缺口拉伸时,缺口会引起应力集中,改变了缺口前方的应力状态,使缺口试 样所受的应力由原来的单向应力状态变为两向或三向应力状态,也就是出现了σx(平面应力状态)或σx与σz (平面应变状态),这要视板厚或直径的大小而定。广义地说,机件截面急剧变化,如轴肩、螺纹、油孔、倒角、退刀槽及焊缝等,均可视作缺口,材料内部组织的不均匀,也有类似缺口的作用。 缺口要影响到材料的弹性变形、塑性变形和断裂过程,具体表现是使材料变脆,提高形变速率或降低温度对材料力学性能的影响与缺口相类似。
有缺口的材料,做拉伸试验时,应力集中在缺口处,缺口处容易被破坏,这与试验目的不符!!!
水泵电流方面会略降一点、会影响到水泵的整体性能、对水泵的使用时间会有一定的影响、给水泵带去压力、直接影响的是水泵流量。1、将水泵出水口改小其实相当于将水泵出口阀门关小,水泵压力升高,流量下降,水泵电流方面也会略降一点,水泵有振动情况,水泵振动不会变小,反而有可能会更严重。2、水泵出水口改小,水泵扬程不会有变化,当水泵外界环境发生变化的时候,就会影响到水泵的整体性能,可能会导致水泵出口压力变大,但这个变化是动态的,只能说将水泵出水口改小具有节流的作用,会使水泵出口压力升高。3、水泵出水口改小如果工况现场情况不是很好,对水泵的使用时间会有一定的影响,但当改变水泵出水口后,如果水泵工况情况仍然是正常的,那么就不需要担心了。4、将泵出水口改小,只要不是太大就没事,改的太大,对水泵还是会有影响的,出水不畅会给水泵带去压力,增加电机负荷,电机会过载。5、泵出水口大小发生变化,行业内的人应该都知道直接影响的是水泵流量,即水泵出水口越大,则水泵流量就越大,反之水泵流量就越小。
隔膜泵的出水口减小压力会导致泵的流量减小,但是对泵的压力并不一定会增大。隔膜泵的压力主要取决于进出口管道的阻力和泵的设计特性,而出水口减小压力只是减小了泵的流量,因此可能会有以下两种情况:1. 减小出水口直径会增加阻力,从而增大泵的压力。如果出水口减小直径后管道中的流速加大,阻力增加,将会反过来影响泵的性能。2. 减小出水口的压力设置合理,则不会对泵的压力产生显著影响,但是可能会影响泵的流量和流速。因此,在调整隔膜泵的出水口压力时,应该结合具体情况进行分析和调整,以达到最优的泵送效果。
隔膜泵的压力不高,比如:QBY-100型气动隔膜泵的流量为每小时0~30立米,出口压力为0.6Mpa。
隔膜泵的压力取决于多个因素,例如泵的型号、材质、电机功率、流量、系统管道的阻力、介质的密度和粘度等。一般来说,隔膜泵的压力可以达到最高16巴(232 psi)左右,但是具体的压力还是要根据实际情况进行调整和控制。在实际操作中,需要根据介质的性质和工艺要求来选择适合的隔膜泵型号,同时要考虑系统的工作压力、流量、粘度等参数来确定合适的隔膜泵压力范围。
跑步时需要跑前热身、佩戴护膝、适度锻炼、平路跑步、跑后按摩来保护膝盖。1、在跑步前,应当适当进行热身活动,比如对腿部的肌肉进行牵拉和伸展,避免在跑步时出现肌肉拉伤、关节韧带损伤等情况。2、应当佩戴护膝,能够对关节部位加以保护,使关节的稳定性增强,降低运动损伤出现几率。3、在跑步时要适度,不可过于剧烈,也不要跑得时间过久,避免超过身体体能极限。4、要选择平路跑步,不要选择不平整的道路或者是上下坡路。因为在不平整的路段跑步,容易对膝关节部位造成损三甲问诊(¥9.9)免费问医生(限时)
田径训练运动损伤原因:1.田径运动中技术动作不合理2.准备活动不充分3.运动负荷安排不合理4.场地设施不足5.气候不好6.没有合理的作息时间7.不重视运动后的恢复等都会造成运动损伤。预防的措施有:1.做好准备活动2、加强易受伤部位的练习3.合理安排运动负荷4.加强场地器材的安全检查、维修和服装检查5.保证合理的作息和充足的睡眠时间等。
第一,跑前和跑后用药油抹膝盖,那种跌打油。跑量大使得关节软骨的冲击损伤不能有效恢复,其实大部分跑者膝盖之所在会疼就是肌肉起不到应有的支撑作用,磨损了软骨。擦药油为了缓解疼痛。第二,开始做靠墙蹲,就是静蹲,每天至少10分钟,不是一次蹲完,一开始只能几十秒,后来一两分钟,反正加起来蹲够10分钟。静蹲为了锻炼膝盖两侧肌肉。第三,买一瓶氨糖软骨素吃。吃软骨素促进了膝盖磨损的修复。
对于已经有一些跑步经验的人来说,在合适的时候去参加一场马拉松,是件极有意义,并顺利成章的事情。你可以现在开始为给自己计划参加一场比赛,有一个目标和规划会让你更有动力坚持锻炼,也更容易得到意外收获。如果你是刚开始跑步没有多久,可以先尝试着跑次半马。不管是哪一种,都需要全面,完善,科学的备赛,我们给出了初级和中级的不同课表,初级以安全完赛为目标,中级给有一定速度要求,希望有更好成绩的跑者。半马计划12周,全马计划为18周。半程马拉松:初级半程马拉松初级计划是一个非常好的开端,即使是对于初跑者来说,完成第一周的任务也是不成问题的。周一和周五是休息日,周二至周四是短距离跑,周六是30~60分钟的交叉训练,作为周日长距离跑的前奏。在训练期间,你可以参加5公里比赛和10公里比赛来获取比赛经验。备注:交叉训练就是将不同的训练方法在训练中交替使用,可以理解为多元化运动。对跑者来说,目前认为的较好的训练方法是除了跑步,还要做如平板支撑、深蹲、卷腹、HIIT等力量训练,同时也安排一些诸如骑行、游泳、步行、跳绳等其他形式的耐力运动。
