首页

> 学术发表知识库

首页 学术发表知识库 问题

故障诊断研究现状论文

发布时间:

故障诊断研究现状论文

“汽车”这一名词在当今飞速发展的时代,有着举足轻重的位置。它已经成为了人们生活中的一部分,在我国汽车保有量越来越多,车型也越来越复杂。尤其是高科技的飞速发展,一些新技术、新材料在汽车上的广泛应用后,给汽车故障诊断与排除增加了一定难度。汽车点火系统工作状况的好坏,直接影响发动机的动力性和经济性。在汽车维修过程中,点火系统故障率相对较高。因此,本篇论文通过介绍常见的汽车点火系统故障诊断,并提出修理方法。一、汽车点火系统的分类汽车点火系统一般分为有分电器和无分电器两大类。有分电器一般都是由一个点火线圈管理全部汽缸的点火。无分电器点火系统又分两种,一种是两个缸共用一个点火线圈,同时点火,其中一个缸为有效点火,另一个缸为无效点火;还有一种是一个缸一个点火线圈,无高压线顺序独立点火。下面介绍几种常见故障:发动机不能起动、发动机运转不平稳和发动机功率下降、油耗增大、加速不良。故障分析及排除方法:(1)发动机不能起动故障部位:点火开关至分电器间电路,电流表、点火开关,断电器,电容器,传感器,点火控制器,分电器盖或分火头,高压导线,火花塞,分电器,分缸线。故障原因:有短路、断路、接触不良处,电流表、点火开关损坏,点火线圈损坏、附加电阻断路,触点氧化、烧蚀,固定触点搭铁不良,连线断路、搭铁,触点间隙过大、过小,损坏,传感器线圈短路、断路、搭铁,转子凸轮与铁心间隙不当,霍尔元件损坏,损坏,漏电,漏电或断路,积炭或油污,间隙过大、过小,漏电,分电器安装位置有误,分缸线位置插错。排除方法:检查、紧固、更换导线,更换,更换,清洁或更换,修理加强搭铁,修理,调整,更换,修理或更换,调整,更换,更换,更换,更换,清洁或更换热特性适当的火花塞,调整,更换,调整后重新对点火正时,重新配线。(2)发动机运转不稳定故障部位:点火正时,火花塞,高压导线。故障原因:点火正时调整不当,点火提前角调节装置故障,分电器轴松旷、断电器凸轮磨损不均,个别缸火花塞绝缘损坏或积炭,个别分缸线损坏、漏电。排除方法:重新对点火正时,修理或更换分电器,更换分电器,更换火花塞,更换。(3)发动机功率下降、油耗增大、加速不良故障部位:点火正时,断电器。故障原因:点火正时调整不当,点火提前角调节装置故障,触点间隙过大。排除方法:重新对点火正时,维修或更换分电器,修理或更换。传统点火系故障诊断(触点式)传统点火系由电源、点火开关、附加电阻、附加电阻短路开关、点火线圈、分电器(包括断电器、配电器及点火提前角调节装置)、高压线、火花塞组成。断电器触点的闭合与断开控制点火线圈初级电路的通断,当初级电路切断时,产生点火高压,经配电器、高压线送至火花塞跳火,点燃汽缸内的可燃混合气。传统点火系常见的故障原因有:⑴低压电路接触不良、断路、短路、搭铁或搭铁不良;⑵断电器触点烧蚀、油污、间隙过大或过小、连线断路、触点弹簧弹力过弱;⑶电容器损坏、附加电阻断路;⑷蓄电池亏电、点火开关接触不良;⑸点火线圈损坏、高压线漏电;⑹分电器盖破裂、分火头损坏;⑺火花塞积炭、油污、绝缘体破裂或间隙不当;⑻分电器凸轮磨损不均;⑼分电器轴弯曲或磨损松旷;⑽分电器真空点火提前装置或离心点火提前装置失效;⑾点火正时失准、缸线错乱。通常把故障⑴—⑸称为低压电路故障,⑹—⑻称为高压电路故障,⑼—⑾称为综合故障。电子点火系故障诊断(无触点式)电子点火系统由传感器、点火控制器、分电器、火花塞等组成,取消了断电器触点,点火线圈初级电流通断受点火控制器控制,按点火信号传感器工作原理不同,有磁脉冲式、霍尔效应式等多种形式。脉冲无触点电子点火装置的组成及故障诊断磁脉冲无触点电子点火装置由磁脉冲式传感器、点火控制器、点火线圈、点火开关和蓄电池等组成。发动机工作时,磁脉冲传感器产生交变的点火信号,通过点火控制器控制点火线圈初级电流的通断和点火系工作。磁脉冲无触点电子点火装置常见故障原因有:⑴磁脉冲信号发生器损坏;⑵点火控制器损坏;⑶点火线圈损坏或性能不佳;⑷线路接触不良或有断路、短路;⑸分电器盖破裂、分火头损坏;⑹火花塞积炭、油污、绝缘体破裂或间隙不当;⑺分电器真空点火提前装置或离心点火提前装置失效;⑻点火正时失准、缸线错乱。