B2-A2 chain and A1-D2 loop is intersectant in Fig. 8.Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new A-C loop is formed, B and D outside A-C loop is interchanged, a new B-C loop is formed, in B-C loop, D and A is interchanged, a new B-D loop is formed, A and C outside B-D loop is interchanged, a new A-D loop is formed, in A-D loop, C and B is interchanged, a new B-D loop is formed, (if it can't be formed, belongs to another configuration). Then, in B-D loop, A and C is interchanged, and then V can be dyed with A color.In Fig. 10, it is a ten-fold symmetrical Heawood configuration. Namely in Fig. 3, according intersectant combination method in Fig. 6,if C1-D2 chain and A1-C1 loop intersects, D1-C2 chain and A1-D1 loop intersects, D color point at C1-D2 chain outside A1-C1 loop and C color point at D1-C2 chain outside A1-D1 loop are both exchanged with B coloring, see ○B in Fig. 10. And then presume the exchanged C-B chain and D-B chain are symmetrically intersectant. This Heawood configuration is the topology transform form in example II [1].For Fig. 10, if using the solution way in Fig. 9, 4 periodic transform’s Heawood configurations will come into being, and will be no result. But there is a common coloring character for the 4 sequence transform Heawood configurations, namely, they all contain A-B loop. And then, as follows Z-CP comes into being.If Fig. 10(1) or 10(3) is known, firstly, C and D outside A-B loop interchanged, the new A-C loop and A-D loop(or B-C loop and B-D loop) come into being.then B(D) & B(C) (or A(D) & A(C)) interchange. The coloring number at the point of the pentagon is reducing to 3. Its conclusion is shown in Fig. 10(1) and Fig. 10(3).If Fig. 10(2) or 10(4) is known, firstly, C and D outside A-B loop is interchanged, the new B-C (or A-D) chain come into being, then A(D) (or A(C)) at the side of B-C (or A-D) is interchange. The coloring number at the point of the pentagon is reducing to 3. Its conclusion is shown in Fig. 10(2) and Fig. 10(4).The self-contained inevitable sets composed of Fig 2 to 10 will be proved as follows.In the 4 color dyed G’, the quantity of distinct coloring chain formed by two colors in A, B,C ,D four colors have C42(=6) kinds totally. It is reflected in Heawood configuration, there are intersectant A1-C1 loop and A1-D1 loop whose start-point and end-point are all in center area. And there are B1-D2, B1-A2(B2-A2), B2-C2, C1-D2(D1-C2) 4 chains , whose start-point is in center area, and end-point is on the verge of the intersection area of A1-C1 loop and A1-D1 loop. There are 4 groups in total for the 4 kinds of chain’s distinct quantity combination in Heawood configuration:B 1-A2、B 1-A2、B2-C2、B2-A2B 1-A2、B 1-D2、B2-C2、D1-C2C 1-D2、B 1-D2、B2-C2、B2-A2C 1-D2、B 1-D2、B2-C2、D1-C2There are C62(=15) kinds of two different situation’s combination in 6 kinds of chains, among them ,there are 3 kinds of not intersectant combinations:A-B and C-D、A-C and B-D、A-D and B-C;Otherwise there are 12 kinds of intersectant combinations:A-B and A-C、A-D、B-C、B-D;A-C and A-D、B-C、C-D ;A-D and B-D、C-D;B-C and B-D、C-D;B-D and C-D。Above 6 kinds of chain’s different quantity combinations(4 groups) and different situation combinations (intersectant 12 groups ) are two major variables, 16 kinds of Heawood configurations in different combination can be found totally. Then, on the “simplest structure” and “same solution” restrictive condition, verifiyed one by one, detailed conclusion is: Fig. 2 to Fig. 4 indicate 4 kinds of different quantity combinations. Among them, Fig. 2 indicates the former 2 groups. Fig. 5 to Fig. 9 indicate intersectant combination increased in turn. Among them, Fig. 9 contains12 kinds of intersectant combinations. Fig. 10 indicates specific quantity combinations sand intersectant combinations.By this time, correct coloring for Heawood configuration is solved. The procedure which solve the problem, we name it H·Z-CP. The conclusion renovate the leak of kengpu proof.Bibliography:〔1〕、Holroyd,F.C.and Miller,R.G..The example that heawood shold have given Quart J Math.(1992). 43 (2),67-71