6.2.1 岩石成分对岩石力学性质的影响
影响岩石力学性质的因素很多,除受力条件和赋存环境等外在因素外,还有沉积岩石物质成分和结构构造等内在因素,因此,沉积岩的沉积特征与力学性质对岩石的变形机制和井下支护对策的研究具有重要意义。有关岩石成分和结构对岩石力学性质的影响研究,已取得了有意义的定性认识: 如石英含量越高,强度越大; 细颗粒岩石的强度较高; 抗压强度随着孔隙率的增加而减少等。近些年来,利用高倍显微镜、扫描电镜及 CT 技术研究岩土的微观、宏观结构,取得了一定成果。国内学者就软岩工程地质特征进行了研究,取得了有意义的研究成果。但从目前的研究现状看,岩石 ( 体) 力学中的沉积特征研究开展得还不够深入,沉积岩石学与力学研究和工程应用没有融为一体,因而没有真正发挥应有的作用。基于沉积岩石学特征,应用相关仪器,对不同岩性的岩石试样进行试验,建立沉积特征参数与宏观力学性质之间的定量关系,取得了有意义的研究成果。岩石中的裂隙,按成因分为原生裂隙与次生裂隙两大类。裂隙的存在,导致岩体的连续性被破坏,削弱岩体内的连接力,降低岩体的坚固性和稳定性。原生裂隙是指成岩过程中生成的裂隙,也叫成岩裂隙,如沉积岩的层理面、节理面、不整合面以及在成岩过程中因脱水密实而出现的与层理垂直或斜交的有一定分布规律的裂隙面。次生裂隙指岩层生成以后产生的,主要包括构造裂隙和矿压裂隙。构造裂隙是在岩体形成后,在地壳运动过程中产生的,在岩体内除了一些明显裂隙外,还有很多闭合的、很难分辨的细微裂隙。由于地质构造作用力的不同,可分为张裂隙和剪裂隙。由于岩体内存在着这些大大小小的裂隙,构成明显的弱面,所以在开采过程中,常会发生无预兆的冒顶事故。矿压裂隙是在开采过程中,由岩体内矿山压力所造成的。天然岩体总是被各种裂隙分割成块体,这些块体之间既相互联系又相互影响。岩石的非均质性、层理性、裂隙性,对岩石的物理力学性质有重大的影响,岩石物理力学性质的连续或不连续、均匀或不均匀、各向同性或各向异性,都取决于这些结构特征。
6.2.2 水对岩石力学性质的影响
地壳中的岩石,尤其是沉积岩,大部分都含有水分或溶液,有的含有油气。L.Müller( 1974) 曾指出过,岩体是两相介质,即由矿物 - 岩石固相物质和含于孔隙和裂隙内水的液相物质组成,它们都会降低岩石的弹性极限,提高韧性和延性,使岩石软化,易于变形,其变形与强度特征受到重要影响。
( 1) 兖州煤田
由表6.3 至表6.5 可以看出,随含水量增加,岩石的单轴抗压强度和弹性模量均急剧降低,但降低的速率受岩性控制,不完全相同,主要取决于岩石结构状况、结晶度和是否含有亲水性粘土矿物等因素。影响岩石力学性质的主要因素有岩石岩性、构造分布、水的作用等,通过上面的分析得出如下认识:
表6.3 兖州煤田自然含水状态下力学性质试验结果
注: 采样地点东滩煤矿。
不同岩性的岩石具有不同的形变速率和强度特征,岩石力学性质主要表现为,随着碎屑颗粒粒度由粗到细,即由砂岩到泥岩变化,碎屑岩的强度与刚度均迅速衰减。随构造发育程度的不同,区域岩体表现的力学性质存在很大差异,构造发育区,岩体的完整性遭到破坏,岩石被切割或破碎成带,力学强度降低; 非构造发育区,岩体完整,岩体力学强度高。水对岩石力学性质亦有重要影响,在干燥或较少含水量情况下,岩石在峰值强度后表现为脆性和剪切破坏,应力 - 应变曲线具有明显的应变软化特性; 随着含水量的增加,岩石单轴抗压强度和弹性模量均急剧降低,表现为塑性破坏,且应变软化特性不明显。另外,砂岩的孔隙度对力学性质影响也很明显 ( 表6.6,表6.7) ,同是细砂岩,当孔隙率分别为 2.3%、8.0%、11.4% 时,自然状态下的抗压强度分别为 796.0MPa、492.0MPa、158.0MPa; 同是中砂岩,当孔隙率分别为 4.4% 、12.7% 、15.7% 、17.8% 时,自然状态下的抗压强度分别为 700.0MPa、398.6MPa、539.0MPa、115.0MPa; 说明随着孔隙度的增高,岩体抗压强度有迅速减小的趋势。
表6.4 兖州煤田 3 煤层顶板岩样测试参数
注: 采样地点东滩煤矿。
表6.5 兖州煤田岩石物理力学性质 ( 一)
表6.6 兖州煤田岩石物理力学性质(二)
注:采样地点东滩煤矿。
表6.7 兖州煤田岩石物理力学性质(三)
注:采样地点东滩煤矿。
( 2) 龙固井田
