数学建模论文写作 一、写好数模答卷的重要性 1. 评定参赛队的成绩好坏、高低,获奖级别,数模答卷,是唯一依据。 2. 答卷是竞赛活动的成绩结晶的书面形式。 3. 写好答卷的训练,是科技写作的一种基本训练。 二、答卷的基本内容,需要重视的问题 1.评阅原则 假设的合理性,建模的创造性,结果的合理性,表述的清晰程度。 2.答卷的文章结构 题目(写出较确切的题目;同时要有新意、醒目) 摘要(200-300字,包括模型的主要特点、建模方法和主要结论) 关键词(求解问题、使用的方法中的重要术语) 1)问题重述。 2)问题分析。 3)模型假设。 4)符号说明。 5)模型的建立(问题分析,公式推导,基本模型,最终或简化模型等)。 6)模型求解(计算方法设计或选择;算法设计或选择,算法思想依据,步骤及实现,计算框图;所采用的软件名称;引用或建立必要的数学命题和定理;求解方案及流程。) 7)进一步讨论(结果表示、分析与检验,误差分析,模型检验) 8)模型评价(特点,优缺点,改进方法,推广。) 9)参考文献。 10)附录(计算程序,框图;各种求解演算过程,计算中间结果;各种图形,表格。) 3. 要重视的问题 1)摘要。 包括: a. 模型的数学归类(在数学上属于什么类型); b. 建模的思想(思路); c. 算法思想(求解思路); d. 建模特点(模型优点,建模思想或方法,算法特点,结果检验,灵敏度分析,模型检验……); e. 主要结果(数值结果,结论;回答题目所问的全部“问题”)。 ▲ 注意表述:准确、简明、条理清晰、合乎语法、要求符合文章格式。务必认真校对。 2)问题重述。 3)问题分析。 因素之间的关系、因素与环境之间的关系、因素自身的变化规律、确定研究的方法或模型的类型。 5)模型假设。 根据全国组委会确定的评阅原则,基本假设的合理性很重要。 a. 根据题目中条件作出假设 b. 根据题目中要求作出假设 关键性假设不能缺;假设要切合题意。 6) 模型的建立。 a. 基本模型: ⅰ)首先要有数学模型:数学公式、方案等; ⅱ)基本模型,要求完整,正确,简明; b. 简化模型: ⅰ)要明确说明简化思想,依据等; ⅱ)简化后模型,尽可能完整给出; c. 模型要实用,有效,以解决问题有效为原则。 数学建模面临的、要解决的是实际问题,不追求数学上的高(级)、深(刻)、难(度大)。 ⅰ)能用初等方法解决的、就不用高级方法; ⅱ)能用简单方法解决的,就不用复杂方法; ⅲ)能用被更多人看懂、理解的方法,就不用只能少数人看懂、理解的方法。 d.鼓励创新,但要切实,不要离题搞标新立异。数模创新可出现在: ▲ 建模中,模型本身,简化的好方法、好策略等; ▲ 模型求解中; ▲ 结果表示、分析、检验,模型检验; ▲ 推广部分。 e.在问题分析推导过程中,需要注意的问题: ⅰ)分析:中肯、确切; ⅱ)术语:专业、内行; ⅲ)原理、依据:正确、明确; ⅳ)表述:简明,关键步骤要列出; ⅴ)忌:外行话,专业术语不明确,表述混乱,冗长。 7)模型求解。 a. 需要建立数学命题时: 命题叙述要符合数学命题的表述规范,尽可能论证严密。 b. 需要说明计算方法或算法的原理、思想、依据、步骤。 若采用现有软件,说明采用此软件的理由,软件名称。 c. 计算过程,中间结果可要可不要的,不要列出。 d. 设法算出合理的数值结果。 8) 结果分析、检验;模型检验及模型修正;结果表示。 a. 最终数值结果的正确性或合理性是第一位的; b. 对数值结果或模拟结果进行必要的检验; 结果不正确、不合理、或误差大时,分析原因, 对算法、计算方法、或模型进行修正、改进。 c. 题目中要求回答的问题,数值结果,结论,须一一列出; d. 列数据问题:考虑是否需要列出多组数据,或额外数据对数据进行比较、分析,为各种方案的提出提供依据; e. 结果表示:要集中,一目了然,直观,便于比较分析。 ▲ 数值结果表示:精心设计表格;可能的话,用图形图表形式。 ▲ 求解方案,用图示更好。 9)必要时对问题解答,作定性或规律性的讨论。最后结论要明确。 10)模型评价 优点突出,缺点不回避。 改变原题要求,重新建模可在此做。 推广或改进方向时,不要玩弄新数学术语。 11)参考文献 12)附录 详细的结果,详细的数据表格,可在此列出,但不要错,错的宁可不列。主要结果数据,应在正文中列出,不怕重复。检查答卷的主要三点,把三关: a. 模型的正确性、合理性、创新性 b. 结果的正确性、合理性 c. 文字表述清晰,分析精辟,摘要精彩 三、关于写答卷前的思考和工作规划 答卷需要回答哪几个问题――建模需要解决哪几个问题; 问题以怎样的方式回答――结果以怎样的形式表示; 每个问题要列出哪些关键数据――建模要计算哪些关键数据; 每个量,列出一组还是多组数――要计算一组还是多组数。 四、答卷要求的原理 1. 准确――科学性; 2. 条理――逻辑性; 3. 简洁――数学美; 4. 创新――研究、应用目标之一,人才培养需要; 5. 实用――建模、实际问题要求。 五、建模理念 1. 应用意识 要解决实际问题,结果、结论要符合实际; 模型、方法、结果要易于理解,便于实际应用;站在应用者的立场上想问题,处理问题。 2. 数学建模 用数学方法解决问题,要有数学模型; 问题模型的数学抽象,方法有普适性、科学性,不局限于本具体问题的解决。 3. 创新意识 建模有特点,更加合理、科学、有效、符合实际;更有普遍应用意义;不单纯为创新而创新。
数学应用是数学 教育 的重要内容,呼唤数学应用意识,提高数学应用教学质量,已成为广大数学教育工作者的共识。下面是我为大家推荐的数学建模论文,供大家参考。
数学建模论文 范文 一:建模在高等数学教学中的作用及其具体运用
一、高等数学教学的现状
(一) 教学观念陈旧化
就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及 逻辑思维 能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。
(二) 教学 方法 传统化
教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。
二、建模在高等数学教学中的作用
对学生的 想象力 、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。
高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。
三、将建模思想应用在高等数学教学中的具体 措施
(一) 在公式中使用建模思想
在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。
(二) 讲解习题的时候使用数学模型的方式
课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。
(三) 组织学生积极参加数学建模竞赛
一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。
四、结束语
高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。
参考文献
[1] 谢凤艳,杨永艳. 高等数学教学中融入数学建模思想[J]. 齐齐哈尔师范高等专科学校学报,2014 ( 02) : 119 -120.
[2] 李薇. 在高等数学教学中融入数学建模思想的探索与实践[J]. 教育实践与改革,2012 ( 04) : 177 -178,189.
[3] 杨四香. 浅析高等数学教学中数学建模思想的渗透 [J].长春教育学院学报,2014 ( 30) : 89,95.