小学语文教学论文获奖范文篇2 浅谈创新设计小学语文课外作业 摘要:正如在语文教学过程中,常常碰到老师们抱怨学生家庭作业存在应付了事、完成得不理想的情况,究其原因,很重要的一条是作业僵化单一、枯燥乏味。久而久之,家庭作业渐渐变成了学生的负担。因此,我们应该遵循顺应学生发展和提高学生素质的原则,从学生的年龄特征和实际情况出发,创造性地设计一些形式多样、内容新颖的课外作业,以达到提高学生听、说、读、写、思以及语文综合能力的目的。 关键词:小学语文;家庭作业;创新设计;教学实践 小学语文课外作业是教学活动的重要组成部分,是不可或缺的重要环节,承载着激发学生学习动机、学习兴趣,培养学生的学习习惯,发展学生思维能力等方面的任务。但一直以来,我们的作业模式比较单一,作业形式种类不多,学科特征明显,答案标准化,使学生的思维活动受到禁锢。那我现将自己在语文教学实践的几点参考。 1.调查研究式作业:培养学生自主探究精神 苏霍姆林斯基说"在人的心灵深处都有一种根深蒂固的需要,就是希望自己是一个研究者,而在儿童的精神世界中,这种需要特别强烈。"①教师应该相信学生具有同成人一样的独立研究,独立动手的能力,鼓励他们做一些"研究",以研究者的意识和态度去观察、思考,查找并搜集资料,进行阅读,提炼自己的观点,组织文章……如:学习《赵州桥》后,考查当地桥梁与赵州桥的异同;查找现代立交桥、上海杨浦大桥、长江大桥的资料,自己能试着去设计吗?并且为你设计的桥写一篇简介。完成《赵州桥》这篇课文的作业,学生不仅获得关于古今桥梁的知识,通过图片、札记进行积累,甚至有兴趣的还能自己设计一座世界上独一无二的桥,学生想到要介绍自己设计的桥,必定花心思去写好这篇简介。把对客观事物的观察、阅读、表达相互联系起来,构成整体,既促进读写结合,也促进了学生的发展。 如:学习<<蛇与庄稼>>之后,"以事物间的复杂联系"为题,开展调查研究,并写成文形式,可请教你喜欢的老师。这是一项学生在一段时间内通过查阅资料且相对独立地完成的具有鲜明个性和独创性的作业。当今社会,各种信息令人眼花缭乱,怎样捕捉、收集、处理信息是人的综合能力的体现。小学语文应从这里入手,让学生自定感兴趣的研究方向,学习自己收集资料,组织材料,写"论文"。这类作业涉及面广,可以是自然界的,也可以是社会领域的,对于培养学生的创造能力和创新精神有积极意义。在这样的探究性学习过程中,学生会遇到各种困难、挫折,浓厚的兴趣和强烈的求知欲、责任感,促使他们设法去战胜,从而锻炼意志和毅力,增强自信心,获得成功的体验。 2.强调兴趣培养,变机械重复为快乐实践 传统作业布置,内容简单,形式单一,不是让学生写词语,就是让学生背课文。实践证明,这种方法,除了对"应试"有点作用外,就是扼杀学生学习兴趣,把学生训练成作业机器。在大力实践新课标的今天,我们不能再走这种老路,要丰富作业内容和方式,让学生做作业主人,能在作业实践中感受到作业快乐。俄国最伟大作家托尔斯泰说得好:"成功的教学所需要的不是强制,而是激发学习兴趣。"作业作为语文课堂的延伸和拓展,我们也必须把激趣放在首位,变机械重复为快乐实践,让学生感受到作业过程的快乐和作业成功带来的愉悦。为此,我们要尽量减少单一的机械性的抄、背作业,变枯燥化、重复化作业模式为多元化的作业设计,让学生在知识得到升华的同时,还要得到观察能力、动手能力、思维能力,创造能力的锻炼,在更多平台上发展语文素养。 例如,当学了《让我们荡起双桨》后,让学生唱歌跳舞;学了《奴隶英雄》、《草船借箭》等故事性强的课文,让学生们排演课本剧,写剧本;当学了《乌鸦喝水》之后,做实验;学了《穷人》之后,让学生后来发生的故事……这些作业,应该说,比起常规的抄写练习,难度还较大,可是完成的情况却比想象的好许多,学生不但没把它们看成是负担,反而兴高采烈地按时完成,而且还与众不同,独具匠心,颇有质量。所以,创新作业设计,注重趣味性设计,注重动手动脑并重的作业设计,让学生在喜闻乐见的作业方式中画一画、唱一唱、演一演、做一做、说一说,完成作业,不仅激发学生浓厚的作业兴趣,而且多方面的能力发展,达到作业目标,实现作业意义。 3.培养学生的创新性,,多些提问作业,少些答问作业 质疑问难,已经是现在一个十分流行的教学模式了。学生发现疑难、提出疑难、解决疑难的过程使学生各方面的能力都有了很大的进步。长期以来,学生的课外作业不是抄抄写写,就是答题训练。其实,我们可以让学生在平时把向教师、家长、同学提问作为一个课外作业,例如:比一比哪一个学生提的问题有价值,哪一个学生提的问题能让老师和同学"伤伤神",难住老师和同学。再如,学了一课的生字后,回家考一考父母,看看他们能否会读会写,若不会,你教会他们。学生在自己提问的同时,自己也是一个思考的过程,提问的同时,他的分析理解能力就会提高,学习的速度也会加快,不但利人而且利已,何乐而不为呢?这样,学生不再是被动的"知识接受器",而变成是知识的"抽水机"了。 4.作业设计要追求人文性 新课程标准指出,语文课程具有丰富的人文内涵,对学生的精神领域的影响是深广的,课文课程应重视学生的品德修养和审美情趣,因此,我们在作业设计时应考虑作业的人文性,力求学生在完成作业时,既能增长知识,又能陶冶情操。现今语文课本中,有不少伟人的故事,这些既是学生阅读写作的名篇,也是学生做人的镜子。我们可以设计《寻找名人的足迹》,制作《名人录》等活动,让学生收集伟人、名人、英雄的故事、图片、个人简介,还可以以"小报、班会"的形式"话英雄,赞名人",这样,就能从榜样身上汲取力量,得到鼓舞,找到人生道路上前进的"路标",又能提高语文综合能力。 总之,加强作业创新设计,其目的就是激发学生学习兴趣,使其乐意、主动地在更多语文实践中发展语文能力,而不是让教师始终牵着学语文。学生得法于课内,得益于课外,课外才是学生语文能力发展的最好平台,我们在作业设计时,要让学生回归生活,在广大实践中挖掘潜能,获得发展。 参考文献: [1] 陆志平.《语文课程新探》,东北师范大学出版社,2002年出版 [2] 孙春成.《给语文教师的101条建议》,南京师范大学出版社,2003年出版 [3] 张香竹.小学语文课程与教学论[M].北京:国防工业出版社,2009 猜你喜欢: 1. 小学语文教学毕业论文完整范文 2. 小学语文教学论文范文 3. 关于小学语文阅读教学的论文 4. 关于小学语文的教学论文 5. 浅谈小学语文教学论文
青少年科技活动充满趣味性、探索性、好奇性和创造性,积极开展科技活动是贯彻实施以培养创新意识为核心的素质教育的一个重要渠道。科技小论文是科技活动的总结,是在科技实践活动的基础上进行分析归纳、演绎推理、类比想象、抽象概括,从而得出具有普遍推广意义的新规律、新理论、新假设等结论。指导学生写作科技小论文,是引导学生进行科学探索,了解和学习科学研究的一般方法,提高学生科技素质和培养创造型人才的有效途径。我在1997年开始从事科技活动辅导以来,就如何指导学生写作科技小论文作了一些尝试和探索,取得了一点成效。在我指导学生完成的10多篇科技小论文中,获全国二等奖1篇,广西一等奖1篇,三等奖1篇,地、市级奖励6篇。现将本人的肤浅认识和体会简单介绍如下,以向同行请教。一、提高认识,激发兴趣,消除科技小论文的神秘感首先,坚持在课堂教学中渗透科技教育,培养和提高学生的科技素质。备课时,选择教学内容要突出科技知识,并及时将本学科的最新研究成果充实到教学内容中。改革教育观念和教学方法,重视科学研究方法的训练和科技史教育。比如在学习铁的性质时,介绍α-Fe2O3和γ-Fe2O3在录音材料上的重要用途,学生往往热情高涨,感到科学技术离他们并不遥远,从而增强学生的科技意识。其次,通过讲座、板报、科技知识竞赛、科技读书笔记比赛、科技手抄报比赛等活动,使学生充分认识科学技术的迅猛发展及其对世界各国综合国力的巨大影响。