巨野煤田龙固井田山西组 3 煤层顶底板砂岩含水层,统称为 3 砂。井田内有 60 孔揭露,砂岩厚 4.80~75.65m,平均 26.7m。以细砂岩为主,局部为中砂岩和粉砂岩,裂隙局部发育,充填有方解石脉。3 砂共发现漏水点 9 层次,漏水孔率为 15.0%,漏水点深711.28~ 905.36m。该层位 L - 2 和 L - 15 孔抽水 2 次,单位涌水量 0.00811~ 0.01509L / s·m,渗透系数 0.00993~ 0.02746m / d,水位标高 34.97~ 35.12m,矿化度 6.88~ 7.79g / L,水质类型为 SO4- K + Na 型,属弱富水的裂隙承压含水层。根据抽水试验,水位恢复缓慢,如 L -2 号孔抽水后 24h 恢复水位尚比静止水位低 4.74m,表明 3 砂径流不畅,补给条件差。3 砂是 3 煤层直接充水含水层。根据研究的需要,把龙固井田富水性分区划分为5 个级别: 极强、强、中等、弱、极弱。通过对研究区钻探、水文等资料进行分析,对研究区不同级别的富水性进行了圈定 ( 图6.3) 。由图6.3 可知: 龙固井田内总体富水性主要呈南北分布、东西分带的特点,井田大部分区域富水中等,约占井田的 1/2。其中,富水性比较弱的区域主要分布在井田的东南部,靠近邢庄断层,北部跨过陈庙断层的区域小面积出现; 井田富水性强的区域主要分布在井田东北部陈庙断层与田桥断层交叉区域以及井田北部靠近张楼断层的小块区域,总体来说,龙固井田 3 煤顶板富水性中等 - 偏强,影响了煤层顶板岩石力学的强度 ( 表6.8) ,降低了顶板稳定性。
图6.3 龙固井田 3 煤顶板砂岩富水性分区
表6.8 龙固井田3煤顶板岩石物理力学性质试验
续表
6.2.3 构造结构面对岩石力学性质的影响
对于不同岩性的岩石,破坏机制存在差异,软质岩石在单轴压缩条件下为剪张破坏,在一定侧压条件下为弱面剪切破坏和塑性破坏,并且随着侧压的增大,岩石应力 - 应变曲线由应变软化状态向近似应变硬化状态过渡,并伴有体积膨胀现象。中硬岩石在单轴压缩条件下为脆性张裂破坏,随着侧压的增加,岩石进入剪切破坏; 岩石应力 - 应变曲线表现出一定的应变软化特性。硬质岩石在侧压范围内均为脆性张裂破坏和剪切破坏,破坏时发出较大的声响和振动,岩石应力 - 应变曲线表现出明显的脆性和应变软化特性,说明岩性对岩石力学性质具有重要的控制作用。
煤矿开采实践证明,煤层顶板稳定性存在局部变化,与断层、褶皱活动相关,断层的存在可以改变顶板冒落的一般规律,使顶板沿断层切下,导致工作面突然冒顶和来压。无论是正断层还是逆断层,在断层下盘靠近断层面附近最易冒顶,当巷道掘进到断层区时,一般出现比较大的围岩变形,支护十分困难。顶板岩体中发育的小褶皱常使顶板条件恶化,由于挠曲滑动作用,褶皱的层理面上擦痕遍布,使顶板稳定性降低。
断层带附近煤岩体力学性质的变化特征与正断层的形成过程和特点密切相关 ( 图6.4) 。在断层的形成过程中断层面附近为一明显的应力集中带,其变形破裂也最明显,在该带煤岩层强度大幅度降低,远离断层,应力作用减小,变形破裂也变弱,因此平面上越靠近断层,煤层孔隙和裂隙越发育,煤岩体力学强度也越低 ( 图6.5) 。正断层形成的过程中,上盘为主动盘,断裂面形成后,上盘会因重力作用向下滑动,而产生次生压力,此外,正断层使断块在不规则断层面上活动或断块内小断块之间相互作用产生局部压力。正断层的这些特征势必导致上盘裂隙发育程度大于下盘,上、下盘相对滑动产生的次生应力不仅会使上盘的破坏程度大于下盘,而且会使伴生的剪裂隙和张裂隙进一步扭转,转化为张扭性裂隙。
图6.4 断层与煤层裂隙和孔隙率的关系
煤层顶板稳定性的局部变化与断层、褶皱的活动有关。研究表明 ( 图6.5) ,断层带附近煤岩体破碎,煤岩体中裂隙的发育程度随着与断层面距离的变小而增强,煤岩体力学强度越靠近断层越低。裂隙的力学性质向断层面方向由张性向张扭、压扭性再到张性转化,正断层附近宏、微观裂隙发育程度和影响宽度表现为上盘明显高于下盘,且断层对煤岩体力学强度影响宽度明显高于对宏、微观裂隙影响宽度,一般为落差的 2~4 倍。由于采动影响,破坏了岩体中原岩应力的平衡状态,引起采场周围岩体内的应力重分布,形成支承压力区和卸载区,随着工作面推进顶板沉积岩层经历了一个在煤壁前方支承压力作用下的压缩 ( 密) 变形和沿层面方向的剪切滑移变形,最后在采空空间沿层面产生拉张离层破坏的过程,最终导致煤层顶板失稳。
图6.5 断层附近煤岩体单轴抗压强度的变化L—距断层距离; H—断层落差
6.2.4 沉积结构面对岩石力学性质的影响
沉积结构面与成岩后所形成的构造结构面是有区别的,对岩体力学性质的影响也各不相同。沉积结构面分布广,延展好,相互间高度贯通,使沉积岩体具有许多特有的力学特征 ( 图6.6) 。所以研究沉积结构面对岩体力学性质的影响具有重要意义。
图6.6 不同结构类型岩体应力应变曲线( 据张倬元等,1994)
沉积结构面是沉积岩体特有的性质,由于沉积结构面的存在使沉积岩体力学性质呈各向异性。根据层理面上的强度特征将层理进一步分为弱面型与非弱面型。
1) 非弱面型层理是在水动力较强、变化不大,或者说是在持续较强的水动力条件下形成的,并保存在砂岩和粉砂岩中的沉积构造,如交错层理、水平层理、平行层理等。岩体受力变形过程中一般不会沿这些层理面破坏。
2) 弱面型层理是在水动力强弱交替的条件下形成的,当水动力弱时形成泥质岩、云母片、植物碎屑和炭质等定向排列而呈现层理,这类层理的细层之间粘结较弱,形成沉积弱面,如交错层理、砂纹层理、潮汐层理、互层层理和水平层理等,岩体受力变形过程中,岩体易产生垂直于沉积结构面的张性破坏或沿沉积弱面的剪切破坏。
