首页

> 学术发表知识库

首页 学术发表知识库 问题

自愈合水凝胶的研究与进展论文

发布时间:

自愈合水凝胶的研究与进展论文

作者 | 张晴丹

你能想象0.2克的“绳子”可以提起5公斤重的物体吗?

没开玩笑,这是科研人员创造出的一种力学性能惊人的新材料。它不但具有很好的拉伸性能,拉伸长度能达600%,而且还非常坚韧。

近日,美国北卡罗来纳州立大学Dickey实验室博士后王美香以第一作者的身份,在Nature Materials上发表论文,介绍了这款新材料。它属于离子液体凝胶的一种,在抗拉伸性能和韧性上创造了这类材料的最高纪录,也展现出比水凝胶更广阔的应用前景。

评审专家之一、麻省理工学院教授赵选贺认为,“这些透明的离子液体凝胶具有非常坚韧的机械性能,而且最大的亮点是制作简单,易于使用。”

1+1 10,凝胶界的“佼佼者”

“通常凝胶的机械性能很弱,比如豆腐。但在自然界中也有例外,比如人体内的软骨。一些研究人员一直在努力制造坚韧的凝胶,这启发了我们。”论文共同通讯作者、北卡罗来纳州立大学Dickey实验室负责人Michael D. Dickey告诉《中国科学报》。

此次创造出的离子液体凝胶含有超过60%的离子液体,主要包含丙烯酸和丙烯酰胺两种物质,前者是用于婴儿尿不湿吸水的主要材料,后者是用于隐形眼镜的主要材料。最后,混合材料兼具了聚丙烯酰胺和聚丙烯酸离子液体凝胶的优点,实现了1+1 10的效果。

王美香介绍,新材料透明度达90%以上,其内部的聚合物网络微结构使凝胶拥有极高的力学性能,可拉伸而且非常坚韧。拉伸的长度能达600%,模量有约50个兆帕,断裂强度约有13个兆帕。这是目前离子液体凝胶界的最高纪录。

论文中展示的是用0.2克的离子液体凝胶材料,轻松提起1公斤重量的物体。事实上提起5公斤的重量也不在话下,但因实验室没有5公斤的标准件,他们后来用5公斤的水桶做了实验,材料本身不会有任何破损。

离子液体这个溶剂本身不挥发,且具有很高的热稳定性和导电性。因此,创造出的这款离子液体凝胶具有广阔的应用前景。“可用于电池、传感器、3D打印、致动器和柔性电子设备等。”Michael D. Dickey说。

可穿戴柔性电子器件是当下科学研究的热门之一,要同时满足可弯折、扭曲、拉伸等需求,所以对材料的要求极高。以往做展示用的较多的是传统柔性材料——水凝胶,但水凝胶稳定性是个大问题,长期暴露在空气中会导致水分蒸发、性能受损。

“离子液体凝胶完全可以替代水凝胶在可穿戴柔性电子器件上的应用。首先它很稳定不挥发,不需要任何包覆;其次具有高导电性,不需要额外添加导电介质;可穿戴设备往往需要大变形,离子液体凝胶还可以用来开发应变传感器。”王美香说,“还有一点,它具有自愈合和形状记忆的特性。”

一步法轻松做成

长期以来,在凝胶材料领域最火的,非水凝胶莫属。

实际上,水凝胶在生活中已相当常见。比如,隐形眼镜、果冻、龟苓膏等都是水凝胶的“产物”。自62年前水凝胶横空出世,科研人员便绞尽脑汁地挖掘其力学性能,涌现了无数重大成果。

但同为凝胶材料,离子液体凝胶领域的研究则发展较慢。例如力学性能研究还是一块空白,很难把它的力学性能做到与高强度水凝胶相媲美的程度。

在这篇论文发表之前,合成高强度离子液体凝胶的方法并不易。为了提高材料的力学性能,一些研究人员采用多步法或者溶剂交换,整个过程耗时长、成本高,而且浪费资源。

挑战不可能,这是科研工作者骨子里的基因,恰好离子液体这个溶剂的“72般变化”也让王美香着迷。

“顾名思义,水凝胶用的溶剂只有一种,就是水,而离子液体凝胶用的溶剂是离子液体,有成千上万种,这正是它的魅力所在。”王美香对《中国科学报》说。离子液体在室温下是一种液态的熔融盐,里面含有正离子和负离子,只要熔融盐里的正负离子不一样,就可以实现离子液体的千变万化。

研究选材是从聚丙烯酸和聚丙烯酰胺的单体开始。

最初,王美香把两种材料分开来做。当把丙烯酰胺融到离子液体后,产生的凝胶跟她预想的完全不一样,不透明、发白,就像晒干的面条一样特别脆,一碰就断。随后她又试了丙烯酸,做出来的凝胶则超级软,透明度达到百分百。

完全就是两种极端!这让她无比兴奋,如果把三者混在一起,会擦出什么样的火花呢?

“把丙烯酰胺和丙烯酸融到离子液体里,再加入引发剂和交联剂,然后混匀,用高功率紫外灯照射,3分钟就能制作出论文中这种新型混合材料。”王美香说,“就是这么简单。”

一步法就这样诞生了!它为离子液体凝胶研究开启了新世界的大门。

为实验蓄能,把理论变为现实

王美香在西安交通大学读博期间,就一直从事水凝胶研究。但她看到了离子液体凝胶材料的巨大潜力,因此萌生了调整研究方向的想法。

2018年12月,王美香从西安交通大学获得材料科学与工程博士学位后,进入北卡罗来纳州立大学Dickey实验室做博士后,主要致力于高机械性能凝胶材料的设计和制备,以及研究其在可穿戴柔性电子器件、全固态电池以及超级电容器、传感器和驱动器等领域的应用。

在新的平台,王美香也顺利转换到新赛道,开始离子液体凝胶材料研究。

但是,王美香刚进入北卡罗来纳州立大学,新冠疫情就来了,一下打乱了研究计划,学校封闭,无法进入实验室。

她便利用这段时间查阅文献,为实验蓄能。在家“闭关”三个月后,终于等来复工的消息。王美香便一头扎进实验里,每天在实验室待八个小时,把实验过程中看到的现象记录下来,晚上回家查资料来分析这些现象的成因。

幸运的是,这项工作从始至终都比较顺利,这篇论文投给期刊也很快被接收。并且,评审专家都对该成果给了很高的评价。

“接下来,我们将会做应用方面的拓展,想把离子液体凝胶与3D打印技术相结合,用于开发新型柔性机器人。”王美香说。

参与这项研究的一共有9位作者,其中华人学者就有4位。除了王美香,另外3位分别是论文共同通讯作者、西安交通大学教授胡建,西安交通大学硕士生张鹏尧,以及美国内布拉斯加州大学林肯分校研究助理教授钱文。

自愈材料(自愈材料)是一种具有自愈能力的智能材料,能够修复长期机械使用造成的损伤。灵感来自于一个能够在受伤后自我修复的生物系统。总之,理想可以被破坏,在一定条件下或刺激下,可以完成自我修复的过程,在没有受到破坏时恢复到它的状态。这当然是理想状态,实际上很难实现100%的完美修复。因此,人们扩展了他的定义,将自愈材料分类为自愈材料。

所谓水凝胶是一种高含水量的三维网络聚合物材料。通常通过亲水分子的物理或化学交联形成。许多自愈合水凝胶依赖于动态物理交联(例如氢键、疏水力等)。),在某些条件(例如外力)下破裂,然后在某些外部条件(例如加热、UV照射、ph变化等)下再生。)完成自我修复。自愈水凝胶主要有三种类型。

第一种是依靠单电荷分子(单电荷两亲分子),这种自修复依赖于分子之间的氢键,但当ph值较大时,单电荷分子会电离,然后由于相同电荷之间的排斥作用,凝胶不能完成自修复,因此应用受到限制。

第二种是非离子两亲分子,其具有疏水部分和亲水部分,通常分布在凝胶表面上。当凝胶被切割时,亲水部分被暴露,为了降低凝胶的表面自由能,疏水分子末端移动到凝胶的表面,亲水部分将再次埋在凝胶中。疏水分子随后通过疏水力彼此结合以完成自修复,但是这种修复是弱的,并且需要在凝胶被切割之后立即对准。