[4] 刘合财. 在高等数学教学中融入数学建模思想 [J]. 贵阳学院学报,2013 ( 03) : 63 -65.
数学建模论文范文二:数学建模教学中数学素养和创新意识的培养
前言
创新人才的培养是新的时代对高等教育提出的新要求.培养高质量、高层次人才不仅需要传统意义上的逻辑思维能力、推理演算能力,更需要具备对所涉及的专业问题建立数学模型,进行数学实验,利用先进的计算工具、数学软件进行数值求解和做出定量分析的能力.
因此,如何培养学生的求知欲,如何培养学生的学习积极性,如何培养学生的创新意识和创新能力已成为高等教育迫切需要解决的问题[1].
在数学教学中,传统的数学教学往往注重知识的传授、公式的推导、定理的证明以及应用能力的培养.尽管这种模式并非一无是处,甚至有时还相当成功,但它不能有效地激发广大学生的求知欲,不能有效地培养学生的学习积极性,不能有效地培养学生的创新意识和创新能力.
而如何培养学生的创新意识和创新能力,既没有现成的模式可循,也没有既定的方法可套用,只能靠广大教师不断探索和实践.
近年来,国内几乎所有大学都相继开设了数学建模和数学实验课,在人才培养和学科竞赛上都取得了显着的成效.数学建模是指对特定的现象,为了某一目的作一些必要的简化和假设,运用适当的数学理论得到的一个数学结构,这个数学结构即为数学模型,建立这个数学模型的过程即为数学建模[2].
所谓数学教学中的数学实验,就是从给定的实际问题出发,借助计算机和数学软件,让学生在数字化的实验中去学习和探索,并通过自己设计和动手,去体验问题解决的教学活动过程.数学实验是数学建模的延伸,是数学学科知识在计算机上的实现,从而使高度抽象的数学理论成为生动具体的可视性过程.
因此,数学实验就是一个以学生为主体,以实际问题为载体,以计算机为媒体,以数学软件为工具,以数学建模为过程,以优化数学模型为目标的数学教学活动过程[3-7].
因此,如何把实际问题与所学的数学知识联系起来;如何根据实际问题提炼数学模型;建模的方法和技巧;数学模型所涉及到的各类算法以及这些算法在相应数学软件平台上的实现等问题就成了我们研究的重点.现结合教学实践,谈谈笔者在数学建模和数学实验课的教学中 总结 的几点看法.
1掌握数学语言独有的特点和表达形式
准确使用数学语言模拟现实模型数学语言是表达数学思想的专门语言,它是自然语言发展到高级状态时的特殊形式,是人类基于思维、认知的特殊需要,按照公有思维、认知法则而制造出来的语言及其体系,给人们提供一套完整的并不断精细、完善、完美的思维和认知程序、规则、方法.
用数学语言进行交流和良好的符号意识是重要的数学素质.数学建模教学是以训练学生的思维为核心,而语言和思维又是密不可分的.能否成功地进行数学交流,不仅涉及一个人的数学能力,而且也涉及到一个人的思路是否开阔,头脑是否开放,是否尊重并且愿意考虑各方面的不同意见,是否乐于接受新的思想感情观念和新的行为方式.数学建模是利用数学语言模拟现实的模型,把现实模型抽象、简化为某种数学结构是数学模型的基本特征.
现实问题要通过数学方法获得解决,首先必须将其中的非数学语言数学化,摒弃其中表面的具体叙述,抽象出其中的数学本质,形成数学模型.通过分析现实中的数学现象,对常见的数学现象进行数学语言描述,从而将现实问题转化为数学问题来解决.
2借助数学建模教学使学生学会使用数学语言构建数学模型
根据现阶段普通高校学生年龄特点和知识结构,我们可以通过数学建模对学生加强数学语言能力的培养,让他们熟练掌握数学语言,以期提升学生的形象思维、 抽象思维 、逻辑推理和表达能力,提高学生的数学素质和数学能力.在数学建模教学过程中,教师要力求做到用词准确,叙述精炼,前后连贯,逻辑性强.在问题的重述和分析中揭示数学语言的严谨性;在数学符号说明和模型的建立求解中揭示数学语言的简约性,彰显数学语言的逻辑性、精确性和情境性,突出数学符号语言含义的深刻性;在模型的分析和结果的罗列中,显示图表语言的直观性,展示数学语言的确定意义、语义和语法;在模型的应用和推广中,显示出数学符号语言的推动力的独特魅力.
而在学生的书面作业或论文 报告 中,注意培养学生数学语言表达的规范性.书面表达是数学语言表达能力的一种重要形式.通过教师数学建模教学表述规范的样板和学生严格的书面表达的长期训练来完成.在书面表达上,主要应做到思维清晰、叙述简洁、书写规范.例如在建立模型和求解上,严格要求学生在模型的假设,符号说明、模型的建立和求解,图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.
对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面要及时纠正.
3借助数学实验教学,展示高度抽象
的数学理论成为具体的可视性过程要培养创新人才,上好数学实验课,首先要有创新型的教师,建立起一支"懂实验""会试验""能创新"的教师队伍.由于数学实验课理论联系实际,特点鲜明,内容新颖,方法特别,所以能够上好数学实验课,教师就必须具备扎实的数学理论功底,计算机软件应用操作能力,良好的科研素质与科研能力.
因此,数学与统计学院就需要选取部分教师,主攻数学建模、数学实验、数值分析课程.优先选派数学实验教师定期出去进修深造提高,以便真正形成一支"懂实验""会实验""能创新"的教师队伍.实验课的地位要给予应有的重视.我院现存的一个重要表现就是实验设备不足,实验室开放时间不够.为了确保数学实验有物质条件上的保证,必须建立数学实验与数学建模实验室.
配备足够的高性能计算机,全天候对学生开放,尽快尽早淘汰陈旧的计算机设备.精心设计实验内容,强化典型实验,培养宽厚扎实理论水平;精选实验内容,加强学生之间的互动,培养协作意识和团队精神.在实验教学时数有限的情况下,依据培养目标和教学纲要,对教材中的实验内容进行选择、设计.要最大限度地开发学生的创造性思维,数学实验在项目设计过程中应当遵循适应性、趣味性、灵活性、科学性、渐进性和应用性的基本原则.
选择基础性试验,重点培养宽厚扎实的理论水平,提高对数学理论与方法的深刻理解.熟练各种数学软件的应用与开发,提高计算机应用能力,增强实践应用技能;增加综合性实验和设计性实验,从实际问题出发,培养学生分析问题,解决问题的能力,强化 创新思维 的开发.
教学方法上实行启发参与式教学法:启发-参与-诱导-提高.充分发挥学生主体作用,以学生亲自动脑动手为主.
教师先提出问题,对实验内容,实验目标,进行必要的启发;然后充分发挥学生主体作用,学生动手操作,每个命令、语句学生都要在计算机上操作得到验证;根据学生出现的情况,老师总结学生出现的问题,进行进一步的诱导;再让其理清思路,再次动手实践,从理论与实践的结合上获得能力上提高.数学实验是一门强调实践、强调应用的课程.
