首页

> 学术发表知识库

首页 学术发表知识库 问题

计量经济学论文的变量怎么找

发布时间:

计量经济学论文的变量怎么找

一是控制变量的选定应围绕因变量来产生确定,而不能天马行空,随意搭配;二是控制变量的选定避免随意摘取的心态,毕竟因变量的影响因素较多,需要有条件或者有据可依地选择确定;三是控制变量的选定不是越多越好,你要知道任何一个经济现象产生(因变量)都可能是由千万个因素影响产生的,我们所能做的工作就是从其中选定某些重要因素开予以控制,控制变量就对因变量产生重要影响的因素来确定;四是控制变量的选定需要有理有据,可以有理论依据,也可以经验优先,不能无中生有地确定控制变量。

计量经济学论文可以研究的问题有多种,期中比较简单的就是根据数据,建立方程,研究变量之间的关系,主要运用的工具就是计量经济学的初等知识和Eviews软件,思路、要求和注意事项我觉得这么说对你的帮助不大,所以给你一篇我的论文做参考,也许对你有帮助,如果你觉得看的不是很明白的话,可以再留言给我,我把什么思路等告诉你。计量经济学期末实验报告实验名称:大中城市城镇居民人均消费支出与其影响因素的分析姓 名:学 号:班 级: ()级统计学系()班指导教师:时 间:(上面是论文封皮)23个城市城镇居民人均消费支出与其影响因素的分析(题目)一、 经济理论背景近几年来,中国经济保持了快速发展势头,投资、出口、消费形成了拉动经济发展的“三架马车”,这已为各界所取得共识。通过建立计量模型,运用计量分析方法对影响城镇居民人均消费支出的各因素进行相关分析,找出其中关键影响因素,以为政策制定者提供一定参考,最终促使消费需求这架“马车”能成为引领中国经济健康、快速、持续发展的基石。二、 有关人均消费支出及其影响因素的理论我们主要从以下几个方面分析我国居民消费支出的影响因素:①、居民未来支出预期上升,影响了居民即期消费的增长居民的被动储蓄直接导致购买力的巨大分流, 从而减弱对消费品的即期需求,严重地影响了居民即期消费的增长,进而导致有效需求的不足,最终导致经济增长的乏力。90年代末期以来,我国的医疗、养老、失业保险、教育等一系列改革措施集中出台,原有的体制被打破,而新的体制尚未建立健全,因此目前的医疗、养老、失业保险、教育体制对居民个人支出的压力较大,而且基本上都是硬性支出,支出的不确定性也很大,导致居民目前对未来支出预期的上升。②、商品供求结构性矛盾依然突出从消费结构上看,我国消费品市场已发生了新的根本性变化:居民低层次消费已近饱和,而更高水平的消费又未达到。改革开放20多年来,城乡居民经过了一个中档耐用消费品的普及阶段后,目前老百姓的收入消费还不足以形成一个新的、以高档产品为内容的主导性消费热点,如轿车、住房等还远不能纳入大多数人的消费主流,居民现有的购买力不能形成推动主导消费品升级的动力。③、物价总水平持续在低水平运行,通货紧缩的压力较大,不利于消费的增长加入WTO之后,随着关税的降低和进口规模的扩大,国外产品对我国市场的冲击将进一步加大,国际价格紧缩对国内价格变化将产生负面影响。物价的持续下降,不利于居民的消费增长。因为从居民的消费心理上看,买涨不买降是居民购物的习惯心理。由于居民对物价有进一步下降的预期,因此往往推迟消费,不利于居民消费的增长。另外,从统计上分析,由于物价的下降,名义消费增长往往低于实际消费的增长,这在一定程度上也不利于消费增长幅度的提高。④、我国现阶段没有形成大的消费热点,难以带动消费的快速增长经过近几年的培育和发展,我国目前已经形成了住房消费、居民汽车消费、通信及电子产品的消费、节假日消费及旅游消费等一些消费亮点,可以促进消费的稳定增长,但始终未能形成大的消费热点,因此不能带动消费的高速增长。三、 相关数据收集相关数据均来源于2006年《中国统计年鉴》:23个大中城市城镇居民家庭基本情况(表格)地区 平均每户就业人口(人) 平均每一就业者负担人数(人) 平均每人实际月收入(元) 人均可支配收入(元) 人均消费支出(元)北京 1.6 1.8 1865.1 1633.2 1187.9天津 1.4 2.0 2010.6 1889.8 939.8石家庄 1.4 2.0 1061.3 1010.0 722.9太原 1.3 2.2 1256.9 1159.9 789.5呼和浩特 1.5 1.9 1354.2 1279.8 772.7沈阳 1.3 2.1 1148.5 1048.7 812.1大连 1.6 1.8 1269.8 1133.1 946.5长春 1.8 1.7 1156.1 1016.1 690.2哈尔滨 1.4 2.0 992.8 942.5 727.4上海 1.6 1.9 1884.0 1686.1 1505.3南京 1.4 2.0 1536.4 1394.0 920.6杭州 1.5 1.9 1695.0 1464.9 1264.2宁波 1.5 1.8 1759.4 1543.2 1271.4合肥 1.6 1.8 1042.5 950.1 686.9福州 1.7 1.9 1172.5 1059.4 942.8厦门 1.5 1.9 1631.7 1394.3 998.7南昌 1.4 1.8 1405.0 1321.1 665.4济南 1.7 1.7 1491.3 1356.8 1071.4青岛 1.6 1.8 1495.6 1378.5 1020.7郑州 1.4 2.1 1012.2 954.2 750.3武汉 1.5 2.0 1052.5 972.2 853.1长沙 1.4 2.1 1256.9 1148.9 986.8广州 1.7 1.8 1898.6 1591.1 1215.1四、 模型的建立根据数据,我们建立多元线性回归方程的一般模型为:其中:——人均消费支出——常数项——回归方程的参数——平均每户就业人口数——平均每一就业者负担人口数——平均每人实际月收入——人均可支配收入——随即误差项五、实验过程(一)回归模型参数估计根据数据建立多元线性回归方程:首先利用Eviews软件对模型进行OLS估计,得样本回归方程。利用Eviews输出结果如下:Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:08Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C -1682.180 1311.506 -1.282633 0.2159X1 564.3490 395.2332 1.427889 0.1704X2 569.1209 379.7866 1.498528 0.1513X3 1.552510 0.629371 2.466766 0.0239X4 -1.180652 0.742107 -1.590947 0.1290R-squared 0.721234 Mean dependent var 945.2913Adjusted R-squared 0.659286 S.D. dependent var 224.1711S.E. of regression 130.8502 Akaike info criterion 12.77564Sum squared resid 308191.9 Schwarz criterion 13.02249Log likelihood -141.9199 F-statistic 11.64259Durbin-Watson stat 2.047936 Prob(F-statistic) 0.000076根据多元线性回归关于Eviews输出结果可以得到参数的估计值为: , , , ,从而初步得到的回归方程为:Se= (1311.506) (395.2332) (379.7866) (0.629371) (0.742107)T= (-1.282633) (1.427889) (1.498528) (2.466766) (-1.590947)F=11.64259 df=18模型检验:由于在 的水平下,解释变量 、 、 的检验的P值都大于0.05,所以变量不显著,说明模型中可能存在多重共线性等问题,进而对模型进行修正。(二)处理多重共线性我们采用逐步回归法对模型的多重共线性进行检验和处理:X1:Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:28Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 153.8238 518.6688 0.296574 0.7697X1 523.0964 341.4840 1.531833 0.1405R-squared 0.100508 Mean dependent var 945.2913Adjusted R-squared 0.057675 S.D. dependent var 224.1711S.E. of regression 217.6105 Akaike info criterion 13.68623Sum squared resid 994441.2 Schwarz criterion 13.78497Log likelihood -155.3917 F-statistic 2.346511Durbin-Watson stat 1.770750 Prob(F-statistic) 0.140491X2:Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:29Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 1756.641 667.2658 2.632596 0.0156X2 -424.1146 347.9597 -1.218861 0.2364R-squared 0.066070 Mean dependent var 945.2913Adjusted R-squared 0.021597 S.D. dependent var 224.1711S.E. of regression 221.7371 Akaike info criterion 13.72380Sum squared resid 1032515. Schwarz criterion 13.82254Log likelihood -155.8237 F-statistic 1.485623Durbin-Watson stat 1.887292 Prob(F-statistic) 0.236412X3:Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:29Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 182.8827 137.8342 1.326831 0.1988X3 0.540400 0.095343 5.667960 0.0000R-squared 0.604712 Mean dependent var 945.2913Adjusted R-squared 0.585888 S.D. dependent var 224.1711S.E. of