第三种是两性离子&超亲水,通过两种离子间的电荷自愈合,可以很好地修复。这种两性离子结构如下,而且还可以看出修复得很好。

在这里我就说说聚合物水凝胶材料,其实还有更多的自愈材料,有金属等等。

水凝胶的论文格式

图1:基于快速催化纳米强化策略的LSN-Fe/PAM水凝胶设计策略。

图2:LSN铁/聚丙烯酰胺水凝胶中LSN的表征和动态氧化还原反应。

图3:LSN-Fe/PAM水凝胶的力学性能。

图4:LSN-Fe/PAM水凝胶的自粘性能。

图5:LSN-Fe/PAM水凝胶的抗紫外线性能和透明度。

相关论文以题为 Ultrafast Fabrication of Lignin-Encapsulated Silica Nanoparticles Reinforced Conductive Hydrogels with High Elasticity and Self-Adhesion for Strain Sensors 发表在 《Chemistry of Materials》上。通讯作者 是 北京林业大学 杨俊副教授 。

参考文献:

doi.org/10.1021/acs.chemmater.2c00934

你好,请下载附件,文献已上传,望及时采纳答案。知网硕博论文请使用专用caj阅读器查看。

作者:晋治涛, 陈国华, 孙明昆.

文题:羧甲基壳聚糖水凝胶和羧甲基壳聚糖盐的制备, 性质及其应用研究

来源: 青岛: 中国海洋大学, 2004.