数学实验将数学知识、数学建模与计算机应用三者融为一体,可以使学生深入理解数学的基本概念和理论,掌握数值计算方法,培养学生运用所学知识使用计算机解决实际问题的能力,是一门实践性很强的课程.在这一教学活动中,通过数学软件如MAT-LAB、Mathematica、SPSS的教学和综合数学实验,如碎片拼接、罪犯藏匿地点的查找、光伏电池的连接、野外漂流管理、水资源的有效利用、葡萄酒的分类等,通这些实际问题最终的数学化的解决,将高度抽象的数学理论呈现为生动具体的可视性结论,展示数学模型与计算机技术相结合的高度抽象的数学理论成为生动具体的可视性过程.
4突出学生的主体作用,循序渐进培养学生学习、实践到创新
实践教学的目的是要提高学生应用所学知识分析、解决实际问题的综合能力.
在教学中,搭建数学建模与数学实验这个平台,提示学生用计算机解决经过简化的问题,或自己提出实验问题,设计实验步骤,观察实验结果,尤其是将庞大繁杂的数学计算交给计算机完成,摆脱过去害怕数学计算、画函数图像、解方程等任务,避免学生一见到庞大的数学计算公式就会产生畏惧心理,从而丧失信心,让学生体会到在数学面前自己由弱者变成了强者,由失败者变成了胜利者、成功者.
再设计让学生自己动手去解决的各类实际问题,使学生通过对实际问题的仔细分析、作出合理假设、建立模型、求解模型及对结果进行分析、检验、总结等,解决实际问题,逐步培养学生熟练使用计算机和数学软件的能力以及运用数学知识解决实际问题的意识和能力.
同时,给学生提供大量的上机实践的机会,提高学生应用数学软件的能力.一个实际问题构成一个实验内容,通过实践环节加大训练力度,并要求学生通过计算机编程求解、编写实验报告等形式,达到提高学生解决实际问题综合能力的目标.数学建模与数学实验课程通过实际问题---方法与分析---范例---软件---实验---综合练习的教学过程,以实际问题为载体,以大学基本数学知识为基础,采用自学、讲解、讨论、试验、文献阅读等方式,在教师的逐步指导下,学习基本的建模与计算方法.
通过学习查阅文献资料、用所学的数学知识和计算机技术,借助适当的数学软件,学会用数学知识去解决实际问题的一些基本技巧与方法.通过实验过程的学习,加深学生对数学的了解,使同学们应用数学方法的能力和发散性思维的能力得到进一步的培养.实践已证明,数学建模与数学实验课这门课深受学生欢迎,它的教学无论对培养创新型人才还是应用型人才都能发挥其他课程无法替代的作用.
5具体的教学策略和途径
数学建模课程和数学实验课程同时开设,在课程教学中,要尽可能做到如下几个方面:
1)注重背景的阐述
让学生了解问题背景,才能知道解决实际问题需要哪些知识,才能做出贴近实际的假设,而这恰恰是建立一个能够解决实际问题的数学模型的前提.再者,问题背景越是清晰,越能够体现问题的重要性,这样才能激发学生解决实际问题的兴趣.
2)注重模型建立与求解过程中的数学语言的使用
在做好实际问题的简化后,使用精炼的数学符号表示现实含义是数学语言使用的彰显.基于必要的背景知识,建立符合现实的数学模型,通过多个方面对模型进行修正,向学生展示不同的条件相对应的数学模型对于现实问题的解决.在模型的求解上,严格要求学生在模型的假设,符号说明、图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面及时纠正.
3)注重经典算法的数学软件的实现和改进
由于实际问题的特殊性导致数学模型没有固定的模式,这就要求既要熟练掌握一般数学软件和算法的实现,又要善于改进和总结,使得现有的算法和程序能够通过修正来解决实际问题,这对于学生能力的培养不可或缺.只有不断的学习和总结,才有数学素养的培养和创新能力的提高.
参考文献:
[1]叶其孝.把数学建模、数学实验的思想和方法融人高等数学课的教学中去[J].工程数学学报,2003,(8):1-11.
[2]颜荣芳,张贵仓,李永祥.现代信息技术支持的数学建模创新教育[J].电化教育研究,2009,(3)。
[3]郑毓信.数学方法论的理论与实践[M].广西教育出版社,2009.
[4]姜启源.数学实验与数学建模[J].数学的实践与认识,2001,(5):613-617.
[5]姜启源,谢金星,叶俊.数学建模[M].第3版.北京:高等教育出版社,2002.
[6]周家全,陈功平.论数学建模教学活动与数学素质的培养[J].中山大学学报,2002,(4):79-80.
[7]付桐林.数学建模教学与创新能力培养[J].教育导刊,2010,(08):89-90.
随着科学技术特别是信息技术的高速发展,数学建模的应用价值越来越得到众人的重视,
数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,以下是一篇关于数学建模教育开展策略探究的论文 范文 ,欢迎阅读参考。
大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和 创新思维 ,提高其素质和创新能力,实现向素质教育的转化和深入。
一、数学建模的含义及特点
数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学 方法 及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。一般来说",数学建模"包含五个阶段。
1.准备阶段
主要分析问题背景,已知条件,建模目的等问题。
2.假设阶段
做出科学合理的假设,既能简化问题,又能抓住问题的本质。
3.建立阶段
从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。
4.求解阶段
对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。
5.验证阶段
用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。
二、加强数学建模教育的作用和意义
(一) 加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质
数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题, 因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。数学修养和素质自然而然得以培养并提高。
(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力
数学建模问题来源于社会生活的众多领域,在建模过程中,学生首先需要阅读相关的文献资料,然后应用数学思维、数学逻辑及相关知识对实际问题进行深入剖析研究并经过一系列复杂计算,得出反映实际问题的最佳数学模型及模型最优解。因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。
(三)加强数学建模教育有助于培养学生的创造性思维和创新能力
所谓创造力是指"对已积累的知识和 经验 进行科学地加工和创造,产生新概念、新知识、新思想的能力,大体上由感知力、 记忆力 、思考力、 想象力 四种能力所构成"[1].现今教育界认为,创造力的培养是人才培养的关键,数学建模活动的各个环节无不充满了创造性思维的挑战。
很多不同的实际问题,其数学模型可以是相同或相似的,这就要求学生在建模时触类旁通,挖掘不同事物间的本质,寻找其内在联系。而对一个具体的建模问题,能否把握其本质转化为数学问题,是完成建模过程的关键所在。同时建模题材有较大的灵活性,没有统一的标准答案,因此数学建模过程是培养学生创造性思维,提高创新能力的过程[2].
(四)加强数学建模教育有助于提高学生科技论文的撰写能力
数学建模的结果是以论文形式呈现的,如何将建模思想、建立的模型、最优解及其关键环节的处理在论文中清晰地表述出来,对本科生来说是一个挑战。经历数学建模全过程的磨练,特别是数模论文的撰写,学生的文字语言、数学表述能力及论文的撰写能力无疑会得到前所未有的提高。
(五)加强数学建模教育有助于增强学生的团结合作精神并提高协调组织能力建模问题通常较复杂,涉及的知识面也很广,因此数学建模实践活动一般效仿正规竞赛的规则,三人为一队在三天内以论文形式完成建模题目。要较好地完成任务,离不开良好的组织与管理、分工与协作[3].
