本论文以双水相应用研究为背景,首先考察了传统阴离子表面活性剂一十二烷基硫酸钠(SDS)和带有相反电荷的阳离子表面活性剂包括传统阳离子表面活性剂一十二烷基三甲基溴化铵和偶联阳离子表面活性剂(12-3-12、C120H、C140H)混合体系双水相的相行为及性质。结果表明,在适当的条件下,偶联正离子表面活性剂-12-3-12、C120H、C140H和传统的正离子表面活性剂相似,能与负离子表面活性剂(SDS)混合形成平衡共存的双水相体系。但双水相的性质与传统表面活性剂双水相的性质有很大的差异。此体系中双水相区域为单一的阳离子表面活性剂双水相区域,且成相区内两表面活性剂混合比随溶液浓度改变基本呈线性变化。该混合体系双水相的成相时间较长,而且随着溶液浓度和混合比的变化而改变。形成双水相的表面活性剂最低浓度要求与混合体系的临界胶束浓度有关,临界胶束浓度越大,对应的形成双水相的表面活性剂最低浓度要求越高。对于疏水性较强的表面活性剂混合体系,由于两者相互作用较强导致乳白凝胶物甚至是白色沉淀出现,而引起双水相的缺失,提高体系温度可以获得双水相。 在此基础上,以CTAB/SDS/H20及Gemini/SDS/H20为研究对象,探讨了聚合物PEG对表面活性剂双水相性质的影响。研究表明,聚合物PEG的加入一方面可以改变溶剂的性质,另一方面影响正、负离子表面活性剂之间的相互作用,进而影响双水相相区的分布。此外,聚合物PEG的加入在较大程度上提高了溶液的粘度导致溶液中各种聚集体运动缓慢,达到平衡的时间相对较长,最终延长了双水相的成相时间。 在考察盐对聚合物/表面活性剂双水相体系(Gemini(12-3-12,2Br-)/SDS/PEG)性质的影响时发现,盐对12-3-12,2Br-/SDS/PEG体系双水相性质有重要的影响,首先体现在原有阳离子双水相区域(ATPS-C)的拓展(形成双水相的最低表面活性剂总浓度降低,两表面活性剂的配比范围加宽)且其具有向阳离子偶联表面活性剂含量增大的方向移动的趋势,加宽程度及移动幅度与阴离子半径的大小有关;其次是新双水相区域(ATPS-A)的出现,即盐的加入使原本缺失的阴离子双水相区域出现。盐的加入使形成双水相的时间及双水相达到平衡所需的时间均大大缩短。与无盐体系相比,含盐体系的双水相有更强的萃取作用。 对同时含有离子液体和表面活性剂的混合体系性质研究表明,离子液体C6[MIM]Br、C8[MIM]Br和币离子表面活性剂相似,它们也能与传统负离子表面活性剂十二烷基硫酸钠SDS混合水溶液在适当的条件下形成双水相。混合溶液性质随着离子液体中碳链的变化而表现出明显的差异;离子液体的取代烷基链长是双水相形成与否的重要影响因素,当烷基取代基的碳数大于或等于6时,双水相/才会形成。 特殊的复配体系离子液体(C8[mim]Br)/偶联阴离子表面活性剂(C12H25OOCCH2(COONa)-CH2(COONa)COOCl2H25.2Br/水在一定条件下也能够形成双水相,且双水相性质与传统正、负离子表面活性剂形成的双水相的性质相似。这些研究无论对于理论发展还是实际应用都将具有重大的意义。 此外,还以异丙醇及硫酸铵混合水溶液体系为研究对象,研究该体系双水相的相图及一些基本性质,为其进一步在萃取、分离方面的应用提供基础数据
W-101发泡剂是以多种表面活性剂和辅助剂按独特工艺制成的一种复合型发泡剂。主要用于高温地层的泡沫压裂,油气同产、气水同产井的采油、采气、排水工艺,对于降低井内液柱压力,改善井筒内的工作状态,提高采收率有十分显著的效果。该产品也可用于修井冲砂作业中,防止或减少冲砂漏失量,提高措施有效率。 本品在高温地层中(>90℃)起泡能力不降低,起泡力强。泡沫稳定性好,携液量大,携砂能力强,抗油、抗盐。 *质量指标: 项 目 指 标 外 观 无色或淡黄色均匀液体 PH 值 6~8 与酸液配伍性 无沉淀无分层 与盐水配伍性 无沉淀无分层 起泡能力(ml) ≥450 泡沫半衰期(min) ≥250 有效物含量 ≥40% 阻力因子 ≥20 驱油效率(%) ≥80 排液半衰期(min) ≥3 耐高温性(℃) ≥150稳泡剂 各种发泡剂的水溶液利用发泡机发出的泡沫用于混凝土、菱镁、石膏、脲醛树脂等领域。由于气泡易破碎,从某种程度上影响了发泡剂的使用效果。凡是能够提高气泡稳定性,延长泡沫破灭半衰期的物质都可以叫做稳泡剂。 目前稳泡剂有以下几种: 1.大分子物质,如聚丙烯酰胺、聚乙烯醇、蛋白、多肽、淀粉、纤维素等。该类物质由于能够提高泡沫的粘度,降低泡沫流动性,从而具有一定的稳泡效果。但使用操作复杂,效果有限,发泡量降低。 2.硅树脂聚醚乳液类,该类分子能够控制气泡液膜的结构稳定性,使表面活性剂分子在气泡的液膜有秩序的分布,赋予泡沫良好的弹性和自修复能力。优点:稳泡效果明显,使用方便。缺点是合成异构体多,难以控制,使用范围仅限于对十二烷基硫酸钠(K12),脂肪醇聚氧乙烯醚硫酸钠(AES),α-烯基磺酸钠(AOS)等阴离子表面活性剂的稳泡,另外对温度有要求。 3.非离子表面活性剂,十二烷基二甲基氧化胺、烷基醇酰胺,该类物质稳泡机理是降低液膜阴离子表面活性剂阴离子基团的排斥力从而实现稳泡。稳泡效果一般,且十二烷基二甲基氧化胺和烷基醇酰胺产品五花八门,质量难辨,副产物和不利于稳泡的杂质较多。 4.脂肪醇和脂肪酸类,该类物质具有同3类似的稳泡机理,但属于难溶物质,使用极为不便。
表 面 活 性 剂 在 农 药 中 的 应 用 研 究 进 展 摘要 : 介绍了表面活性剂在农药领域的应用研究进展。表面活性剂通过界面膜发生作用, 改善农药加工和使 用性能。表面活性剂可以在各种类型的界面上发生吸附, 改变界面状态 , 从而实现或改善界面物理化学特性 , 增强产品的功能。在农药加工过程中, 表面活性剂吸附于农药微粒表面形成不同的分散体系, 起到乳化 、 润 湿 、 增溶 、 消泡 、 起泡 、 稳定等作用 ; 在农药使用过程 中, 表面活性剂可以改善药液在植物叶面或防治象 表面上的分布、 附着、 渗透等, 提高农药剂量的有效转移, 直接或间接地提高农药的有效利用率。随着胶体 化学、 界面化学理论的引入 , 农药制剂加工的理论和农药应用技术理论的研究也在不断深入和完善, 表面活 性剂的开发研究也会随着农药加工和使用的要求得到进一步发展。 近年来, 我国每年使用农药1 0 0 万吨( 制剂) 左右, 防治 面积达3 亿公顷次以上, 植物保护工作为农业丰收做出了 巨大贡献, 起到了保驾护航的作用 。但由于对农药使用 技术理论和技术措施的研究严重不足, 忽视对靶标生物行 为研究以及普遍采用大容量、 大雾滴喷雾技术等原因, 我 国农药有效利用率很低, 由施药器械喷撒出去的农药只有 2 0 %- 3 0 %~沉积在作物叶片上, 远低于发达国家5 0 %的平 均水平 , 农药使用中的低效率, 不仅浪费大量农药, 还 使大量农药流失到非靶标环境中, 造成人畜中毒、 环境污 染、 农产品农药残留量增加 。 。 农药使用的低效率还与农药加工技术研究不足有很大 关系。我国已经成为农药生产大国, 但国内制剂、 剂型 的研究和产品质量与国外相比仍有很大差距, 主要表现为 分散性能差 、 悬浮率低 、 热贮分解率高等方面, 一些剂型 因湿润性、 渗透性和叶面沉积性差等原因造成药效不稳 定, 相当一部分品种在耐雨水冲刷和黏着性等方面明显差 于国外同类型产品, 如国产农药水悬浮剂普遍存在析水、 稠化、 沉积、 结块等贮存物理稳定性等问题 。出现这种 现象的主要原因除与我国农药用表面活性剂的品种数量和 质量与发达国家相比差距大外, 还与我们对表面活性剂与 农药作用机理研究不足等有关。 如何提高农药的有效利用率, 降低农药在非靶标环境 中的投放量 , 已成为农药学科亟待解决的问题。 1 表面活性剂在农药加工中的应用 表面活性剂是指那些具有很强表面活性、 能使液体的 药新剂型及其稳定性研究。表面张力显著下降的物质。此外表面活性剂还应具有增 溶、 乳化 、 润湿 、 消泡和起泡等应用性质。 表面活性剂 的分子结构特点是具有不对称性。整个分子可分为两部 分, 一部分是亲油的非极性基团, 叫作疏水基或亲油基 ; 另一部分是极性基团或亲水基。两部分分处两端, 形成 不对称结构。因此表面活性剂分子为两亲分子。据分子 组成特点和极性基团的解离性质, 将表面活性剂分为离子 表面活性剂和非离子表面活性剂。根据离子表面活性剂 所带电荷, 又可分为阳离子表面活性剂、 阴离子表面活性 剂和两性离子表面活性剂。农药中常用的表面活性剂是 阴离子表面活性剂与非离子表面活性剂n 。 