混炼胶的发展前景与研究进展论文

纳米材料技术作为一门高新科学技术,纳米技术具有极大的价值和作用。下面我给大家分享一些纳米材料与技术3000字论文, 希望能对大家有所帮助!纳米材料与技术3000字论文篇一:《试谈纳米复合材料技术发展及前景》 [摘要]纳米材料是指材料显微结构中至少有一相的一维尺度在100nm以内的材料。纳米材料由于平均粒径微小、表面原子多、比表面积大、表面能高,因而其性质显示出独特的小尺寸效应、表面效应等特性,具有许多常规材料不可能具有的性能。纳米材料由于其超凡的特性,引起了人们越来越广泛的关注,不少学者认为纳米材料将是21世纪最有前途的材料之一,纳米技术将成为21世纪的主导技术。 [关键词]高聚物纳米复合材料 一、 纳米材料的特性 当材料的尺寸进入纳米级,材料便会出现以下奇异的物理性能: 1、尺寸效应 当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或投射深度等物理特征尺寸相当或更小时,晶体的边界条件将被破坏,非晶态纳米微粒的颗粒表面附近原子密度减小,导致声、光电、磁、热、力学等特性呈现出新的小尺寸效应。如当颗粒的粒径降到纳米级时,材料的磁性就会发生很大变化,如一般铁的矫顽力约为80A/m,而直径小于20nm的铁,其矫顽力却增加了1000倍。若将纳米粒子添加到聚合物中,不但可以改善聚合物的力学性能,甚至还可以赋予其新性能。 2、表面效应 一般随着微粒尺寸的减小,微粒中表面原子与原子总数之比将会增加,表面积也将会增大,从而引起材料性能的变化,这就是纳米粒子的表面效应。 纳米微粒尺寸d(nm) 包含总原子表面原子所占比例(%)103×1042044×1034022.5×1028013099从表1中可以看出,随着纳米粒子粒径的减小,表面原子所占比例急剧增加。由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,很容易与 其它 原子结合。若将纳米粒子添加到高聚物中,这些具有不饱和性质的表面原子就很容易同高聚物分子链段发生物理化学作用。 3、量子隧道效应 微观粒子贯穿势垒的能力称为隧道效应。纳米粒子的磁化强度等也具有隧道效应,它们可以穿越宏观系统的势垒而产生变化,这称为纳米粒子的宏观量子隧道效应。它的研究对基础研究及实际 应用,如导电、导磁高聚物、微波吸收高聚物等,都具有重要意义。 二、高聚物/纳米复合材料的技术进展 对于高聚物/纳米复合材料的研究十分广泛,按纳米粒子种类的不同可把高聚物/纳米复合材料分为以下几类: 1、高聚物/粘土纳米复合材料 由于层状无机物在一定驱动力作用下能碎裂成纳米尺寸的结构微区,其片层间距一般为纳米级,它不仅可让聚合物嵌入夹层,形成“嵌入纳米复合材料”,还可使片层均匀分散于聚合物中形成“层离纳米复合材料”。其中粘土易与有机阳离子发生交换反应,具有的亲油性甚至可引入与聚合物发生反应的官能团来提高其粘结。其制备的技术有插层法和剥离法,插层法是预先对粘土片层间进行插层处理后,制成“嵌入纳米复合材料”,而剥离法则是采用一些手段对粘土片层直接进行剥离,形成“层离纳米复合材料”。 2、高聚物/刚性纳米粒子复合材料 用刚性纳米粒子对力学性能有一定脆性的聚合物增韧是改善其力学性能的另一种可行性 方法 。随着无机粒子微细化技术和粒子表面处理技术的 发展 ,特别是近年来纳米级无机粒子的出现,塑料的增韧彻底冲破了以往在塑料中加入橡胶类弹性体的做法。采用纳米刚性粒子填充不仅会使韧性、强度得到提高,而且其性价比也将是不能比拟的。 3、高聚物/碳纳米管复合材料 碳纳米管于1991年由S.Iijima 发现,其直径比碳纤维小数千倍,其主要用途之一是作为聚合物复合材料的增强材料。 碳纳米管的力学性能相当突出。现已测出碳纳米管的强度实验值为30-50GPa。尽管碳纳米管的强度高,脆性却不象碳纤维那样高。碳纤维在约1%变形时就会断裂,而碳纳米管要到约18%变形时才断裂。碳纳米管的层间剪切强度高达500MPa,比传统碳纤维增强环氧树脂复合材料高一个数量级。 在电性能方面,碳纳米管作聚合物的填料具有独特的优势。加入少量碳纳米管即可大幅度提高材料的导电性。与以往为提高导电性而向树脂中加入的碳黑相比,碳纳米管有高的长径比,因此其体积含量可比球状碳黑减少很多。同时,由于纳米管的本身长度极短而且柔曲性好,填入聚合物基体时不会断裂,因而能保持其高长径比。爱尔兰都柏林Trinity学院进行的研究表明,在塑料中含2%-3%的多壁碳纳米管使电导率提高了14个数量级,从10-12s/m提高到了102s/m。 三、前景与展望 在高聚物/纳米复合材料的研究中存在的主要问题是:高聚物与纳米材料的分散缺乏专业设备,用传统的设备往往不能使纳米粒子很好的分散,同时高聚物表面处理还不够理想。我国纳米材料研究起步虽晚但 发展 很快,对于有些方面的研究 工作与国外相比还处于较先进水平。如:漆宗能等对聚合物基粘土纳米复合材料的研究;黄锐等利用刚性粒子对聚合物改性的研究都在学术界很有影响;另外,四川大学高分子 科学 与工程国家重点实验室发明的磨盘法、超声波法制备聚合物基纳米复合材料也是一种很有前景的手段。尽管如此,在总体水平上我国与先进国家相比尚有一定差距。但无可否认,纳米材料由于独特的性能,使其在增强聚合物 应用中有着广泛的前景,纳米材料的应用对开发研究高性能聚合物复合材料有重大意义。特别是随着廉价纳米材料不断开发应用,粒子表面处理技术的不断进步,纳米材料增强、增韧聚合物机理的研究不断完善,纳米材料改性的聚合物将逐步向 工业 化方向发展,其应用前景会更加诱人。 参考 文献 : [1] 李见主编.新型材料导论.北京:冶金工业出版社,1987. [2]都有为.第三期工程科技 论坛 ——‘纳米材料与技术’ 报告 会. [3]rohlich J,Kautz H,Thomann R[J].Polymer,2004,45(7):2155-2164. 纳米材料与技术3000字论文篇二:《试论纳米技术在新型包装材料中的应用》 【摘 要】作为一门高新科学技术,纳米技术具有极大的价值和作用。进入20世纪90年代,纳米科学得到迅速的发展,产生了纳米材料学、纳米化工学、纳米机械学及纳米生物学等,由此产生的纳米技术产品也层出不穷,并开始涉及汽车行业。 【关键词】纳米技术 包装材料 1 纳米技术促进了汽车材料技术的发展 纳米技术可应用在汽车的任何部位,包括发动机、底盘、车身、内饰、车胎、传动系统、排气系统等。例如,在汽车车身部分,利用纳米技术可强化钢板结构,提高车体的碰撞安全性。另外,利用纳米涂料烤漆,可使车身外观色泽更为鲜亮、更耐蚀、耐磨。内装部分,利用纳米材料良好的吸附能力、杀菌能力、除臭能力使室内空气更加清洁、安全。