三、开展数学建模教育及活动的具体途径和有效方法
(一)开展数学建模课堂教学
即在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模,介绍建模的过程和思想方法及建模中要注意的问题。案例教学法的关键在于把握两个重要环节:
案例的选取和课堂教学的组织。
教学案例一定要精心选取,才能达到预期的教学效果。其选取一般要遵循以下几点。
1. 代表性:案例的选取要具有科学性,能拓宽学生的知识面,突出数学建模活动重在培养兴趣提高能力等特点。
2. 原始性:来自媒体的信息,企事业单位的 报告 ,现实生活和各学科中的问题等等,都是数学建模问题原始资料的重要来源。
3. 创新性:案例应注意选取在建模的某些环节上具有挑战性,能激发学生的创造性思维,培养学生的创新精神和提高创造能力。
案例教学的课堂组织,一部分是教师讲授,从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,介绍如何通过合理的假设和简化建立优化的数学模型。还要强调如何用求解结果去解释实际现象即检验模型。另一部分是课堂讨论,让学生自由发言各抒己见并提出新的模型,简介关键环节的处理。最后教师做出点评,提供一些改进的方向,让学生自己课外独立探索和钻研,这样既突出了教学重点,又给学生留下了进一步思考的空间,既避免了教师的"满堂灌",也活跃了课堂气氛,提高了学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的[4].
(二)开展数模竞赛的专题培训指导工作
建立数学建模竞赛指导团队,分专题实行教师负责制。每位教师根据自己的专长,负责讲授某一方面的数学建模知识与技巧,并选取相应地建模案例进行剖析。如离散模型、连续模型、优化模型、微分方程模型、概率模型、统计回归模型及数学软件的使用等。学生根据自己的薄弱点,选择适合的专题培训班进行学习,以弥补自己的不足。这种针对性的数模教学,会极大地提高教学效率。
(三)建立数学建模网络课程
以现代 网络技术 为依托,建立数学建模课程网站,内容包括:课程介绍,课程大纲,教师教案,电子课件,教学实验,教学录像,网上答疑等;还可以增加一些有关栏目,如历年国内外数模竞赛介绍,校内竞赛,专家点评,获奖心得交流;同时提供数模学习资源下载如讲义,背景材料,历年国内外竞赛题,优秀论文等。以此为学生提供良好的自主学习网络平台,实现课堂教学与网络教学的有机结合,达到有效地提高学生数学建模综合应用能力的目的。[5,6]
(四)开展校内数学建模竞赛活动
完全模拟全国大学生数模竞赛的形式规则:定时公布赛题,三人一组,只能队内讨论,按时提交论文,之后指导教师、参赛同学集中讨论,进一步完善。笔者负责数学建模竞赛培训近 20 年,多年的实践证明,每进行一次这样的训练,学生在建模思路、建模水平、使用软件能力、论文书写方面就有大幅提高。多次训练之后,学生的建模水平更是突飞猛进,效果甚佳。
如 2008 年我指导的队荣获全国高教社杯大学生数学建模竞赛的最高奖---高教社杯奖,这是此赛设置的唯一一个名额,也是当年从全国(包括香港)院校的约 1 万多个本科参赛队中脱颖而出的。又如 2014 年我校 57 队参加全国大学生数学建模竞赛,43 队获奖,获奖比例达 75%,创历年之最。
(五)鼓励学生积极参加全国大学生数学建模竞赛、国际数学建模竞赛
全国大学生数学建模竞赛创办于 1992 年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛, 国际大学生数学建模竞赛是世界上影响范围最大的高水平大学生学术赛事。参加数学建模大赛可以激励学生学习数学的积极性,提高运用数学及相关工具分析问题解决问题的综合能力,开拓知识面,培养创造精神及合作意识。
四、结束语
数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,而高校数学教学改革的目的之一是要着力培养学生的创造性思维,提高学生的创新能力。因此应将数学建模思想融入教学活动中,通过不断的数学建模教育和实践培养学生的创新能力和应用能力从而提高学生的基本素质以适应社会发展的要求。
参考文献:
[1]辞海[M].上海辞书出版社,2002,1:237.
[2]许梅生,章迪平,张少林。 数学建模的认识与实践[J].浙江科技学院学报,2003,15(1):40-42.
[3]姜启源,谢金星,一项成功的高等教育改革实践[J].中国高教研究,2011,12:79-83.
[4]饶从军,王成。论高校数学建模教学[J].延边大学学报(自然科学学版),2006,32(3):227-230.
[5]段璐灵。数学建模课程教学改革初探[J].教育与职业,2013,5:140-142.
[6]郝鹏鹏。工程网络课程教学的实践与思考[J]科技视界,2014,29:76-77.
大部分数学知识是抽象的,概念比较枯燥,造成学生学习困难,而数学建模的运用,在很大程度上可以将抽象的数学知识转化成实体模型,让学生更容易理解和学习数学知识。教师要做的就是了解并掌握数学建模的方法,并且把这种 教学方法 运用到数学教学中。
对教师来说,发现好的教学方法不是最重要的,而是如何把方法与教学结合起来。通过对数学建模的长期研究和实践应用,笔者 总结 了数学建模的概念以及运用策略。
一、数学建模的概念
想要更好地运用数学建模,首先要了解什么是数学建模。可以说,数学建模就像一面镜子,可以使数学抽象的影像产生与之对应的具体化物象。
二、在小学数学教学中运用数学建模的策略
1.根据事物之间的共性进行数学建模
想要运用数学建模,首先要对建模对象有一定的感知。教师要创造有利的条件,促使学生感知不同事物之间的共性,然后进行数学建模。
教师应做好建模前的指导工作,为学生的数学建模做好铺垫,而学生要学会尝试自己去发现事物的共性,争取将事物的共性完美地运用到数学建模中。在建模过程中,教师要引导学生把新知识和旧知识结合起来的作用,将原来学习中发现的好方法运用到新知识的学习、新数学模型的构建中,降低新的数学建模的难度,提高学生数学建模的成功率。如在教学《图形面积》时,教师可以利用不同的图形模板,让学生了解不同图形的面积构成,寻找不同图形面积的差异以及图形之间的共性。这样直观地向学生展示图形的变化,可以加深学生对知识的理解,提高学生的学习效率。
2.认识建模思想的本质
建模思想与数学的本质紧密相连,它不是独立存在于数学教学之外的。所以在数学建模过程中,教师要帮助学生正确认识数学建模的本质,将数学建模与数学教学有机结合起来,提高学生解决问题的能力,让学生真正具备使用数学建模的能力。
建模过程并不是独立于数学教学之外的,它和数学的教学过程紧密相连。数学建模是使人对数学抽象化知识进行具体认识的工具,是运用数学建模思想解决数学难题的过程。因此,教师要将它和数学教学组成一个有机的整体,不仅要帮助学生完成建模,更要带领学生认识数学建模的本质,领悟数学建模思想的真谛,并逐渐引导学生使用数学建模解决数学学习过程中遇到的问题。
3.发挥教材在数学建模上的作用