层系或层系组界面、岩层面以及不整合面均为沉积弱面,对岩石 ( 体) 力学性质具有重要影响。如老顶砂岩与直接顶或煤层冲刷形成的接触面,由于砂岩与泥岩力学性质差异较大,岩性界面黏聚力差,砂体下直接顶泥岩层往往易离层破坏,因此在成岩作用过程中接触面附近常发育有较多的垂直接触面的原生裂隙,造成岩体的不连续性,对顶板稳定性影响很大。
沉积岩体中软弱夹层实质上是具有一定厚度的岩体软弱结构面,它与围岩相比,具有显著低的强度和显著高的压缩性,其抗压、抗剪和抗拉强度均低于围岩,在采动影响下软弱夹层易于沿层面脱落。
因沉积结构面受力作用的方式不同,沉积岩体变形破坏机制也不相同。
层理构造是沉积岩最基本的特征,沉积岩体中的层理面在地质上代表的是一种沉积环境向另一种沉积环境过渡的转换面,代表一个沉积间断,其形态具有多样性,层理面上往往有大量的植物碎屑、云母片等软弱成分的定向排列,在力学性质上属于一种弱结构面。层理越发育,其顶板的稳定性越差。B.A.布克林斯基用衰减函数描述岩体内部移动等值线,当考虑岩体分层性时,计算出的移动等值线不是平滑的而是出现折线形状,线的转折发生在两个岩性不同的接触面处。由于层理的存在使岩体力学性质呈各向异性,图6.9 展示了沉积岩体各向异性变形特征。在室内对层状岩石试件的实验结果表明,加载方向不同,岩石表现出不同的力学性质 ( 表6.9; 图6.7,图6.8) 。
表6.9 沉积结构面对岩体力学性质影响统计
图6.7 沉积结构面对陆源碎屑岩弹性模量影响曲线
由以上分析,总结出下面几点结论:
1) 垂直层理方向加载时的弹性模量比平行层理方向加载时的弹性模量低,这是因为层面间结合力较差,甚至有空隙,因此,垂直层理方向易被压缩,应变量大所致。
图6.8 沉积结构面对陆源碎屑岩抗压 ( A) 、抗拉 ( B) 强度影响曲线
2) 岩石的强度表现为平行层理方向加载时的抗拉强度大于垂直层理方向的抗拉强度,而平行层理方向加载时的抗压强度与凝聚力小于垂直层理方向的抗压强度与凝聚力。
3) 纵波速度和动弹性模量亦表现出垂直于层理方向比平行于层理方向低的特征,且各向异性指数表现为顶板泥岩明显大于老顶砂岩,这是由于顶板泥岩层面富集植物碎屑和碎片以及水平层理发育所致。
由此可知,由于沉积岩体中层面和层理的存在,导致沉积岩体的力学性质明显地表现为各向异性或横观同性特征 ( 图6.9) 。
图6.9 各向异性变形测试结果( 据郭志,1981)
原来,这是一种强烈地震的前兆,被称为地光。
许多强烈地震都伴随有发光现象。这种特殊的令人毛骨悚然的自然现象,早在几千年前就已经被人们注意到了。我国是世界上记载地光最早的国家,古书《诗经小雅•十月之交》里就曾记述了2800年前陕西岐山地震时奇异的声光现象。书中写道,“烨烨震电,不宁不令。百川沸腾,山家萃崩。高岸为谷,深谷为陵。”其中的“烨烨震电”之语,就是指的闪闪的地光。因为书中所写的十月系周历,相当于现在的农历八月,这时岐山、宝鸡一带雷暴季节已过,“十月雷电”显然是误传,应该是地震前的地光现象。后来在其他史料中,也有不少关于地光的记载,如“碧光闪烁如是”、“夜半天明如昼”、“夜半天忽通红”、“红光追邑”、“天上红光如匹练”等,多得数不胜数。
在国外,地光也引起了人们的广泛注意。这种记载最早见于罗马历史学家塔西伦的《编年史》,它记述的是公元17年小亚细亚发生了强烈地震。书中说地震前有人曾看到天空火光闪闪。日本的地光记载也很早,据日本地震学家安井丰推测,日本最早的地光记录可以追溯到1500年前,可惜这种推测查无实据。真正书录在案的是公元869年的《三代实录》,书中在记述陆奥地区的地震海啸时,曾提到过发光现象,距今已有1100多年。
人们在很早以前就知道利用地光现象来预测地震,我国古人总结的六条地震前兆,其中有一条讲的就是地光。“夜半晦黑,天忽开朗,光明照耀,无异日中,势必地震。”这类描述曾在不少书中出现过。但地光作为一种奇异的自然现象,被人们进行科学探索,则是18世纪以后的事。据《日本地震史料》记载,1703年12月5日元禄8.2级大地震前,有一位学者在研究了当地天空中奇异的发光现象以后,曾向幕府官员发出警告说,夜里将有强烈雷暴和地震发生。他在当时就注意到了地震与发光的关系,这是难能可贵的。18世纪中叶,当时的英国和北欧一带频繁地发生地震,并屡次伴随有地光的闪烁。在英国皇家学会开会讨论这个问题的时候,英国学者威廉•斯图克雷第一次试图用地表电流来解释地光产生的原因,自然,他的认识是错误的。20世纪初,意大利学者里佐率先对地震发光现象进行特别详细的调查,他对意大利1905年9月8日卡拉布里亚地震的发光现象进行了广泛研究。在他的影响下,另一位学者加里也广泛收集了欧洲148例地震发光资料,在1910年的《意大利地震学会汇报》中发表了研究论文。
20世纪30年代以后,地震发光的研究进入了全面发展的阶段,人们对于地光的真实存在不再感到怀疑了,并开始出现了解释这种现象的理论假说。在这些研究中尤以日本领先。1965年以后,日本学者安井与近藤五郎、栗林亨等利用地磁仪、回转集电器等进行了观测研究,并拍摄了世界上第一张地光照片。1974年,我国学者马宗晋在研究了邢台地震以来历次较大地震的临震宏观现象以后,提出了“地光不仅仅是地震派生的结果,而应看作是临震共同发展的统一过程”。这就是说,应把地光同与它同时出现的其他现象联系起来考虑。随着地光现象资料的不断积累,人们从地光的复杂形态中领悟到它的成因也并非是单一的。由于地光发生的时间短促,机会难逢,过去的地光资料也常常缺少详细确切的说明,尤其是直到今天,还未解决仪器观测技术问题,因此地震中地光成因的研究还没有确切结果,仍然处于假说阶段。