在排气系统方面,利用纳米金属做为触媒,具有较高的转换效果。 由于纳米技术具有奇特功效,它在汽车上得到了广泛的应用,提升汽车性能的同时延长使用寿命。 2 现代汽车上的纳米材料 (1)纳米面漆。汽车面漆是对汽车质量的直观评价,它不但决定着汽车的美观与否,而且直接影响着汽车的市场竞争力。所以汽车面漆除要求具有高装饰性外,还要求有优良的耐久性,包括抵抗紫外线、水分、化学物质及酸雨的侵蚀和抗划痕的性能。纳米涂料可以满足上述要求。纳米颗粒分散在有机聚合物骨架中,作承受负载的填料,与骨架材料相互作用,有助于提高材料的韧性和其它机械性能。研究表明,将10%的纳米级TiO2粒子完全分散于树脂中,可提高其机械性能,尤其可使抗划痕性能大大提高,而且外观好,利于制造汽车面漆涂料;将改性纳米CaCO3以质量分数15%加入聚氨酯清漆涂料中,可提高清漆涂料的光泽、流平性、柔韧性及涂层硬度等。 纳米TiO2是一种抗紫外线辐射材料,加之其极微小颗粒的比表面积大,能在涂料干燥时很快形成网络结构,可同时增强涂料的强度、光洁度和抗老化性;以纳米高岭土作填料,制得的聚甲基丙烯酸甲酯纳米复合材料不仅透明,而且吸收紫外线,同时也可提高热稳定性,适合于制造汽车面漆涂料。 (2)纳米塑料。纳米塑料可以改变传统塑料的特性,呈现出优异的物理性能:强度高,耐热性强,比重更小。随着汽车应用塑料数量越来越多,纳米塑料会普遍应用在汽车上。主要有阻燃塑料、增强塑料、抗紫外线老化塑料、抗菌塑料等。阻燃塑料是燃烧时,超细的纳米材料颗粒能覆盖在被燃材料表面并生成一层均匀的碳化层,起到隔热、隔氧、抑烟和防熔滴的作用,从而起到阻燃作用。 目前汽车设计要求规定,凡通过乘客座舱的线路、管路和设备材料必须要符合阻燃标准,例如内饰和电气部分的面板、包裹导线的胶套,包裹线束的波纹管、胶管等,使用阻燃塑料比较容易达到要求。增强塑料是在塑料中填充经表面处理的纳米级无机材料蒙脱土、CaCO3、SiO2等,这些材料对聚丙烯的分子结晶有明显的聚敛作用,可以使聚丙烯等塑料的抗拉强度、抗冲击韧性和弹性模量上升,使塑料的物理性能得到明显改善。 抗紫外线老化塑料是将纳米级的TiO2、ZnO等无机抗紫外线粉体混炼填充到塑料基材中。这些填充粉体对紫外线具有极好的吸收能力和反射能力,因此这种塑料能够吸收和反射紫外线,比普通塑料的抗紫外线能力提高20倍以上。据报道这类材料经过连续700小时热光照射后,其扩张强度损失仅为10%,如果作为暴露在外的车身塑料构件材料,能有效延长其使用寿命。抗菌塑料是将无机的纳米级抗菌剂利用纳米技术充分地分散于塑料制品中,可将附着在塑料上的细菌杀死或抑制生长。这些纳米级抗菌剂是以银、锌、铜等金属离子包裹纳米TiO2、CaCO3等制成,可以破坏细菌生长环境。据介绍无机纳米抗菌塑料加工简单,广谱抗菌,24小时接触杀菌率达90%,无副作用。 (3)纳米润滑剂。纳米润滑剂是采用纳米技术改善润滑油分子结构的纯石油产品,它不会对润滑油添加剂、稳定剂、处理剂、发动机增润剂和减磨剂等产品产生不良作用,只是在零件金属表面自动形成纯烃类单个原子厚度的一层薄膜。由于这些微小烃类分子间的相互吸附作用,能够完全填充金属表面的微孔,最大可能地减小金属与金属间微孔的摩擦。与高级润滑油或固定添加剂相比,其极压可增加3倍-4倍,磨损面减小16倍。由于金属表面得到了保护,减小了磨损,使用寿命成倍增加。 另外,由于纳米粒子尺寸小,经过纳米技术处理的部分材料耐磨性是黄铜的27倍、钢铁的7倍。目前纳米陶瓷轴承已经应用在奔驰等高级轿车上,使机械转速加快、质量减小、稳定性增强,使用寿命延长。 (4)纳米汽油。纳米汽油最大优点是节约能源和减少污染,目前已经开始研制。该技术是一种利用现代最新纳米技术开发的汽油微乳化剂。它能对汽油品质进行改造,最大限度地促进汽油燃烧,使用时只要将微乳化剂以适当比例加入汽油便可。交通部汽车运输节能技术检测中心的专家经试验后认为,汽车在使用加入该微乳化剂的汽油后,可降低其油耗10%~20%,增加动力性能25%,并使尾气中的污染物(浮碳、碳氢化合物和氮氧化合物等)排放降低50%~80%。它还可以清除积碳,提高汽油的综合性能。更令人注意的是,纳米技术应用在燃料电池上,可以节省大量成本。因为纳米材料在室温条件下具有优异的储氢能力。根据实验结果,在室温常压下,约2/3的氢能可以从这些纳米材料中得以释放,故其能替代昂贵的超低温液氢储存装置。 (5)纳米橡胶。汽车中橡胶材料的应用以轮胎的用量最大。在轮胎橡胶的生产中,橡胶助剂大部分成粉体状,如炭黑、白炭黑等补强填充剂、促进剂、防老剂等。以粉体状物质而言,纳米化是现阶段橡胶的主要发展趋势。新一代纳米技术已成功运用其它纳米粒子作为助剂,而不再局限于使用炭黑或白炭黑,汽车中最大的改变即是,轮胎的颜色已不再仅限于黑色,而能有多样化的鲜艳色彩。另外无论在强度、耐磨性或抗老化等性能上,新的纳米轮胎均较传统轮胎都优异,例如轮胎侧面胶的抗裂痕性能将由10万次提高到50万次。 (6)纳米传感器。传感器是纳米技术应用的一个重要领域,随着纳米技术的进步,造价更低、功能更强的微型传感器将广泛应用在社会生活的各个方面。半导体纳米材料做成的各种传感器,可灵敏地检测温度、湿度和大气成分的变化,这在汽车尾气和大气环境保护上已得到应用。纳米材料来制作汽车尾气传感器,可以对汽车尾气中的污染气体进行吸附与过滤,并对超标的尾气排放情况进行监控与报警,从而更好地提高汽车尾气的净化程度,降低汽车尾气的排放。我国纳米压力传感器的研制已获得成功,产品整体性能超过国外的超微传感器,缩小了我国在这一技术领域与世界先进国家存在的差距。有专家认为,到2020年,纳米传感器将成为主流。 (7)纳米电池。早在1991年被人类发现的碳纳米管韧性很高,导电性极强,兼具金属性和半导体性,强度比钢高100倍, 密度只有钢的1/6。我国科学家最近已经合成高质量的碳纳米材料,使我国新型储氢材料研究一举跃入世界先进行列。此种新材料能储存和凝聚大量的氢气,并可做成燃料电池驱动汽车,储氢材料的发展还会给未来的交通工具带来新型的清洁能源。 结语 随着材料技术的发展,纳米技术已成为当今研究领域中最富有活力,对未来经济和社会发展有着十分重要影响的研究对象。纳米科技正在推动人类社会产生巨大的变革,未来汽车技术的发展,有极大部分与纳米技术密切相关,纳米材料和纳米技术将会给汽车新能源、新材料、新零部件带来深远的影响。对于汽车制造商而言,纳米技术的有效运用,有效地促进技术升级、提升附加价值。相信在不久的将来,纳米技术必将在汽车的制造领域得到更广泛的应用。 参考文献 [1]肖永清.纳米技术在汽车上的应用[J].轻型汽车技术,2004.12. [2]潘钰娴,樊琳.纳米材料的研究和应用[J].