regression 144.2575 Akaike info criterion 12.86402Sum squared resid 437014.5 Schwarz criterion 12.96276Log likelihood -145.9362 F-statistic 32.12577Durbin-Watson stat 2.064743 Prob(F-statistic) 0.000013X4:Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:30Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 184.7094 161.8178 1.141465 0.2665X4 0.596476 0.124231 4.801338 0.0001R-squared 0.523300 Mean dependent var 945.2913Adjusted R-squared 0.500600 S.D. dependent var 224.1711S.E. of regression 158.4178 Akaike info criterion 13.05129Sum squared resid 527020.1 Schwarz criterion 13.15003Log likelihood -148.0898 F-statistic 23.05284Durbin-Watson stat 2.037087 Prob(F-statistic) 0.000096由得出的数据可以看出, 的调整的判定系数最大,因此首先把 引入调整的方程中,然后在分别引入变量 、 、 进行OLS得:X1、X3Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:32Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C -222.8991 345.9081 -0.644388 0.5266X1 289.8101 227.2070 1.275533 0.2167X3 0.517213 0.095693 5.404899 0.0000R-squared 0.634449 Mean dependent var 945.2913Adjusted R-squared 0.597894 S.D. dependent var 224.1711S.E. of regression 142.1510 Akaike info criterion 12.87276Sum squared resid 404138.2 Schwarz criterion 13.02087Log likelihood -145.0368 F-statistic 17.35596Durbin-Watson stat 2.032110 Prob(F-statistic) 0.000043X2、X3Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:33Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 239.5536 531.1435 0.451015 0.6568X2 -27.00981 244.0392 -0.110678 0.9130X3 0.536856 0.102783 5.223221 0.0000R-squared 0.604954 Mean dependent var 945.2913Adjusted R-squared 0.565449 S.D. dependent var 224.1711S.E. of regression 147.7747 Akaike info criterion 12.95036Sum squared resid 436747.0 Schwarz criterion 13.09847Log likelihood -145.9292 F-statistic 15.31348Durbin-Watson stat 2.063247 Prob(F-statistic) 0.000093X3、X4Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:34Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 331.7015 142.5882 2.326290 0.0306X3 1.766892 0.553402 3.192782 0.0046X4 -1.473721 0.656624 -2.244390 0.0363R-squared 0.684240 Mean dependent var 945.2913Adjusted R-squared 0.652664 S.D. dependent var 224.1711S.E. of regression 132.1157 Akaike info criterion 12.72634Sum squared resid 349091.0 Schwarz criterion 12.87445Log likelihood -143.3529 F-statistic 21.66965Durbin-Watson stat 2.111635 Prob(F-statistic) 0.000010由数据结果可以看出,引入X4时方程的调整判定系数最大,且解释变量均通过了显著性检验,再分别引入X1、X2进行分析。X1、X3、X4Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:37Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 193.6693 403.8464 0.479562 0.6370X1 89.29944 243.6512 0.366505 0.7180X3 1.652622 0.646003 2.558228 0.0192X4 -1.345001 0.757634 -1.775265 0.0919R-squared 0.686457 Mean dependent var 945.2913Adjusted R-squared 0.636950 S.D. dependent var 224.1711S.E. of regression 135.0712 Akaike info criterion 12.80625Sum squared resid 346640.3 Schwarz criterion 13.00373Log likelihood -143.2719 F-statistic 13.86591Durbin-Watson stat 2.082104 Prob(F-statistic) 0.000050X2、X3、X4Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:38Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 62.60939 489.2088 0.127981 0.8995X2 134.1557 232.9303 0.575948 0.5714X3 1.886588 0.600027 3.144175 0.0053X4 -1.596394 0.701018 -2.277251 0.0345R-squared 0.689658 Mean dependent var 945.2913Adjusted R-squared 0.640657 S.D. dependent var 224.1711S.E. of regression 134.3798 Akaike info criterion 12.79599Sum squared resid 343100.8 Schwarz criterion 12.99347Log likelihood -143.1539 F-statistic 14.07429Durbin-Watson stat 2.143110 Prob(F-statistic) 0.000046由输出结果可以看出,在 的水平下,解释变量 、 的检验的P值都大于0.05,解释变量不能通过显著性检验,因此可以得出结论模型中只能引入X3、X4两个变量。则调整后的多元线性回归方程为:Se= (142.5882) (0.553402) (0.656624)T= (2.326290) (3.192782) (-2.244390)F=21.66965 df=20(三).异方差性的检验对模型 进行怀特检验:White Heteroskedasticity Test:F-statistic 1.071659 Probability 0.399378Obs*R-squared 4.423847 Probability 0.351673Test Equation:Dependent Variable: RESID^2Method: Least SquaresDate: 12/11/07 Time: 16:53Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 34247.50 128527.9 0.266460 0.7929X3 247.9623 628.1924 0.394723 0.6977X3^2 -0.071268 0.187278 -0.380548 0.7080X4 -333.6779 714.3390 -0.467114 0.6460X4^2 0.121138 0.229933 0.526841 0.6047R-squared 0.192341 Mean dependent var 15177.87Adjusted R-squared 0.012861 S.D. dependent var 23242.54S.E. of regression 23092.59 Akaike info criterion 23.12207Sum squared resid 9.60E+09 Schwarz criterion 23.36892Log likelihood -260.9038 F-statistic 1.071659Durbin-Watson stat 1.968939 Prob(F-statistic) 0.399378由检验结果可知, ,由White检验知,在 时,查 分布表,得临界值 (20)=30.1435,因为 < (5)= 30.1435,所以模型中不存在异方差。(四).自相关的检验由模型的输出结果可知,估计结果都比较满意,无论是回归方程检验,还是参数显著性检验的检验概率,都显著小于0.05,D-W值为2.111635,显著性水平 =0.05下查Durbin-Watson表,其中n=23,解释变量的个数为2,得到下限临界值 ,上限临界值 , =1.543