例如,在1997年第一届全国中师化学科普知识竞赛中,我辅导的学生获全国二等奖1人,全国三等将2人,广西一等奖3人,二等奖5人,三等奖12人,我本人获全国中师化学科普知识竞赛优秀辅导员称号;在2000年7月广西首届中师科技艺术节的各项比赛中,我辅导的学生均获得优异成绩;在2000年12月第二届全国中师化学科普知识竞赛中,我辅导的学生获全国一等奖1人,二等奖2人,三等奖8人,广西一等奖13人,二等奖38人,我本人获全国优秀辅导员称号。这些成绩的取得,极大地激发了学生对科技活动的兴趣和热情。第三,向学生介绍一些他们熟悉的短小精悍的优秀科技小论文,揭开科技小论文的神秘面纱。例如,联系生活实际介绍获全国一等奖的科技小论文《水浮莲净化污水的观察与调查》、《银杏快速培育的实验》、《音乐对某些植物生长发育影响的实验》等,联系教学内容向学生介绍变废为宝利用柑子皮水解后进行银镜反应的科技小论文《柑子皮的妙用》以及《蓟草可解烟毒》、《禾苗枯萎之迷》等科技小论文。这些通俗易懂的例子说明科技小论文的写作并不是高深莫测、可望而不可及的事情,同时也为学生写作科技小论文提供了良好的范例。二、联系实际,选好科技小论文的写作题材第一、引导学生选择自己熟悉的感兴趣的题材。我们是指导学生写作科技小论文,所以要放手让学生自己选题,这样才能选出学生感兴趣的、能独立完成的好题材。我校学生大部分来自农村,学校培养的目标是小学教师。因此,我指导学生选题的要求和原则是:面向小学,立足农村,服务农村,选择身边熟悉的感兴趣的题材。比如,我指导的获奖科技小论文《流动灌溉——马蹄优质高产试验》、《龙眼罩网防果蝠实验》、《油茶树抵御砖厂污染的调查》等题材都是学生从自己熟悉的生产生活中选择的,其实践结果对促进农村经济发展起到一定的积极作用。比如《流动灌溉——马蹄优质高产试验》的结果可使农民种植马蹄每亩增收500多元,在学生家乡已得到广泛推广,并于2000年8月26日被广西科技报在第一版宣传推广。立足农村选择的题材所需实验条件简单易行,适合学生今后在小学教学中开展科技活动。第二、选择的题材要具有新颖性。选择新颖的好题材意味着科技小论文的写作成功了一半。我首先是在学生中开展各种形式的读书活动,积累科技知识,引导学生用科学眼光观察生活,大胆质疑,发现生活中的科学现象和科学问题,从多种角度分析问题产生的原因,筛选提炼论文题材,确定实践方案。其次,还结合具体例子说明科技小论文选题的方向和规律。例如,《肉桂驳枝繁殖试验》的“驳枝繁殖”、《人工上篱种植绞股蓝试验》的“人工上篱种植”、《生姜倒种优质高产》的“倒种”、《西瓜嫁接栽培试验》的“嫁接栽培”、《竹荪的室内栽培试验》的“室内栽培”、《磁化水对几种花卉生长发育影响的实验》的“磁化水”等等,代表了科技小论文选题的一般方向和规律,都是优秀的选题。第三、了解不宜选择的题材。除了青少年科技活动规定不宜选择的如药物、药理、药效等题材外,我认为需要时间较长的、不具备实验条件的、不符合青少年学生特点的题材也不宜选择。第四、选题宜早不宜迟。这样才能保证有足够的时间开展科学实验,查阅图书资料以及论文的写作修改。我指导学生写作的获奖科技小论文的题材一般都是学生提前1年甚至2年就选好了的。三、明确要求,规范格式,培养学生的科研能力严格地说,科技小论文不是“写”出来的,而是科技实践活动的结晶。指导学生写作科技小论文的最终目的是使学生了解科学研究的一般方法,培养学生的科研能力。据了解,许多科技小论文在各级评比中落选的原因,是内容和格式不符合要求,或者是数据材料不足,尽管学生和辅导员都作了大量的实践工作。因此,指导学生写作科技小论文之前,必须使学生了解科学研究的一般方法和步骤、科技小论文的选题要求、实验数据记录的方法和要求、写作的格式等等。这样才能有计划有目的有步骤地开展科学实践活动,作好原始记录,为科技小论文的写作做好准备。此外,还要使学生明确一篇好的科技小论文,应该有一定数量的图表和照片等直观说明材料,才能更好的体现真实性,增强说服力。四、指导学生查阅资料,分析归纳,提高科技小论文的质量如何依据诸多个别的实验考察的现象和数据记录得出具有普遍推广意义的结论?这是指导学生写作科技小论文至关重要的一步。首先引导学生根据科技小论文的主题对实验考察的现象和数据学会分辨取舍,去伪存真,归纳出一般结论。其次,指导学生查阅图书资料和运用学到的科技知识进行演绎推理,从一般结论得出特殊的新观点、新发现、新方法、新设想等。最后,指导学生运用类比思维将上述的特殊结论进行推广,从而得出具有普遍推广意义的新结论、新规律,运用想象思维对原始的朦胧的观点、设想进行加工、改造,突破时空限制,得出创造性的结论。这样,既提高了科技小论文的质量,又锻炼了学生的创造性思维,培养了学生的科研能力五、刻苦钻研,认真总结,不断提高辅导水平1. 刻苦钻研,虚心请教,是提高辅导水平的主要方法我开始从事科技活动辅导的时候,对科技活动了解甚少。由于我校将青少年科技教育定位为学校的办学特色,浓厚的科技活动氛围激励我认真系统地学习有关青少年科技活动的内容、途径和要求。尤其是我校教务科陈勇副科长和贺州市教育局原科技活动专干高兴平老师的热心指导,使我的辅导水平产生了质的飞跃。1998年我辅导学生写作的科技小论文《流动灌溉——马蹄优质高产试验》获全国二等奖。这极大地增强了我指导学生开展科技活动的信心,同时也有了更强的责任感。为了进一步提高辅导能力,我先后参加了计算机培训和研究生主要课程进修,2000年又考取了在职研究生班,现在正在学习中。2. 指导学生写作科技小论文需要有热心、耐心和无私奉献的精神就拿我指导学生完成《流动灌溉——马蹄优质高产试验》一文来说,虽然学生在我的指导下做了大量的实践工作,但写出的初稿过于简单,尚不足300字。于是,我从实验方案的设计到实验数据的记录,从实验结果的分析到图书资料的查阅,一一指导学生改进,其间八易其稿,整个辅导过程倾注了我大量的心血,花费的精力决不亚于自己撰写一篇在国家级刊物发表的学术论文。有人问我这样做值得吗?我笑之以答:“这是一名科技辅导员的职责。只有全身心投入辅导活动中,才有可能辅导出好成绩,辅导水平才会不断提高。”3. 勤于动笔,善于总结科技活动的经验教训1999年,我在辅导学生科技活动中受到启发而设计的一个创新实验,获全国中师化学老师实验大赛二等奖。2000年,我将辅导学生科技活动的一点做法和经验整理成文章参加第八届中国青少年科技辅导员论文比赛,获一等奖。这些成绩的取得对我辅导学生科技活动具有很大的促进作用,也是学生写作科技小论文的榜样和动力。总之,指导学生写作科技小论文是一项艰辛而又繁琐却富有意义的工作。教师虽然不是科学家,但应该是科学家的引路人
小学数学教学论文:创良好教学平台 促学生自主发展 「内容摘要」:素质教育的核心是创新教育,而创新教育表现在课堂教学中就是培养学生的自主能力。本文通过“创设质疑平台,变‘被动接受’为‘主动探究’;创设交流平台,变‘个体学习’为‘集体合作’; 创设想象平台,变‘单一思维’为‘多向拓展’”来激发学生的探索欲望,丰富学生的想象力,以培养学生的自主个性。 「关键词」:教学平台 自主发展。 21世纪呼唤创造性人才,如何有效地培养学生的创造个性,发展其创造能力,已成为教育工作者研究的重要课题。在新课程标准的理念下,教师应变革旧的教学方法、建立新的教学策略,努力为学生创设活动平台,诱发学生的好奇心,鼓励学生大胆尝试,丰富学生的想象力,以培养学生的自主性,开发学生的创造性。 一、创设质疑平台,变“被动接受”为“主动探究”。 “学起于思,思源于疑”。学生有了疑问才会去进一步思考问题,才能有所发现,有所创造。苏霍姆林斯基曾说过:“人的心灵深处,总有一种把自己当作发现者、研究者、探索者的固有需要,这种需要在小学生精神世界中尤为重要。”而传统教学中,学生少主动参与,多被动接受;少自我意识,多依附性。学生被束缚在教师、教材、课堂的圈子中,不敢越雷池半步,其创造个性受到压抑和扼制。因此在教学中我们提出:学生是教学的主人,教是为学生的学服务的。鼓励学生自主质疑,去发现问题,大胆发问。创设质疑平台,让学生由过去的机械接受向主动探索发展,有利于发展学生的自主性。 1、批判性质疑。 心理学家认为:“疑,最易引起定向——探究反射。”有了这种反射,思维就应运而生。进行批判性质疑就是不依赖已有的方法和答案,不轻易认同别人的观点,通过自己独立思考、判断,敢于提出自己独特的见解,其思维更具挑战性。它敢于摆脱习惯、权威等定势,打破传统、经验的束缚和影响,产生一种新颖、独到的前所未有的问题来认识事物,它在一定程度上推动了学生的理解与思维的发展。 善于批判地接受,才会善于质疑。如:在学习“圆柱与球体的认识”时,通过认识,学生已经感知“圆柱上下两个圆面一样大”。我有意板书:“上下两个圆面一样大的就是圆柱体。”学生根据生活经验,提出疑问:“腰鼓上下两个面一样大,它是圆柱体吗?”从而更加深了以圆柱体的认识。 质疑的过程,其实质是对原有的思考和结论采取批判的态度,并不断予以完善的过程。因此教师要善于引导学生反复思考,从中发现问题,解决问题。如:教学“求一个数是另一个数的百分之几”时,很多学生提出:“5米比4米多1米,也可以说4米比5米少1米。那么为什么能说5米比4米多25%,就不能说4米比5米少25%呢?”经过讨论,弄清了虽然相差都是1米,但与之比较的单位“1”的量不同了,所以结果也不同了。 质疑是认知的起点,也是创新的起点。在初学平均分应用题时,有学生提出:“老师和书上说的都正好分完,可是五只苹果平均分给两个同学,能不能分?”我为学生批判地思考问题感到惊喜。我鼓励全体学生讨论。结果有两种意见:一种认为“每个同学得分两个半苹果”,另一种认为“两人分得两只,剩下的一只谁都不吃”。我告诉学生两种方法都对,都是即将要学到的数学知识,还特别表扬了提问的学生,使学生的学习兴趣和思维积极性都得以提高。