霍尔效应式无触点电子点火装置的组成及故障诊断霍尔效应式无触点电子点火装置由点火开关、蓄电池、点火线圈、高压分线、火花塞、分电器、霍尔信号发生器和点火控制器等组成。点火信号由霍尔传感器产生,点火控制器将点火信号放大整形后控制点火线圈初级电流的通断和点火系工作。 霍尔效应式无触点电子点火装置与磁脉冲式无触点电子点火装置故障现象非常相似,不同的是点火信号由霍尔传感器产生。点火正时失准故障诊断最佳点火时刻是随发动机工况变化而变化的,为了使发动机在各种工况都能获得最佳点火提前角,分电器内装有离心式点火调节器和真空点火调节装置,初始点火提前角检查调整(点火正时)需人工进行。将发动机运转至正常温度,在车速为25—30km/h(试验转速因车型而不同)时突然急加速,若能听到短促而轻微的爆燃声并立即消失,表明点火正时正确;若无爆燃声为点火过迟;若爆燃声严重为点火过早。点火过迟或点火过早均应进行调整。松开分电器固定板,逆着分火头旋转方向转动分电器外壳(增大点火提前角)或顺着分火头旋转方向转动分电器外壳(减小点火提前角)。重复上述过程,点火提前角达到正常后将分电器固定。利用点火正时灯检查点火正时经验法诊断点火正时准确性较差,不能测量准确的点火提前角。利用点火正时灯可以测量不同转速下的点火提前角。点火正时灯是一种频率闪光灯,当延时电位器处于零位时,闪光与一缸点火时刻同步。通过调整延时电位器可推迟闪光时刻,当闪光时刻与上止点标记对正时,电位器上的指示值就是点火提前角。测量怠速是的点火提前角,可得到该发动机的初始点火提前角。测量不同工况的点火提前角,还可以反映出离心式点火调节器和真空点火调节装置的工作情况。将测量的值与标准值相比较,就可以判断点火正时是否准确,并为点火正时调整提供技术数据。少数气缸不工作故障诊断和排除步骤:少数气缸不工作故障诊断回火放炮车发抖,“突突”声音有节奏,稍高怠速更明显,缺缸故障莫迟犹。汽车在行驶过程中,如果发动机在各种转速下,消声器均发出有节奏的突突声,并拌有化油器回火、消声器放炮、车身发抖等现象,应停车检查,排除故障。在判断此故障时,应在稍高于怠速的转速下察听,这时,消声器有节奏突突声较为明显。另外,还可以用小油门快提速的方法判断。气缸不工作故障排除步骤:第一步,外部检查:不熄火,检查高压分线是否脱落、漏电或插错。脱落或插错,要重新插置。漏电,要更换高压分线。如果正常,就要断开分电器盖上各高压分线,观察发动机工作情况。第二步,断火试验:断开某缸高压分线后,如果发动机转速下降,为该缸工作良好。如果发动机转速升高,为分电器盖上有两缸旁插孔串电。如果发动机转速没有变化,为该缸不工作,这时,要检查该缸高压分线火花。第三步,吊火试验:高压分线火花无火,是分电器盖旁插孔漏电或凸轮角磨损不均。高压分线火花有火,观察发动机工作情况。第四步,看转速:发动机转速有好转,是火花塞工作不良。如果发动机转速不变,检查火花塞端高压分线跳火情况。第五步,跳火试验:有跳火,是火花塞不工作。不跳火,是高压分线损坏。第六步,检查配气机构的技术状况:可能是气门弹簧折断、过软,也可能是气缸垫损坏,气门座松脱或气门关闭不严。高压火花弱的故障诊断“突突”之声无节奏,低中高速它都有。回火放炮冒黑烟,容易熄火难发动。跳火距离五至七,颜色明亮声清脆。粗细正常看标准,中央跳火莫看错。发动机在各种转速下,消声器均发出无节奏的“突突”声,并冒黑烟,而且高转速比低转速明显,急加速时这种“突突”声加重,并伴有消声器放炮,有时化油器回火,还易造成发动机熄火。这是高压火花弱的故障特征。另外,在判断此故障时,还可观察高压分线跳火情况。以做进一步的检查。即:从分电器盖上取下高压分线,查看跳火情况。如果火花跳距短、声音小、火花较细、颜色发红,有时还有断火现象,即为高压火花弱故障。另外,如果分电器分线轻微漏电,就会出现检查中央高压线时火花强,而检查分线时火花弱的现象。诊断故障时,应特别区分中央高压线故障和分线故障这两个层次。