如果仅仅是从统计数据上找到了三个变量的数据,再来做对Y的回归的话,确实是简单了些。但是基本计量经济学的线性回归,按照你说其实也足够了。如果你想使其复杂一些,就多找几个变量,或者加入时间的虚拟变量,对比前后情况,再或者,对你的a b c进行进一步的精修。比如寻找去掉价格因素的真实值等等。

办法如下:算出系数coefficient,b算出残差项e=y-x*b算出SSR=e'*e算出s^2=e'*e/(n-k),其中n是样本数量,k是变量数量。其中s^2开根号s,就是S.E.ofregression

计量经济学论文题目和变量选取

我国旅游经济的因素分析我国旅游业发展状况分析我国居民消费增长模型我国经济增长与周期波动我国经济增长对能源消耗的依赖公共投资取向与经济增长分析三大产业的发展与城镇居民家庭消费支出餐饮业区域市场潜力的影响因素分析资本结构主要影响因素的再探析国债发行规模的计量经济分析工资收入差异分析城镇人均收入与人均通讯消费分析影响居民消费水平的因素分析影响就业人数的因素的计量分析影响大学生就业问题的因素分析影响股价指数的因素分析影响我国电力产量的因素分析影响中国汽车产量的多因素分析私家车拥有量的计量分析我国汽车需求的因素分析