小学数学教与学过程需要实施研究性学习,基于研究性学习的小学数学教学需要小学数学教师在具体教学中创设一个类似于科学研究的情境。本文是我为大家整理的浅谈小学数学教学法论文,欢迎阅读! 浅谈小学数学教学法论文篇一 1、研究性学习内涵 小学数学教与学过程需要实施研究性学习,即在教学中,主张教师设定具体的课题,通过一系列活动,学生已掌握的知识与技巧及搜索的相关信息等进行综合,学生自主地建构与更新知识体系,培养学生探索能力及自主学习的精神。基于研究性学习的小学数学教学需要小学数学教师在具体教学中创设一个类似于科学研究的情境,引导同学们通过科研的 方法 搜集与获取大量知识信息,解决课题的疑问与问题,实现学生探索性的建构知识体系,实现学生的学习过程与科学研究过程相结合。 2、基于研究性学习的小学数学教学 措施 2.1营造研究性学习的学习环境 营造研究性学习的学习环境包括两方面,第一,宽松、愉快、平等的环境;第二,合作、探究的环境。前者的作用主要是调动学生研究性学习的兴趣,而后者是加强生生间、师生间的交流。例如,学习“立体图形的认识”章节时,可以通过演示课件“立体图形的认识”章节时,利用汇总的方式向学生展示不同的图形,使学生在动画中提升学习的兴趣。例如,学习“立体图形的认识”时,第一步:(1)教师可以引导同学以组为单位一起回忆:a援长方体的特征援b援想一想你是从那几方面对长方体的特征进行 总结 的。(点:有八个顶点;线:有十二条棱,相对的四条棱的长度相等;面:有六个面都是长方形,有时有相对的两个面都是正方形,每相对的两个面面积相等;)。(2)教师总结:我们通过点、线、面三个方面对长方体的特征进行总结。第二步:(1)教师可以引导同学以组为单位一起回忆:a援正方体的特征。b援想一想你是从那几方面对正方体的特征进行总结的。(点:有八个顶点;线:有十二条棱,每条棱的长度都相等;面:有六个面都是正方形,并且每个面的面积都相等;)。第三步,共同讨论:(1)长方体与正方体有什么共同特征呢(2)长方体与正方体有什么不同之处呢?相同点:长方体与正方体都有6个面,12条棱和8个顶点援不同点:a援“线”上的不同点:长方体的棱分别是相对的4条棱相等,分别叫做长方体的长、宽、高,而正方体的12条棱全部相等,叫做正方体的棱长。b援“面”上的不同点:长方体至少有4个面是长方形,而正方体的6个面都是正方形。(3)长方体与正方体有什么关系?正方体是特殊的长方体。通过这样的环境的研究性学习,使学生进一步认识学过的一些立体图形的特征,掌握不同立体图形之间的异同,使学生能够灵活运用所学过的立体图形的特征解决简单的实际问题,进一步发展学生的空间观念。 2.2列举与搜集与生活联系的例子 数学来源于生活,数学知识解决生活中的问题。列举与搜集与生活联系的例子引导学生进行探究性的学习与解决,从而不断的调动学生学习数学的兴趣和热情,不断的利用自己掌握的知识去积极的解决与探索生活中的相关问题,最终提升学生发现问题与解决问题的能力。例如,学习“量的计量”章节时,教师可以通过“同学们,改革开放以来,我国采用了国际上通用的法定计量单位,你能 说说 这是为什么吗”来导入新课程;利用自学的方式进行具体知识点的简单熟悉;并且利用如下例题来引导学生进行探究性的练习:一枝铅笔长176();一个 篮球 场占地420();一张课桌宽52();一个火柴盒的体积是21();一间教师的面积是48();一种保温瓶的容量是2()10麻袋大米约1();l个鸡蛋约6.5();1棵白菜约2.5();1名六年级学生体重是40();测量两件家具,记录各边的长度,算出表面积和体积;称出两件炊具的质量并记录下来;调查父母的出生年、月、日,算一算平年还是闰年;记录自己从家到学校所用的时间。 2.3创设与给予学生研究性学习的条件 如果教师不能创设与给予学生研究性学习的条件,就不能真正的调动学生探索与实践热情,也不能调动学生的创新能力,学生研究性学习的效果将不明显。所以,基于研究性学习的小学数学教学措施需要包括创设与给予学生研究性学习的条件。例如,学习“条形统计图”章节时,教师可以搜集条形、拆线和扇形统计图等统计图的具体表现形式,并让学生搜集各年级的学生数量且绘制条形统计图:一年级:一班40人,二班38人;二年级:一班40人,二班40人;三年级:一班41人,二班38人,三班36人;四年级:一班36人,二班38人;五年级:一班44人,二班39人;六年级:一班37人,二班42人。或者教师可以给出学生如下数据让学生根据表中的数据。通过此过程,可以使学生有机会主动地绘制条形统计图,掌握制条形统计图的一般步骤,能看图准确地回答问题。 2.4建构学生研究性学习的平台 小学数学研究性学习过程中,需要教师为学生建构学生研究性学习的平台,引领学生观察生活、关注身边数学问题。例如,学习“量的计量”章节时,教师可以专门设置研究性学习的课堂,使学生能够进一步理解采用法定计量单位的重要意义,系统的复习与掌握长度、面积、体积、质量、时间单位,以及具体换算,及各种计量单位间的进率。 3、结论 综合上述的内容我们可知,基于性研究性的学习教学可以使学生实现有效学习,并指导学生怎么运用知识与建立知识联系,有效地获取新知识,形成知识体系。基于性研究性的学习教学这种方法是一项被广泛宣传与运用的 学习方法 。 作者:周小如 工作单位:浙江省温州市龙湾区永昌第三小学 浅谈小学数学教学法论文篇二 一、创新教学法让学生自主学习 小孩子从小就要进入学校里面学习,但是没有人问过他们愿不愿意,换句话说,他们是在老师、家长的压力下才会“认真学习”的。这种学习过程叫做被动学习,学习的效果效率低,且浪费时间。传统的教学就是单纯的“灌输式”学习,没能充分发挥学生们的主动性。采用创新 教学方法 ,让学生成为课堂的主人。一位 教育 家曾经说,最好的教育是让被教育者不知道自己已经受教。数学老师要把问题摆在同学们的面前,让他们去思考解决这些问题。在解决问题的过程中,学生可以向老师寻求帮助,老师给予一定的指导。老师上课之前要给同学们设计好开课的问题,并将学生分为几个小组,让他们先自己选择题目解决,然后老师再做总结。这就要求老师所出题目要蕴含本节课的知识,或者是能够回顾上一节课的知识。小组成员的分配也要合理,不能够顾此失彼,要公平公正。这样能够让学生们进行自主的探索,从各个方面思考解决问题的方案,然后再讨论。这种过程能够增强学生们自主学习和合作学习的能力,还能够加强学生解决问题的能力。 二、创新教学法培养学生的创新能力 虽然说数学是一门严谨的科学,但是,那是对解题的答案或方法的正确性来说的。对于一个数学问题我们可以从多个方面思考,然后采用多种解决方法。但是传统的小学数学教育,严重禁锢了学生的 创新思维 。遇到一个问题,老师就会将标准方法告诉学生,然后同学们按照这个思路进行思考。等下次遇到类似的问题的时候,学生就可以“照葫芦画瓢”,按照之前的解题模式做出正确的答案。虽然这样的方法能够增加同学们做题的正确率,但是却减少了学生创新的机会。如果长此以往,数学问题解题方法永远不可能简单化。创新教学法不但是一种教学方法的创新,更是一种创新思想的传递。就像是“蝴蝶效应”一样,用老师的创新带动学生的创新。采用不同传统教学方法的创新教学法,将数学多维立体地展示在学生的面前,让他们自由地思考、自由地解题。比起传统的套模板式的做题方法,自己想出的方法可能既复杂又麻烦,但是这是敢于尝试的表现,这种精神才是学习所需要的精神,这种“不做对不放弃”的毅力才是学习所需的毅力。老师在教学时要将自己和学生摆在一样的高度,只有这样老师才会去认真听取学生的解题意见,才会采纳学生的解题方法,这样才能够促进创新。另外对于教学方法的创新,老师也可以听取学生的意见。不要认为学生不懂得教学,他们的观点缺乏实践性。但是毕竟教学的对象是学生,他们了解自己喜欢和能够接受怎样的教学方式,知道怎样的教学才能引起自己的兴趣。