地光是由岩块相对摩擦产生的。米尔恩是一位长年工作在野外的地质学家,有一天,他在野外采集岩石、矿物标本,手中的锤子落在坚硬的岩石上时,点点火星迸溅出来。米尔恩从这种现象中得到了启发,第一个提出了地光是地震时岩块相对运动发生摩擦而产生的发光现象。1954年,前苏联学者邦奇科夫斯基也把地震发光比喻为马蹄与石头道路撞击而产生的火花。
这种说法是探索地光成因的一次有益尝试,但它的解释只是对某种形态的地光说得通,对地光的其他形态则难以奏效。例如,有些地光发生在半空中,似乎与地面岩石的摩擦无关;有些地光还伴随有类似日光灯的自动闪烁,这显然也无法用摩擦生光来解释。另外这种观点也很难说明在震区广阔的范围内都可观察到地光以及球形光和柱状光的缘由。因为按照岩块摩擦发光的假说,地光应该主要分布在裂隙带附近,并与裂隙的分布方向一致,发光的部位应接近地面。例如,1975年辽宁海城地震时,有人看到本县大青山菱镁矿分布区出现强烈的白色光带,它与该地大量裂隙的分布基本一致,并紧贴地面,持续2~3秒钟,没有明显闪烁,然后突然消失。这种地光可以用岩块摩擦生光观点解释,但以此来解释所有的地光,显然是不全面的。
根据水的毛细管电位理论。日本学者寺田寅彦闲来无事,对物理学中的电动现象甚感兴趣。他看到液体和固体相对运动时,常伴随有一些电现象,即在液体和固体的接触面上会出现两层异种电荷。如果液体在压力下通过一个固体毛细管,那么就会在毛细管的两端出现电位差,这就是流动电位。这位学者由此萌发了水的毛细管电位理论,试图能在地光成因问题上一显身手。他认为,一场强烈地震所影响的深度可与地面波及的范围相当。在地震影响的深度范围内,地下水受到挤压,便通过岩石的孔隙向上移动,产生流动电位。寺田推测,地下水所受到的压力,相当于100千米厚的岩柱所产生的压力。根据计算,它所产生的电位差可达到300万伏。显然,这样巨大的电位差足以导致产生高空放电,形成地光。寺田的理论得到了日本部分学者的支持,但国际上多数学者对这理论提出了质疑。尤其是美国学者麦克唐纳对寺田计算出来的300万伏电位差表示怀疑。这位美国人设想了地球内部产生电位差的各种可能原因,研究了地下核爆炸时所产生的压力对地下水流经岩石和土壤中孔隙的流动电位的影响,结果发现,在300多米的深度范围内,能产生的最大电位差仅有几百毫伏。即使地震的影响能达到100千米的深度,所产生的电位差也不过几百伏,远比寺田所说的小得多。这样小的电位差,是不可能引起大气发光的。
这个水的毛细管电位理论,就这样夭折了。
石英的压电效应说。芬克尔斯坦和鲍威尔,当年曾是继美国人麦克唐纳之后水的毛细管电位理论的主要反对者。他们在推翻日本学者的理论以后,提出了石英的压电效应说,企图利用地电电位差来解释地光的形成。
1970年,芬克尔斯坦和鲍威尔首次发现了地震孕育过程中石英的压电效应。科学家们早在物理学的实验中发现,许多晶体在受到挤压或拉伸时,会在两个平面上产生相反的电荷,这种现象被称为压电效应。今天,它已被广泛应用于各种电子设备和仪器中,也被广泛应用于导弹、电子计算机、航天等尖端技术中。压电石英就是这样的一种晶体。由于石英在地壳中分布很广,地震是岩层长期受力突然破裂的表现,可以想象,在地震孕育过程中必然也有压电效应产生。两位学者推断,当石英在地壳中有规律排列时,如果沿长轴排列的石英晶体的总长度,相当于地震波的波长时,就会产生地震电效应。若地震压力的压强为30~330帕,就有可能产生500~5000伏/厘米的平均电场。这个电场足以引起类似暴风雨时的闪电那样的低空放电现象,产生地光。由于压电效应并不一定在地震发生时才有,所以在地震前的几个小时也可以看到地光。
如果按照这种理论,地光应该只发生在某些特定的分布有定向排列的大量石英晶体的区域内,然而实际上出现地光的强震区其地下岩石并非都是石英岩,而是多种多样的岩石,但无论地下岩石性质如何,都有出现地光的可能,这一实际情况与石英压电效应理论不相吻合。另外,石英压电效应理论也不能解释在一些震区观察到的极为独特的“电磁暴”现象。
更难解释的奇怪现象。1966年,前苏联塔什干大地震前几小时,塔什干上空突然发生了一场电磁暴。天空中耀眼的白光就像镁光灯一样,使人目眩。更令人奇怪的是,室内的日光灯无故自亮。科学工作者观测到电离层中电子密集度达到顶峰。
这次地光的奇异特征,显然很难用前面的几种假说解释。
1972年,日本学者安井丰等人提出了“低层大气振荡”的看法。他们认为,由于大气中含有各种正负离子,所以大地具有微弱导电性。当大气中的气体分子受到来自太空的宇宙射线和地球本身的放射性元素射线的撞击,结果使这些气体离子带电。地震区常会有以氡为主要成分的放射性物质,地壳震动把它抖入大气中,特别是在含有较多放射性物质的中、酸性岩石分布区和断层附近,大气中的氡含量将显著提高,这也将使大气离子导电性增强。这时如果地面有一个天然电场,那么就会向空中大规模放电,使地光闪烁起来。