出生活1978年,

随机行走的世界与计量经济学在这篇文章里,我试图论说以下几个问题:第一个是科学史上关于宇宙本质的争论。这个问题十分重要,因为对宇宙是有序运转的,还是无序地紊乱地运转的认识支撑了我们对于科学的信仰、我们的情感和某种程度上我们的人生哲学。也是对这个问题的认识,计量经济学得以建立。第二个问题是关于学习计量经济学的几个基本问题。第三个问题,我将之称为“计量之美”。我一直相信任何一个学科都是极其美丽的,因为,它们不仅告诉我们很多关于世界是如何运行的真知灼见,更重要的是教会我们许多世俗智慧甚至一种人生哲学。因为我一直坚信,即使是读同一本书,不同的人也会得到不同的读书体会。因此,在这个问题之下,我仅就自己的体会谈谈计量经济学的世俗智慧和对我们人生态度的启迪。 一、随机行走的世界 对我们所生活于其中的宇宙的认识和思考,一直以来吸引着各个时代思想家们的智慧。我们生活的这个宇宙本质上是什么样的呢?是以一种有序的、有规律的方式在运转还是无序的、杂乱无章的运转?这种运转能否为我们的智慧所认识?人们对这些关于宇宙问题的渴求正是造就了人类自身的智力进化和卓越品质的重要动力之一。 在我们今天的视野所及的范围,我们知道对这些问题思考的最有影响力的思想是由18世纪的思想家们做出的。18世纪的思想家们建立了近代最有影响力的哲学体系,他们设计了一个“有序的”世界。在某种程度上,他们的世界观是一种“决定论”的世界观,坚信这个世界正在按照某种已经设计好的秩序在运行。持有这个“决定论”观点的人包括诸如牛顿、爱因斯坦等最伟大的自然科学家。这个体系的科学性则是由牛顿定律和对牛顿体系进一步思考的数学定律所保证的。当然,自然科学家们这种关于宇宙的信念和洞见不可避免的影响到了从事社会科学研究的思想家们,其中也包括经济学家。经济学的创始人,亚当•斯密的思想根基也是源于这样的一种信念。他把这种自然科学的有序世界的观点应用到人类社会里,形成了一种从看似“无序”到“有序”的观念,提出了一个“和谐的经济系统”的观点。这种和谐的经济系统的动力则是人的自利动机。 我们决不应该低估这种关于世界的观点的影响力和洞察力。事实上,我们一直在这种“决定论”的世界观下生活并做出各种与我们自身息息相关的决策。一种对于人类经济社会的“完美和谐”的信念直接导致了大家对政府干预经济的效果的质疑,并且主导了许多关于政府问题的争论。这种“决定论”的观点在很大程度上支撑着我们对于自由经济的信心和我们对于世界的信仰。 但是这一体系在历经几个世纪之后,遭到了怀疑。对于这种“决定论”的世界观的挑战来自于统计观点,尤其是概率论的成功。我们可以举一个简单的例子来说明这二者对于世界的看法的分歧。比如我们说,消费函数是 ,其中, 是自发消费, 是可支配收入,c是边际消费倾向。进而我们可以把消费函数写作是可支配收入的函数: 。这个消费函数是更加广泛意义上的数学若干函数中的一个。这个函数明白无误地说明,居民的消费量将精确地取决于可支配收入、自发消费和边际消费倾向。这种函数关系是一种确定性的关系。但是,我们知道,这种关于居民消费的断言在现实中毫无疑问是会受到质疑的,居民的消费量并不是精确地取决于这几个因素。在很大的程度上,这种消费关于自发消费、可支配收入和边际消费倾向的关系是不确定的,或者说是随机的,有着概率分布的。这就是二者之间的差别,持有决定论观点的人依据一种确定性的函数关系认为,这个世界将会精确地按照数学定律所描述的那样运转。而持有统计观点的人却认为,即使是知道了这种关系,消费与其他几个因素之间仍然是一种偶然的,不确定的,有着概率分布的关系。 我们把后一种对于世界的观点叫做统计观点,正是这种统计观点,打破了原来思想家们头脑中的有序结构。但是,这二者之间的分歧似乎是让人迷惑的。因为,当我们在利用统计方法的时候,我们却得出了一些几乎完全可靠的定律。而且,统计总体越是偶然、紊乱,就越能更好地表现出统计规律和必然性。比如,我们投掷硬币,当我们投掷的次数足够多的时候,我们发现,出现正面和反面的概率竟然惊人地各是0.5。再比如,我们对于某种考试成绩的统计发现,如果样本足够的大的话,成绩分布将会呈现一种正态分布。并且,人数越多,成绩就越呈现标准正态分布。更加令人惊奇的是,看起来我们做事情可能犯错误的情况也是有规律可循的,人几乎不能随意地犯错误!总之,某些看起来是无迹可寻的东西,似乎又都可以找到规律。这样,决定论和统计观点二者之间又有什么差别呢?事实上,二者之间的差别仅在于,统计观点认为不存在绝对的定律,任何所谓的定律其实都是有着某种概率的“可能的”情形。在这个意义上说,没有什么事情是确定无疑的。也就是说,这个世界是随机行走的,各种情况都有可能发生。尤其是在人类社会中,如果我们相信独立于人的意识而存在的物质世界都是随机行走的,那么人类社会也会表现出这种随机性看来并不是不可以接受的。 但是,这并不就意味着随机行走的世界会因为其不确定性而无法认识,即使这种随机行走的世界确实可能形成一种混沌状态。我们能够在“决定论”和关于世界的“统计观点”那里架起一座桥梁。那就是:我们相信,我们可以得到一些定律,这些定律是对某些事情本质的一种最好近似,即使这些事情的本质可能并不是一元的。或者说,这个世界会从无序走向某种程度上的有序。对这些统计定律的发现,在我们的专业范围内,就是计量经济学的任务了。 二、随机行走的世界与计量经济学的任务 事实上,统计的成功应用在很早就已经开始了。大约在17世纪,有一位叫做格兰特的英国商人就通过研究注意到:因事故、自杀、各种疾病而死亡的人的百分比是固定的。这几乎叫人感到惊奇!而且也是统计学的成功使得人们日益认识到,一个国家的定量材料应该得到应有的重视,无论是经济学家还是政府决策者,都应该思考数据。 计量经济学就是为了在一个随机行走的世界中探讨统计性规律!因为只要知道了这个规律,我们就可以在某种程度上认识这个世界。但是要记住这种认识肯定是不完全的。而且根据需要,我们还可以根据这个规律来进行预测。进行预测是我们关心规律的一个十分重要的原因。更加值得称道的是,计量经济学在推断统计规律时所用的方法和理念。因为,我们对于这个世界的认识永远是不会完全的,我们只能根据部分“样本”来推断这个世界的整体状况。