苏州大学学报(工科版),2002. [3]周李承,蒋易,周宜开,任恕,聂棱.光纤纳米生物传感器的现状及发展[J].传感器技术,2002,(1):18~21 纳米材料与技术3000字论文篇三:《试谈纳米技术及纳米材料的应用》 摘要:本文主要论述了纳米材料的兴起、纳米材料及其性质表现、纳米材料的应用示例、纳米材料的前景展望,以供与大家交流。 关键词:纳米材料;应用;前景展望 1.纳米技术引起纳米材料的兴起 1959年,著名物理学家、诺贝尔奖获得者理查德·费曼预言,人类可以用小的机器制作更小的机器,最后实现根据人类意愿逐个排列原子、制造产品,这是关于纳米科技最早的梦想。80年代初,德国科学家H.V.Gleiter成功地采用惰性气体凝聚原位加压法制得纯物质的块状纳米材料后,纳米材料的研究及其制备技术在近年来引起了世界各国的普遍重视。由于纳料材料具有独特的纳米晶粒及高浓度晶界特征以及由此而产生的小尺寸量子效应和晶界效应,使其表现出一系列与普通多晶体和非晶态固体有本质差别的力学、磁、光、电、声等性能,使得对纳米材料的制备、结构、性能及其应用研究成为90年代材料科学研究的 热点 。1991年,美国科学家成功地合成了碳纳米管,并发现其质量仅为同体积钢的1/6,强度却是钢的10倍,因此称之为超级纤维.这一纳米材料的发现标志人类对材料性能的发掘达到了新的高度。1999年,纳米产品的年营业额达到500亿美元。 2.纳米材料及其性质表现 2.1纳米材料 纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000-8000nm,人体红细胞的直径一般为3000-5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃。一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1-100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。 2.2纳米材料的特殊性质 纳米材料高度的弥散性和大量的界面为原子提供了短程扩散途径,导致了高扩散率,它对蠕变,超塑性有显著影响,并使有限固溶体的固溶性增强、烧结温度降低、化学活性增大、耐腐蚀性增强。因此纳米材料所表现的力、热、声、光、电磁等性质,往往不同于该物质在粗晶状态时表现出的性质。与传统晶体材料相比,纳米材料具有高强度——硬度、高扩散性、高塑性——韧性、低密度、低弹性模量、高电阻、高比热、高热膨胀系数、低热导率、强软磁性能。这些特殊性能使纳米材料可广泛地用于高力学性能环境、光热吸收、非线性光学、磁记录、特殊导体、分子筛、超微复合材料、催化剂、热交换材料、敏感元件、烧结助剂、润滑剂等领域。 3.纳米材料的应用示例 目前纳米材料主要用于下列方面: 3.1高硬度、耐磨WC-Co纳米复合材料 纳米结构的WC-Co已经用作保护涂层和切削工具。这是因为纳米结构的WC-Co在硬度、耐磨性和韧性等方面明显优于普通的粗晶材料。其中,力学性能提高约一个量级,还可能进一步提高。高能球磨或者化学合成WC-Co纳米合金已经工业化。化学合成包括三个主要步骤:起始溶液的制备与混和;喷雾干燥形成化学性均匀的原粉末;再经流床热化学转化成为纳米晶WC-Co粉末。喷雾干燥和流床转化已经用来批量生产金属碳化物粉末。WC-Co粉末可在真空或氢气氛下液相烧结成块体材料。VC或Cr3C2等碳化物相的掺杂,可以抑制烧结过程中的晶粒长大。 3.2纳米结构软磁材料 Finemet族合金已经由日本的Hitachi Special Metals,德国的Vacuumschmelze GmbH和法国的 Imply等公司推向市场,已制造销售许多用途特殊的小型铁芯产品。日本的 Alps Electric Co.一直在开发Nanoperm族合金,该公司与用户合作,不断扩展纳米晶Fe-Zr-B合金的应用领域。 3.3电沉积纳米晶Ni 电沉积薄膜具有典型的柱状晶结构,但可以用脉冲电流将其破碎。精心地控制温度、pH值和镀池的成份,电沉积的Ni晶粒尺寸可达10nm。但它在350K时就发生反常的晶粒长大,添加溶质并使其偏析在晶界上,以使之产生溶质拖拽和Zener粒子打轧效应,可实现结构的稳定。例如,添加千分之几的磷、流或金属元素足以使纳米结构稳定至600K。电沉积涂层脉良好的控制晶粒尺寸分布,表现为Hall-Petch强化行为、纯Ni的耐蚀性好。这些性能以及可直接涂履的工艺特点,使管材的内涂覆,尤其是修复核蒸汽发电机非常方便。这种技术已经作为 EectrosleeveTM工艺商业化。在这项应用中,微合金化的涂层晶粒尺寸约为100nm,材料的拉伸强度约为锻造Ni的两倍,延伸率为15%。晶间开裂抗力大为改善。 3.4Al基纳米复合材料 Al基纳米复合材料以其超高强度(可达到1.6GPa)为人们所关注。其结构特点是在非晶基体上弥散分布着纳米尺度的a-Al粒子,合金元素包括稀土(如Y、Ce)和过渡族金属(如 Fe、Ni)。通常必须用快速凝固技术(直接淬火或由初始非晶态通火)获得纳米复合结构。但这只能得到条带或雾化粉末。纳米复合材料的力学行为与晶化后的非晶合金相类似,即室温下超常的高屈服应力和加工软化(导致拉神状态下的塑性不稳定性)。这类纳米材料(或非晶)可以固结成块材。例如,在略低于非晶合金的晶化温度下温挤。加工过程中也可以完全转变为晶体,晶粒尺寸明显大干部份非晶的纳米复合材料。典型的Al基体的晶粒尺寸为100~200nm,镶嵌在基体上的金属间化合物粒子直径约50nm。强度为0.8~1GPa,拉伸韧性得到改善。另外,这种材料具有很好的强度与模量的结合以及疲劳强度。温挤Al基纳米复合材料已经商业化,注册为Gigas TM。雾化的粉末可以固结成棒材,并加工成小尺寸高强度部件。类似的固结材料在高温下表现出很好的超塑性行为:在1s-1的高应变速率下,延伸率大于500%。 4.纳米材料的前景趋向 经过我国材料技术人员多年对纳米技术的研究探索,现在科学家已经能够在实验室操纵单个原子,纳米技术有了飞跃式的发展。纳米技术的应用研究正在半导体芯片、癌症诊断、光学新材料和生物分子追踪4大领域高速发展。可以预测:不久的将来纳米金属氧化物半导体场效应管、平面显示用发光纳米粒子与纳米复合物、纳米光子晶体将应运而生;用于集成电路的单电子晶体管、记忆及逻辑元件、分子化学组装计算机将投入应用;分子、原子簇的控制和自组装、量子逻辑器件、分子电子器件、纳米机器人、集成生物化学传感器等将被研究制造出来。 近年来还有一些引人注目的发展趋势新动向,如:(1)纳米组装体系蓝绿光的研究出现新的苗头;(2)巨电导的发现;(3)颗粒膜巨磁电阻尚有潜力;(4)纳米组装体系设计和制造有新进展。