我国地震工作者在研究了辽宁海城地震以后,发现震前氡含量明显增加,大气中电离子也明显增加,在震区上空形成电荷密集区,大气的导电率增加以后,在地面电场作用下便可能发生放电发光,大面积放电和氡蜕变放出的射线都可能产生荧光,使日光灯管闪亮。
这个低空大气发光理论,是目前比较成立的假说。不过,也有人认为日光灯管发亮的原因与地震时的高频地震波有关。
此外,最近又有人提出,黏土矿物也是地光的光源之一;还有人重新提出岩块摩擦生热与地光的关系,并考虑了电场的形成。这些观点也都不能圆满地解释地光的成因。
从现有资料看,地光是地震时有着多种成因的发光现象的总称。要想彻底揭开它的形成之谜,就必须加强对地光的科学观察,特别是要用现代的先进技术装备,及时地捕捉有关地光的各种信号,并仔细地区分不同类型,最后终将洞悉地光的秘密。
中国地球物理学家郭自强最近通过岩石压裂实验研究,得知岩石在受到压力发生破裂时,会放出强烈的电子流。地震发生之前,岩石受到地壳应力作用而破裂,也会产生强电子流,这些电子流可以通过地壳裂缝进入大气,使空气分子电离而产生地光,这是目前世界上对地光的最新解释。
一百年以前,爱因斯坦写下了五篇科学史上著名的论文,他们是关于光的产生和转化的一个启发性观点。这篇论文讨论了光量子及光电效应。第二篇是分子大小的新测定,推导出分子计算速度的计算公式。第三篇是热的分子运动论,所要求静止一体中圆副小分子的运动,提出了原子确实存在的证明。第四篇是论动体的变动力学,提出了时空关系的新理论,正是因为这篇论文,拉开了近代物理学的序幕。第五篇是物体的惯性是否决定其内能,根据狭义相对论提出了质量与能量可互换的思想,这应该是原子能释放的理论基础。 以量子论和相对论为基础的近代物理学革命,将科学引入到了一个新的时代,人类认知的初期伸向了广袤的宇宙,伸向了遥远的宇宙起源之初,伸向人类未曾了解过的微观物质层面,伸向了生命领域跟神经、脑等认知器官的领域。近代物理学革命,在以后的岁月里,还引发了生命科学的革命,这一切都改变了人类的物质观、时空观、生命观和宇宙观。近代物理学革命,它催生出了核能、半导体、激光、新材料和超导技术等,促进了一批新技术的飞速发展,并且籍此而改变了人类现代的生产与生活方式,将人类推进到了一个知识经济的新时代。 现在来看看他们的成就究竟给我们带来一些什么启示呢? 第一、是实验和理论之间的矛盾,催生了新的科学概念。当时一些物理现象的发现,新物理现象的发现,以及预示了经典物理学解释的局限性。比如热辐射现象的新的实验观测对当时的经典物理学理论提出了置疑,麦克斯伟电磁场理论虽然能够比较好的解释电磁波以及光的传播,但是对于热辐射它的辐射跟吸收无能为力。而热辐射研究又引发了一系列物理学新的发现,成为了量子论诞生的逻辑起点,作为能量的量子概念诞生它是在1900年,普郎克最早提出的,他的推广导致描述微观粒子运动的量子力学在1920年以后逐步完善,大概25、26年左右,并且进而与狭义相对论结合,发展出描述微观粒子产生跟奥秘的量子场论。量子场论的发展,也经历了经典量子场论,规范量子场论,分别是对称的跟不对称的,和超对称量子场论这三个发展阶段,量子场论不仅揭开了人们肉眼看不见的微观物质世界的规律,也加深了人类对宇宙演化的理解,更新了人们认识客观世界的方式,并且也带来了一系列重大的技术方面的突破。所以从这点可以看到,科学归根到底是证实知识体系,一旦理论与严密的实验结果出现了不一致,无论这种理论权威性如何,无论这种理论曾经得到多少人,多少年的信奉,作为一名科学家,都有理由去质疑这个理论本身,并且努力去完善它,或者创造新的理论去替代它。科学探索的最终结果是对发现的自然现象做出精确的理论解释,而做出理论解释,不仅需要有严谨的科学态度,理性的质疑精神,更需要深邃的思考能力和缜密的分析能力,以及理论思维的能力。我们前面看到的这些科学家,他们不光注重实验,而且注重理性的思维,而且注重运用数学的工具来进行科学的概括。这是第一点。 第二、重大的科学突破往往始于凝练出重要的科学问题。提出问题,可能比解决问题来的更重要。问题提出了,即便你提出问题的人在有生之年没有能解决,其他的科学家或者我们的子孙后代,总有一天会解决这个问题。所以凝练科学目标,凝练科学问题,在当代现代更加的重要。如果你提不出科学问题,你就没有明确的工作目标。爱因斯坦提出的相对论,就是一种崭新的时空观。相对论的关键科学问题,是在于同时的相对性。相对论合理地解释了时空相互之间的联系,时空空间与物质分布相联系,物质和能量相联系,根本改造了牛顿以来经典的物理学知识体系,不仅与量子力学一起构成了20世纪物理学发展的基础,而且把人类对于自然的认识提升到了一个全新的水平,深刻的影响了人们以后的思维方式以及世界观。 第三、给我们的启示,我认为是科学的想象力需要严谨的实验证据支持。前面讲到了提出科学问题很重要,要勇于挑战已有的科学理论,勇敢的提出质疑,但是这种质疑绝不是胡思乱想,绝不是毫无根据的,狂妄的去挑战已有的真理,而是需要严谨的实验作为依据。1917年荷兰著名的天文学家德西特,1922年俄国数学家副里德曼以及1927年比利时的物理学家勒每特先后提出了膨胀宇宙论,美国的天文学家哈玻,所观测到的红移定律等,红移现象等有力地支持了宇宙膨胀理论。