表面活性剂的亲水亲油平衡值( h y d r o p h i l i c — l i p o p h i l i c b a l a n c e, HLB) 是表示表面活性剂亲水亲油性质的值 , 是 选择表面活性剂的重要参数, 一般而言, HL B值高的表面 活性剂其亲水性强, 在水溶液中的溶解度高, 有利于叶片 表面保持较长时间的湿润; HL B值低的表面活性剂其亲油 性较好, 有利于药液在叶面蜡质层的铺展, 提高药液的渗 透性。根据HL B值, 选择合适的表面活性剂能够提高叶面 对农药的吸收。每一表面活性剂都有一HL B值, 农药有效 成分被乳化也有一最佳HL B值, 只有被选择的表面活性剂 HL B值与被乳化组分的HLB值相当, 才能乳化良好。但 HL B值也存在不能预测表面活性剂的用量、 制剂的稳定程 度以及不能同时兼顾分散相和分散介质的组成等缺陷。 表面活性剂是通过界面膜发生作用的。表面活性剂可 以在各种类型的界面上发生吸附, 改变界面状态, 从而实 现或改善许多化学过程 , 增强产品的功能。 表面活性剂在水中溶解时, 当水中表面活性剂的质量 浓度很低时, 表面活性剂分子在水一 空气界面产生定向排 列 , 亲水基团朝向水而亲油基团朝向空气。当溶液较稀 时, 表面活性剂几乎完全集中在表面形成单分子层, 溶液 表面层的表面活性剂质量浓度大大高于溶液中的质量浓 度, 并将溶液的表面张力降低到纯水表面张力以下。表 面活性剂在溶液表面层聚集的现象称为正吸附。正吸附 改变了溶液表面的性质 , 最外层呈现出碳氢链性质, 从 而表现出较低的表面张力, 随之产生较好的润湿性、 乳化 性 、 起泡性等。如果表面活性剂质量浓度越低 , 而降低 表面张力越显著 , 则其表面活性越强 , 越容易形成正吸 附。因此表面活性剂的表面活性大小, 对于其在农药中 的实际应用有着重要的意义。 表面活性剂溶液与固体接触时, 表面活性剂分子可能 在固体表面发生吸附, 使固体表面性质发生改变。极性 固体物质对离子表面活性剂的吸附在低质量浓度下的吸附 曲线为s形, 形成单分子层, 离子表面活性剂分子的疏水 链向外。在离子表面活性剂溶液质量浓度达临界胶束浓 度时, 单层吸附达到饱和, 并开始双层吸附, 此时离子表 面活性剂分子的排列方向与第一层相反, 亲水基团向外。 提高溶液温度, 吸附量将随之减少。对于非极性固体 , 一般只发生单分子层吸附, 疏水基吸附在固体表面而亲水 基向外 , 当离子表面活性剂质量浓度增加时, 吸附量并不 随之增加甚至有减少的趋势, 认为这是因为胶束的形成使 表面活性剂的有效质量浓度相对减少的缘故。固体表面 对非离子表面活性剂的吸附与前面相似, 但其吸附量随温 度升高而增大, 且可以从单分子层吸附向多分子层吸附转 变n 。 。研究表面、 潘I 生剂的吸附性对农药加工及应用技术 有重要意义。 在农药加工过程中, 农药分散体系的稳定性是农药加 工过程中非常重要的指标, 表面活性剂吸附于农药微粒表 面形成不同的分散体系, 农药剂型主要包括液/ 液、 固/ 固、 固/ 液和气/ 气4 种分散体系, 分散相的颗粒与分散介质的 表面张力越接近0, 分散体系越稳定。微乳剂能形成稳定 的分散体系, 其原因在于分散相的颗粒与分散介质的表面 张力非常的低, 一般只有1 0 ~ ~ 1 0 ~mN/ m。分散相的农药 微粒之间存在排斥力和吸引力 , 当斥力大于引力 , 农药分 散体系就稳定, 当引力大于斥力, 农药分散体系就聚沉 , 表面活性剂与农药微粒表面吸附形成的分散体系的稳定 性, 可以用如下理论解释 : 一是双电层理论, 农药微粒吸 附离子型表面活性剂形成的双电层之间存在着静电相互 作用, 使相同农药微粒之间产生斥力 ; 二是空间稳定理 论, 农药微粒表面上吸附的大分子表面活性剂形成一定 厚度的分子膜保护层, 从空间上阻碍了微粒相互接近, 进而阻碍它们的聚结; 三是空缺稳定理论 , 在微粒界面 间的空间存在着 自由高分子, 也就是农药微粒表面对表 面活性剂没有吸附作用, 微粒相互靠近时, 具有一定扩 散能力的高分子表面活性剂从微粒间的间隙中被挤走, 致使在两个微粒间隙区域内只有溶剂分子而没有高分 子, 称为空缺作用( d e p l e t i o n ) , 在微粒之间存在斥力势 能 , 称此为空缺稳定 。 在可湿性粉剂加工过程中, 表面活性剂可吸附于加工 过程中形成的粒子表面, 防止粒子再聚集 , 也有助于粒子 粉碎加工。 然而 , 因为含微细粒子的分散体是不稳定 的, 所以药剂的粒子具有强烈絮凝的倾 向。絮凝是由相 互接近的粒子间的范德华力所致。为了抵消范德华力需 要一种斥力, 斥力就是通过在配方中加人表面活性剂来提 供, 有静电斥力和空间斥力两种类型的斥力起作用, 这取 决于表面活性剂的离子特性。表面活性剂可用于增进可 湿性粉剂粒子在水中的分散 、 悬浮, 也防止可湿性粉剂悬 浮液在被应用之前发生絮凝。 在乳油加工过程中, 表面活性剂是农药乳油的主要辅 助成分。表面活性剂影响着农药乳油的分散、 乳化、 湿 润、 渗透等性能。进而影响药效的发挥。农药用表面活性 剂多数为聚合物, 分子质量大, 分子链较长, 有的主分子 链上还带有分支, 成梳状结构, 具有易形成空间网状骨架 的可能性。当乳油体系中存在游离的胶体微粒时, 表面活 性剂分子吸附于胶体微粒表面, 使胶体微粒不易沉淀。表 面活性剂带有的电荷能改变环境的电动电位, 使体系更趋 稳定。乳油被水稀释, 产生水包油型乳状液。表面活性剂 防止乳状液分层沉积或絮凝, 从而保持所形成的乳状液呈 稳定 状 态 。 在悬浮剂加工过程中, 表面活性剂作为基本组分起着 重要的作用, 它吸附在原药预混物粒子的表面, 将有效成 分 的粒子表面润湿, 排出粒子间的空气。 在研磨过程 中, 表面活性剂有助于再润湿和分散重新形成更小的粒 子, 起助研磨剂作用。表面活性剂还有助于制剂的稳定 性。通过表面活性剂在粒子上的吸附, 可减少粒子的界 面能, 从而减少粒子聚结合并; 表面活性剂能够在粒子周 围形成扩散双电层。产生电动电势, 从而阻碍粒子之间 的聚结合并; 表面活性剂也可通过吸附在粒子界面上形成 一个致密的保护层, 通过“ 位阻” 作用迫使粒子分开 , 防 止沉淀的生成 , 从而增加悬浮剂的稳定性” 。 农药微乳剂的加工就是借助复合表面活性剂体系的增 溶作用, 将液体或固体农药溶于有机溶剂中形成的溶液均 匀分散在水中形成的光学透明或半透明的分散体系” 。 。 黄放良等发现农. ~ L 4 o o 与农. ~ L s o o ( 体积I : L 2 : 1 ) 混合物可以 使微乳剂中的高效氯氰菊酯微乳剂增溶 ” 。 表面游} 生 剂的 加入可以减少药物分子与水分子的接触, 对药物起到保护 作用, 如当表面活性剂质量浓度达到临界胶束浓度( c mc ) 后 , 胶束结构紧密 , 农药的水解被抑制 。 此外在农药加工后的储存过程中, 表面活性剂还能 抑制药物的氧化速度。药物的氧化性也是常见的性质之 一, 主要发生在醛类 、 醇类 、 酚类 、 肼类等含有易氧化 基团的药物中。链霉素氧化后成为无效的链霉素酸, P E G类表面活性剂对链霉素有稳定作用, 室温下存放 1 . 5 年 仅失效l 5 % 。 在其他农药剂型加工中, 表面活性剂的作用基本包括 在上述4 种剂型当中, 这里不再赘述。 2表面活性剂在农药使用中对其有效利用率的影响 农药喷雾后 , 雾滴沉积在植物叶片的表面上, 会发生 雾滴扩散和水分蒸发的动力学过程, 造成有效成分的质量 浓度逐渐升高, 或沉积在叶片表面, 或被叶片吸收, 所有 这些除与农药有效成分的化学性质有关外, 还与植物叶片 的结构、 表面活性剂的结构与性质有关。 2 . 1植物叶片结构的特征与农药沉积分布的关系 高等植物的叶片一般由表皮 、 叶肉、 叶脉3部分组 成 , 叶面即指叶片表皮的外侧, 覆有蜡质层和角质层。 作物叶片最外层的蜡质层 由脂肪酸、 酯类 、 酮, 、 醇 、 类 萜、 醛等有机物组成 , 具有防止水分损失、 物理伤害 、 病 菌侵入、 抗寒以及减少太阳辐射造成的伤害等多种作用。 表皮的蜡层主要以两种形式存在, 一种是晶状, 一种是不 规则状, 前者主要存在于禾本科植物, 后者主要存在于阔 叶作物, 晶状的蜡层对农药在叶面的展布是不利的, 位于 蜡质层以内的角质层, 其组成成分较为复杂, 不同植物叶 片的角质层化学成分、 结构、 形态等有很大差异。角质 层的外层几乎完全由疏水的角质组成, 内层由含有一定数 量角质的纤维素和果胶混合物组成。