看你要求的具体参数规格,拉伸强度,摄氏多少度数的混炼胶,从表面上分的话,不是很好分,除非你是很熟悉。可以采取借助技术手段,或者请教技术人员 可以咨询贝特利的技术人员,

橡胶的混炼就是将各种配合剂借助炼胶机机械力的作用, 将各种配合剂均匀地分散在橡胶中,以形成一个以橡胶为介质或者以橡胶与某些能和它相容的配合组分(配合剂、其它聚合物) 的混合物为介质, 以与橡胶不相容的配合剂(如粉体填料、氧化锌、颜料等) 为分散相的多相胶体分散体系的过程。对混炼工艺的具体技术要求是:配合剂分散均匀, 使配合剂特别是炭黑等补强性配合剂达到最好的分散度, 以保证胶料性能一致。混炼后得到的胶料称为“混炼胶”, 其质量对进一步加工和制品质量有重要影响。1· 天然橡胶的混炼天然橡胶是生胶塑炼的主要胶种, 用开炼机和密炼机进行塑炼均能获得良好效果。用开炼机塑炼时, 通常采用低温(40~50 ℃) 薄通(辊距0.5~1 mm) 塑炼法和分段塑炼法效果最好。用密炼机塑炼时, 温度宜在155 ℃以下, 时间约在13 min左右。塑炼时间增加, 塑炼胶的可塑性随之增大。但不要过炼, 否则可塑性变得过高而使物理机械性能下降。天然橡胶塑炼时常加入促进剂M 作塑解剂,来提高塑炼效果。促进剂M 对开炼机塑炼和密炼机塑炼都适用。天然橡胶塑炼后, 为使橡胶分子链得到松弛(俗称恢复疲劳) 和可塑性均匀, 需停放一定时间(4~8 h), 才能供下道工序使用。目前国内使用的天然橡胶主要品种有:国产烟片胶和标准胶, 进口烟片胶和马来西亚标准胶等。由于上述胶种的初始门尼粘度不同, 欲获得相同的可塑性, 所需的塑炼时间当然不同。其塑炼时间按长短排列的顺序为:进口烟片胶>国产烟片胶>国产标准胶>马来西亚标准胶。恒粘和低粘标准马来西亚橡胶、充油天然橡胶、轮胎橡胶、易操作橡胶的初始门尼粘度较低(一般小于65),可不经塑炼直接混炼。天然混炼胶(NR) 具有综合性好的物理机械性能, 在常温下具有很高的弹性, 弹回率可达50%~85%以上。天然胶还具有较高的机械强度,很好的耐屈挠疲劳性能, 滞后损失小, 多次变形下生热量低, 撕裂强度高, 耐磨性和耐寒性良好,以及良好的气密性、防水性、电绝缘性和绝热性。天然胶的耐碱性好, 对一般酸的抗耐性也较好,但不耐浓强酸, 并且天然胶还有很好的工艺加工性能。天然橡胶具有良好有混炼性能, 包辊性良好, 生胶强力和初粘性较高, 塑性、并用性及对配合剂的浸润性都较好, 胶料的塑性增加速度快而且生热量低。因此, 对配合剂的湿润性好, 吃粉快, 分散也比较容易;混炼时间短, 混炼操作工艺易于掌握。但天然胶对混炼时间较敏感, 混炼时间过短, 混炼胶表面会呈现颗粒状, 造成压延挤出困难;混炼时间过长, 又会导致过炼。开炼机混炼, 辊温在45~55 ℃之间, 前辊比后辊高5 ℃。密炼机混炼多采用一段混炼法, 排胶温度在120 ℃以下。2 ·丁苯橡胶的混炼丁苯橡胶(SBR) 又称聚苯乙烯丁二烯共聚物。其物理机构性能, 加工性能及制品的使用性能接近于天然橡胶, 有些性能如耐磨、耐热、耐老化及硫化速度较天然橡胶更为优良, 可与天然橡胶及多种合成橡胶并用。丁苯橡胶在混炼时配合剂分散困难, 电能消耗大, 生热大, 胶料质量受温度的影响较大, 所以在制造丁苯橡胶胶料时, 应针对其特点而规定混炼条件。在开炼机混炼时, 较适宜的方法是将配方中的炭黑制成母炼胶直接加入, 掺用丁苯橡胶的胶料, 在未加配合剂以前, 要求丁苯橡胶和天然橡胶先混合均匀后再加入。由于丁苯橡胶对配合剂的湿润性比天然橡胶差, 故混炼时间较天然橡胶延长。以22 in (55.9 cm) 开炼机混炼胎面胶为例, 若采用炭黑母炼胶, 混炼时间为25~30 min。不采用炭黑母炼胶, 其混炼时间可适当延长。辊温不宜过高, 一般前辊55 ℃以下, 后辊50 ℃以下为宜。胶料温度在55~60 ℃左右。容量的选择视丁苯橡胶的掺用量而定, 掺30%的丁苯橡胶,其容量与天然橡胶相同;掺50%的丁苯橡胶, 其容量可适当减少。丁苯橡胶混炼时生热大, 升温快, 因此混炼温度应比天然橡胶适当低些。配合剂在丁苯橡胶中较难混合分散, 故混炼时间要比天然橡胶长。用开炼机混炼包辊性较好, 但易包冷辊, 因此前辊温度应比后辊温度低5~10 ℃。需增加薄通次数和进行补充加工, 以利配合剂的均匀分散, 用密炼机混炼应采用两段混炼, 容量应小些。混炼时间过长, 可塑度变化不大, 但会产生凝胶, 影响物理机械性能。排胶温度要低于130 ℃。3· 顺丁橡胶的混炼顺丁橡胶内聚强度低, 粘附性自粘性较弱,在混炼过程中, 生胶呈破碎状, 配合剂分散不良,易发生脱辊。顺丁胶在开炼机上混炼不易压合成片, 且容易脱辊, 故宜采用小辊矩、低辊温(40~50 ℃) 混炼。为使配合剂均匀分散, 需进行补充加工, 用密炼机混炼时, 容量可增加10%, 混炼温度也可稍高, 以利于配合剂分散, 排胶温度一般在130~140 ℃, 采用两段混炼有利于分散均匀, 也可采用逆混法混炼。这样能节省40%的炼胶时间。炭黑含量大或采用高结构细粒子炭黑时, 必须采用两段混炼才能分散均匀, 也可采用逆混法混炼。顺丁橡胶的工艺性能与其它合成橡胶有很大区别, 在一般加工温度范围内(50~140 ℃) 基本上不产生力化学降解和热氧化降解, 与炭黑混合时会形成坚硬的结构, 生胶及胶料内聚强度低,粘附性和自粘性较弱, 在混炼过程中生胶呈破碎状, 配合剂分散不良易发生脱辊, 所以一般需与天然橡胶和丁苯橡胶等并用。顺丁橡胶品种不同,混炼特性也不同, 高顺式类型的混炼特性较好,包括有较好的包辊性和分散性, 开炼时的辊温宜低于天然橡胶, 以40~50 ℃较为理想。中顺式要求温度更低一些。低顺式顺丁橡胶因无法结晶故加工性能较好。顺丁橡胶的硫磺用量要低于其它二烯类橡胶。这是因为硫磺在顺丁橡胶中的迁移较快, 易产生喷霜现象。顺丁橡胶应以两段混炼法为主。采用两段混炼, 能明显改善胶料工艺性能和硫化胶的物理机械性能。采用一段混炼时,输送带覆盖胶可塑度为0.33;采用两段混炼时为0.38, 当可塑度为0.2~0.25 时就会产生脱辊现象。用两段法制备的胶料, 其硫化胶拉伸强度也有所提高。软化剂应在炭黑分散后加入, 这样能提高硫化胶的拉伸强度和定伸应力。在密炼机中先将顺丁橡胶与丁苯橡胶混合, 然后加入其它配合剂,并不能明显改善胶料和硫化胶性能。若将生胶和炭黑同时兑入, 然后加软化剂, 则可提高定伸应力和拉伸强度。4 ·丁基橡胶的混炼丁基橡胶在生产中进行混炼时, 一般都采用引料法(即待引胶料包辊之后再加入生橡胶和配合剂) 和薄通法(即将配方中的一半生橡胶用冷辊及小辊距反复薄通, 待其包辊后再加入另一半生橡胶)。混炼胶的温度一般控制在40~60 ℃ (前辊温度应比后辊温度低10~15 ℃);速比不宜超过1∶1.25, 否则空气易于卷入胶料中引起制品起泡。配合剂应分批少量加入, 在配合剂完全吃净混入之后才能切割。丁基橡胶采用密炼机混炼时, 可采用一段混炼和二段混炼以及逆混法。装胶容量可比天然橡胶稍大一些(大5%~10%);混炼过程中, 尽可能在初期就加入补强填充剂, 以产生最大的剪切力和较好的混炼效果;混炼时间比天然橡胶长30%~50%;混炼的温度通常控制在:一段混炼排胶温度121 ℃以下, 二段混炼排胶温度为155 ℃左右。高填充胶料在密炼机混炼时易出现压散现象, 即粒化现象。其处理方法是增大装胶容量或者采用逆混法。为了改善丁基橡胶的混炼效果, 提高结合橡胶的比例, 可对混炼胶胶料进行“热处理”, 即将“热处理” 剂(如对二亚硝基苯) 1.0~1.5 份加入丁基橡胶之中, 并使之均匀,然后在高温下进行处理。丁基橡胶的混炼胶的“热处理” 分为动态和静态两种, 前者是在密炼机上与第一段混炼同时进行, 工艺温度为120~200 ℃;后者是直接置于蒸汽或热空气中2~4 h。丁基橡胶的内聚强度低, 自粘性差, 包辊性差。另外, 其饱和度高, 与其它橡胶在工艺上不相容, 在没有专用混炼设备时混炼加工前后必须彻底清洗机台, 以免混入其它生胶, 影响胶料质量。丁基橡胶混炼时, 配合剂分散困难。开炼机混炼时, 采用引料法(即待引料胶包辊后再加生胶和配合剂) 或薄法, 将配方中一半生胶以小辊矩反复薄通, 待包辊后再加入另一半。用密炼机混炼时, 装胶容量比天然橡胶大10%~20%, 混炼温度在150 ℃为好, 当填料多时也可采用两段混炼法和逆混炼法。