可以假设这样一种情况:如果我们能够对这个世界的方方面面进行完全的观察,我们就期望可以得出一个关于这个世界本质的定律。可是,我们不能把这个世界的方方面面都观察到,也可以说,我们认识的局限是不确定性的来源。能否由样本近似地认识整体是一个很重要的问题。如果,我们没有一种坚信可以由样本来推断整体规律的信念的话,我们就不能建立这门学科。 这种由样本来对整体进行推断的方法是计量经济学的主要方法。我们要通过一种叫做回归分析的技术来达到这个目的。“回归”这个词最先由F.加尔顿(Francis Galton)爵士引入。加尔顿研究发现,父母和孩子的身高有这样的一个趋势:父母高,儿女就高;父母矮,儿女也矮。但是高个父母的儿女们在同龄人中并不像父辈那样在同龄人中显得那样高,儿女辈的平均身高将“退化”到或者说“回归”到全体人口的平均身高。这也叫加尔顿的“普遍回归定律”。加尔顿在智力遗传的方面也得到了类似的结果:一般来说,天才是要遗传的。但是天才的后代却要比他们的父辈们平庸,也就是他们的智力水平将“回归”到中等水平。但是,对于这种回归背后的动力分析可能已经超出了计量经济学这个学科的研究范围,即使这种研究也许会导致一种有意思的哲学的建立:所有的有机组织都将趋于标准状态! 回归的现代意义则稍微有点不同。现代意义上的回归是指,一个叫做因变量的量和其解释变量之间的依赖关系。也可以说是一种相关的关系。实际上,回归和相关是两个极容易混淆的概念,容易混淆的原因既是因为这两个概念的相近性,更重要的是因为这个世界的复杂性。哲学上宣称,这个世界是普遍联系的。这个宣称的深刻性在于确认了世界上没有什么是完全独立的。比如,我们可以发现在现代社会死于癌症的人逐渐增多,这二者是相关的。但是我们并不能就此认为,是现代社会导致了更多的人染上癌症。再比如,这也经常被用来反驳统计结论,一个国家的经济繁荣的情况可能和这个国家一个时期的太阳黑子出现的情况存在一种相关关系,但是这种相关关系却不能作为我们行动的任何指导。在这个问题的区分上,就是计量经济学和统计学之间的分歧了。计量经济学讨论的是回归关系,这种回归的特点在于,我们试图根据某些变量的数值来估计另一个量的数值,我们要依据这种关系进行预测。比如,我们试图通过研究父母的身高来估计其孩子的身高。这种估计就要依赖于我们所关心的两个量之间存在的一种理论上的联系。而相关关系则充斥着统计学的各个方面。并且因为世界的普遍联系性,相关关系是一种常态。 基于上面的差别,在回归中,我们要求解释变量是确定的,可以控制的,但是被解释变量(因变量)可以是随机的(被解释变量正是我们要估计的)。但是在相关关系中,这二者并不加以区分。之所以说这两个概念容易混淆是源于这个世界的复杂性,是因为,这个世界本质上就存在一种难以言明的精密联系。我们实在不能够足够自信地认为我们可以确定哪些变量可以控制,哪些变量之间可以精确地被认为是一种回归关系。比如,事实上,我们也可以找出一种机制使得癌症和现代社会之间存在一种回归关系,就像我们可以发展一种理论来说明,太阳黑子的活动和一个国家的经济繁荣存在着回归关系。这个世界的复杂性要求我们必须对我们认识世界和改造世界的能力保持谦虚。同时请记住:具有回归关系可能并不必然地意味着具有因果关系。在判断因果关系时,我们必须要很小心。因为,这个因果关系很不好说,也许看似因果的两个事件,实际上可能是互为因果的。就像佛经中认为的那样:因果是循环的。 我们讲了这么多关于计量经济学的性质,实际上是为了表达我们这样的信念:我们可以在一定的层次上认识世界,我们坚信这个世界存在着某些统计规律,应用这些规律我们可以在“一定程度的错误”的前提下认识和改造世界。计量经济学可以帮助我们达到这个目的。我们可以借助近似地描述了具有相关关系的变量间联系的函数,主要是回归函数,来描述这种关于世界运行的定律。 但是,计量经济学在得到这个回归函数时所使用的复杂的数学推导可能会让我们在特定的时段感到计量经济学的混乱和无序,即使在最后我们坚信可以实现一种理解上的有序。但是,过程中的痛苦可能会让很多人驻足。这里,我们想提前接触一下,那条驾驭计量经济学研究内容的灵魂。 因为,认识世界的理论的建立来自于对世界本质表现出来的现象的分析。有两种对现象进行分析的方式:一种是对现象直接进行操作。这种操作极其便捷,简单而且有洞察力,但是对天赋的要求非常高。其不利之处在于这种对现象的思考得出的结论可能广受争议。另一种方式则是对现象的属性——数据来进行操作。过程中要遵循严格的科学方法。第二种方法就是计量经济学的方法了,这种方法因为是用数据说话,可能争议较少。但是,不利之处却是,这种分析结论却要严格的依赖于数据的质量,也就是说,这种方法得出的结论的质量不会比数据的质量更好。 尽管有这样的困难,我们还是推荐计量的方法。因为,数据的质量可以通过统计手段和统计工具的完善加以解决。并且,根据我们的概率知识,即使这种有误差的数据,其误差也是有规律的,误差情况总是会表现为正态曲线。那么如何来对数据进行操作呢?计量经济学的思路通常是这样:最简单的情况下(双变量回归),在一个坐标平面上画出散点图,发现其大致的规律,通常我们可能发现,我们关心的两个简单量之间呈现一种类似于线形的关系(当然,也可能不是线性的,这种情况下需要更高深的数学工具)。把这种线形的关系利用解析几何的知识转化为直线方程并不困难。获得了这样的一个直线方程是一个极大的成功。因为,这个方程,就是在“某种程度的错误”的前提下的一种描述世界如何运行的定律。事实上,计量经济学的任务在很大的程度上,就是发现这样的关于世界如何运行的定律。 但是,在从数据那里获得一些关于变量间“规律”的方式也可以通过另外的方式来进行。也就是在使用数据之前,通过对先验的知识进行演绎和推理从而得出一系列“定律”。这就是我们在数理经济学中所看到的那些数理方程式。这些数理方程就是我们对世事认识的理论,这种理论能够给我们认识世界和改造世界以指导。尤其是在确定我们所考虑的变量之间的可能具有的关系时很有作用。但是我们是否可以应用这些方程式来指导我们认识世界和改造世界的活动并没有得到证明。计量经济学提供了一种这样的证明。我们可以利用数据来检验这些先验的定律是否符合实际,或者得出一种明确的可以应用于实际的形式,从而对数理方程做出了适合实际的修正。