植物角质层是药液 叶面沉积与吸收的重要屏障, 农药在角质层的滞留、 渗透 及组织吸收效率直接影响化合物的活性和选择性。 同 时, 叶片表面的毛刺、 附着物更是形态繁多, 许多植物的 叶片表面还有多种能分泌特殊液体的腺体, 这些叶面附着 物对农药喷洒物的沉积和黏附行为有很重要的影响 。 当药液的雾滴沉降到植物叶片表面上时, 不论是粗大 的雾滴还是微小的雾滴 , 可能出现的情况有3 种: 微小的 雾滴可能落入叶片毛刺或其他毛刺物之间, 这种情况最有 利于雾滴与药液牢固地被叶片表面持留; 雾滴被夹持在毛 刺物之间, 这种情况也有利于雾滴或药液比较稳定的被叶 片表面持留, 但也可能受到振动而脱落 ; 雾滴 比较粗大 时, 如果雾滴没有被弹落, 也只能被架空在毛刺物之上 , 处于极不稳定的状态。在后两种情况下, 若药液有较强 的湿润展布能力, 就有可能借助于药液的湿润展布作用而 扩散到毛刺之间而得以比较稳定地被叶面持留, 但是粗大 的雾滴却仍将由于容易发生流失现象而从叶面表面脱落, 只有细雾滴在任何情况下都能够被叶面有效地持留” 。 2 . 2表面活性剂对植物叶面结构的影响 表面活性剂具有乳化、 分散、 润湿和渗透等作用 , 在 农药的施用中广泛地被用作添加剂。表面活性剂可以改 善药液在植物叶面的物理及化学特性 , 增加叶片对有效成 分的吸收, 使药液得到更有效的利用。表面活性剂在植 物叶面上吸附后, 会与气孔和蜡质层发生一定的相互作 用。表面活性剂也能引起气孔的运动。 Pa n等 。 用 Twe e n 一 8 0 的水溶液处理玉米叶片后, 发现叶片的蜡质有 溶解现象 , 并且使叶子的蒸腾作用扩大了1 ~3 倍 ; 在油 菜、 蚕豆等植物叶面喷洒OP 一1 0 或NP一 1 0 的溶液后, 由于 表面活性剂与膜和蛋白质的相互作用引起了叶片枯斑和组 织损伤, 甚至增加了乙烯的释放量, 引起对植物的药害。 叶小利等 系统地研究了烷基聚氧乙烯基醚( P P J ) 和蔗 糖脂肪酸脂( S F E) 对大豆叶片气孔 、 蜡质层、 乙烯释放量 等的影响, 结果表明: 随着表面活性剂质量浓度的增加, 气孔逐渐打开, 质量浓度继续增加, 气孔的孔径达到最大 后逐渐关闭, 蜡质层的溶解程度随表面活性剂质量浓度的 增加而逐渐增加 ; 低质量浓度时, 乙烯的释放量几乎不受 影响, 但表面活性剂的质量浓度进一步增加时, 乙烯的释 放量增加。表面活性剂在不同程度上调节大豆叶片气孔 开闭、 蜡质层的溶解和乙烯的释放量。
生物法降解秸秆木质素研究进展秸秆是一种丰富的纤维素可再生资源,我国农作物秸秆年产量逾6亿t,除少量被用于造纸、纺织等行业或用作粗饲料、薪柴外,大部分以堆积、荒烧等形式直接倾入环境,造成极大的污染和浪费[1]。能源紧张、粮食短缺及环境污染日趋严重是目前世界各国所面临的难题。而可再生资源的转化利用,能在有利于生态平衡的条件下缓解或解决问题。 木质素又称木素,是植物界中含量仅次于纤维素的一类高分子有机物质,是一种极具潜力的可再生资源[2-4],每年全世界由植物可生长1 500亿t木质素,且木质素总与纤维素伴生,具有无毒、价廉、较好的可热塑和玻璃化特性。木质素是由苯丙烷结构单元组成的复杂的、近似球状的芳香族高聚体,由对羟基肉桂醇(phydroxy cinamylalcohols)脱氢聚合而成,一般认为木质素共有3种基本结构(非缩合型结构),即愈创木基结构、紫丁香基结构和对羟苯基结构。木质素结构单元之间以醚键和碳-碳键连接,连接部位可发生在苯环酚羟基之间,或发生在结构单元中3个碳原子之间,或是苯环侧链之间。木质素由于分子量大,溶解性差,没有任何规则的重复单元或易被水解的键,因此木质素分子结构复杂而不规则[5,6]。 从20世纪开始,国内外学者一直在寻找降解木质纤维素的最佳途径,研究内容主要包括以下几方面:物理法、化学法、物理化学法、生物降解法[7]。物理法包括辐射、声波、粉碎、整齐爆破等[8,9]。化学法包括无机酸(硫酸、乙酸、盐酸等)、碱(氢氧化钠、氨水等)和有机溶剂(甲醇、乙醇)等。物理化学法,即化学添加法和气爆法相结合。此3种方法,可在一定程度上降解秸秆中的木质纤维素,但都存在条件苛刻、设备要求高的特点,从而使预处理成本增加,且污染严重。生物降解法是从20世纪20年代起开始研究的,采用降解木质素的微生物在培养过程中可以产生分解的酶类,从而可以专一性降解木质素。此法具有作用条件温和、专一性强、无环境污染、处理成本低等优点。
表面活性剂概述: 1.概念: 表面活性剂(surfactant)是指具有固定的亲水亲油基团,在溶液的表面能定向排列,并能使表面张力显著下降的物质。 2.组成:分子结构具有两亲性 非极性烃链: 8个碳原子以上烃链 极性基团:羧酸、磺酸、硫酸、氨基或胺基及其盐,也可是羟基、酰胺基、醚键等。 3.吸附性: 溶液中的正吸附:增加润湿性、乳化性、起泡性 固体表面的吸附:非极性固体表面单层吸附, 极性固体表面可发生多层吸附[编辑本段]表面活性剂的分类 表面活性剂的分类方法很多, 根据疏水基结构进行分类,分直链、支链、芳香链、含氟长链等; 根据亲水基进行分类,分为羧酸盐、硫酸盐、季铵盐、PEO衍生物、内酯等; 有些研究者根据其分子构成的离子性分成离子型、非离子型等,还有根据其水溶性、化学结构特征、原料来源等各种分类方法。但是众多分类方法都有其局限性,很难将表面活性剂合适定位,并在概念内涵上不发生重叠。 按极性基团的解离性质分类 1、阴离子表面活性剂 :硬脂酸,十二烷基苯磺酸钠 2、阳离子表面活性剂:季铵化物 3、两性离子表面活性剂:卵磷脂,氨基酸型,甜菜碱型 4、非离子表面活性剂: 脂肪酸甘油酯,脂肪酸山梨坦(司盘),聚山梨酯(吐温) 阴离子表面活性剂 1、肥皂类 系高级脂肪酸的盐,通式: (RCOOˉ)n M。脂肪酸烃R一般为11~17个碳的长链,常见有硬脂酸、油酸、月桂酸。根据M代表的物质不同,又可分为碱金属皂、碱土金属皂和有机胺皂。它们均有良好的乳化性能和分散油的能力。但易被破坏,碱金属皂还可被钙、镁盐破坏,电解质亦可使之盐析 。 碱金属皂:O/W 碱土金属皂:W/O 有机胺皂:三乙醇胺皂 2、硫酸化物 RO-SO3-M 主要是硫酸化油和高级脂肪醇硫酸酯类。脂肪烃链R在12~18个碳之间。 硫酸化油的代表是硫酸化蓖麻油,俗称土耳其红油。 高级脂肪醇硫酸酯类有十二烷基硫酸钠(SDS、月桂醇硫酸钠) 乳化性很强,且较稳定,较耐酸和钙、镁盐。在药剂学上可与一些高分子阳离子药物产生沉淀,对粘膜有一定刺激性,用作外用软膏的乳化剂,也用于片剂等固体制剂的润湿或增溶。 3、磺酸化物 R-SO3 - M 属于这类的有脂肪族磺酸化物、烷基芳基磺酸化物和烷基萘磺酸化物。它们的水溶性和耐酸耐钙、镁盐性比硫酸化物稍差,但在酸性溶液中不易水解。 常用品种有:二辛基琥珀酸磺酸钠(阿洛索-OT),十二烷基苯磺酸钠,甘胆酸钠 阳离子表面活性剂 该类表面活性剂起作用的部分是阳离子,因此称为阳性皂。其分子结构主要部分是一个五价氮原子,所以也称为季铵化合物。其特点是水溶性大,在酸性与碱性溶液中较稳定,具有良好的表面活性作用和杀菌作用。 常用品种有苯扎氯铵(洁尔灭)和苯扎溴铵(新洁尔灭)等。 两性离子表面活性剂 这类表面活性剂的分子结构中同时具有正、负电荷基团,在不同pH值介质中可表现出阳离子或阴离子表面活性剂的性质。 1、卵磷脂:是制备注射用乳剂及脂质微粒制剂的主要辅料 2、氨基酸型和甜菜碱型: 氨基酸型:R-NH+2-CH2CH2COO- 甜菜碱型:R-N+(CH3)2-COO—。 在碱性水溶液中呈阴离子表面活性剂的性质,具有很好的起泡、去污作用;在酸性溶液中则呈阳离子表面活性剂的性质,具有很强的杀菌能力。 非离子表面活性剂 1.脂肪酸甘油酯: 单硬脂酸甘油酯; HLB为3~4,主要用作W/O型乳剂辅助乳化剂。 2.多元醇 蔗糖酯:HLB(5~13)O/W乳化剂、分散剂 脂肪酸山梨坦(Span) :W/O乳化剂 聚山梨酯(Tween) : O/W乳化剂 3.聚氧乙烯型:Myrij(长链脂肪酸酯);Brij (脂肪醇酯) 4.聚氧乙烯-聚氧丙烯共聚物: Poloxamer 能耐受热压灭菌和低温冰冻,静脉乳剂的乳化剂[编辑本段]表面活性剂的基本性质 1.临界胶束浓度(CMC):表面活性剂分子缔合形成胶束的最低浓度。当其浓度高于CMC值时,表面活性剂的排列成球状、棒状、束状、层状/板状等结构。 2.亲水亲油平衡值(HLB):表面活性剂分子中亲水和亲油基团对油或水的综合亲合力。根据经验,将表面活性剂的HLB值范围限定在0-40,非离子型的HLB值在0-20。 