俄国出身的美国物理学家加莫夫 1946年基于膨胀理论的基础上,根据引入合物理的知识,提出了宇宙大爆炸理论,认为宇宙的起源是温度和密度接近无穷大的原始火球爆炸而产生的。1964年,美国两位电讯工程师彭齐亚跟威尔逊在研究卫星的电波通信的时候,他们制作了一个非常灵敏的接收机,接收到了来自宇宙各方向强度都不变的背景微波辐射,这种微波辐射恰好相当于3.5K左右的遥远宇宙的黑体辐射,跟前面的预言是非常之接近的。这一表现被认为是证实了宇宙大爆炸学说的背景辐射的预言,随后大爆炸学说被广泛的接受,并且发展成为当代宇宙学的一个标准模型。 第四、从物理学启示当中,一条重要的启示是物理学包括其他的自然科学,都需要数学语言。因为数学是对数与形的简捷的概括和优美的表达方式,所以物理的规律,往往用数学语言来表达。近代物理学的书写语言几乎都是数学,革命导师马克思曾经认为,只有当一门科学成功地运用数学才可以认为是成熟了的学科。但是现在马克思的这一结论,还需要在生命科学领域里边得到证实,因为生命科学尤其到了分子生物学这个阶段,目前还没有一个统一的、成熟的数学方程可以概括它的规律,也许人们还没有走到这一步。在20世纪,物理学与数学的紧密关系,远非其前三个世纪所能比,并且越来越显示出数学与物理的内在的一致性。可以认为,物理学不仅是数学家面临大量新的数学问题,而且某种意义上也能够引领着数学家朝着起先还梦想不到的地方前进。 第五、新仪器的发明为当代科学打开了新的途径跟窗口在科学已经越来越依赖于研究手段的今天,实验手段的进步不仅可以有助于理论突破,甚至可以打开新的窗口,改变科学家的思路,开辟新的研究领域,任何轻视实验手段和方法的思想,都可能使科学处于停滞和陷于困境。这也是为什么在理论物理取得巨大成就的今天,人们还要耗费须资,去制造对撞机,去制造天文望远镜,去制造聚变实验装置,去制造一个又一个有巨大分辨率的电子计算机,核磁共振设备等等。 第六个启示是物理学与生命科学之间相互作用。生命是物质的,所以物理学的发展也必定要涉及涵盖生命物质的规律的研究。物理学与其他自然科学交叉与相互作用,曾经产生并形成了科学物理学,生物物理学和心理物理学,天体物理学、地球物理学,大气物理学海洋物理学和空间物理学等诸多的交叉学科,这种交叉和相互作用最突出的表现还在于,20世纪的生命科学在物理学的基础上发生了革命性的变化,也就是DNA双螺旋结构的发现以及分子生物学的信息。 1970年基因重组开辟了基因技术工程应用的可能性,从而使人类看到了运用生物技术造福人类的广阔的前景。生命科学的这种革命性的变革正是物理学、化学和生物学等相互交叉的结果,在这个过程当中,物理学的概念与方法以及物理学家深入到生命科学领域进行探索,为此做出了重要的贡献。所以现在看来,学生命科学跟学物理之间,包括跟数学之间,没有不可跨越的鸿沟,许多有成就的生命科学家,有些就是来自于物理学、化学等其他领域。有许多原本学物理的科学家,他成名以后,兴趣转移到去参与生命科学的研究,量子力学的创立者薛定蛾,1944年写过《生命是什么》,这一书曾深刻影响了一批物理学家和生物学家的思想,促成了分子生物学诞生出了三个基本的学派,这就是比德尔代表的化学学派,德尔布吕克代表的信息学派,以及肯德鲁代表的结构学派。 第七、社会需求的拉动以及科学与技术之间的相互作用是推动物理学近百年进步的根本原因。以纳米技术为基础新的工具将导致小于100纳米超微分子器件的诞生,这些分子器件可能具有更为主动和复杂的性能,能够帮助人类完成更为复杂的操作,或者精确的操作,基于分子装配的纳米技术,将能够对物质结构进行完全的事先的设计跟控制,使人类能够按照自然规律制备出超微的智能器件,半导体集成电路和纳米科技的发展表明,导致科技进步的动力不仅来源于科学家工程师的创造欲,而且来源于社会需求的拉动。 物理学在为我们解释周边物质世界的同时,也为我们营造出了内容丰富、思维缜密,不断创新,妙趣无穷的理论方法和实验体系。20世纪的近代物理学革命与19到20世纪之交的物理学形势相关,那时物理学上空有两朵所谓乌云,竟使得一些物理学家惊呼出现了物理学危机。近代物理学革命不仅解决了两朵乌云导致的这场危机,而且把整个物理学自然科学都置于以量子论和相对论两大理论为支柱的现代物理学的基础之上。19世纪的最后一天,欧洲著名的科学家曾经欢聚一堂,会上,有一位英国著名的物理学家汤姆生,回顾物理学所取得的伟大成就时说,物理大厦已经落成,所剩的只是一些修饰工作,同时他在展望20世纪物理学前景时,却若有所思的讲,动力理论肯定了热和光是运动的两种方式,现在它的美丽而晴朗的天空却被两朵乌云笼罩了,第一朵乌云出现在光的波动理论上,第二朵乌云出现在关于能量均分的麦克斯韦波兹曼理论上。这两朵乌云,现在被量子论跟相对论所驱散,虽然目前今天的物理学,诚然面临着一些重要的理论与实验问题亟待解决,比如类星体的能源问题,暗物质,暗能量和反物质的问题,爱因斯坦场方城的宇宙项问题等,中微子振荡问题,质子衰变问题等,但是到现在为止,物理学家还没有人像19世纪20世纪惊呼物理学的危机。相对论和量子论在科学各个领域的扩展与应用,虽然已经取得了很大成功,但科学永无止境,没有到非常完善的成动,看来一直作为精密科学典范的物理学还是魅力未减,作为其他经验科学基础的地位短时期还不会改变。