教材是最基础的教学工具,在数学教材中有很多典型案例可以利用在数学建模上,其中很大一部分来源于生活,更易于小学生学习和理解,有助于学生构建数学建模思想。教师要利用好教材,培养学生的建模能力,帮助学生建造更易于理解的数学模型,从而提高学生的学习效率。如在教学加减法时,教材上会有很多数苹果、香蕉的例题,这些就是很好的数学模型,因为贴近生活,可以激发学生的学习兴趣,培养学生数学建模的能力,所以教师应该深入研究教材。
数学建模是一种很好的数学教学方法,教师要充分利用这种教学方法,真正做到实践与理论完美结合。
1、层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。
2、多属性决策是现代决策科学的一个重要组成部分,它的理论和方法在工程设计、经济、管理和军事等诸多领域中有着广泛的应用,如:投资决策、项目评估、维修服务、武器系统性能评定、工厂选址、投标招标、产业部门发展排序和经济效益综合评价等.多属性决策的实质是利用已有的决策信息通过一定的方式对一组(有限个)备选方案进行排序或择优.它主要由两部分组成:(l) 获取决策信息.决策信息一般包括两个方面的内容:属性权重和属性值(属性值主要有三种形式:实数、区间数和语言).其中,属性权重的确定是多属性决策中的一个重要研究内容;(2)通过一定的方式对决策信息进行集结并对方案进行排序和择优。
3、灰色预测模型(Gray Forecast Model)是通过少量的、不完全的信息,建立数学模型并做出预测的一种预测方法.当我们应用运筹学的思想方法解决实际问题,制定发展战略和政策、进行重大问题的决策时,都必须对未来进行科学的预测.预测是根据客观事物的过去和现在的发展规律,借助于科学的方法对其未来的发展趋势和状况进行描述和分析,并形成科学的假设和判断。
4、Dijkstra算法能求一个顶点到另一顶点最短路径。它是由Dijkstra于1959年提出的。实际它能出始点到 其它 所有顶点的最短路径。
Dijkstra算法是一种标号法:给赋权图的每一个顶点记一个数,称为顶点的标号(临时标号,称T标号,或者固定标号,称为P标号)。T标号表示从始顶点到该标点的最短路长的上界;P标号则是从始顶点到该顶点的最短路长。
5、Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。
6、模拟退火算法是模仿自然界退火现象而得,利用了物理中固体物质的退火过程与一般优化问题的相似性从某一初始温度开始,伴随温度的不断下降,结合概率突跳特性在解空间中随机寻找全局最优解。
7、种群竞争模型:当两个种群为争夺同一食物来源和生存空间相互竞争时,常见的结局是,竞争力弱的灭绝,竞争力强的达到环境容许的最大容量。使用种群竞争模型可以描述两个种群相互竞争的过程,分析产生各种结局的条件。
8、排队论发源于上世纪初。当时美国贝尔电话公司发明了自动电话,以适应日益繁忙的工商业电话通讯需要。这个新发明带来了一个新问题,即通话线路与电话用户呼叫的数量关系应如何妥善解决,这个问题久久未能解决。1909年,丹麦的哥本哈根电话公司A.K.埃尔浪(Erlang)在热力学统计平衡概念的启发下解决了这个问题。
9、线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。决策变量、约束条件、目标函数是线性规划的三要素。
10、非线性规划:非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。20世纪50年代初,库哈(H.W.Kuhn) 和托克 (A.W.Tucker) 提出了非线性规划的基本定理,为非线性规划奠定了理论基础。这一方法在工业、交通运输、经济管理和军事等方面有广泛的应用,特别是在“最优设计”方面,它提供了数学基础和计算方法,因此有重要的实用价值。
数学建模全国优秀论文相关 文章 :
★ 数学建模全国优秀论文范文
★ 2017年全国数学建模大赛获奖优秀论文
★ 数学建模竞赛获奖论文范文
★ 小学数学建模的优秀论文范文
★ 初中数学建模论文范文
★ 学习数学建模心得体会3篇
★ 数学建模论文优秀范文
★ 大学生数学建模论文范文(2)
★ 数学建模获奖论文模板范文
★ 大学生数学建模论文范文
生活中的“奇妙等式”数学中有许多等式,比如“速度×时间=路程”、“单价×数量=总价”,今天,我要向大家介绍几条数学与我的等式。生活中,我总结出这一等式:“我+父母=正确数学”。平时,我会经常遇到一些难题,但是,父母的工作十分繁忙,很少有时间陪我,每当我睡下时,他们还没回来,一家人唯一的沟通方法,就是那一本“留言本”。每次留下的题目,父母总会绞尽脑汁地为我解答。父母学习书上的例题,给我解答是最令我感动的。每次看到留言本上,父母给我留下的解题思路,我都会在心中默默地感谢他们。小时候,父母也为我总结出这一等式:“课本+生活=数学”。那时,父母工作都不是很忙,每次出去买东西,都会带上我。最让我记忆犹新的是我上中班的时候,妈妈带我买菜的一件事。当时,正值秋季,妈妈见路边有些卖苹果的摊子,便和卖苹果的人讨价还价起来,最终,以一元一斤的价钱买了三斤。当时,妈妈转过头来,亲切地问:“赢赢,一元一斤的苹果,三斤多少钱?”我想了想,说:“是,是三块钱。”惹得周围的人直夸我聪明。回家后,妈妈又问我是怎么会的,我笑着说:“我是用1+1+1=3的。”直到现在,妈妈还经常提那件事,教育我说:“数学不光要学课本上的,还要学习生活中的。”“每晚三题=快乐数学。”这是我小学三年级时所立下的等式。每天晚上做三道思考题不多也不少,只要坚持不懈,一定能积累许多。现在,我依然坚持每天做三道思考题,有时间还能多做一点,两年多了,不知道自己已经做了多少了,也不知道自己写满了多少的本子,这种作业方式,使我受益非浅,让我在多次数学竞赛中获奖,品尝胜利的喜悦。“勤动脑+勤动手=成功,”这是我通过实际生活所悟出的道理,也是我一般的解题顺序。一般拿到题目,我总要先读懂题目,弄清资料,掌握其中的关系,然后根据关系列出算式,一步步地解答。有时,还可以通过画图的方法,根据已知数量画出线段图,便于理解题目。至于答完之后,再找几道类似的题目,巩固一下,对学习也有好处。其实,生活中还有许多奇妙的等式,在等着我们去总结,去探索。
有一天,我跟妈妈去逛商场。妈妈进了超市买东西,让我站在付钱的地方等她。我没什么事,就看着营业员阿姨收钱。看着看着,我忽然发现营业员阿姨收的钱都是1元、2元、5元、10元、20元、50元的,我感到很奇怪:人民币为什么就没有3元、4元、6元、7元、8元、9元或30元、40元、60元呢?我赶快跑去问妈妈,妈妈鼓励我说:“好好动脑筋想想算算,妈妈相信你能自己弄明白为什么的。”我定下心,仔细地想了起来。过了一会儿,我高兴地跳了起来:“我知道了,因为只要有1元、2元、5元就可以随意组成3元、4元、6元、7元、8元、9元,只要有10元、20元、50元同样可以组成30元、40元、60元……”妈妈听了直点头,又向我提了一个问题:“如果只是为了能随意组合的话,那只要1元不就够了吗?干吗还要2元、5元呢?”我说:“光用1元要组成大一点的数就不方便了呀。”这下妈妈露出了满意的笑容,夸奖我会观察,爱动脑筋,我听了真比吃了我最喜欢吃的冰激凌还要舒服。在此,我也想告诉其他的小朋友:其实生活中到处都有数学问题,只要你多留心观察,多动脑思考,你就会有很多意外的发现,不信你就试一试!