丁基橡胶易包冷辊, 因此后辊温度比前辊应高10 ℃左右。丁基橡胶的冷流性较大, 配合剂分散困难, 不易包辊, 橡胶制品在开炼机混炼时可用引料法(即从前次炼好的同样胶料上取一小块包于辊筒上, 然后加入丁基橡胶和配合剂) 或用薄通法(即将配方中一半生胶以小辊距反复薄通, 待包辊后再加入另一半)。5 ·氯丁橡胶的混炼氯丁橡胶均以乳液聚合法生产, 生产工艺流程多为单釜间歇聚合。聚合温度多控制在40~60 ℃,转化率则在90%左右。聚合温度、最终转化率过高或聚合过程中进入空气均会导致产品质量下降。生产中用硫磺-秋兰姆(四烷基甲氨基硫羰二硫化物) 体系调节相对分子质量。硫磺-秋兰姆体系的主要缺点在于硫键不够稳定, 这是影响贮存性的重要原因之一。若用硫醇调节相对分子质量则可改善此种性能。氯丁橡胶与一般合成橡胶不同,它不用硫磺硫化, 而是用氧化锌、氧化镁等硫化。氯丁橡胶的加工性能取决于未硫化胶的粘弹行为, 而其粘弹行为与氯丁胶的品种及温度有关。由于混炼一般是在弹性状态下进行, 以利用胶料弹性态的剪切力作用使填料分散良好。因此氯丁胶混炼时为避免高温的影响, 应尽早加入填料,以便在弹性态下达到一定程度的混入。用开炼机混炼时, G 型氯丁橡胶对温度变化敏感, 辊温超过70 ℃时便严重粘辊, 并呈粘流态, 配合剂不易分散。用密炼机混炼时其容量要适当缩小, 一般填充系数以0.6 为宜, 一般分两段混炼, 以尽量降低混炼温度。排胶温度要低于100 ℃。氯丁橡胶在使用开炼机混炼时的缺点是生热大, 比较容易粘辊, 易焦烧, 配合剂分散较慢,因此混炼温度不宜过高, 容量宜小, 辊筒速比也不宜大。由于对温度的敏感性强, 通用型氯丁橡胶在常温到71 ℃时, 便呈现粒状态, 此时生胶内聚力减弱, 不仅严重粘辊, 配合剂分散也会很困难。非硫调节型氯丁橡胶的弹性状态温度在79 ℃以下, 所以混炼工艺性能比硫磺调节型好, 粘辊倾向和焦烧倾向较小。用开炼机混炼时, 为避免粘辊, 辊温一般控制在40~50 ℃以下(前辊比后辊温度低5~10 ℃), 并且在生胶捏炼时, 辊距要逐渐由大到小调节。混炼时先加入吸酸剂氧化镁,以防焦烧, 最后加入氧化锌。为了减少混炼生热,炭黑和液体软化剂可分批次交替加入。硬脂酸和石蜡等操作助剂可分散的逐渐加入, 这样既可帮助分散, 又可防止粘辊。硫磺调节型氯丁橡胶在开炼机的混炼时间一般比天然橡胶长30%~50%,非硫磺调节型混炼时间可比硫磺调节型短20%左右。为了避免氯丁橡胶在开炼机混炼时的升温过快, 速比小于1∶1.2 以下, 冷却效果会好些。减少炼胶容量也是保障操作安全, 分散良好的办法。目前, 国内硫磺调节型氯丁橡胶的炼胶容量比天然橡胶应少20%~30%, 方可正常操作。由于氯丁橡胶易焦烧, 故在使用密炼机混炼时通常采用二段混炼法。混炼温度应较低(排料温度一般控制在100 ℃以下), 装胶容量比天然橡胶低(容量系数一般取0.50~0.55), 氧化锌在第二段混炼时的压片机上加入。针对氯丁橡胶混炼易焦烧难分散的问题, 利拿密炼机采用国内最先进的四菱双转子同向运转, 结合密炼机上顶栓呈“X” 曲线运动, 分散效果好, 时间短, 可有效降低氯丁橡胶在混炼加工时的焦烧现象。6 ·乙丙橡胶的混炼乙丙橡胶也可用普通炼胶设备加工, 但因乙丙橡胶塑炼效果特别差, 缺乏粘性, 橡胶不易包辊, 一般先采用窄辊距, 待形成连续片状后再放宽辊距进行混炼加工。辊温为前辊50~60 ℃, 后辊60~70 ℃为宜。三元乙丙橡胶的加料顺序一般为:生胶包辊—1 / 2 炭黑—1 / 2 炭黑—硬脂酸—氧化锌(或氧化镁) —促进剂—交联剂—薄通、下片。乙丙橡胶混炼时不易发生过炼, 配合剂分散均匀, 但自粘性差。乙丙橡胶用开炼机混炼, 一般先采用小辊矩使其连续包辊后, 再逐步放宽辊矩,加入配合剂, 辊温在60~70 ℃之间。采用密炼机混炼宜采用高温, 混炼温度在150~160 ℃有助于填充剂和软化剂的分散及力学性能的提高。装胶容量可比其它胶料高10%~15%。7 ·丁腈橡胶的混炼丁腈橡胶混炼工艺性能差, 混炼时发热量大,易脱辊, 对粉状配合剂的湿润能力差, 配合剂难于分散。炭黑用量大时, 会使胶料升温快而易于焦烧。丁腈橡胶在开炼机上混炼时, 应采用低温、小容量、小辊距慢加料的操作方法, 以促进配合剂的均匀分散。若用密炼机混炼, 应加强混炼室冷却, 炭黑和酯类软化剂要分批交替加入, 排胶温度不得高于130 ℃。硫磺在丁腈胶中的溶解度比较低, 混合分散困难, 应在混炼开始时加入。丁腈橡胶中丙烯腈含量有42%~46%、36%~41%、31%~35%、25%~30%、18%~24%等5 种。丙烯腈含量越多, 耐油性越好, 但耐寒性则相应下降。8· 硅橡胶的混炼硅橡胶分热硫化型( 高温硫化硅胶HTV) 、室温硫化型(RTV), 其中室温硫化型又分缩聚反应型和加成反应型。硅橡胶不经塑炼即可混炼, 一般均采用开炼机操作。混炼中要保持低辊温(不超过50 ℃),短时间。生胶加入时先包前(慢) 辊, 混炼吃粉时转包后辊, 所以宜两面操作。包辊后即可加入配合剂, 待混合均匀, 胶料全部包辊及表面光滑即可。硅橡胶质地柔软, 混炼切割时要用腻子刀。混炼后的胶料要经过一定时间(>24 h) 停放, 以利于配合剂分散, 使用前必须经过回炼。混炼胶宜随炼随用, 时间过久, 硫化胶性能会降低。9· 氟橡胶的混炼氟橡胶门尼粘度高、刚性大, 磨擦生热大,一般混炼加工比较困难。开炼机混炼氟橡胶时,要小辊距, 少容量, 辊温控制在50~60 ℃。混炼开始, 先使辊筒冷却, 加入生胶薄通10 次左右,形成均匀的包辊胶, 调节辊矩保持少量堆积胶,然后加入配合剂, 混炼时间通常不做严格规定,但要求尽可能快速。氟橡胶较难采用密炼机混炼,但啮合型密炼机冷却系统较强, 可以混炼氟橡胶。混炼的胶料要应停放24 h 后才能使用, 使用前必须经过回炼, 使配合剂分散均匀, 提高胶料的流动性和自粘性。10 ·丙烯酸酯橡胶的混炼聚丙烯酸脂橡胶门尼粘度较低, 可不塑炼直接进行混炼。开炼机混炼时易粘辊, 同时包前后辊造成操作困难。因此, 辊温较低(30~50 ℃)有利防粘辊, 也有利配合剂分散。因该胶包快速辊或高温辊, 故前辊温度高些。辊距在2~3 mm左右, 薄通1~2 次, 加配合剂, 混炼中配合剂分散良好。密炼机混炼时无粘辊之虞, 且能缩短混炼周期, 但宜采低速混炼。ACM 胶料不需塑炼, 直接进行混炼。混炼时有可能粘辊或脱辊。应避免辊温过高, 可开足冷却水。装胶量不可过高, 为额定量的一半左右较合适。把辊距打到最小位置, 把硬脂酸压在辊筒上, 然后调到正常炼胶辊距。加入生胶, 包辊并保持适当积胶;加入防老剂等小料;加入炭黑等填料, 把落入接料盘的填料等重新加到辊筒上,直到完全混入胶中。填料加完后, 可把胶割下翻炼, 打包卷。如果粘辊不好割下, 可停车割下,以后就不会粘辊了。胶料割下后薄通5~10 次, 尽量混合均匀。薄通完成后, 如果辊温和胶温都不太高, 把辊距调到合适位置, 使辊筒上有适量积胶, 再加入硫化剂。硫化剂加完后, 薄通打包,尽量混合均匀。加硫化剂时, 如果辊温过高, 胶料易焦烧(提前自硫化)。但如果辊温过低, 又不利于硫化剂硬脂酸钠、钾等融化分散。一般控制温度在40~70 ℃左右为宜。加入硫化剂混合均匀后,出片冷却。混炼胶存放1~24 h 后, 返炼一次, 即可使用。加有硬脂酸钠、钾的胶料存放期可在一个月左右。而加有硬脂酸钠、钾又加有0.5 份3 号硫化剂的胶料在3 天内用完为宜, 否则可能焦烧。胶料在硫化时装模要快, 以防胶料在高温模具中提前硫化, 造成缺胶或产生气泡、裂口。特别是组合模操作更应注意。装模完成后, 加压时可慢些, 以防加压太快胶料未充满模腔而被压出模外造成缺胶。加压后快速排气1~2 次。胶料在混炼时, 储存时或硫化操作时如果发生焦烧现象, 会使硫化胶在搭头部分产生裂口, 或在胶中间留下较大气泡, 严重时会在胶面出现流痕, 表面粗糙不平, 还会影响骨架粘结。用硅烷偶联剂处理白炭黑时, 可在混炼时加完白炭后再加硅烷, 也可把硅烷加入白炭中后再混炼。11· 结束语只要更多了解常用典型橡胶的独特性能, 充分利用其混炼的工艺特点, 更好地解决废橡胶的回收再生利用问题, 降低橡胶的生胶价格, 典型橡胶应用领域和需求量将会取得更大的发展。