也许学生给老师提的建议比较“理想化”,但是只要老师稍加修改,或是将里面可行的元素融入自己的教学当中,那么就能够找到一套适合学生的教学新方法。对于别的老师的创新教学法也要合理利用,绝对不能照搬。因为使用的对象不一样,要根据自己的学生加以修改,因材施教。 作者:唐世明 工作单位:重庆市巫山县石碑小学 浅谈小学数学教学法论文篇三 1.合理分组 合作学习,是体现一个团体的合作能力,可让学生明白团结合作的重要性。合作学习首先一定要合理地分组。一般而言,合作学习小组4人最合适,最好遵循“就近原则”选择小组成员。如果是年纪较小的学生,则可两人一组,即同桌合作。合理建组便于成员合作,同时可以激发各组间的竞争,这样易于形成和谐的学习气氛,同学们之间可以强弱互补,共同进步。建组应注意优、中、差生之间的组合和学生之间的性格、 兴趣 爱好 、学习能力与身高等各种外在因素的互补,同时需遵循“组内异质,组间同质”的原则[1]。在小组分配完成后,要进行民主推荐,选出各个小组的组长,并依照性格特点分配组内其他成员的负责要点与任务,这样的分配保证每个成员都能发挥自己最佳状态,使任务快速圆满完成。在每个成员完成各自的任务后,应让他们尝试另一个角色中的工作,使他们能弥补自己的不足,得到更多的 经验 [2]。例如,在讲授“小小的商店”这一章节中,教师可以在班级内开起“小商店”,学生的各种小玩具、文具等均为商店里的物品,而学生则扮演顾客、店长、店员、收银员等各种用角色,此时教师需对学生进行合理分组,如分为顾客组、收银员组、店员组等。在这个教学活动中,如果不分组或分组不科学,则可易产生混乱的局面,降低合作学习效率。 2.科学开展小组合作 在小学数学教学中,不是每个学习内容都需要合作学习的方式,教师应从实际情况出发,比如学生的接受能力、教学的环境设备、适合的时机等因素,选择适合的方式让学生进行学习。如果教学内容在学生较容易接受的范围内,就让学生个人独立完成学习或进行集体授课;如果知识点多、学习复杂的内容,就可以小组合作完成,即合作学习[3]。学生是否能充分体会合作学习中的乐趣,主要取决教师是否采用了有效的引导方式。教师在展开活动的过程中,要尊重每位参与的学生,无论“差生”或优生,都要做到一视同仁,特别是在学习上成绩比较差的学生,更要尽心保护他们脆弱的心灵,尽量消除他们自卑感等。教师还应及时了解各组学习情况,并对每个小组作出评价、建议与鼓励。而能使合作学习有成效的重要条件之一是:充裕的学习时间。教师让小组进行操作、研究、探讨、交流思考的过程中,要使每个学生都能有发言和提问的机会,使学生能相互补充,互相进步,这需要教师留有充裕的时间让他们进行自主思考,在解决问题后才会豁然开朗,记忆深刻,合作学习才会有显著的成效[4]。例如在讲授“圆的认识”这一章节时,教师可将全班分为五组,让学生分组找出生活中是圆形的物体,看哪组找出的物体最多,在讲解关于“圆”的相关知识后,教师又可分组进行合作学习,即让学生分组进行练习,看哪一组能够较准确地画出圆形,准确地测量出所画的圆形的半径与直径。教师在这个过程中需要对学生进行积极引导。 3.重视个人与小组评价 在合作学习中,教师对学生的评价、建议与鼓励都是至关重要的,这对学生以后的学习起到很大的积极作用,所以教师应该重视对学生的评价,更应慎重考虑才可以说出每一句评语。教师要做到这样,首先要将个人评价与小组评价进行有机结合,既要注重个人评价,又要注重小组评价,肯定个人在小组合作中的重要性,对学生之间出现的合作互助关系给予表扬;其次要注重学习过程中和学习结果的评价,尤其要注重学习过程中的评价,肯定学生合作过程中的表现,并对合作过程中存在的问题给予相应的指导,使学生及时纠正错误[5]。综上所述,小组合作是小学数学课堂教学中有效教学的方法,其不仅可以让小学生学习到基础的数学知识,而且可以培养小学生的合作精神,同时可以活跃课堂氛围,提高学生的学习热情,有助于提高教学效率和质量。 作者:王景坤 工作单位:赤峰市巴林左旗杨家营子寄宿制学校
在小学数学教学中,要想使学生的创新能力得到培养和提高,其前提和基础是要充分发挥学生的 发散思维 ,鼓励他们从不同的角度进行观察和实践,探索多种解题思路,激发他们的 创新思维 。下文是我为大家整理的小学 四年级数学 教学论文 范文 ,欢迎阅读!
一、人教版小学数学实验教材的分析
人教版小学数学实验教材是秉持“以人为本”的基本设计思想来设计编排的,其实现了将数学知识点由难到易的排版,让学生有一个循序渐进的学习过程。教材在教学内容上与生活实践相联系,让学生学会在生活中运用数学知识。比如,在三年级下册的教材中,就有“制作年历”和“校园设计”这两个实践活动,这两个实践活动能够锻炼学生在实际生活中运用数学知识来解决问题的能力,而在数学算法的要求上更是多样化,这样能够帮助学生培养多方面思考问题的能力,避免学生学得的知识范围过于狭隘。
二、教学实践的具体要求
1.结合教材要求,站在学生的立场进行教学安排
教师对教材的使用也是影响学生学习效果的一个主要因素。教师在教学中,应当更多地与学生进行沟通与交流,了解学生的学习动向,结合本班学生学习的实际情况,制订有效的实践教学方案。在实际教学中发现学生学习的薄弱点,然后进行针对性的训练,帮助学生完成小学数学学习。比如,在第二册数学实验教材中,要求学生学会认识时间,而一些学生在对时间的学习上存在着一定的困难。在进行时间认识的教学前,教师可以先问学生:“同学们知道现在是第几节课吗?”树立起学生的时间观念,在接下来的课堂教学时,可以先讲解时针的转动规律,接着介绍分针与秒针,由难及易,步步深入。
2.将课堂作为教学实践基地,激发学生的学习热情
小学数学的教学形式主要是课堂教学,教师应当充分地利用课堂教学的时间,指导学生学习数学知识,而激发学生的学习热情是学生学好小学数学的关键,教师可以进行教学方式多元化的教学,结合教材要求,开展一些与数学学习相关的实践活动,激发学生的学习兴趣。激趣的最好 方法 就是进行游戏教学,比如,在进行10以内的加减教学时,教师可以结合实际生活,设置一个让学生买菜的情境,让学生在买菜的过程中体会到数学加减法在实际生活中的运用情况,帮助学生进行算术练习。
3.课后进行教学 反思 ,优化教学方式
每次的实践教学结束后,教师应该及时地对教学进行反思,找到教学中存在的不足,并且在今后的教学中不断地优化。在教学工作中,不断地吸取先进的教学理念,结合实际情况进行教学。小学数学实践教学是一个漫长的探索过程,教师应当很好地结合小学数学实验教材,在新课标的要求下进行教学,让学生更加全面地学好小学数学知识,为学生今后的数学学习打下坚实的基础。
作者:邵小洁 工作单位:江西省上饶市实验小学
一、创新情境数学教学模式
在小学数学教学中引入情境式的教学模式对于培养小学生的创新思维具有积极的促进作用。在课堂教学活动中通过不同的情境来讲授知识能够激发和培养小学生的创造性的思维,由情境可认启发学生对解题思路的独特的想法与思路,这一过程既是形成数学构思的过程,也是展开合理解题思路的思维过程。在情境教学模式中,教师要鼓励学生展开创新思维,并积极主动地发表对解题思路的见解,从积极参与教学的实践中,学生的创新思维也就培养起来了。此外,在小学数学教学中,教师还要注意数学语言的使用要与课程内容以及学生的理解能力相适应,循序渐进地提高学生学习数学的积极性,更加积极地参与到情境教学模式中,不断提高学生的创新意识。例如,在教学“圆柱和圆锥的体积”这一章节时,教师可以准备各种圆柱形的实验品,如圆柱的玻璃器皿、圆柱木块等,分发给学生要求其动手量出长、宽、高等所需数据,并通过实践来求得体积。通过实验启发学生自己 总结 出计算圆柱体的体积公式,并引导学生是否可以用切割、计算体积差等方式求得体积。
二、提高学生学习数学的兴趣
小学生具有活泼好动,稳定性差的特点,在数学教学中提高学生学习数学的兴趣是非常重要的。“兴趣是最好的老师”,只有在兴趣的驱使下,小学生才能积极主动地学习数学课程,才能在兴趣的驱使下展开更多的创造性思维。数学教学本身具有理论性强的特点,理论的讲解枯燥乏味,难以吸引小学生的兴趣,也有很多小学生对数学课程有着厌学情绪,这时教师就要注意采用新鲜多样的方式来吸引小学生的兴趣。例如,利用多媒体、幻灯片等形式,以形象生动的方式展现数学的乐趣,提高学生在学习数学上的兴趣。数学课上教师还要注重将数学与实践紧密结合起来,拉近数学与小学生之间的距离,激发他们学习数学、应用数学的兴趣,从而提高小学数学的教学效率。例如,在学习“认识左右、上下、前后”这一内容时,教师可以通过座位编号的方式,利用学生的座位编号并进行确认练习,学生在相互认识的互动中对左右、前后、上下形成认识,这样能够有效提高他们对学习数学的兴趣。
三、通过交互合作的方式来培养小学生的创新意识