小学数学论文:《数学课程标准》指出:有效的数学学习活动不能单纯的依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。学生的学习方式要进行转变,提倡“自主学习、合作学习、探究学习” 近年来,我县大力推行小学数学“自主、合作、探究”式课堂教学模式,取得了良好的效果。本文结合自身教学与教研的实践,谈谈对“自主、合作、探究”式课堂教学模式的思考。� 一、小学数学“自主、合作、探究”式课堂教学模式的构建� 小学数学“自主、合作、探究”式课堂教学模式的构建以新课程理念为指导, 以学生的发展为宗旨,体现过程性,关注学生获得知识、形成能力的过程与方法;突出创新性, 以培养学生的创新意识与创新精神为出发点; 凸显探究性,着力培养学生自主发现问题、提出问题、分析问题、解决问题、应用知识的能力。� 1、基本结构� 2、操作程序� (1)前提准备。准备的目的在于稳定学生的情绪,唤起学生的原有认知,为探究作好知识、能力、心理等方面的铺垫。这一环节既可以在课前准备,也可以在课中进行,可以用谈话、讲故事等多种形式进行。� (2)探究新知。这是完成课堂教学任务的关键环节。教师应了解学生的“数学现实”,充分尊重学生的自主性,围绕学习内容设计纲要性思考题,创设知识迁移的学习环境,引导学生独立探究新知.在此基础上,组织学生动手实践、 自主探索与合作交流,让学生在宽松的学习环境中畅所欲言,大胆质疑,促进同化,发展思维的流畅性,让学习活动成为一个生动活泼的、富有个性的过程。� (3)拓展运用。这是课堂教学过程的重要环节,有利于学生掌握知识、形成技能、获得能力.教师的练习设计要紧扣教材,有适当的坡度与密度,要让全体学生都练有所得。要通过多形式、多层次的开放性习题训练,发展学生思维的灵活性、变通性和独特性。� (4)总结评价。在教师引导下,学生回顾问题探索过程,沟通新旧知识的联系,进行自我评价、总结得失,并联系实际将知识点向课外延伸,提高学生的知识运用能力和解决实际问题能力,激发再认识、再发现、再创新。� 二、小学数学“自主、合作、探究”式课堂教学模式的操作策略� 1、营造和谐的课堂环境。� 和谐的课堂环境能唤醒和激活学生的学习动机和需要,使之产生强烈的欲望,并积极进入状态,全身心地参与教学活动。� (1)注重师生间的情感交流。教学过程是师生情感交流、彼此感染的过程。教师要以饱满的热情、真诚的微笑面对每一个学生,对学生要保持宽容与理解,给予鼓励与引导,少一些批评与指责,多一些赞扬与鼓励,充分发挥评价的激励作用,缩短师生间的情感距离,消除师生间的无形的心灵鸿沟,让学生主动参与到教学活动中来。� (2)鼓励学生表达自己的见解。课堂上教师要给学生提问题的环境与机会,要尊重学生的选择,允许学生发表不同的看法与意见,鼓励学生从不同角度去思考问题,激发学生的创造性思维,鼓励学生质疑,倡导多样化的解题策略。这样,有利于调动学生的学习积极性,又能充分挖掘学生的思维深刻性,同时又能满足学生的求胜心理,形成热烈的课堂氛围。� 2、创设合理的教学情境。� 课程标准指出:数学教学,要紧密联系学生的生活实际,从学生的生活经验和已有知识出发,创设生动有趣的情境,引导学生开展观察、操作、猜想、推理、交流等活动,让学生在具体情境中学习。
如何节约早上的时间呢“啊呀!糟糕!要迟到了••••••”每天早上都会听到我的叫喊胜。早上起床、穿衣服、刷牙、洗脸、扎辫子等等等等。我总是手忙脚乱。的这一系列动作都做完后。往往要花费相当长的一段时间。结果等一切做完之后你们就会又听到我的叫喊了。 下面我来列一张早上的清单:起 床穿 衣 服 5分钟刷 牙 洗 脸 5分钟 扎 辫 子 5分钟听英语 10分钟吃早饭 15分钟上面这个表格呢,就是以前我每天早上的表格,我一般早上 6:30起床。照这样算5+5+5+10+15=40(分钟)肯定迟到。怎么样才能是早上的时间不浪费掉呢?经过调整,我把表格做了一下调整: 起床穿衣服的时间不变,刷牙洗脸时也可以放英语听,可以在吃饭时扎辫子,还可以听英语,这样的话,时间可就减少了很多呢!我们可以再算一笔帐:5+5+15=25(分钟)40-25=15(分钟)相同的事情只要调整一下顺序,就可以用更短的时间完成了。俗话说的好:一年之计在于春,一日之计在于晨,可见一天的早上是多么宝贵,所以,同学们,其实每个人都可以来合理安排好每一天,每一年。大家可以来都来设计,你可以从一个早晨到一天、或者到一年的安排,只要你能运用你所学的数学知识解决我们生活中的许多实际问题,你就可以做一个时间的小主人,同学们,事不宜迟,让我们赶快行动起来吧!PS:是自己写的,绝对不是套来的
迎元旦”优惠大酬宾活动奶油蛋糕:1元一个。(买5送一)光明牛奶:2元一盒(买10送1)…… 青蛙大婶开的超市正在举行“迎元旦”优惠大酬宾活动,只见店门口招揽顾客的牌子上写着:这天,蛇妈妈给了花花蛇和小青蛇姐弟共10元钱,对两个孩子说: “孩子,你们都这么大了,能帮妈妈去买6个蛋糕吗?”花花蛇和小青蛇姐弟两人一声说道:“行啊,我们老师还经常让我们在生活中用数学呢?”姐弟俩高高兴兴地上路了。两人很快就到了超市门口。小青蛇正想往里钻,花花蛇说:“小青,快看,这里有广告牌呢,找找看,我们要买的东西优惠不优惠?”花花蛇赶紧掉转头,和弟弟仔细阅读起门前的广告。小青蛇快嘴说道:“奶油蛋糕,1元一个,那妈妈叫我们买6个的话,不就要1×6=6(元)钱吗?这样青蛙大婶要找我们10-6=4(元)钱。” “你平时就是粗心,题目看了一半就开始列式,今天,你老毛病又犯了。你看看,这下面的括号里写的是什么” 花花蛇拎了拎小青蛇的耳朵,以一个长者的身份批评道。小青蛇摸摸头,甩了甩尾巴,撒娇的缠绕到姐姐的身上,说:“姐姐,别生气嘛,我知道了‘买5送1’的意思,就是说买5个就能得到1个赠送的。妈妈叫我们买6个,那我们只需付5个的价钱,即1×5=5(元),还找回5元。对吗?”花花蛇点了点头说:“这回聪明了。” 姐弟两人到超市里买回了6块奶油蛋糕,拿着找回的5元钱,高高兴兴的回家了。
三年级数学小论文写法要点如下:1、科学选择题目:写作小论文的第一步,就是要确定研究的对象,考虑研究什么问题,选择好题目就等于完成小论文的一半,可见小论文选题的重要性;2、全面搜集材料:搜集材料有多种途径,可到图书馆查阅资料,或搞实地调查,采访,或上网搜寻所需材料,应注意材料的准确性;3、准确提炼观点:提炼观点就是对材料进行分析,比较,概括后提出自己的看法;4、理安排结构:安排结构应当针对不同类型的专题小论文灵活掌握;5、精心起草修改:起草修改,按照提纲写出初稿并修改,不仅是细致的语言表达工作,而且是研究深入化和思维周密化的过程,要力求准确和严密。
一、培养数学学习兴趣在小学数学教学中的重要性
数学是其他自然科学的基础和保证,因此,学好数学对于学生以后其他学科的学习具有非常重要的现实意义.小学数学主要是促进学生在幼年时期接受数学教育,进而为将来的数学学习奠定基石,因此,培养小学生对于数学的学习兴趣显得非常重要.处于7~12岁年龄段的小学生是各项认知技能都在快速发展的阶段和人群.在这一年龄阶段,其学习数学知识的能力会随着其兴趣而得到不同的发展.如果学生因为缺乏学习兴趣,产生厌学心理,就会对其今后的发展造成不可修复的伤害.教育和教学就是培养人和塑造人的一门科学,所以说,好的教育教学是会使得人的全面发展得到增强的.