混合加和性:HLB=(HLBa Wa+HLBb /Wb) / (Wa+Wb) 理论计算:HLB=∑(亲水基团HLB值)+∑(亲油基团HLB)-7 表面活性剂的基本性质 3、增溶作用 1)胶束增溶:水不溶性、微溶性药物在胶束溶液中溶解度显著增加 非洛地平-----0.025%吐温-----10倍 (表)亲水基团---亲油基团, (药)极性基团---非极性基团 cmc,“表”的量,胶束,增溶量,最大增溶浓度(MAC)[编辑本段]表面活性剂的应用 1.增溶:C>CMC ( HLB13~18) 增溶体系为热力学平衡体系 CMC越低、缔合数越大,增溶量(MAC)就越高 温度对增溶的影响:温度影响胶束的形成,影响增溶质的溶解,影响表面活性剂的溶解度 Krafft点:离子型表面活性剂的溶解度随温度增加而急剧增大这一温度称为Krafft点, Krafft点越高,其临界胶束浓度越小 昙点:对于聚氧乙烯型非离子表面活性剂,温度升高到一定程度时,溶解度急剧下降并析出,溶液出现混浊,这一现象称为起昙,此温度称为昙点。在聚氧乙烯链相同时,碳氢链越长,浊点越低;在碳氢链相同时,聚氧乙烯链越长则浊点越高。 2.乳化: HLB:3-8 W /O型乳化剂:Tween;一价皂 HLB:8-16 O/W型乳化剂:Span;二价皂 3.润湿:(HLB:7-9) 4.助悬: 5.起炮和消泡 6.消毒、杀菌 7.去污剂[编辑本段]表面活性剂的结构 传统观念上认为,表面活性剂是一类即使在很低浓度时也能显著降低表(界)面张力的物质。随着对表面活性剂研究的深入,目前一般认为只要在较低浓度下能显著改变表(界)面性质或与此相关、由此派生的性质的物质,都可以划归表面活性剂范畴。 无论何种表面活性剂,其分子结构均由两部分构成。分子的一端为非极亲油的疏水基,有时也称为亲油基;分子的另一端为极性亲水的亲水基,有时也称为疏油基或形象地称为亲水头。两类结构与性能截然相反的分子碎片或基团分处于同一分子的两端并以化学键相连接,形成了一种不对称的、极性的结构,因而赋予了该类特殊分子既亲水、又亲油,便又不是整体亲水或亲油的特性。表面活性剂的这种特有结构通常称之为“双亲结构”(amphiphilic structure),表面活性剂分子因而也常被称作“双亲分子”。 根据所需要的性质和具体应用场合不同,有时要求表面活性剂具有不同的亲水亲油结构和相对密度。通过变换亲水基或亲油基种类、所占份额及在分子结构中的位置,可以达到所需亲水亲油平衡的目的。经过多年研究和生产,已派生出许多表面活性剂种类,每一种类又包含众多品种,给识别和挑选某个具体品种带来困难。因此,必须对成千上万种表面活性剂作一科学分类,才有利于进一步研究和生产新品种,并为筛选、应用表面活性剂提供便利。[编辑本段]表面活性剂的历史发展 表面活性剂和合成洗涤剂形成一门工业得追溯到本世纪30年代,以石油化工原料衍生的合成表面活性剂和洗涤剂打破了肥皂一统天下的局面。经过60余年的发展,1995年世界洗涤剂总产量达到4300万吨,其中肥皂900万吨。据专家预测,全世界人口从2000年到2050年将翻一番,洗涤剂总量将从5000万吨增加到12000万吨,净增1.4培,这是一个令人鼓舞的数字。 中国的表面活性剂和合成洗涤剂工业起始于50年代,尽管起步较晚,但发展较快。1995年洗涤用品总量已达到310万吨,仅次于美国,排名世界第二位。其中合成洗涤剂的生产量从1980年的40万吨上升到1995年的230万吨,净增4.7倍,并以年平均增长率大于10%的速度增长。据中国权威部门预测,2000年洗涤用品总量将达到360万吨,其中合成洗涤剂将达到65.5万吨。其中产量超万吨的表面活性剂品种计有:直链烷基苯磺酸钠(LAS)、脂肪醇聚氧乙烯醚硫酸钠(AES)、脂肪醇聚氧乙烯醚硫酸铵(AESA)、月桂醇硫酸钠(K12或SDS)、壬基酚聚氧乙烯(10)醚(TX-10)、平平加O、二乙醇酰胺(6501)硬脂酸甘油单酯、木质素磺酸盐、重烷基苯磺酸盐、烷基磺酸盐(石油磺酸盐)、扩散剂NNO、扩散剂MF、烷基聚醚(PO-EO共聚物)、脂肪醇聚氧乙烯(3)醚(AEO-3)等。 表面活性剂的化学结构与性能的关系 1.亲疏平衡值与性能之间的关系 H·L·B值:表示表面活性剂的亲水疏水性能 (Hydrophile-Lipophile Balance) 表面活性剂要呈现特有的界面活性,必须使疏水基和亲水基之间有一定的平衡。 石蜡HLB值=0(无亲水基) 聚乙二醇HLB值=20(完全亲水) 对阴离子表面活性剂,可通过乳化标准油来确定HLB值。 HLB值 15~18 13~15 8~8 7~9 3.5~6 1.5~3 用途 增溶剂 洗涤剂 油/水型乳化剂 润湿剂 水/油乳化剂 消泡剂 HLB值可作为选用表面活性剂的参考依据。 3. 疏水基种类与性能 疏水基按应用分四种 (1) 脂肪烃: (2) 芳烃: (3) 混合烃: (4) 带有弱亲水性基 (5) 其他:全氟烃基 疏水性大小:(5)>(1)>(3)>(2)>(4) 3.亲水基的位置与性能 末端:净洗作用强,润湿性差;中间:相反。 4.分子量与性能 HLB值、亲水基、疏水基相同,分子量小,润湿作用好,去污力差; 分子量大,润湿作用差,去污力好。 5.浊点 对非离子表面活性剂来说,亲水性取决于醚键的多少,醚与水分子的结合是放热反应。 当温度↑,水分子逐渐脱离醚建,而出现混浊现象,刚刚出现混浊时的温度称浊点。此时表面活性剂失去作用。浊点越高,使用的温度范围广。
表面活性剂在化妆品中的应用摘要:论述了表面活性剂的功能,如润湿、分散、乳化、增溶、起泡、消泡和洗涤去污等功能,以及在化妆品中的作用。介绍了表面活性剂和化妆品的分类情况,化妆品的原料以及化妆品对表面活性剂的要求。详细介绍了化妆品中常用的几种表面活性剂。对化妆品中用的表面活性剂的发展趋势进行了阐述。关键词:表面活性剂;化妆品;功能;应用表面活性剂在化妆品中的主要功能包括乳化、分散、增溶、起泡、清洗、润滑和柔软等。表面活性剂在化妆品中具有广泛的用途,起着重要的作用。化妆品中所利用的表面活性剂的性能不仅仅是其单一的性能,而是利用其多种性能,因此,表面活性剂是化妆品生产中不可缺少的原料,广泛应用于化妆品中。化妆品是指以涂抹、喷、洒或者其他类似方法,施于人体(皮肤、毛发、指趾甲和口唇齿等),以达到清洁、保养、美化、修饰和改变外观,或者修正人体气味,保持良好状态为目的的产品。目前,化妆品的发展趋势是向疗效性、功能性和天然性方向发展。1表面活性剂的分类表面活性剂的分类方法有很多种,根据表面活性剂的来源进行分类,通常把表面活性剂分为合成表面活性剂、天然表面活性剂和生物表面活性剂三大类。1.1合成表面活性剂合成表面活性剂是指以石油、天然气为原料,通过化学方法合成制备的表面活性剂。表面活性剂在性质上的差异,除与烃基的大小和形状有关外,主要与亲水基团类型有关。一般以亲水基团的结构为依据来分类,按亲水基团是否带电可将表面活性剂分为离子型和非离子型两大类,其中离子型表面活性剂又分为阳离子表面活性剂、阴离子表面活性剂和两性离子表面活性剂。1.2天然表面活性剂20世纪70年代的石油危机对以石油为基本原料的表面活性剂工业产生了巨大的冲击,引起人们对能源消耗、工艺生产过程、生态学和石油制品安全性等一系列问题的思考,从而引发了以天然油脂为原料生产表面活性剂的重大变革。由于生物新技术的应用,油脂分离精制技术的发展,植物油脂品种的改良及增产,使得大量获得价格较低的高纯度的天然油脂成为可能,新的抗氧化剂的开发成功,解决了天然油脂腐败变质的问题,再加上人们对安全及环保意识的提高,以油脂为原料的天然表面活性剂的开发引起人们的高度重视。目前在天然油脂中最受重视的要数棕榈油和棕榈仁油。1.3生物表面活性剂生物表面活性剂是指由细菌、酵母和真菌等多种微生物产生的具有表面活性剂特征的化合物。用微生物生产表面活性剂是20世纪70年代后期国际生物工程领域中研究的新课题。用微生物制取生物表面活性剂可以得到许多难以用化学方法合成的产物,在结构中引进了新的化学基团,而制得的产物易于被生物完全降解,无毒性,在生态学上是安全的。生物表面活性剂根据其亲水基的不同可分为糖脂系、酰基缩氨酸系、磷脂系、脂肪酸系和高分子表面活性剂五类。2表面活性剂的功能表面活性剂是一类具有多种功能的精细化学品,表面活性剂具有润湿、分散、乳化、增溶、起泡、消泡和洗涤去污等多种功能。当液体与固体表面接触时,气体被排斥,原来的固-气界面消失,代之以固-液界面,这种现象称为润湿。从普遍意义而言,润湿是一种流体被另一种流体自表面取代的过程。