在小学数学课程教学中开展学生之间的交互式合作能够形成学生之间思想的交流,对其创新意识培养具有很好的促进作用。在交互式的合作中学生通过交流可以对所讨论的问题产生不同角度的认识和思考,有利于拓展学生的思维,激发其创新意识。通过交互式的合作,在学生之间能够对问题进行广泛讨论,也能找到更多的解决问题的方法。例如,在实践活动中教师带领学生走曲径小路,观赏美景时就可以假设问题:对于曲折的小路,如何计算出它的长度?并号召学生展开讨论,学生有的说用尺子,有的说用步测……通过学生之间交互式的合作讨论的方式,能够对学生的思维产生启发,这对创新思维的培养是非常重要的。创新型的 思维方式 对于创新意识的培养是至关重要的,在创新思维的引导下,小学生对学习数学的兴趣势必会增强。在小学数学教学中创新思维的培养可以通过一些有效的训练方法来实现,例如 逆向思维 的训练,有时会对数学问题的解答产生更为简便高效的作用;联想思维的训练,能够帮助学生从多角度来思考问题,对全面思考问题具有很好的效果,联想能够拓展思维的广度和深度,是创新意识培养的基础。
四、通过实践活动的方式培养小学生的创新意识
小学数学课程中要更多地加入实践课,让学生在实践中形成对数学知识的认识,在实践中创造并感知,从而激发小学生创新意识的养成。实践能够在小学生的头脑中形成更为稳定的知识,因为从具体形象的事中才能强化人们对知识内容的感知和记忆。例如,“100以内数的认识”这一章节的教学,教师就可以组织学生通过数一些玩具木棒、数花生等方式来加强学生学习的兴趣和强化知识内容。实践活动的方式还包括课下练习内容,安排练习题时可以设计一些具有乐趣的实践活动,让学生通过自身的探索活动加强对知识的感知和认识,小学生在自己的实践探索过程中不但会加强知识的认识,还会形成自己动手的成就感,也会提高对数学学习的兴趣。
五、结语
创新意识对个人发展具有极其重要的意义,因此要从小学阶段就着重培养学生的创新意识,这也是当前 教育 教学改革的一项重要内容,对此本文结合小学数学教学对如何培养小学生的创新意识进行了研究探讨。笔者针对小学数学教学的特点提出了四个方面的建议,包括情境时教学模式的采用、提高小学生学习数学的兴趣、交互式合作的方式以及实践活动的方式。小学数学教师要积极地探索多样化的教学方式来不断提高小学生的创新意识,为其今后的人生发展奠定良好的基础,为国家的人才培养奠定基础。
作者:林维旭 工作单位:山东省莱西市望城冯北小学
数学建模论文范文--利用数学建模解数学应用题数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。一、数学应用题的特点我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。二、数学应用题如何建模建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:第一层次:直接建模。根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:将题材设条件翻译成数学表示形式应用题 审题 题设条件代入数学模型 求解选定可直接运用的数学模型第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。三、建立数学模型应具备的能力从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。3.1提高分析、理解、阅读能力。阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。3.2强化将文字语言叙述转译成数学符号语言的能力。将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少?将题中给出的文字翻译成符号语言,成本y=a(1-p%)53.3增强选择数学模型的能力。选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:函数建模类型 实际问题一次函数 成本、利润、销售收入等二次函数 优化问题、用料最省问题、造价最低、利润最大等幂函数、指数函数、对数函数 细胞分裂、生物繁殖等三角函数 测量、交流量、力学问题等3.4加强数学运算能力。数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。加强高中数学建模教学培养学生的创新能力摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。关键词:创新能力;数学建模;研究性学习。《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生:(1)学会提出问题和明确探究方向;(2)体验数学活动的过程;(3)培养创新精神和应用能力。其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大?这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。2.通过几何、三角形测量问题和列方程解应用题的教学渗透数学建模的思想与思维过程。学习几何、三角的测量问题,使学生多方面全方位地感受数学建模思想,让学生认识更多现在数学模型,巩固数学建模思维过程、教学中对学生展示建模的如下过程:现实原型问题数学模型数学抽象简化原则演算推理现实原型问题的解数学模型的解反映性原则返回解释列方程解应用题体现了在数学建模思维过程,要据所掌握的信息和背景材料,对问题加以变形,使其简单化,以利于解答的思想。且解题过程中重要的步骤是据题意更出方程,从而使学生明白,数学建模过程的重点及难点就是据实际问题特点,通过观察、类比、归纳、分析、概括等基本思想,联想现成的数学模型或变换问题构造新的数学模型来解决问题。如利息(复利)的数列模型、利润计算的方程模型决策问题的函数模型以及不等式模型等。3.结合各章研究性课题的学习,培养学生建立数学模型的能力,拓展数学建模形式的多样性式与活泼性。高中新大纲要求每学期至少安排一个研究性课题,就是为了培养学生的数学建模能力,如“数列”章中的“分期付款问题”、“平面向是‘章中’向量在物理中的应用”等,同时,还可设计类似利润调查、洽谈、采购、销售等问题。设计了如下研究性问题。例1根据下表给出的数据资料,确定该国人口增长规律,预测该国2000年的人口数。时间(年份) 人中数(百万) 39 50 63 76 92 106 123 132 145分析:这是一个确定人口增长模型的问题,为使问题简化,应作如下假设:(1)该国的政治、经济、社会环境稳定;(2)该国的人口增长数由人口的生育,死亡引起;(3)人口数量化是连续的。基于上述假设,我们认为人口数量是时间函数。建模思路是根据给出的数据资料绘出散点图,然后寻找一条直线或曲线,使它们尽可能与这些散点吻合,该直线或曲线就被认为近似地描述了该国人口增长规律,从而进一步作出预测。通过上题的研究,既复习巩固了函数知识更培养了学生的数学建模能力和实践能力及创新意识。在日常教学中注意训练学生用数学模型来解决现实生活问题;培养学生做生活的有心人及生活中“数”意识和观察实践能力,如记住一些常用及常见的数据,如:人行车、自行车的速度,自己的身高、体重等。利用学校条件,组织学生到操场进行实习活动,活动一结束,就回课堂把实际问题化成相应的数学模型来解决。如:推铅球的角度与距离关系;全班同学手拉手围成矩形圈,怎样围使围成的面积最大等,用砖块搭成多米诺牌骨等。四、培养学生的其他能力,完善数学建模思想。由于数学模型这一思想方法几乎贯穿于整个中小学数学学习过程之中,小学解算术运用题中学建立函数表达式及解析几何里的轨迹方程等都孕育着数学模型的思想方法,熟练掌握和运用这种方法,是培养学生运用数学分析问题、解决问题能力的关键,我认为这就要求培养学生以下几点能力,才能更好的完善数学建模思想:(1)理解实际问题的能力;(2)洞察能力,即关于抓住系统要点的能力;(3)抽象分析问题的能力;(4)“翻译”能力,即把经过一生抽象、简化的实际问题用数学的语文符号表达出来,形成数学模型的能力和对应用数学方法进行推演或计算得到注结果能自然语言表达出来的能力;(5)运用数学知识的能力;(6)通过实际加以检验的能力。只有各方面能力加强了,才能对一些知识触类旁通,举一反三,化繁为简,如下例就要用到各种能力,才能顺利解出。例2:解方程组x+y+z=1 (1)x2+y2+z2=1/3 (2)x3+y3+z3=1/9 (3)分析:本题若用常规解法求相当繁难,仔细观察题设条件,挖掘隐含信息,联想各种知识,即可构造各种等价数学模型解之。