橡胶的研究进展论文3000字

耐磨耗性用来表征硫化胶抵抗摩擦力作用下因表面破坏而使材料损耗的能力,是橡胶材料多种物理机械性能的综合结果。耐磨耗性与橡胶使用寿命密切相关的力学性能。许多橡胶制品,如:轮胎、运输带、传送带、动态密封件、胶鞋大底等,都要求具有良好的磨耗性。 摘自:李秀权工作室。

医用胶水最新研究进展论文怎么写

论文进展情况怎么写 40分 我的论文是在导师的指导下,从选题开始,经过了收集资料、编制论文提纲、完成 开题报告等论文撰写过程,现在论文初稿已基本完成,取得了阶段性的成果。 我的论文主要研究礼貌原则视角下委婉语的差异,通过运用对比,分析,举例例证等写作手法进行研究,总结委婉语在中英生活中的运用差异,怎样更好运用委婉语,进而达到使跨文化交际更顺畅的目的。 在资料收集阶段,由于相关的资料文献较多,针对什么什么,需要在什么什么基础上中大量蒐集较为新颖的例证,并进行较深入的思考,我耗费了大量的精力和时间来阅读、观看电影、思考、分析和整理。接下来,按照预期的工作进度,下一步,首先要针对论文的文字、格式和内容进行基本的修改,使之精简和升华;其次我需要多翻阅一些参考文献、更有针对性的在什么什么中寻找例证来支持论点,之后需要在老师的指导之下,再对我论文进行梳理,看能否再找出一些创新点来使论文更加出彩。 从毕业论文开始以来,我严格按照指导老师的要求,采用一丝不苟的学习态度,从图书馆从因特网详细查找了与消费心理、消费行为以及广告策略相关的文献资料,设计制作了调查问卷并进行实地调查,并以论文任务书和开题报告为立足点,按部就班,已初步完成设计的大部分工作,以下是具体进展情况。1.毕业设计(论文)工作任务的进展情况 (1)提交开题报告,参加开题答辩。(已完成) (2)编写调查问卷,进行调研活动。(已完成)。 (3)撰写论文初稿。(已完成) (4)修改论文初稿,完成正稿。(进行中) 已经认真写好开题报告,并在规定日期交给张俊老师。 已经完成调研活动,主要以调查问卷为主,实印刷50份调查问卷,随机发放给本校学生,实收回48份。经过对数据的整理分析,总结出当代大学生消费特点、消费倾向、消费存在的问题,分析了形成这些现象的主观原因及客观原因。 已经完成论文的初稿撰写。 研究本题目的意义:大学生的消费行为,与其他消费者一样,也要经历认识过程、情感过程和意志过程。大学生所受教育的经历和所处的特殊的校园环境,使得他们成为社会上一个比较特殊的消费群体,产生了与其他消费者不同的消费需求,具有比较特殊的消费心理,外观为不同的消费行为。如果能够充分认识大学生的消费心理以及由此而进行的消费行为特征,便可以为商家进行针对大学的广告策略提供有力的理论指导和实际数据依据。 大学生消费的方面:主要有基本生活消费、学习消费、休闲娱乐消费、人际交往消费等几个方面。 大学生消费特征:包换潮汐性、独特性与普遍性共存、符号性、情感指导性。大学生的消费容易出现潮汐现象。即一个新事物、新品牌在大学生市场的渗透会在某一个节点出现突然的高峰。原因可以从多角度解释,但根源在于:大学生高度一致的群体认同感。当代大学生追求个性,希望自己被视为有独特风格的人。于是,他们追求独特、新奇、时髦的产品。但与此同时,特特、新奇带来的往往是流行、普及,从个体消费走向普遍消费,有时过程并不复杂。商品除了使用价值和交换价值以外,还具有另外一种价值属性,那就是符号价值。一件商品,越是能够体现消费者的社会地位和社会声望,越是能够将消费者与其他人区别开来,它的符号价值也就越高。这种“重视商品所传达的社会和个人信息的消费行为,就叫做符号消费”。于是,大学生们选择和消费的产品或品牌成了自我表现、体现个性的工具,成为社会群体文化的符号象征,成了人与人之间相互认同获取分的标记。大学生是一个特殊的消费阶层,其消费行为体现出追求新潮、时尚、情趣的特点,相对其他群体而言则带有更多的情感因素。因为他们不仅希望商品能够在实用性方面满足人的需要,还希望商品...... 论文中期检查表的论文进展情况怎么写? 进展情况: 1. 查阅了大量的相关资料,包括国内外有关文献,国内外众学者的相关论文、专著,以及国 内外相关新闻报道等,对所要着手研究的课题作全面地了解与认识。 2. 在对所蒐集资料认真研究的基础上,拟定论文题目,填写开题报告。 3. 对论文作初步构思,构建主体框架,写出论文提纲。 4. 在互师的指导下,完成论文的初稿。 论文进展情况怎么写 论文摘要之撰写通常在整篇论文将近完稿期间开始,以期能包括所有之内容。但亦可提早写作,然后视研究之进度作适当修改。有关论文摘要写作时应注意下列事项: 10、整理你的材料使其能在最小的空间下提供最大的信息面。 11、用简单而直接的句子。避免使用成语、俗语或不必要的技术性用语。 12、请多位同僚阅读并就其简洁度与完整性提供意见。 论文进展情况怎么写 进展就是你所研究的领域现在发展到什么水平了。你可以从你研究的东西的起源开始写,是怎么发现的。然后在写有哪些人做过这个研究并得出了什么结论或哪些方面做过研究,有哪些人做。最后要总结一下,做了这么多研究有哪些不足,这个不足就是你要研究的东西。也就是你研究的价值。 论文进度安排怎么写 毕业论文计划进度 第7学期第20周1月8日指导教师与学生见面,指导学生选题,初步查找,收集相关资料. 第7学期结束即1月20日前,由指导教师下达毕业论文(设计)任务书,制定毕业论文(设计)相关计划. 第8学期第2周结束即2月23日前,学生应完成开题报告,并交给指导教师审阅.指导教师将开题报告电子版统一提交至系里留档. 第8学期第8周(4月2日-4月6日),我系将组织毕业论文(设计)中间检查,检查内容涉及:学生论文(设计)任务书的执行情况;指导教师的指导情况;毕业论文(设计)工作各环节的跟踪检查及改进措施. 学生在第8学期11周结束即4月27日以前完成论文(设计)初稿,并交给指导教师审阅. 学生根据指导教师提出的修改意见对论文(设计)进行修改,在鸡8学期14周结束即5月18日以前完成论文的最终定稿,交指导教师和评阅教师评阅,并准备论文(设计)答辩. 初步定在第8学期第15周(5月21日-5月25日)进行毕业论文(设计)答辩. 在答辩结束一周内系里进行毕业论文(设计)工作总结并将相关材料和工作总结报教务部备案. 毕业论文目前进展情况怎么写 毕业论文答辩的目的 毕业论文答辩的目的,对于组织者——校方,和答辩者——毕业论文作者是不同的。校方组织毕业论文答辩的目的简单说是为了进一步审查论文,即进一步考查和验证毕业论文作者对所著论文论述到的论题的认识程度和当场论证论题的能力;进一步考察毕业论文作者对专业知识掌握的深度和广度;审查毕业论文是否学员自己独立完成等情况。 第一,进一步考查和验证毕业论文作者对所著论文的认识程度和当场论证论题的能力是高等学校组织毕业论文答辩的目的之一。一般说来,从学员所提交的论文中,已能大致反映出各个学员对自己所写论文的认识程度和论证论题的能力。但由于种种原因,有些问题没有充分展开细说,有的可能是限于全局结构不便展开,有的可能是受篇幅所限不能展开,有的可能是作者认为这个问题不重要或者以为没有必要展开详细说明的;有的很可能是作者深不下去或者说不清楚而故意回避了的薄弱环节,有的还可能是作者自己根本就没有认识到的不足之处等等。通过对这些问题的提问和答辩就可以进一步弄清作者是由于哪种情况而没有展开深入分析的,从而了解学员对自己所写的论文的认识程度、理解深度和当场论证论题的能力。 第二,进一步考察毕业论文作者对专业知识掌握的深度和广度是组织毕业论文答辩所要达到的目的之二。通过论文,虽然也可以看出学员已掌握知识面的深度和广度。但是,撰写毕业论文的主要目的不是考查学员掌握知识的深广度,而是考查学员综合运用所学知识独立地分析问题和解决问题的能力,培养和锻炼进行科学研究的能力。学员在写作论文中所运用的知识有的已确实掌握,能融会贯通的运用;有的可能是一知半解,并没有转化为自己的知识;还有的可能是从别人的文章中生搬硬套过来,其基本涵义都没搞清楚。在答辩会上,答辩小组成员把论文中有阐述不清楚、不祥细、不完备、不确切、不完善之处提出来,让作者当场作出回答,从而就可以检查出作者对所论述的问题是否有深广的知识基础、创造性见解和充分扎实的理由。 第三,审查毕业论文是否学员独立完成即检验毕业论文的真实性是进行毕业论文答辩的目的之三。撰写毕业论文,要求学员在教师的指导下独立完成,但它不像考试、考查那样,在老师严格监视下完成,而是在一个较长的时期(一般为一个学期)内完成,难免会有少数不自觉的学生会投机取巧,采取各种手段作弊。尤其是像电大、函大等开放性大学,学员面广、量大、人多、组织松散、素质参差不齐,很难消除捉刀代笔、抄袭剽窃等不正之风的出现。指导教师固然要严格把关,可是在一个教师要指导多个学员的不同题目,不同范围论文的情况下对作假舞弊,很难做到没有疏漏。而答辩小组或答辩委员会有三名以上教师组成,鉴别论文真的能力就更强些,而且在答辩会上还可通过提问与答辩来暴露作弊者,从而保证毕业论文的质量。 对于答辩者(毕业论文作者)来说,答辩的目的是通过,按时毕业,取得毕业证书。学员要顺利通过毕业论文答辩,就必须了解上述学校组织毕业论文答辩的目的,然后有针对性的作好准备,继续对论文中的有关问题作进一步的推敲和研究,把论文中提到的基本树料搞准确,把有关的基本理论和文章的基本观点彻底弄懂弄通。 毕业论文的进度和计划安排怎么写~~请详细些~~ 第1周:确定论文主题方向,进行论文题目的筛选。 第2周:以论文题目为核心,对相关资料进行收集和翻阅。 第3周:对已蒐集的资料加以整理,论证分析论文的可行性、实际性,将论文题目和大致范围确定下来,进行开题报告。 第4周:整合已有资料、构筑论郸的大纲。 第5—8周:根据查找的数据和相关资料,进行深入详实的论文编写工作,对论文编写过程中所发现的问题,研究其解决方案,推敲整合,并进行修改完善,准备论文中期检查。 第9-13周:完成论文的初稿部分,向指导老师寻求意见,优化论文的结构,润色语句,修改不当之处,补充不足之处。 第14-15周,论文资料整合,最终定稿,为最终的答辩做好各方面准备,熟悉论文内容,增强自己对论文内容的把握,进行一定的思维发散,设计论文答辩。 第16周:论文答辩。 毕业论文开题报告里的研究进度安排怎么写 (一)2015年10月初----2015年10月底,开题报告。 (二)2015年10月初----2015年10月底,资料整理。 (三)2016年3月初----2016年4月底,论文初稿。 (四)2016年2月初----2016年5月底,论文定稿。 (1)2016年3月初----2016年3月底,开题报告。 (2)2016年4月初----2016年7月底,资料整理。 (3)2016年8月初----2016年10月底,论文初稿。 (4)2016年11月初----2016年2月底,论文定稿。 论文进展情况怎么写 把想知道的写具体一点,在网上找找,一定能找到可提供一些帮助的 硕士学位论文的工作进展报告怎么写 很多资料的,参考,,,没问题哦

如果真需要软件的话,还真有不少,但是都不太好,不通顺,关键词被改,错别字多,表达的意思改变等等。我们实验室都是找北京译顶科技,你有这方面的需求的话可以去找一下看看

相关百科

热门百科

首页
发表服务