通常把一种物质的颗粒或液滴以及微小的形态分散到另一介质中的过程叫分散。所得到的均匀、稳定的体系叫分散体。乳化是一种液体以微小液滴或液晶形式均匀分散到另一种不相混溶的液体介质中形成的具有相当稳定性的多相分散体系的过程。表面活性剂在水溶液中形成胶束后,具有能使不溶或微溶于水的有机化合物的溶解度显著增大的能力,且溶液呈透明状,这种作用称为增溶作用。由液体薄膜或固体薄膜隔离开的气泡聚集体称为泡沫,可分为液体泡沫和固体泡沫。在液体泡沫中,液体和气体的界面起主要作用。一般地说,当表面张力低,膜的强度高时,不论是稳定泡沫还是不稳定泡沫,起泡力都较好。溶液的黏度对泡沫稳定在两方面起作用:一方面是增强泡沫液膜的强度;另外,表面黏度大,膜液体不易流动排出,延缓了液膜破裂,而增强了泡沫的稳定性。消泡作用分为破泡和抑泡两种。具有破泡能力的物质称为破泡剂。有效的消泡剂既要能迅速破泡,又要能在相当长的时间内防止泡沫生成。洗涤去污作用是表面活性剂应用最广泛、最具有实用意义的基本特性。洗涤去污过程是极为复杂的,与污垢种类、基本性能、表面活性剂和助剂的种类和结构密切相关,而其过程又是多种表面现象,如吸附、润湿、渗透、乳化、分散、泡沫和增溶等在不同情况下的综合效应。3化妆品的分类化妆品能对人体面部、皮肤表面、毛发和口腔起清洁保护和美化作用。化妆品的品种多种多样,分类方式也各不相同。按使用部位可分为:皮肤用化妆品、毛发用化妆品、指甲用化妆品和口腔用化妆品。按使用目的可分为:洁净用化妆品、基础保护化妆品、美容化妆品和芳香制品,还可根据化妆品本身的剂型分类。4化妆品的原料制造化妆品所用的原料有很多种,据统计大概有3 000多种。根据化妆品原料在化妆品中所含比例的大小,可分为基质原料和配合原料。基质原料是调配各种化妆品的主体,也成为基础原料。膏霜类的油脂,香粉类的滑石粉等均属基质原料;配合原料是用来改善化妆品的某些性质和赋予色、香等的辅助原料,如膏霜中的乳化剂、抗氧化剂和防腐剂等均属配合原料。配合原料在化妆品中的比例虽小,但对化妆品的质量影响却很大。它们之间没有绝对的界限,某一种原料在化妆品中起着基质原料的作用,而在另一化妆品中可能仅起着辅助原料的作用。4.1基质原料1)油脂类油脂是组成膏霜类化妆品的基本原料,主要起护肤、柔滑和滋润等作用。脂肪酸甘油酯是组成动植物油脂的主要成分,在常温下呈液态的称为油,呈固态的称为脂。根据来源又可分为植物性油脂和动物性油脂。植物性油脂包括椰子油、橄榄油、蓖麻籽油、杏仁油、花生油、大豆油和棕榈油等。动物油脂包括牛油、猪油、貂油和海龟油等。这些动植物油脂加氢后的产物称为硬化油。在化妆品中常用的硬化油有:硬化椰子油、硬化牛脂、硬化蓖麻油和硬化大豆油等。2)蜡类蜡是高碳脂肪酸和高碳脂肪醇所组成的酯。在化妆品中主要作为固定剂,增加化妆品的稳定性,调节其黏度,提高液体油的熔点,使用时对皮肤产生柔软的效果。依据来源的不同,蜡类也可分为植物性蜡和动物性蜡。植物性蜡包括巴西棕榈蜡、霍霍巴蜡和小烛树蜡等。动物蜡类包括蜂蜡、羊毛脂蜡、鲸油和虫蜡等。3)高碳烃类用于化妆品原料中的烃类主要包括烷烃和烯烃,它们在化妆品中的主要作用是其溶解作用,净化皮肤表面,还能在皮肤表面形成憎水性油膜,来抑制皮肤表面水分的蒸发,提高化妆品的功效。在化妆品中用的主要包括角鲨烷、凡士林、液体石蜡和固体石蜡等。4)粉类粉类是组成香粉、爽身粉、胭脂、牙粉和牙膏等粉类化妆品的基质原料。一般是不溶于水的固体,经
159 生物技术在水处理药剂中的应用尹文静(安徽省建设工程勘察设计院, 安徽 合肥 230001)〔摘一要〕 随着科技的发展和研究的深入, 生物技术在水处理药剂中的应用越来越广泛。生物消毒、 生物表面活性 剂、 酶处理技术及噬菌体是水处理杀生剂。 在介绍微生物絮凝剂的分类, 絮凝机理及其特点后, 对微生物絮凝剂的问题进 行了阐述。 〔关键词〕 水处理药剂; 杀生剂; 微生物絮凝; 机理 〔中图分类号〕 Q5 〔文献标识码〕 A 〔文章编号〕 1009-5489 2009) ( 13-0159-02 水处理药剂是工业用水、 生活用水、 废水处理工程中所需的化 学药剂, 其主要作用是控制水垢、 污泥的形成, 减少泡沫, 减少与水 接触材料的腐蚀, 去除水中悬浮固体和有毒物质, 除臭、 脱色, 软化 和稳定水质等。目前, 我国水处理药剂的种类主要有缓蚀剂、 阻垢 剂、 杀生剂和絮凝剂, 其中缓蚀剂和阻垢剂都是有机和无机化学药 剂, 在品种和开发领域方面都已接近国际先进水平[1]。生物技术主 要应用于杀生剂和絮凝剂。 1、 生物杀生剂 水处理杀生剂主要用于控制或杀灭水中的细菌、藻类和真菌 等, 也可称为杀菌灭藻剂。 1.1 生物消毒。由于生物化工等前沿科技的发展, 生态环保型 的生物消毒技术在水处理领域里的研究和应用也愈来愈广泛。传 统的生物消毒法直接使用生物体自身进行消毒, 过程缓慢, 对细菌 芽袍一般无杀灭作用, 消毒效果难以确定, 消毒效率不高, 不利于 规模化应用, 达不到现代水处理工业中水消毒的要求。但是, 随着 一系列具有消毒活性的生物活性物质被提取出来,生物消毒法大 规模地、 经济地应用于市政水处理领域成为可能[2]。 1.2 生物表面活性剂。生物表面活性剂是一种生物体系新陈 代谢产生的双亲媒体化合物,具有良好的抗菌性能。日本 Itoh 实 验室从 Pseudomonas sp 得到的鼠李糖脂具有一定的抗菌、 抗病毒 和抗支原体的性能, Besson 实验室从 Bacillus sp. 中分离的一种脂 肽, 具有良好的溶菌和抗菌作用。 1.3 酶处理技术。微生物能产生细胞外聚合物并与细胞一起 而酶可以催化水解这些细胞外聚合物,使之变成非聚合类物质而 易于去除。酶用于杀生和处理黏泥是 20 世纪 70 年代提出的新方 法。 1.4 噬菌体。噬菌体是一种能够吃掉细菌或藻类的微生物, 它 又称为细菌病毒,它只对细菌或藻类的细胞发生作用。它依靠寄 有絮凝能力的微生物, 其中霉菌 8 种, 细菌 5 种, 放线菌 5 种, 酵母 [3] 菌 1 种 。随后, 国内外的研究有不断地的发现直接利用微生物细 胞的絮凝剂。 2.1.2 利用微生物细胞壁提取物的絮凝剂。 如酵母细胞壁的葡 萄糖、甘露聚糖、蛋白质和 N 一乙酞葡萄糖胺等成分均可作絮凝 剂。1985 年.H.Takagi 等人研制了拟青霉素微生物生产的絮凝剂, 用乙酞沉淀和凝胶色谱法精制得到了称为 PF101 的絮凝剂。 2.1.3 利用微生物细胞代谢产物的絮凝剂。 1991 年 K ? Toeda 和 K. Urane 从上壤中分离山一株苹兰式阴性菌——产碱杆菌 AL201, 该菌在含有蔗糖的培养基中生长并分泌絮凝物质? Y.Bar 和 N.Shilo 发现一些海底蓝细菌(蓝藻)如 Pcc6720 和 J -1 能产生数 量可观的胞外絮凝体。 2.2 絮凝机理。微生物絮凝剂是带有电荷的生物大分子, 关于 它的絮凝机理目前提出和为人们所接受的主要有以下几种,其中 以桥联机理学说接受度最高。 2.2.1 桥联作用” “ 机理。絮凝剂借助离了键、 氢键, 同时结合了 多个颗粒分子, 因而在颗粒中建起 “中间桥梁” 的作用, 把这些颗粒 连接在一起, 从而使之形成网状结构沉淀下来。有实验表明, 絮凝 剂絮凝膨润土过程时, 通过测定等温线和 Zeta 电位发现絮凝剂确 实是以 “桥联方式” 絮凝的[4]。 2.2.2 “电性中和” 机理。水中胶体一般带有负电荷, 当带有一 定正电荷的链状生物大分子絮凝剂或其水解产物靠近这种胶粒时, 将中和其表面的部分电荷, 使胶体脱稳, 从而使胶粒之间、 胶粒与 许多实验中加入金属离子或调节 pH 即可影响其絮凝效果, 主要就 是通过影响其带电性而起的作用。 2.2.3 化学反应” “ 机理。生物大分子的某些活性基团与被絮凝 物质相应的基团发生了化学变化, 聚集成较大分子而沉淀下来, 通 过对生物大分子改性、 处理、 使其添加或丧失某些活性基团, 其絮 形成一层生物膜, 起到一种屏蔽作用, 使杀生剂难以向细胞内渗透。 絮凝剂分子之间易产生互相碰撞, 通过分子间作用力凝聚而沉淀。 生在叫做 “宿主” 的细菌或藻类中进行繁殖, 繁殖的结果是将 “宿主” 凝活性就大受影响。有些学者认为这些絮凝剂絮凝活性大部分依 吃掉, 此过程叫溶菌过程。噬菌体的溶菌作用不会影响生态环境, 赖于活性基团。温度影响絮凝效果,主要通过影响其化学基因活 而且由于自身能够繁殖, 用量少, 时效长, 用于防止和消除冷却水 系统中的生物黏泥。实践证明, 生物杀生剂具对人体健康无影响、 环境友好、 广谱杀菌、 使用安全方便、 成本相对低廉, 是目前相对比 较理想的消毒杀菌方法。