方程模型:方程(1)表示三根之和由(1)(2)不难得到两两之积的和(XY+YZ+ZX)=1/3,再由(3)又可将三根之积(XYZ=1/27),由韦达定理,可构造一个一元三次方程模型。(4)x,y,z 恰好是其三个根t3-t2+1/3t-1/27=0 (4)函数模型:由(1)(2)知若以xz(x+y+z)为一次项系数,(x2+y2+z2)为常数项,则以3=(12+12+12)为二次项系数的二次函f(x)=(12+12+12)t2-2(x+y+z)t+(x2+y2+z2)=(t-x)2+(t-y)2+(t-z)2为完全平方函数3(t-1/3)2,从而有t-x=t-y=t-z,而x=y=z再由(1)得x=y=z=1/3,也适合(3)平面解析模型方程(1)(2)有实数解的充要条件是直线x+y=1-z与圆x2+y2=1/3-z2有公共点后者有公共点的充要条件是圆心(O、O)到直线x+y的距离不大于半径。总之,只要教师在教学中通过自学出现的实际的问题,根据当地及学生的实际,使数学知识与生活、生产实际联系起来,就能增强学生应用数学模型解决实际问题的意识,从而提高学生的创新意识与实践能力。数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。一、数学应用题的特点我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。二、数学应用题如何建模建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:第一层次:直接建模。根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:将题材设条件翻译成数学表示形式应用题 审题 题设条件代入数学模型 求解选定可直接运用的数学模型第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。三、建立数学模型应具备的能力从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。3.1提高分析、理解、阅读能力。阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。3.2强化将文字语言叙述转译成数学符号语言的能力。将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少?将题中给出的文字翻译成符号语言,成本y=a(1-p%)53.3增强选择数学模型的能力。选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:函数建模类型 实际问题一次函数 成本、利润、销售收入等二次函数 优化问题、用料最省问题、造价最低、利润最大等幂函数、指数函数、对数函数 细胞分裂、生物繁殖等三角函数 测量、交流量、力学问题等3.4加强数学运算能力。数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。
数学应用是数学 教育 的重要内容,呼唤数学应用意识,提高数学应用教学质量,已成为广大数学教育工作者的共识。下面是我为大家推荐的数学建模论文,供大家参考。
数学建模论文 范文 一:建模在高等数学教学中的作用及其具体运用
一、高等数学教学的现状
(一) 教学观念陈旧化
就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及 逻辑思维 能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。
(二) 教学 方法 传统化
教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。
二、建模在高等数学教学中的作用
对学生的 想象力 、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。
高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。
三、将建模思想应用在高等数学教学中的具体 措施
(一) 在公式中使用建模思想
在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。
(二) 讲解习题的时候使用数学模型的方式
课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。
(三) 组织学生积极参加数学建模竞赛
一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。
四、结束语
高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。
参考文献
[1] 谢凤艳,杨永艳. 高等数学教学中融入数学建模思想[J]. 齐齐哈尔师范高等专科学校学报,2014 ( 02) : 119 -120.
[2] 李薇. 在高等数学教学中融入数学建模思想的探索与实践[J]. 教育实践与改革,2012 ( 04) : 177 -178,189.
[3] 杨四香. 浅析高等数学教学中数学建模思想的渗透 [J].长春教育学院学报,2014 ( 30) : 89,95.
[4] 刘合财. 在高等数学教学中融入数学建模思想 [J]. 贵阳学院学报,2013 ( 03) : 63 -65.
数学建模论文范文二:数学建模教学中数学素养和创新意识的培养
前言
创新人才的培养是新的时代对高等教育提出的新要求.培养高质量、高层次人才不仅需要传统意义上的逻辑思维能力、推理演算能力,更需要具备对所涉及的专业问题建立数学模型,进行数学实验,利用先进的计算工具、数学软件进行数值求解和做出定量分析的能力.
因此,如何培养学生的求知欲,如何培养学生的学习积极性,如何培养学生的创新意识和创新能力已成为高等教育迫切需要解决的问题[1].
在数学教学中,传统的数学教学往往注重知识的传授、公式的推导、定理的证明以及应用能力的培养.尽管这种模式并非一无是处,甚至有时还相当成功,但它不能有效地激发广大学生的求知欲,不能有效地培养学生的学习积极性,不能有效地培养学生的创新意识和创新能力.
而如何培养学生的创新意识和创新能力,既没有现成的模式可循,也没有既定的方法可套用,只能靠广大教师不断探索和实践.
近年来,国内几乎所有大学都相继开设了数学建模和数学实验课,在人才培养和学科竞赛上都取得了显着的成效.数学建模是指对特定的现象,为了某一目的作一些必要的简化和假设,运用适当的数学理论得到的一个数学结构,这个数学结构即为数学模型,建立这个数学模型的过程即为数学建模[2].
所谓数学教学中的数学实验,就是从给定的实际问题出发,借助计算机和数学软件,让学生在数字化的实验中去学习和探索,并通过自己设计和动手,去体验问题解决的教学活动过程.数学实验是数学建模的延伸,是数学学科知识在计算机上的实现,从而使高度抽象的数学理论成为生动具体的可视性过程.
因此,数学实验就是一个以学生为主体,以实际问题为载体,以计算机为媒体,以数学软件为工具,以数学建模为过程,以优化数学模型为目标的数学教学活动过程[3-7].
因此,如何把实际问题与所学的数学知识联系起来;如何根据实际问题提炼数学模型;建模的方法和技巧;数学模型所涉及到的各类算法以及这些算法在相应数学软件平台上的实现等问题就成了我们研究的重点.现结合教学实践,谈谈笔者在数学建模和数学实验课的教学中 总结 的几点看法.
1掌握数学语言独有的特点和表达形式
准确使用数学语言模拟现实模型数学语言是表达数学思想的专门语言,它是自然语言发展到高级状态时的特殊形式,是人类基于思维、认知的特殊需要,按照公有思维、认知法则而制造出来的语言及其体系,给人们提供一套完整的并不断精细、完善、完美的思维和认知程序、规则、方法.
用数学语言进行交流和良好的符号意识是重要的数学素质.数学建模教学是以训练学生的思维为核心,而语言和思维又是密不可分的.能否成功地进行数学交流,不仅涉及一个人的数学能力,而且也涉及到一个人的思路是否开阔,头脑是否开放,是否尊重并且愿意考虑各方面的不同意见,是否乐于接受新的思想感情观念和新的行为方式.数学建模是利用数学语言模拟现实的模型,把现实模型抽象、简化为某种数学结构是数学模型的基本特征.
现实问题要通过数学方法获得解决,首先必须将其中的非数学语言数学化,摒弃其中表面的具体叙述,抽象出其中的数学本质,形成数学模型.通过分析现实中的数学现象,对常见的数学现象进行数学语言描述,从而将现实问题转化为数学问题来解决.