尤其是在不同的国家中,因为不同的文化等隐性的制度因素,这些定律可实施的情况是完全不同的。事实上,始于一种对世界认识的先验的推理,建立一种解释世事的假说并用以改造世界,是每一个学者的虚荣心。 因此,计量经济学的研究的思路或者说计量经济学的灵魂是:通过先验的演绎和推理得出理论模型,最好是数理模型。数理模型中会有参数,那么利用数据对这个模型的参数进行估计得出一条回归方程,并通过假设检验来确认这个方程式。如果这个方程式满足了理论建立时的要求,那么就证明了那个先验的理论是正确的并且能够利用这种理论进行预测。接下来的计量分析就是在这些思路下进行的技术探讨了。 对计量经济学这套思想方法和其技巧的同时掌握,是掌握这门学科并加以实际运用的重要素质。尤其是计量经济学的技巧,是一个计量人的必备素质。因为我们一直坚信,伟大的思想来源于熟练的技巧。就像武侠中的“打狗棒法”虽然只有十八路,但是,一个使过无数次“打狗棒法”的丐帮帮主足可以因这十八招而笑傲江湖了。但是,如果过于沉迷于高级计量的数学推导,我们就很可能失去欣赏这门学科所固有的魅力的机会,并且因为数学知识的缺乏而造成的沮丧可能会阻碍对其进一步的学习,从而失去了领悟计量经济学所蕴含的大量关于生活的智慧的机会。因此,这篇文章里,我们不对计量经济学的技术过多的论及,而主要是看其蕴含的智慧之美。三、计量经济学:智慧之美 最能让我们感受到美感的就是计量经济学这种从样本推断整体的思想。如果能够认识到我们生活的这个世界的复杂性的话,我们对这种思想可能会更加珍视。比如,如果我们有一种信念,比如相信我们能够通过努力成为一个书法家。那么我们能够怎么做呢?计量经济学和书法家们都会这样建议你:先选取几十个字来,集中精力把这几十个字练好,最好是临摹以往大师们的作品。这样,你就几乎能够发现写好字的要领。因为,我们不能够把这个世界上的字都练习到,我们只能够由“样本”来推断所有字的写法。并且,我们坚信这些“样本”蕴含了足够多的关于写字的要领或者说是写字规律的信息。这就是计量经济学的智慧之一。从这个角度出发,我们几乎将这种计量经济学的思想推广到生活的各个方面,并且可以指导我们成就卓越。无论是学习、应试、还是搞艺术,甚至想要成为武林高手,都可以应用这种思想。“样本”往往是我们窥看世界本质的窗口!有心人自会从这里得到无尽的启发。 计量经济学就像从一个古老的神谕里蹦出来的智慧精灵,它几乎全面的改变了我们对于脚踏实地的看法!掌握一种过硬的分析数据的能力,无疑会全面的改变你的工作方式和效率。这在一个人的职业生涯中是极其重要的。经济理论经常地被认为是一门空洞无用的理论,这是在未有数据之前做出分析的常见批评,先验和演绎的方法,很多人认为,不能够对社会科学的研究有什么意义。但是,有了计量经济学就完全不一样了,我们就可以从数据出发来进行我们的分析和预测,这种工作方式无疑会培养我们踏实做人的人品。并且因为处理问题的独特技巧和思维,掌握计量工具的人会得到青睐——来自上司和运气。 在我看来,计量经济学还对我们的人生哲学有着指导意义。人的一生其实只是一个短暂的瞬间,就好像那滑过天际的流星,留下的只是瞬间的美丽。这瞬间如何解释?采用一种什么样的方式来度过这一个瞬间? 人不过是苍茫宇宙中的一粒尘埃,如果这个宇宙尚且遵循着从无序走向有序,那么我们是不是可以将这个信念加以演绎到我们每个人的人生中呢?!其实我们每个人的人生也只是在一个随机行走的世界中的随机行走过程。 我们永远不会知道,在下一个时段,我们会经历什么、会遇到什么,甚至我们对于我们未来的规划都是不确定的。这个过程是随机的、紊乱的、偶然的和无序的。但是,这种无序和紊乱最终会走向有序。用计量经济学的说法,我们会从这些紊乱偶然的样本中得到一个回归方程。这个回归方程就是我们的人生轨迹! 当然我们对于这个轨迹的认识永远是后验的。我们不可能在这人生的每一个阶段之前就得出一个回归轨迹作为我们人生的预测,这种东西没有预测意义。那么这种有序的观念究竟能给我们什么人生启发呢? 那就是:我们实在没有必要对于发生于我们周围的看起来是好事或者坏事的东西耿耿于怀,我们实在没有必要太过挑剔上天对我们的似乎是不公正的待遇,中国自古就有“福祸”的智慧之言。以一种应有的宽容心态来对待我们的人生无疑会让我们感到快乐。甚至我们的职业追求也是如此,没有什么绝对的好或者不好,我们的人生轨迹在我们某些年里需要紊乱和无序,根据计量经济学的思想,越是紊乱和无序的样本,我们就越容易得出稳定的统计定律——一条稳定的人生轨迹!假如大家去看看人物传记就可以发现,在那些人的人生里,他们可能做过记者,参过军,被抓到过牢里,看起来和其最终的路径有了很大的背离,可是这些背离最终回归到这条路径上。事实上,我们并不好确定,是不是这种每个阶段的紊乱和无序最终造成了他们稳定的人生轨迹?! 人生需要这种随机性。并且如果我们要想有一条稳定的人生轨迹,依照计量经济学的理念,我们还要让我们的人生经历这一样本足够大。如何让自己的人生经历更多?如何让自己的人生有更多的随机性?那就是:我们要过主动追求的人生。当我们在生活中有意识地主动去追求时,我们就在客观上丰富了自己的经历,并且扩大了自己的人生经历样本。因为,在你主动追求的时候,才能够发现惊喜和奇遇。消极和封闭的人生态度不利于扩大自己的人生经历样本,样本不具有变异性,就难以得出好的回归方程。我们都应该学学“苍蝇的哲学”,苍蝇的四处乱撞让苍蝇即使在被困的时候也有机会逃脱。这也许是更有含义的古语的一句话的意思吧:树挪死,人挪活。但是,在我们的追求中,因为,我们应该珍视随机性,因此,对于得失就不必太让自己负累。得失是随机的。我们在生活中得到了什么、失去了什么,也许在这冥冥之中的东西面前,可能只是一个慈悲的玩笑。太过于在意也许是失去了更多。 参考文献: [1]古扎拉蒂.《计量经济学》(第三版)[M],林少宫译.北京:中国人民大学出版社.2000. [2]罗伯特S.平狄克,丹尼尔L.鲁宾费尔德.《计量经济模型与经济预测》[M].北京:机械工业出版社.1998. [3]M.克莱因.《西方文化中的数学》[M],张祖贵译.上海:复旦大学出版社.2004. [4]袁荫棠.《概率论与数理统计》[M].北京:中国人民大学出版社.1999.仅供参考,请自借鉴。希望对您有帮助。