因此生物杀生剂在市政水处理领域有比 较好的应用前景。 2、 生物絮凝剂 生物絮凝剂是利用生物技术通过细菌、真菌等微生物培养而 制成, 这种絮凝剂不仅可提高被絮物质的沉降性, 而且对环境无二 次污染。 2.1 微生物絮凝剂的分类。国外对微生物絮凝剂的研究始于 20 世纪 70 年代, 我国则起步较晚。微生物絮凝剂包括以下 3 类。 2.1.1 直接利用微生物细胞的絮凝剂。1976 年 J ? Nakamura 等人从霉菌、 细菌、 放线菌、 酵母菌等 214 种菌株中筛选出 19 种具 作者简介: 尹文静, 安徽省建设工程勘察设计院。 性从而影响其化学反应。 2.3 微生物絮凝剂的特点 2.3.1 比表面积大、 转化能力强、 繁殖迅速、 分布广。由于微生 物絮凝剂的来源广泛, 这样, 微生物絮凝剂的生产周期会非常短且 效率高。 2.3.2 高效无毒。 同等用量下, 与现在常用的铁盐、 铝盐和聚丙 烯酰胺相比, 微生物絮凝剂对活性污泥的絮凝效果速度最高, 而且 絮凝沉淀容易过滤。微生物絮凝剂是微生物菌体内菌体外分泌的 生物高分子物质, 属于有机高分子絮凝剂, 安全无毒。 2.3.3 消除二次污染。微生物絮凝剂是微生物的分泌物, 自然 不会危害它本身, 不会影响水处理效果, 且絮凝后的残渣可生物降 解, 对环境无害, 不会造成二次污染。 2.3.4 应用范围广、 脱色效果独特。微生物絮凝剂能处理的对 160象有活性污泥、 木炭、 粉煤灰、 墨水、 泥水、 河底沉积物、 高岭土和印 染废水等。而且, 微生物絮凝剂对悬浊液絮凝速度快、 用量少, 对 胶体、 溶液均有较好的絮凝效果, 对富含有机物的屠宰废水和血水 也有较好的去色效果。不足之处在于微生物絮凝剂的效果容易受 到有毒物质的干扰, 因此, 被处理的废水中必须无妨碍菌体生长的 因素。 2.4 问题及展望。微生物絮凝剂在处理废水方面有着突出的 优越性, 它的大规模生产和应用将有广阔的市场前景, 但是从规模 化生产和废水处理角度来看,对微生物絮凝剂的研究还存在制备 成本高、 测定絮凝剂活性的指标单一、 絮凝机理尚无明确解释、 针 对性不强等方面的问题。可以考虑从以下方面着手解决:1) ( 构建 工程菌体系; 优化原料, (2) 降低成本; 开展复合型微生物絮凝 (3) 剂研究。 (上接第 89 页) 你会乐于学习专业外语这门课程 )A]分组讨 式, ( [ 论 [B]小组情景对话练习: 模拟学术会议、 模拟面试等 [C]实用写作: [D]轮流英语演讲 论文摘要英文简历 [E] 更多引入专业相关的外文文献, 了解专业动态 [F] 联系大 [G]其它。 学外语四六级考试 如: 调查结果中 B、 F 选项均超过了 40%。课堂上可以通过 E、 提问、 模拟面试、 模拟国际会议的议程等多种教学形式实现师生互 动, 关键在于找到本班学生乐于参与的教学形式。 3、 结语 高等院校专业外语教学仍面临一些问题需要校方、 教师、 学生 协作解决, 作为教师在授课过程中, 应当认真倾听学生与同行的建 (上接第 140 页) 面做法, “逐层渐变、 按照 柔性抗裂” 的原理进行抹 灰。其基本原理是,各构造层满足允许变形与限制变形相统一的 原则, 各层材料的性能满足随时分散和消解变形应力, 各层弹性模 量变化指标相匹配逐层渐变,外层的柔韧变形量高于内层的变形 量; 按照这一原理建立的柔性渐变抗裂体系, 能够有效地吸收和消 纳应力变形,能够解决外墙表面易出现有害裂缝的技术难题。外 墙抹灰宜待房屋结构封顶 15 天后进行, 以使墙体有一个干缩稳定 的过程, 避免日后粉刷开裂; 顶层内抹灰应待屋面保温, 隔热架空 板施工完后再进行, 以减少温差效应; 外墙抹灰宜从次顶层开始往 下, 最后抹顶层, 这对防止干缩裂缝的产生有效果。实践证明, 采 用这种抹灰工艺, 对于防止墙体开裂有非常好的效果。 4、 结论 混凝土小型空心砌块是一种新型的建筑材料,它的出现给古 (上接第 157 页) 劳动等, 每周 3 - 5 次, 每次 30 分钟 (分几次完成 3、 结论 水处理技术作为一门跨学科跨行业的综合性技术., 将在环境 污染治理和缓解水资源矛盾中发挥它独有的和重要的作用,因而 将在未来得到相应的发展。生物技术逐渐会成为水处理剂应用中 的热点问题,我们应加大气力开发出更经济适用的微生物水处理 药剂, 使之更快的由实验室走向实际应用, 发挥其重大作用。 【参考文献】 [1]汪红, 王连军, 汪莞.绿色化学概念在水处理材料中的应用及发展状 况[J].无机材料学报, 2003.5. [2] 马小杰, 杨健, 吴敏等.市政水处理消毒技术现状与进展 [J].北方环 境, 2004.5. [3]刘宇程, 万里平, 陈明燕.水处理絮凝剂研究进展[J].化工时刊, 2005.6 [4] 王洪媛, 杨翔华.微生物絮凝剂的研究与应用进展 [J].抚顺石油学院 学报, 2002.4. 议, 不断完善教育教学方法, 以行动研究促进专业外语教学, 使学 生外语能力在所学专业领域中得到应用、 巩固和拓展 [4], 真正做到 学以致用。 【参考文献】 [1]荆雁凌.中小学教师怎样进行课题研究 (八) ——教育科研方法之教 育行动研究法.教育理论与实践, 2008.23. [2] 焦述强, 陈艳. 专业外语教学的几点看法和认识 [J]. 中国地质教育, 2006.3. [3]李瑞先.专业外语教学探讨[J].中国科技信息, 2007.22. [4]久毛措. (下半月) , 关于提高专业外语教学质量的探讨[J].科协论坛 2007.6. 老的砌体结构注入了新的生命力。由于它的诸多优点,已经成为 替代传统的粘土砖最有竞争力的墙体材料,而对于砌块墙体裂缝 的治理是一个系统工程, 砌块房屋裂缝问题涉及因素很多, 比较复 杂, 需要开展更深入的试验研究, 研究裂缝生产的机理, 影响因素, 探索具体薄弱部位, 只有建设、 设计、 施工、 科研、 生产、 政府管理等 部门协同工作, 共同努力, 集思广益, 墙体开裂的问题才能够得到 更好的解决。 【参考文献】 [1]砌体结构设计规范.GBJ3-88[S] [2] 文竹、 住宅建筑构造破坏预防 100 例 [M].黑龙江科学技术出版社, 2004. [3]混凝土小型空心砌块建筑技术规程.JGJ/T12004[S].中国建筑工业出 版社, 2004. tolRep, 2000.2. [3] Jorgensen HL, Warming L, Bjarnason NH, a.l How does quantitatet 也行) 。 ive ultrasound compare to dual X-ray absorptiometry at various skeletal sites in 4.1.3 药物补钙。 现在市场上的活性钙大多是沿用早年电解和 relation to the WHO diagnosis categories? Clin Physio,2001. l [4] DuboisEF, den Bergh JP, van Smals AG, a.l Comparison of quanet 水解工艺, 将生物碳酸钙经高温煅炼而生成一些含钙的混合物。 其 titative ultrasound parameters with dual energy X-ray absorptiometry in pre活性原料的饱和水溶液 pH 值高 (pH>12) 对胃粘膜有刺激, , 且其 and postmenopausal women. Neth J Med, 2001. [5] MontagnaniA,Gonnelli S,Cepollaro C,et a.l Usefulness of bone 元素钙含量低。目前我国可用于预防和治疗的口服钙剂只有含钙 quantitative ultrasound inmanagementofosteoporosis inmen. JClin Densitom, 量较低的碳酸钙 (较好的、 常用的如盖天力咀嚼片, 含元素钙 150mg/ 2001. 片) 葡萄溏酸钙、 、 乳酸钙以及已较少用的磷酸氢钙等。 [6]Hadji P, Hars O,Bock K, a.l Age changes of calcaneal ultrasonet 1999. 