2借助数学建模教学使学生学会使用数学语言构建数学模型
根据现阶段普通高校学生年龄特点和知识结构,我们可以通过数学建模对学生加强数学语言能力的培养,让他们熟练掌握数学语言,以期提升学生的形象思维、 抽象思维 、逻辑推理和表达能力,提高学生的数学素质和数学能力.在数学建模教学过程中,教师要力求做到用词准确,叙述精炼,前后连贯,逻辑性强.在问题的重述和分析中揭示数学语言的严谨性;在数学符号说明和模型的建立求解中揭示数学语言的简约性,彰显数学语言的逻辑性、精确性和情境性,突出数学符号语言含义的深刻性;在模型的分析和结果的罗列中,显示图表语言的直观性,展示数学语言的确定意义、语义和语法;在模型的应用和推广中,显示出数学符号语言的推动力的独特魅力.
而在学生的书面作业或论文 报告 中,注意培养学生数学语言表达的规范性.书面表达是数学语言表达能力的一种重要形式.通过教师数学建模教学表述规范的样板和学生严格的书面表达的长期训练来完成.在书面表达上,主要应做到思维清晰、叙述简洁、书写规范.例如在建立模型和求解上,严格要求学生在模型的假设,符号说明、模型的建立和求解,图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.
对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面要及时纠正.
3借助数学实验教学,展示高度抽象
的数学理论成为具体的可视性过程要培养创新人才,上好数学实验课,首先要有创新型的教师,建立起一支"懂实验""会试验""能创新"的教师队伍.由于数学实验课理论联系实际,特点鲜明,内容新颖,方法特别,所以能够上好数学实验课,教师就必须具备扎实的数学理论功底,计算机软件应用操作能力,良好的科研素质与科研能力.
因此,数学与统计学院就需要选取部分教师,主攻数学建模、数学实验、数值分析课程.优先选派数学实验教师定期出去进修深造提高,以便真正形成一支"懂实验""会实验""能创新"的教师队伍.实验课的地位要给予应有的重视.我院现存的一个重要表现就是实验设备不足,实验室开放时间不够.为了确保数学实验有物质条件上的保证,必须建立数学实验与数学建模实验室.
配备足够的高性能计算机,全天候对学生开放,尽快尽早淘汰陈旧的计算机设备.精心设计实验内容,强化典型实验,培养宽厚扎实理论水平;精选实验内容,加强学生之间的互动,培养协作意识和团队精神.在实验教学时数有限的情况下,依据培养目标和教学纲要,对教材中的实验内容进行选择、设计.要最大限度地开发学生的创造性思维,数学实验在项目设计过程中应当遵循适应性、趣味性、灵活性、科学性、渐进性和应用性的基本原则.
选择基础性试验,重点培养宽厚扎实的理论水平,提高对数学理论与方法的深刻理解.熟练各种数学软件的应用与开发,提高计算机应用能力,增强实践应用技能;增加综合性实验和设计性实验,从实际问题出发,培养学生分析问题,解决问题的能力,强化 创新思维 的开发.
教学方法上实行启发参与式教学法:启发-参与-诱导-提高.充分发挥学生主体作用,以学生亲自动脑动手为主.
教师先提出问题,对实验内容,实验目标,进行必要的启发;然后充分发挥学生主体作用,学生动手操作,每个命令、语句学生都要在计算机上操作得到验证;根据学生出现的情况,老师总结学生出现的问题,进行进一步的诱导;再让其理清思路,再次动手实践,从理论与实践的结合上获得能力上提高.数学实验是一门强调实践、强调应用的课程.
数学实验将数学知识、数学建模与计算机应用三者融为一体,可以使学生深入理解数学的基本概念和理论,掌握数值计算方法,培养学生运用所学知识使用计算机解决实际问题的能力,是一门实践性很强的课程.在这一教学活动中,通过数学软件如MAT-LAB、Mathematica、SPSS的教学和综合数学实验,如碎片拼接、罪犯藏匿地点的查找、光伏电池的连接、野外漂流管理、水资源的有效利用、葡萄酒的分类等,通这些实际问题最终的数学化的解决,将高度抽象的数学理论呈现为生动具体的可视性结论,展示数学模型与计算机技术相结合的高度抽象的数学理论成为生动具体的可视性过程.
4突出学生的主体作用,循序渐进培养学生学习、实践到创新
实践教学的目的是要提高学生应用所学知识分析、解决实际问题的综合能力.
在教学中,搭建数学建模与数学实验这个平台,提示学生用计算机解决经过简化的问题,或自己提出实验问题,设计实验步骤,观察实验结果,尤其是将庞大繁杂的数学计算交给计算机完成,摆脱过去害怕数学计算、画函数图像、解方程等任务,避免学生一见到庞大的数学计算公式就会产生畏惧心理,从而丧失信心,让学生体会到在数学面前自己由弱者变成了强者,由失败者变成了胜利者、成功者.
再设计让学生自己动手去解决的各类实际问题,使学生通过对实际问题的仔细分析、作出合理假设、建立模型、求解模型及对结果进行分析、检验、总结等,解决实际问题,逐步培养学生熟练使用计算机和数学软件的能力以及运用数学知识解决实际问题的意识和能力.
同时,给学生提供大量的上机实践的机会,提高学生应用数学软件的能力.一个实际问题构成一个实验内容,通过实践环节加大训练力度,并要求学生通过计算机编程求解、编写实验报告等形式,达到提高学生解决实际问题综合能力的目标.数学建模与数学实验课程通过实际问题---方法与分析---范例---软件---实验---综合练习的教学过程,以实际问题为载体,以大学基本数学知识为基础,采用自学、讲解、讨论、试验、文献阅读等方式,在教师的逐步指导下,学习基本的建模与计算方法.
通过学习查阅文献资料、用所学的数学知识和计算机技术,借助适当的数学软件,学会用数学知识去解决实际问题的一些基本技巧与方法.通过实验过程的学习,加深学生对数学的了解,使同学们应用数学方法的能力和发散性思维的能力得到进一步的培养.实践已证明,数学建模与数学实验课这门课深受学生欢迎,它的教学无论对培养创新型人才还是应用型人才都能发挥其他课程无法替代的作用.
5具体的教学策略和途径
数学建模课程和数学实验课程同时开设,在课程教学中,要尽可能做到如下几个方面:
1)注重背景的阐述
让学生了解问题背景,才能知道解决实际问题需要哪些知识,才能做出贴近实际的假设,而这恰恰是建立一个能够解决实际问题的数学模型的前提.再者,问题背景越是清晰,越能够体现问题的重要性,这样才能激发学生解决实际问题的兴趣.
2)注重模型建立与求解过程中的数学语言的使用
在做好实际问题的简化后,使用精炼的数学符号表示现实含义是数学语言使用的彰显.基于必要的背景知识,建立符合现实的数学模型,通过多个方面对模型进行修正,向学生展示不同的条件相对应的数学模型对于现实问题的解决.在模型的求解上,严格要求学生在模型的假设,符号说明、图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面及时纠正.
3)注重经典算法的数学软件的实现和改进
由于实际问题的特殊性导致数学模型没有固定的模式,这就要求既要熟练掌握一般数学软件和算法的实现,又要善于改进和总结,使得现有的算法和程序能够通过修正来解决实际问题,这对于学生能力的培养不可或缺.只有不断的学习和总结,才有数学素养的培养和创新能力的提高.
参考文献:
[1]叶其孝.把数学建模、数学实验的思想和方法融人高等数学课的教学中去[J].工程数学学报,2003,(8):1-11.
[2]颜荣芳,张贵仓,李永祥.现代信息技术支持的数学建模创新教育[J].电化教育研究,2009,(3)。
[3]郑毓信.数学方法论的理论与实践[M].广西教育出版社,2009.
[4]姜启源.数学实验与数学建模[J].数学的实践与认识,2001,(5):613-617.
[5]姜启源,谢金星,叶俊.数学建模[M].第3版.北京:高等教育出版社,2002.
[6]周家全,陈功平.论数学建模教学活动与数学素质的培养[J].中山大学学报,2002,(4):79-80.
[7]付桐林.数学建模教学与创新能力培养[J].教育导刊,2010,(08):89-90.