一、汽车点火系统的分类 汽车点火系统一般分为有分电器和无分电器两大类。有分电器一般都是由一个点火线圈管理全部汽缸的点火。无分电器点火系统又分两种,一种是两个缸共用一个点火线圈,同时点火,其中一个缸为有效点火,另一个缸为无效点火;还有一种是一个缸一个点火线圈,无高压线顺序独立点火。 下面介绍几种常见故障:发动机不能起动、发动机运转不平稳和发动机功率下降、油耗增大、加速不良。 故障分析及排除方法:(1)发动机不能起动故障部位:点火开关至分电器间电路,电流表、点火开关,断电器,电容器,传感器,点火控制器,分电器盖或分火头,高压导线,火花塞,分电器,分缸线。故障原因:有短路、断路、接触不良处,电流表、点火开关损坏,点火线圈损坏、附加电阻断路,触点氧化、烧蚀,固定触点搭铁不良,连线断路、搭铁,触点间隙过大、过小,损坏,传感器线圈短路、断路、搭铁,转子凸轮与铁心间隙不当,霍尔元件损坏,损坏,漏电,漏电或断路,积炭或油污,间隙过大、过小,漏电,分电器安装位置有误,分缸线位置插错。排除方法:检查、紧固、更换导线,更换,更换,清洁或更换,修理加强搭铁,修理,调整,更换,修理或更换,调整,更换,更换,更换,更换,清洁或更换热特性适当的火花塞,调整,更换,调整后重新对点火正时,重新配线。(2)发动机运转不稳定故障部位:点火正时,火花塞,高压导线。故障原因:点火正时调整不当,点火提前角调节装置故障,分电器轴松旷、断电器凸轮磨损不均,个别缸火花塞绝缘损坏或积炭,个别分缸线损坏、漏电。排除方法:重新对点火正时,修理或更换分电器,更换分电器,更换火花塞,更换。(3)发动机功率下降、油耗增大、加速不良故障部位:点火正时,断电器。故障原因:点火正时调整不当,点火提前角调节装置故障,触点间隙过大。排除方法:重新对点火正时,维修或更换分电器,修理或更换。 传统点火系故障诊断(触点式) 传统点火系由电源、点火开关、附加电阻、附加电阻短路开关、点火线圈、分电器(包括断电器、配电器及点火提前角调节装置)、高压线、火花塞组成。 断电器触点的闭合与断开控制点火线圈初级电路的通断,当初级电路切断时,产生点火高压,经配电器、高压线送至火花塞跳火,点燃汽缸内的可燃混合气。 传统点火系常见的故障原因有:⑴低压电路接触不良、断路、短路、搭铁或搭铁不良;⑵断电器触点烧蚀、油污、间隙过大或过小、连线断路、触点弹簧弹力过弱;⑶电容器损坏、附加电阻断路;⑷蓄电池亏电、点火开关接触不良;⑸点火线圈损坏、高压线漏电;⑹分电器盖破裂、分火头损坏;⑺火花塞积炭、油污、绝缘体破裂或间隙不当;⑻分电器凸轮磨损不均;⑼分电器轴弯曲或磨损松旷;⑽分电器真空点火提前装置或离心点火提前装置失效;⑾点火正时失准、缸线错乱。通常把故障⑴—⑸称为低压电路故障,⑹—⑻称为高压电路故障,⑼—⑾称为综合故障。 电子点火系故障诊断(无触点式) 电子点火系统由传感器、点火控制器、分电器、火花塞等组成,取消了断电器触点,点火线圈初级电流通断受点火控制器控制,按点火信号传感器工作原理不同,有磁脉冲式、霍尔效应式等多种形式。 脉冲无触点电子点火装置的组成及故障诊断 磁脉冲无触点电子点火装置由磁脉冲式传感器、点火控制器、点火线圈、点火开关和蓄电池等组成。发动机工作时,磁脉冲传感器产生交变的点火信号,通过点火控制器控制点火线圈初级电流的通断和点火系工作。 磁脉冲无触点电子点火装置常见故障原因有: ⑴磁脉冲信号发生器损坏;⑵点火控制器损坏;⑶点火线圈损坏或性能不佳;⑷线路接触不良或有断路、短路;⑸分电器盖破裂、分火头损坏;⑹火花塞积炭、油污、绝缘体破裂或间隙不当;⑺分电器真空点火提前装置或离心点火提前装置失效;⑻点火正时失准、缸线错乱。 霍尔效应式无触点电子点火装置的组成及故障诊断 霍尔效应式无触点电子点火装置由点火开关、蓄电池、点火线圈、高压分线、火花塞、分电器、霍尔信号发生器和点火控制器等组成。