4.2 其他方面建议: (1)希望局领导能多组织大家多参加户外 ometry in healthy German women. CalcifTissue Int, [7]Landin-W ilhelmsen K, Johansson S,Rosengren A,et a.l Calcaneal 运动, 可以增加同事之间的交流、 增深彼此间的感情, 还可以陶冶 ultrasound measurements are determined by age and physical activity. Studies 2000. 情操锻炼身体; 午间工作休息之余, (2) 各单位可组织工作人员做 in two Swedish random population samples. J InternMed, [8]MagkosF, ManiosY, Babaroutsi E, a.l Quantitative ultrasound calet 广播操, 呼吸新鲜空气、 活动肢体, 更有利于提高工作效率; 多 (3) caneusmeasurements: normative data for the Greek population. Osteoporos 进行体质测定, 使现有的体测器材得到更充足的利用,体质测定, Int, “ 2005. [9] Vu Thuy TT,Chau TT,Cong DN,et a.l Assessment of low bone 利国利民” 。 mass in Vietnamese: comparison of QUS calcaneal ultrasonometer and data【参考文献】 derived T-scores. J Bone MinerMetab, 2003. [1] Kanis JA, Melton LJ 3rd, Christiansen C, a.l The diagnosis of oset [10]刘忠厚, 杨定焯, 朱汉民等.中国人原发性骨质疏松症诊断标准 (试 teoporosis. J BoneMinerRes, 1994.9. 行)[J].中国骨质疏松杂志, 1999. [2] Kanis JA. An update on the diagnosis of osteoporosis. Curr
人类正面临有史以来最严重的环境危机,由于人口急剧的增加,资源的消耗日益扩大,人均耕地、淡水和矿产等资源占有量逐渐减少,人口与资源的矛盾越来越尖锐;环保问题就成为经济与社会发展的重要问题之一。作为国民经济支柱产业之一的化学工业及相关产业,在为创造人类的物质文明作出重要贡献的同时,在生产活动中不断排放出大量有毒物质,化学工业也为环境和人类的健康带来一定的危害。发达国家对环境的治理,已开始从治标,即从末端治理污染转向治本,即开发清洁工业技术,消减污染源头,生产环境友好产品。“绿色技术”已成为21世纪化工技术与化学研究的热点和重要科技前沿。 绿色化学又称绿色技术、环境无害化学、环境友好化学、清洁化学。绿色化学即是用化学及其它技术和方法去减少或消除那些对人类健康、社区安全、生态环境有害的原料、催化剂、溶剂、试剂、产物、副产物等的使用和产生。 化学可以粗略地看作是研究从一种物质向另一种物质转化的科学。传统的化学虽然可以得到人类需要的新物质,但是在许多场合中却既未有效地利用资源,又产生大量排放物,造成严重的环境污染。绿色化学则是更高层次的化学,它的主要特点是“原子经济性”,即在获得物质的转化过程中充分利用每个原料原子,实现“零排放”,因此既可以充分利用资源,又不产生污染。传统化学向绿色化学的转变可以看作是化学从“粗放型”向“集约型”的转变。绿色化学可以变废为宝,可使经济效益大幅度提高。绿色化学已在全世界兴起,它对我国这样新兴的发展中国家更是一个难得的机遇。1 采用无毒、无害并可循环使用的新物料1.1 原料选择 工业化的发展为人类提供了许多新物料,它们在不断改善人类物质生活的同时,也带来大量生活废物,使人类的生活环境迅速恶化。为了既不降低人类的生活水平,又不破坏环境,我们必须研制并采用对环境无毒无害又可循环使用的新物料。 以塑料为例,据统计,到1989年美国在包装上使用的塑料就超过55.43亿kg(20世纪90年代数量进一步上升),打开包装后即被抛弃,这些塑料废物破坏环境是我们面临的一大问题:掩埋它们将永久留在土地里中;焚烧它们会放出剧毒。 我国也大量使用塑料包装,而且在农村还广泛地使用塑料大棚和地膜,造成的“白色污染”也越来越严重。解决这个问题的根本出路在于研制可以自然分解或生物降解的新型塑料,目前国际上已有一些成功的方法,例如:光降解塑料和生物降解塑料。前者已经投入生产。光生物双降解塑料研究是我国“八五”科技攻关的一个重大项目,已取得一些进展。1.2 溶剂的选择 大量的与化学制造相关的污染问题不仅来源于原料和产品,而且源自在其制造过程中使用的物质。最常见的是在反应介质,分离和配方中所用的溶剂。在传统的有机反应中,有机溶剂是最常用的反应介质,这主要是因为它们能较好地溶解有机化合物。但有机溶剂的毒性和难以回收又使之成为对环境有害的因素。因此,在无溶剂存在下进行的有机反应,用水作反应介质,以及超临界流体作反应介质或萃取溶剂将成为发展洁净合成的重要途径。1.2.1 固相反应 固相化学反应实际上是在无溶剂化作用的新颖化学环境下进行的反应,有时可比溶液反应更为有效并达到更好的选择性。它是避免使用挥发性溶剂的一个研究动向。1.2.2 以水为溶剂的反应 由于大多数有机化合物在水中的溶解性差,而且许多试剂在水中会分解,因此一般避免用水作反应介质。但水作为反应溶剂有其独特的优越性,因为水是地球上自然丰度最高的“溶剂”,价廉、无毒、不危害环境。此外水溶剂特有的疏水效用对一些重要有机转化是十分有益的,有时可提高反应速率和选择性,更何况生命体内的化学反应大多是在水中进行的。 水相有机合成在有机金属类反应,水相Lewis酸催化的反应现都已取得较大进展。因此在某些有机化学反应中,开发利用以水作溶剂是大有可为的。1.2.3 超临界流体作为有机溶剂 超临界流体是指超临界温度及超临界压力下的流体,是一种介于气态与液态之间的流体。在无毒无害溶剂的研究中,最活跃的研究项目是开发超临界流体(SCF),特别是超临界CO2作溶剂。超临界CO2是指温度和压力在其临界点(31.10℃,7 477.79KPa)以上的CO2流体。它通常具有流体的密度,因而有常规常态溶剂的溶解度;在相同条件下,它又具有气体的粘度,因而又具有很高的传质速度。而且,由于具有很大的可压缩性,流体的密度,溶剂溶解度和粘度等性能可由压力和温度的变化来调节。其最大优点是无毒、不可燃、价廉等。1.3 催化剂的选择 许多传统的有机反应用到酸、碱液体催化剂。如烃类的烷基化反应一般使用氢氟酸、硫酸、三氯化铝等液体酸做催化剂,这些液体酸催化剂的共同缺点是:对设备腐蚀严重,对人身危害和产生废渣污染环境。为了保护环境,多年来人们从分子筛、杂多酸、超强酸等新催化材料入手,大力开发固体酸做为烷基催化剂。其中采用新型分子筛催化剂的乙苯液相烃化技术较为成熟,这种催化剂选择性高,乙苯收率超过99.6%,而且催化剂寿命长。2 化学反应的绿色化 为了节约资源和减少污染,合成效率成了当今合成方法学研究中关注的焦点。合成效率包括两方面,一是选择性(化学、区域、非对映体和对映体选择性),另一个就是原子经济性,即原料分子中究竟有百分之几的原子转化为产物,理想的原子经济反应是原料分子中的原子百分之百的转变为产物,不产生副产物或废弃物,实现废物的“零排放”。为此,化学化工工作者在设计合成路线时,要减少“中转”、增加“直快”、“特快”,更加经济合理地利用原料分子中的每一个原子,减少中间产物的形成,少用或不用保护基或离去基,避免副产物或废弃物的产生。实现原子经济反应的有效手段很多,在些不作赘述。3 生物技术的应用 生物科学是当代科学的前沿。生物技术是世界范围内新技术革命的重要组成部分,生物化工是21世纪最具有发展潜力的产业之一,它将成为创造巨大社会财富的重要产业体系。采用生物技术已在能源、采油、采矿、肥料、农药、蛋白质、聚合物、表面活性剂、催化剂、基本有机化工原料、精细化学品的制造等方面得到广泛应用。从发展绿色化学的角度出发,它最大的特点和魅力就在节约能源和易于实现无污染生产而且可以实现用一般化工技术难以实现的化工过程,其产品常常又具有特殊性能。因此,生物技术的研究和应用倍受青睐。 绿色化学是人类的一项重要战略任务。绿色化学的根本目的是从节约资源和防止污染的观点来重新审视和改革传统化学,从而使我们对环境的治理可以从治标中转向治本。绿色化学的发展不仅将对环境保护产生重大影响,而且将为我国的企业与国际接轨创造条件!