二、在小学数学教学中培养学生学习兴趣的方法
1.必须要实行的原则
在小学数学教学中培养学生的数学兴趣是一个重要的教学问题,它必须与学生的知识结构一致和协调,符合学生的身心发展和全面发展,那么,我们就必须必须遵循和执行一定的原则:
(1)适应性原则
适应性原则要求在小学数学教育的日常活动中,学习兴趣是关键,那么,我们就需要以此为原则来不用该年龄阶段的知识去引导学生的努力方向.比如说,现在小学阶段,那些小学奥数比赛已经非常流行了.这些所谓的奥数竞赛,不符合小学生的学习阶段和知识结构,很多题目大大超出他们的知识范围.但这在校园里却是一种很普遍的风尚,这种错误的风尚打击了一大部分学生,使他们发出“数学难”的呼声.这样的学习榜样当然值得肯定,但不适宜在推广而后实施,也不利于培养学生学习数学的积极性和兴趣.
(2)发展性原则
发展性原则是为了培养学生学习数学的兴趣来结合社会的生活和学生的身心特点双重因素.那么,启发学生思考的问题要符合学生知识结构,既不能太简单也不能太难,主要是要联系理论知识与现实生活,促进学生的全面发展.此外,让学生在学习过程中既感到有挑战性,又感觉到好玩和有成效.这样,学生在数学课堂上的学习中不但能学到一定的知识,又有了继续学习的欲望和兴趣,为以后的学习和生活打下了良好的基础,是实现促进学生全面发展的教育目的的.
2.所采取的方法
以根本原则为基础,以具体措施为方法来有针对性地达到教学目标.例如:我们在小学数学的教学过程中可以采取趣味性的教学方式,激发学生的学习兴趣.从小学数学的教学学习环境来说分成两个部分,一是课堂教学,二是课外思考和课外作业.在课堂教学中,应该:
(1)每名学生都积极参与
老师在授课的过程中,要以所教知识与学生的现有认知水平为基础,设计师生共同参与的学习模式,让所有学生参与其中,提高其学习的主动性和效率.
(2)不同的成功体验
让每一名学生都有自己对成功的体验,老师通过教学情境的创设来区别对待,并根据学生不同学习程度和学习能力因材施教,这样所有程度的学生都能获得成功的喜悦.数学这一学科具有系统性和连续性,所以说,循序渐进、激励优生和表扬后进生都是可行之策,每一名学生都会体验到自己的成就感来获得喜悦之情,更能激发学生学习的积极性和主动性.
(3)积极表扬和鼓励
小学生具有年龄小和争强好胜的特点以及荣誉感,所以,在教学的活动中,教师要发现学生的闪光点和优点来加以表扬.特别是,在学生取得进步时,教师要及时给予表扬和鼓励,这样就会使得学生们不断保持学习兴趣.
(4)趣味性课堂活动
教师可以组织一些趣味活动.首先是重视直观的教学方法,例如在教授小学一年级“加减法”的时候,可以让同学们自制一些小工具,这样课堂上玩耍的过程中就学会了知识,同时也使学生学习变得直观化和简单化.其次,我们教师在日常的教学中,尽量将一些大家都熟悉的生活场景引入到课堂来,通过生动有趣的故事,在中间穿插一些数学知识,并通过模型、实物等教具,配合多媒体等教育设施,形象而又直观地引导学生去掌握新知识.在课堂外,应该:给学生创造自由的发展空间.因为小学数学学科本身以理解为主,只要在课堂上真正理解消化了,我们可以适当地减少家庭作业.毕竟在如此小的年纪搞题海战术实在不是一件痛快的事.为了保持学生在课堂中的热情和兴趣,尽量不要给学生的课外生活布下阴影.课外作业以质量取胜.适量的人性的家庭作业能够使学生对数学这一重要学科保持持久的正面的重视.所以我们在给小学生布置数学课外作业时,必须对题量和题型做细致的考察.归根到底,作业的意义就是为了发现问题并解决问题,而不是作为惩罚学生的硬性指标.
不会哈克上不上课社保卡室内设计阿姐阿妈扣篮刷卡吗表示v杭州南站凯宾斯基在不在不宅男宅女在看着可能栅栏接啊烧脑舍伯吐赐死地方好开始吧我就是不说就不说就是就是比啥今年暑假是你说那就是你四级考试你手机安娜接啊接啊闹闹少看点撒娇啊就看你萨克斯你啊考计算机室内设计快睡觉啊男士健康室内设计师今年暑假手机少年神机妙算男士健康(ღ˘⌣˘ღ)付大姐夫一个哥哥古古怪怪古古怪怪看这架势;就是必胜客上班就是:不知真假我就在家啊精神病就诊卡:
小学三年级数学论文如下:
数学,经常从人们身边走过,生活中人们都离不开它,它为人们的生活作出了巨大的贡献。在我们的班级中经常要使用到数学。比如班级收饭费,一个班共有62名同学。在校吃饭的有60名同学,每人应付85元。这样为话便要算出60人一共应付几元。应用乘法就可以很简便的算出结果。只要用85x60=全班60人应付几元。这是我们身边最普通的例子了。
在我们的生活中,与数学的关系也十分的密切。大家一星期都要上一次超市的,但身上往往只会带50元80元左右。这个时候,我们就要很有计划的买东西了。但是,商品的价格往往不是一个整数,如一块香皂5.60元,一双布鞋12.70元。这时,我们就要有良好的口算能力。上超市总不能每一次都带着一个计算器。所以要想好了买,算好了买,要不然,钱就不够了。
如果你长大了成了一名设计工人,那你就要把每一块砖的长、宽都算的一清二楚呀!连0.1的误差都不能有。
由此可见,数学是多么重要啊!所以,我们现在要学好数学,长大后才能去建设我们的祖国!