下面,给到一些题目,你觉得对你简单的就可以写。

1.杨海文:空间计量模型的选择、估计及其应用江西财经大学,2015。

2.何煜辉:我国企业合并商誉会计计量研究北京交通大学,2015。

3.陈天约:投资性房地产公允价值计量对企业财务绩效的影响华东理工大学,2015。

4.张春燕:公允价值计量模式在投资性房地产中应用的实证研究武汉科技大学,2014。

5.陈晨:投资性房地产公允价值计量动因与经济后果研究中国矿业大学,2014。

6.张甜:公允价值计量模式在投资性房地产中的应用研究厦门大学,2014。

7.赵轶:金融集聚、空间溢出与区域经济增长西南财经大学,2014。

8.李蓉:自创商誉的计量及其应用研究北京交通大学,2014。

9.杨友焱:投资性房地产公允价值计量的应用及财务影响研究重庆大学,2013。

10.胡庭清:非活跃市场环境下公允价值会计计量问题研究湖南大学,2012。

当然,最好是结合题目的同时,结合自己的现实情况,加入自己的想法,进行创新。

论文的研究变量怎么找

论文的控制变量数据是需要自己找的。一些控制变量的数据是可以在别人的论文或文章报告中找到获取,有一些则需要自己去实验统计。

变量是什么意思? 变量释义: 1.可假定为一组特定值中之任一值的量 2.代表数学公式中一个可变量的符号 3.数值可变的量 变量 统计学定义:把说明现象某种特征的概念称为变量(Variable),变量可以分为分类变量、顺序变量、数值型变量等。在程序设计中,可以在程序执行期间修改的包含特定数据类型的已命名存储位置。 由 Windows 2000 Server 定义的系统环境变量,不论是谁登录到该计算机,此变量都是相同的。然而,Adiministrators 组的成员可以添加新的变量或更改该值。 对于特定计算机上的每个用户,用户环境变量可以不同。它们包括您希望定义的任何环境变量或应用程序定义的变量,例如,定位应用程序文件的路径。 在心理学中变量是 这样解释的:指一个具有不同数值的量,其量的大小可以观察和测量。变量通常分为自变量和因变量。自变量是研究者选用或操纵的变量,以确定其对心理或行为的影响。因变量是被试者在实验室中的行为反应。 科研论文研究目标中的研究变量和总体是什么 科研论文研究目标中的研究变量和总体是什 提纲要吗 什么是特征变量 变量是统计学研究中对象的特征,在数量标志中,不变的数量标志称为常量或参数,可变的数量标志称为变量。由可变数量标志构造的各种指标也称为变量。它可以是定性的也可以是定量的,一个定量变量要么是离散的,要么是连续的。社会科学中研究变量的关系,通常把一个变量称为自变量(独立变量),另一个变量称之为因变量(依赖变量)。变量包括各种数量标志和全部统计指标,它都是以数值形式表示的,但不包括品质标志。 特征变量是相对于随机变量而言。 Variable 是什么意思?它的定义是什么?简单的,谢谢! 变量,变量是统计学研究中对象的特征。意思是可变的量,它可以是定性的也可以是定量的,一个定量变量要么是离散的,要么是连续的。社会科学中研究变量的关系,通常把一个变量称为自变量(独立变量),另一个变亥称之为因变量(依赖变量) 参考资料:百度百科 研究变量的相关性分析结果怎么分析 相关性是指两个变量之间的变化趋势的一致性,如果两个变量变化趋势一致,那么就可以认为这两个变量之间存在着一定的关系(但必须是有实际经济意义的两个变量才能说有一定的关系)。相关性分析也是常用的统计方法,用SPSS统计软件操作起来也很简单 社会学 什么是变量 变量是统计学研究中对象的特征。它可以是定性的也可以是定量的,一个定量变量要么是离散的,要么是连续的。社会科学中研究变量的关系,通常把一个变量称为自变量(独立变量),另一个变量称之为因变量(依赖变量)。统计上的绝对量指标,按其取值的特点不同可分为离散变量与连续变量。离散变量亦可叫离散指标,是指仅能表现为整体取值的指标。连续变量亦可叫连续指标,是指可以出现小数的指标。 注:参见《社会统计学》,卢淑华,高等教育出版社,1999年。 什么是研究设计 学习目标: 1. 了解:研究设计的基本过程。 2. 掌握:如何选择研究课题 3. 掌握:如何定义研究变量。 4. 了解:如何提出研究假设。 5. 掌握:如何进行文献检索。 6. 了解:如何选择研究对象。 7. 掌握:能够撰写规范的研究计划 主要内容: 第一节:如何界定研究问题 (一) 确定研究变量 (二) 研究变量之间的相互关系 (三) 定义研究变量 (四) 变量的定义与操作 第二节:如何提出研究假设 (一) 什么是研究假设 (二) 研究假设的作用 (三) 研究假设的类型 (四) 研究假设的特征 (五) 研究假设的标准 第三节:如何进行文献检索 (一) 文献检索的意义与类型 (二) 文献的来源 (三) 文献检索的要求与过程 (四) 文献检索的方法与工具 (五) 阅览文献的要领 第四节:如何进行抽样(增加内容) (一) 什么是抽样 (二) 抽样的基本要求 (三) 抽样的具体方法 第五节:如何拟定研究计划 (一) 研究计划的主要内容 (二) 研究课题的申报 (三) 研究课题的论证 参数什么意思,有能看懂的吗 参数,也叫参变量,是一个变量。我们在研究当前问题的时候,关心某几个变量的变化以及它们之间的相互关系,其中有一个或一些叫自变量,另一个或另一些叫因变量。如果我们引入一个或一些另外的变量来描述自变量与因变量的变化,引入的变量本来并不是当前问题必须研究的变量,我们把这样的变量叫做参变量或参数。 参数是很多机械设置或维修上能用到的一个选项,字面上理解是可供参考的数据,但有时又不全是数据。对指定应用而言,它可以是赋予的常数值;在泛指时,它可以是一种变量,用来控制随其变化而变化的其他的量。简单说,参数是给我们参考的。 统计学中 描述总体特征的概括性数字度量,它是研究者想要了解的总体的某种特征值。总体未知的指标叫做参数。 数学中 参数思想贯彻于解析几何中。对于几何变量,人们用含有字母的代数式来表示变量,这个代数式叫作参数式,其中的字母叫做参数。用图形几何性质与代数关系来连立整式,进而解题。同时“参数法 ”也是许许多多解题技巧的源泉。 什么是前定变量 前定内生变量和外生变量绩和称为前定变量。 前定内生变量是指过去时期的、滞后的或更大范围的内生变量,不受本模型研究范围的内生变量影响,但能够影响所研究的本期内生变量。

计量经济学怎么论文题目

出生活1978年,

对我国经济增长的因素分析关于教育对中国经济增长作用的计量分析关于司机年龄与发生车祸次数关系的分析改革开放以来商品零售价格指数(RPI)变化因素分析固定资产投资对GDP的影响关于GDP与其他经济因素关系的计量分析吉尼系数影响因素的计量分析我国旅游经济的因素分析试探交通运输发展与国民经济的关系我国1978-1997年的财政收入和国民生产总值的计量分析我国经济增长对能源消耗的依赖投资额与生产总值和物价指1外商直接投资(FDI)对我国经济影响的实证分析影响居民消费水平的因素分析我国人均GDP与消费的计量分析有关我国居民储蓄影响因素的计量分析新中国出口的影响因素分析影响股价指数的因素分析影响居民消费水平的主要因素分析我国消费的影响因素分析中国能源需求影响因素实证分析中国经济增长与周期波动中国旅游业发展状况分析中国城市居民消费计量分析对上市公司利用新四项计提进行盈余管理的实证研对影响人身保险保费收入诸因素的计量分析餐饮业区域市场潜力的影响因素分析FDI对中国经济增长的影城镇居民住房面积的多因素分析关于影响我国南方几省市农业总产值因素的实证分析关于国内旅游需求的计量经济学分析报告如何提高农业产值和农民人均收入水平宏观经济政策对中国经济周期波动的影响分析三大产业的发展与城镇居民家庭消费支出上市公司财务预警模型设计与分析货币政策有效性分析外资利用与我国进出口贸易关系的实证分析我国采矿业龙头企业利润因素分析我国农民收入影响因素的回归分析

我国旅游经济的因素分析我国旅游业发展状况分析我国居民消费增长模型我国经济增长与周期波动我国经济增长对能源消耗的依赖公共投资取向与经济增长分析三大产业的发展与城镇居民家庭消费支出餐饮业区域市场潜力的影响因素分析资本结构主要影响因素的再探析国债发行规模的计量经济分析工资收入差异分析城镇人均收入与人均通讯消费分析影响居民消费水平的因素分析影响就业人数的因素的计量分析影响大学生就业问题的因素分析影响股价指数的因素分析影响我国电力产量的因素分析影响中国汽车产量的多因素分析私家车拥有量的计量分析我国汽车需求的因素分析