现在我们的科学技术发展的重心开始向生命科学,向信息科学等倾斜,但是物理学依然是基础,数学依然是基础,是重要的工具,这一点并没有改变。物理学的巨大魅力还在于他从理论认识中,延伸出众多的技术原理,20世纪物理学为我们这个社会提供了四个主要的新技术的原理,这就是核能技术,半导体技术,包括大规模集成电路的技术,激光技术和超导技术。半导体技术,激光技术还衍生出网络技术,虽然在20世纪近代物理学革命以后,在约为3/4世纪的时间内,物理学并没有发生新的基础性的革命性的重大变革,物理学的进展主要还表现为对于相对论量子论的完善及推广应用上,但这并不意味着物理学的发展已经走到了尽头。 当代科学发展的态势和社会对科学的迫切需要,将在很大程度上影响科学未来发展的方向及特征。一些传统科学将继续保持相当的独特性,物理科学作为整个自然科学发展的基础地位一时还不会动摇,但是科学的学科结构重心无疑将转移到生命领域。 数学科学作为数与形的科学,其简洁精确优美的表述方式继续在子自然科学,应用技术与社会人文科学中得到更为广泛的利用。信息技术作为研究与知识信息交流,传播的技术手段,会随着自身发展及其与其他领域的结合不断进步,并通过广泛渗透促进社会各个领域的发展。各自然系统的研究以及自然科学人文社会科学之间的结合将成为跨学科研究的新的生长点,他们的发展和广泛运用,都将有力地推动学科间整合和交叉学科的诞生与繁荣。
量子信息的发展对未来的生活可能有重大影响,但就在目前考虑,量子力学最大的影响是半导体芯片
通过量子力学,人们了解到电子的运行规律,发展起来了一系列的全新研究领域,从固体物理,金属物理,到半导体物理,以及其他极端的高压物理,低温物理,超导物理,这些都是建立在量子力学理论基础之上现在物理的基础研究,都脱离不了量子力学的理论基础,其他例如量子化学,分子生物学,也都是量子力学理论在跨学科中的应用。目前基于量子力学原理,一些新的量子信息学应用例如量子通信,量子计算机还在实验室阶段进行,媒体也有很多报道,但都是原型开发阶段,离实际应用还有较远距离。只能期待这些利用量子效应的新应用,能早日带来更多的生活便利和技术进步。
很多作用,说实话,很简单一个例子就是1982年,IBM瑞士苏黎士实验室的葛·宾尼(Gerd Binning)和海•罗雷尔(Heinrich Rohrer)根据量子力学原理研制出世界上第一台扫描隧道显微镜(Scanning Tunneling Microscope,简称STM).STM使人类第一次能够实时地观察单个原子在物质表面的排列状态和与表面电子行为有关的物化性质,在表面科学、材料科学、生命科学等领域的研究中有着重大的意义和广泛的应用前景,被国际科学界公认为80年代世界十大科技成就之一.为表彰STM的发明者们对科学研究的杰出贡献,1986年宾尼和罗雷尔被授予诺贝尔物理学奖.与其它表面分析技术相比,STM具有如下独特的优点: 1.具有原子级高分辨率,STM在平行和垂直于样品表面方向的分辨率分别可达0.1nm和0.01nm,即可以分辨出单个原子. 2.可实时再现样品表面的三维图象,用于对表面结构的研究及表面扩散等动态过程的研究. 3.可以观察单个原子层的局部表面结构,因而可直接观察到表面缺陷、表面重构、表面吸附体的形态和位置. 4.可在真空、大气、常温等不同环境下工作,样品甚至可浸在水和其它溶液中.不需要特别的制样技术并且探测过程对样品无损伤.这些特点特别适用于研究生物样品和在不同实验条件下对样品表面的评价,例如对于多相催化机理、超导机制、电化学反应过程中电极表面变化的监测等. 5.配合扫描隧道谱(STS)可以得到有关表面电子结构的信息,例如表面不同层次的态密度、表面电子阱、电荷密度波、表面势垒的变化和能隙结构等. 6.利用STM针尖,可实现对原子和分子的移动和操纵,这为纳米科技的全面发展奠定了基础. STM也存在因本身的工作方式所造成的局限性.STM所观察的样品必须具有一定的导电性,因此它只能直接观察导体和半导体的表面结构,对于非导电材料,必须在其表面覆盖一层导电膜,但导电膜的粒度和均匀性等问题会*图象对真实表面的分辨率.然而,有许多感兴趣的研究对象是不导电的,这就*了STM应用.另外,即使对于导电样品,STM观察到的是对应于表面费米能级处的态密度,如果样品表面原子种类不同,或样品表面吸附有原子、分子时,即当样品表面存在非单一电子态时,STM得到的并不是真实的表面形貌,而是表面形貌和表面电子性质的综合结果.量子技术即为利用量子理论形成新事物,改变现有事物功能、性能的方法。量子技术包括这三类要知素:量子经验性要素、量子实体性要素和量子知识性要素。量子经验性要素表明量子技术的使用也需要有人的经验的积累,但它并不构成量子技术的主道要性要回素,这一要素的作用可以忽略。量子实体性要素是量子知识性要素的载体,表现为量子技术人工物(量子技术客体)。量子知识性要素主要是指量子技术是量子力学和量子信息论等量子理论的应用。没有量子理论就不可能有量子技术,也不可能凭宏观的技术经验发明出量子技术人工物。答量子信息技术更是量子理论的产物。因此,量子技术必定是量子理论的应用