数学小论文:
“数学小论文”是让学生以日记的形式描述他们发现的数学问题及其解决,是学生数学学习经历的一种书面写作记录。它可以是学生对某一个数学问题的理解、评价,可以是数学活动中的真实心态和想法,可以是进行数学综合实践活动遇到的问题,也可以是利用所学的数学知识解决生活中数学问题的经过等。
它是教师了解学生数学学习的心理、思维及非智力因素等个别差异的新途径,是学生进行自我分析、自我评价的新思路问题的能力,发展学生的自主性和创造性。学生的学习活动是基于发现问题、解决问题的一种活动,数学小论文的撰写能有效地增强学生的问题意识。
数学小论文可以不拘泥于课本限制,也不受教师的束缚,是学生综合运用所学的数学知识,大胆进行尝试,独立对问题进行探究而写成的。它有助于培养学生发现问题、分析问题和解决问题的能力,发展他们的个性。
大家能够喜欢!这些天,天公像是个刚失恋的女生,整天哭个不停。下午,我放学后无奈地撑着伞往回走。路上,行人漫不经心地走着.而车子对这雨似乎情有独衷,在雨中一枝独绣地狂奔着.在稍有凹坑的路面时,车轮便大起了小九九――想与落水嬉戏一番。但落水不大愿意,迅速跑开,逃出它的魔掌。哦,糟糕!在我旁边这个凹坑的水离开了车轮,粘上了我,搞得我一裤子湿漉漉的,像是刚刚从水里捞出来的。因此,我的心情变得更加深沉,但雨仍无休止地下着。雨水有节奏地拍打伞,像是在弹奏一曲钢琴曲,但我不知道是贝多芬或是郎郎的杰作,可能他们也弹不出如此动听而且淳朴的乐曲。它时而高,时而低,时而快,时而慢,美极了!但我此时已无心享受这“此音只应天上有,人间能有几回合”的美妙乐曲,望着手里捧着的这叠书,我深深地叹了一口气。于是,我加快脚步往回走,但我的鞋与这水好象也有着不解之缘,老是把水溅起来,苦了我这条裤子。我只好跟着它小“脚步”缓缓前进。终于到家了,我脱下了鞋子,换了裤子,便立马回到自己的房间复习功课。可是,我的心被窗外那场贼头贼脑的雨给“偷”走了,无法安心复习功课。无奈,我只好拉开窗帘,继续叙说我们之间的未了之缘。雨水拍打窗户的声音又别有一番风味。因为雨并不大,所以不是每次都能打到,而这则给了我一种期待感。它再过多久能打到?2秒,还是3秒?哦,不,是5秒,我完全陶醉在了这普通,但又奇特的声海之中,它真的很有趣。我不知道这场雨还要下多久,但我知道,雨过天晴,又会是一番别出心裁的美景!
学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。 我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。 从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。 我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。 数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。
生活中的“奇妙等式”数学中有许多等式,比如“速度×时间=路程”、“单价×数量=总价”,今天,我要向大家介绍几条数学与我的等式。生活中,我总结出这一等式:“我+父母=正确数学”。平时,我会经常遇到一些难题,但是,父母的工作十分繁忙,很少有时间陪我,每当我睡下时,他们还没回来,一家人唯一的沟通方法,就是那一本“留言本”。每次留下的题目,父母总会绞尽脑汁地为我解答。父母学习书上的例题,给我解答是最令我感动的。每次看到留言本上,父母给我留下的解题思路,我都会在心中默默地感谢他们。小时候,父母也为我总结出这一等式:“课本+生活=数学”。那时,父母工作都不是很忙,每次出去买东西,都会带上我。最让我记忆犹新的是我上中班的时候,妈妈带我买菜的一件事。当时,正值秋季,妈妈见路边有些卖苹果的摊子,便和卖苹果的人讨价还价起来,最终,以一元一斤的价钱买了三斤。当时,妈妈转过头来,亲切地问:“赢赢,一元一斤的苹果,三斤多少钱?”我想了想,说:“是,是三块钱。”惹得周围的人直夸我聪明。回家后,妈妈又问我是怎么会的,我笑着说:“我是用1+1+1=3的。”直到现在,妈妈还经常提那件事,教育我说:“数学不光要学课本上的,还要学习生活中的。”“每晚三题=快乐数学。”这是我小学三年级时所立下的等式。每天晚上做三道思考题不多也不少,只要坚持不懈,一定能积累许多。现在,我依然坚持每天做三道思考题,有时间还能多做一点,两年多了,不知道自己已经做了多少了,也不知道自己写满了多少的本子,这种作业方式,使我受益非浅,让我在多次数学竞赛中获奖,品尝胜利的喜悦。“勤动脑+勤动手=成功,”这是我通过实际生活所悟出的道理,也是我一般的解题顺序。一般拿到题目,我总要先读懂题目,弄清资料,掌握其中的关系,然后根据关系列出算式,一步步地解答。有时,还可以通过画图的方法,根据已知数量画出线段图,便于理解题目。至于答完之后,再找几道类似的题目,巩固一下,对学习也有好处。其实,生活中还有许多奇妙的等式,在等着我们去总结,去探索。
将一个数学的问题添加上生活的细节,具体细节地描述如何解决这个数学问题。
清晨,鲜红的太阳露出半个笑脸,和谐的阳光洒满人间,我的心情真是好极了。突然接到爷爷的电话,叫我巧算九块五加九十九块五,我马上告诉爷爷:九加九十九,再加一,不就等于一百零九吗?爷爷说我的算法还不算巧,如果凑整减零头就好算得多。我马上打断爷爷的话,告诉他:10+100-1=109(元)。这时爷爷夸我,说我还算灵巧。生活中的数学简直是太多了,真是绚丽多彩,它随时在你身边出现。我爱数学,我要学好数学。
黑体部分107字。
三年级数学小论文写法要点如下:1、科学选择题目:写作小论文的第一步,就是要确定研究的对象,考虑研究什么问题,选择好题目就等于完成小论文的一半,可见小论文选题的重要性;2、全面搜集材料:搜集材料有多种途径,可到图书馆查阅资料,或搞实地调查,采访,或上网搜寻所需材料,应注意材料的准确性;3、准确提炼观点:提炼观点就是对材料进行分析,比较,概括后提出自己的看法;4、理安排结构:安排结构应当针对不同类型的专题小论文灵活掌握;5、精心起草修改:起草修改,按照提纲写出初稿并修改,不仅是细致的语言表达工作,而且是研究深入化和思维周密化的过程,要力求准确和严密。
数学小论文一 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 作为一个小学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 2数学是什么 什么是数学?有人说:“数学,不就是数的学问吗?” 这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。 历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。” 那么,究竟什么是数学呢? 伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。 数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。