计量经济学杂志

中文核心期刊中文核心期刊是中华人民共和国期刊中学术水平较高的刊物,是我国学术评价体系的一个重要组成部分.它主要体现在学术水平的确认方面.如在相当一批教学科研单位.申请高级职称,取得博士论文答辩资格,申报科研项目,科研机构或高等院校学术水平评估,教师,工作人员完成的工作量等,前提条件之一就是在一定时间段内,在核心期刊上发表若干篇论文.分为国家级\省级\市级等等级别。目前国内有7大核心期刊(或来源期刊)遴选体系:北京大学图书馆“中文核心期刊”、南京大学“中文社会科学引文索引(CSSCI)来源期刊”、中国科学技术信息研究所“中国科技论文统计源期刊”(又称“中国科技核心期刊”)、中国社会科学院文献信息中心“中国人文社会科学核心期刊”、中国科学院文献情报中心“中国科学引文数据库(CSCD)来源期刊”、中国人文社会科学学报学会“中国人文社科学报核心期刊”以及万方数据股份有限公司正在建设中的“中国核心期刊遴选数据库”。祥见中国高端论文网。通常所说的中文核心期刊,是指被北大每年出版的《中国核心期刊要目总揽》中被列出的期刊。一共分为七编:第一编哲学、社会学、政治、法律、军事第二编经济第三编文化、教育、历史第四编自然科学第五编医药、卫生第六编农业科学第七编工业技术核心期刊是期刊中学术水平较高的刊物,是我国学术评价体系的一个重要组成部分.它主要体现在学术水平的确认方面.如在相当一批教学科研单位。申请高级职称,取得博士论文答辩资格,申报科研项目,科研机构或高等院校学术水平评估,教师,工作人员完成的工作量等,前提条件之一就是在一定时间段内,在核心期刊上发表若干篇论文.分为国家级\省级\市级等等级别。目前国内有7大核心期刊(或来源期刊)遴选体系:北京大学图书馆“中文核心期刊”、南京大学“中文社会科学引文索引(CSSCI)来源期刊”、中国科学技术信息研究所“中国科技论文统计源期刊”(又称“中国科技核心期刊”)、中国社会科学院文献信息中心“中国人文社会科学核心期刊”、中国科学院文献情报中心“中国科学引文数据库(CSCD)来源期刊”、中国人文社会科学学报学会“中国人文社科学报核心期刊”以及万方数据股份有限公司正在建设中的“中国核心期刊遴选数据库”。[补充]北京市新闻出版局:“核心期刊”是国内几所大学的图书馆根据期刊的引文率、转载率、文摘率等指标确定的。确认核心期刊的标准也是由某些大学图书馆制定的,而且各学校图书馆的评比、录入标准也不尽相同。新闻出版管理部门也未参加过此类评选活动。

经济学顶级刊物eca、aer、jpe、qje、res金融学顶级刊物jf、jfe、rfs,比经济学顶级刊物的级别要低。

计量经济学(英文:Econometrics),是以数理经济学和数理统计学为方法论基础,对于经济问题试图对理论上的数量接近和经验(实证)上的数量接近这两者进行综合而产生的经济学分支。该分支的产生,使得经济学对于经济现象从以往只能定性研究,扩展到同时可以进行定量分析的新阶段。“计量”的意思是“以统计方法做定量研究”,所以“量”字应读作“[liàng]”,而不读作“[liáng]”。据说在经济学中,应用数学方法的历史可追溯到三百多年前的英国古典政治经济学的创始人威廉·配第的《政治算术》的问世(1676年)。计量经济学基础“计量经济学”一词,是挪威经济学家弗里希(R. Frisch)在1926年仿照“生物计量学”一词提出的。随后1930年成立了国际计量经济学学会,在1933年创办了《计量经济学》杂志。人们应如何理解“计量经济学”的含义?弗里希在《计量经济学》的创刊词中说到:“用数学方法探讨经济学可以从好几个方面着手,但任何一方面都不能与计量经济学混为一谈。计量经济学与经济统计学决非一码事;它也不同于我们所说的一般经济理论,尽管经济理论大部分都具有一定的数量特征;计量经济学也不应视为数学应用于经济学的同义语。经验表明,统计学、经济理论和数学这三者对于真正了解现代经济生活中的数量关系来说,都是必要的,但各自并非是充分条件。而三者结合起来,就有力量,这种结合便构成了计量经济学。”后来美国著名计量经济学家克莱因也认为:计量经济学是数学、统计技术和经济分析的综合。也可以说,计量经济学不仅是指对经济现象加以测量,而且表明是根据一定的经济理论进行计量的意思。计量经济学的基础是一整套建立在数理统计理论上的计量方法,属于计量经济学的“硬件”,计量经济学的主要用途或目的主要有两个方面:理论检验。这是计量经济学用途最为主要的和可靠的方面。这也是计量经济学本身的一个主要内容。预测应用。从理论研究和方法的最终目的看,预测(包括政策评价)当然是计量经济学最终任务,必须注意学习和了解,但其预测的可靠性或有效性是我们应十分注意的。特点模型类型:采用随机模型。模型导向:以经济理论为导向建立模型。模型结构:变量之间的关系表现为线性或者可以化为线性,属于因果分析模型,解释变量具有同等地位,模型具有明确的形式和参数。数据类型:以时间序列数据或者截面数据为样本,被解释变量为服从正态分布的连续随机变量。估计方法:仅利用样本信息,采用最小二乘法或者最大似然法估计变量。非经典计量经济学一般指20世纪70年代以后发展的计量经济学理论、方法及应用模型,也称现代计量经济学。发展国外发展情况。计量经济学首先主要用于微观经济分析,宏观经济理论出现后,在宏观经济方面的应用发展很快,同时,由于计算机的出现和迅速发展,更加促进了计量经济学的发展,特别是20世纪60~80年代初期,可以说是西方经济学中发展最快的一个领域。当然,也存在一些问题。相较于国际上的大国,计量经济学在我国的开发与应用比较晚。近30年我国才比较广泛应用计量经济学,在我国的发展经历了从我国计划经济体制制度到社会主义市场经济制度过渡的阶段。我国的统计制度也在这段时间经历了从物质平衡表体系到国民经济核算体系的过渡转变。在20世纪90年代初期,恩格尔的ARCH模型作为“现代经济学前沿”被推广到我国,结合我国对经济的重视,对我国计量经济学的发展和未来趋势走向有很大的影响,也对其学科的不断可持续发展提出了新的挑战和机遇。最近几年来,计量经济学在我国逐渐普及以及被重视,关于其的应用以及学科研究文献已经比较广泛和常见。例如,经济时间序列、波普理论、VAR模型、CC模型、LSE模型等计量经济学模型也成为了我国经济研究领域最为广泛的计量经济学建模方法。同时,也有学者开始使用国际先进的DSGE模型,并在我国很多应用研究领域广泛应用,取得了一定的成果。

1:《美国经济评论》(AER)2:《计量经济学杂志》(ECA)3:《政治经济学杂志》(JPE)4:《经济学季刊》(QJE)5:《经济研究评论》(RES)6:《国富论》7:《经济学原理》

相关百科

热门百科

首页
发表服务