最近几年国内精细化工行业都在关注一个问题:21世纪精细化工的发展趋势。自从20世纪90年代后期以来,我国决定加大在能源、信息、生物、材料等高新技术领域的投资力度,化工作为传统产业没有被列入国家优先发展的行列,而被有的人归于夕阳工业。但事实并非如此,特别是我们精细化工,由于它在国民经济中的特殊地位,由于它和能源、信息、生物化工以及材料学科之间的紧密联系,它在我国现代化建设中的作用将愈来愈重要,而成为不可替代、不可或缺的关键一环。 在这里我充满信心地告诉大家,精细化工在中国、乃至在世界,依然是朝阳工业,前景一片光明。 一.精细化工在国民经济中的地位 我们都知道精细化工是生产精细化学品的化工行业,主要包括医药、染料、农药、涂料、表面活性剂、催化剂,助剂和化学试剂等传统的化工部门,也包括食品添加剂、饲料添加剂、油田化学品、电子工业用化学品、皮革化学品、功能高分子材料和生命科学用材料等近20年来逐渐发展起来的新领域。中国是个人口大国,十多亿人的生存与生存质量与精细化工息息相关。增加粮食产量,需要多种高效低毒的农药、植物生长调节剂、除草剂、复合肥料;抵疾病需要多种医药、抗生素;石化工业生产需要催化剂、表面活性剂、油品添加剂和橡胶助剂等。服装、丝绸工业需要高质量的染料、纺织助剂、颜料;美化环境、改善居住条件需要不同的涂料、黏合剂;据报道一台电视机与2000多种化学品有关,其中绝大部分是精细化学品。 正由于精细化工对国民经济和人民生活的重大贡献,被我国先后列为“六五”、“七五”、“八五”和“九五”国民经济发展的战略重点,并作为七大重点工程之一来抓。经过20多年的努力,我国精细化工得到了长足的发展。目前我国精细化工企业总数已达11000余家,传统领域精细化工企业7000多家,其中染料、颜料企业1525家,农药及其制剂加工企业1243家,涂料生产企业4544家;新领域精细化工企业3900家. 精细化工行业总产值达1200亿元,其中新领域精细化工产值为600~700亿元。许多精细化工产品产量如染料、农药等居世界前列。有部分精细化工产品已能满足国内需求。 精细化工的发展,促进了其它行业如农业、医药、纺织印染、皮革、造纸等衣、食、行和用水平的提高,同时为这些行业带来了经济效益的提高。 精细化工的发展,为生物技术、信息技术、新材料、新能源技术、环保等高新技术的发展提供了保证。 精细化工的发展,直接为石油和石油化工三大合成材料(塑料、橡胶和纤维)的生产及加工、农业化学品的生产,提供催化剂、助剂、特种气体、特种材料(防腐、防高温、耐溶剂)、阻燃剂、膜材料,各种添加剂,工业表面活性剂、环境保护治理化学品等,保证和促进了石油和化学工业的发展。 精细化工的发展,提高了化学工业的加工深度,提高了大的石油公司、大的化工公司的经济效益。 精细化工的发展,提高了国家的化学工业的整体经济效益,增强了国家的经济实力。 当今,精细化工已成为世界化学工业发展的战略重点之一,也是化学工业激烈竞争的焦点之一。因此国家经贸委在“十五”工业结构调整规划纲要中指出:化学工业的发展是以“化肥、农药和精细化工为重点”。化肥和农药直接与粮食生产有关,所以精细化工和粮食生产一样重要,只能立足于国内,不能依赖于国外,关系国计民生的、不可或缺的重要经济部门。 二.国内外精细化工的发展现状 据统计全球500强中有17家化工企业,其中前几位是美国杜邦公司、德国巴斯夫公司、赫斯特公司和拜尔公司,美国的道公司以及瑞士的汽巴—嘉基公司等。它们都有百余年的历史,在20世纪70年代以前都大力发展石油化工,后来逐渐转向精细化工。德国是发展精细化工最早的国家。它们从煤化工起家,在20世纪50年代以前,以煤化工为原料的占80%左右,但由于煤化工的工艺路线和效益不佳,1970年起以石油为原料的化工产品比例猛增到80 % 以上。 杜邦公司是世界上最大的化学公司,成立于1802年。它从1980年前后才从石油化工大幅度地转向精细化工,比德国和日本起步晚,但发展速度却很快。该公司对以往通用产品以提高质量、降低成本和提高市场竞争力为目标,80年代以来,扩大了专用化学品的生产,主要为农药、医药、特种聚合物、复合材料等精细化工产品的生产。该公司的长远目标为发展生命科学制品,为保健品、抗癌、抗衰老等药物和仿生医疗品,1995年该公司利润为33亿美元。
先去知网下载,研究下别人怎么写的,从中提炼出来自己的东西就可以了,不会找的话,可以去我baidu空间里看下论文的查找步骤
Abstract: in this paper, we reviewed the ceria based polishing powder preparation process and the result analysis, the selection of the wet solid phase mechanochemical method as the experimental method, and try to add NH4F as dopants to study the on the polishing powder morphology and particle diameter were investigated using SEM and XRD of sample morphology and particle size were characterized and analyzed. For the doping amount of NH4F were compared, obtained the Ce:F=1:0.4 for optimum adding amount, of polishing powder is spherical, particle size is about 30nm and purity can meet the purity (REO) is equal to or more than 92%. After determining the morphology of the polishing powder, the milling time is also analyzed, and the conclusion of the reaction of the 2H is concluded.. Because obtained after ball milling precursor to thermal decomposition, so the experiment of the precursor decomposition temperature was studied. After the experiment has been in 400 DEG C when the precursor is decomposed completely, with the rise of temperature, polishing powder particle trail began change. Experiments were carried out to add a variety of surfactants, and the results show that the dispersion of PEG4000 and NaCl is beneficial for improving the dispersion of the powders..Keywords: CeO2 polishing powder; wet solid mechanical milling; thermal decomposition temperature; particle size; NH4F
表面活性剂在工业生产和日常生活中占有非常重要的地位,目前合成的表面活性剂近6000种,广泛应用于乳化,分散,增溶,发泡,洗涤,柔软等各个方面,素有“工业味精”的称号。表面活性剂的分子结构具有两亲性:一端为亲水基团,另一端为憎水基团……
表面活性剂(surfactant),是指具有固定的亲水亲油基团,在溶液的表面能定向排列,并能使表面张力显著下降的物质。表面活性剂的分子结构具有两亲性:一端为亲水基团,另一端为憎水基团;亲水基团常为极性的基团,如羧酸、磺酸、硫酸、氨基或胺基及其盐,也可是羟基、酰胺基、醚键等;而憎水基团常为非极性烃链,如8个碳原子以上烃链。表面活性剂分为离子型表面活性剂和非离子型表面活性剂等。