点火信号由霍尔传感器产生,点火控制器将点火信号放大整形后控制点火线圈初级电流的通断和点火系工作。 霍尔效应式无触点电子点火装置与磁脉冲式无触点电子点火装置故障现象非常相似,不同的是点火信号由霍尔传感器产生。 点火正时失准故障诊断 最佳点火时刻是随发动机工况变化而变化的,为了使发动机在各种工况都能获得最佳点火提前角,分电器内装有离心式点火调节器和真空点火调节装置,初始点火提前角检查调整(点火正时)需人工进行。将发动机运转至正常温度,在车速为25—30km/h(试验转速因车型而不同)时突然急加速,若能听到短促而轻微的爆燃声并立即消失,表明点火正时正确; 若无爆燃声为点火过迟;若爆燃声严重为点火过早。点火过迟或点火过早均应进行调整。松开分电器固定板,逆着分火头旋转方向转动分电器外壳(增大点火提前角)或顺着分火头旋转方向转动分电器外壳(减小点火提前角)。重复上述过程,点火提前角达到正常后将分电器固定。 利用点火正时灯检查点火正时 经验法诊断点火正时准确性较差,不能测量准确的点火提前角。利用点火正时灯可以测量不同转速下的点火提前角。 点火正时灯是一种频率闪光灯,当延时电位器处于零位时,闪光与一缸点火时刻同步。通过调整延时电位器可推迟闪光时刻,当闪光时刻与上止点标记对正时,电位器上的指示值就是点火提前角。测量怠速是的点火提前角,可得到该发动机的初始点火提前角。测量不同工况的点火提前角,还可以反映出离心式点火调节器和真空点火调节装置的工作情况。将测量的值与标准值相比较,就可以判断点火正时是否准确,并为点火正时调整提供技术数据。 少数气缸不工作故障诊断和排除步骤:少数气缸不工作故障诊断 回火放炮车发抖,“突突”声音有节奏, 稍高怠速更明显,缺缸故障莫迟犹。 汽车在行驶过程中,如果发动机在各种转速下,消声器均发出有节奏的突突声,并拌有化油器回火、消声器放炮、车身发抖等现象,应停车检查,排除故障。在判断此故障时,应在稍高于怠速的转速下察听,这时,消声器有节奏突突声较为明显。另外,还可以用小油门快提速的方法判断。 气缸不工作故障排除步骤: 第一步,外部检查:不熄火,检查高压分线是否脱落、漏电或插错。脱落或插错,要重新插置。漏电,要更换高压分线。如果正常,就要断开分电器盖上各高压分线,观察发动机工作情况。 第二步,断火试验:断开某缸高压分线后,如果发动机转速下降,为该缸工作良好。如果发动机转速升高,为分电器盖上有两缸旁插孔串电。如果发动机转速没有变化,为该缸不工作,这时,要检查该缸高压分线火花。 第三步,吊火试验:高压分线火花无火,是分电器盖旁插孔漏电或凸轮角磨损不均。高压分线火花有火,观察发动机工作情况。 第四步,看转速:发动机转速有好转,是火花塞工作不良。如果发动机转速不变,检查火花塞端高压分线跳火情况。 第五步,跳火试验:有跳火,是火花塞不工作。不跳火,是高压分线损坏。 第六步,检查配气机构的技术状况:可能是气门弹簧折断、过软,也可能是气缸垫损坏,气门座松脱或气门关闭不严。 高压火花弱的故障诊断 “突突”之声无节奏,低中高速它都有。 回火放炮冒黑烟,容易熄火难发动。 跳火距离五至七,颜色明亮声清脆。 粗细正常看标准,中央跳火莫看错。 发动机在各种转速下,消声器均发出无节奏的“突突”声,并冒黑烟,而且高转速比低转速明显,急加速时这种“突突”声加重,并伴有消声器放炮,有时化油器回火,还易造成发动机熄火。这是高压火花弱的故障特征。另外,在判断此故障时,还可观察高压分线跳火情况。以做进一步的检查。即:从分电器盖上取下高压分线,查看跳火情况。如果火花跳距短、声音小、火花较细、颜色发红,有时还有断火现象,即为高压火花弱故障。 另外,如果分电器分线轻微漏电,就会出现检查中央高压线时火花强,而检查分线时火花弱的现象。诊断故障时,应特别区分中央高压线故障和分线故障这两个层次。

你是。。。。。我们老师也布置了这作业,顺便发到我邮箱吧,,,,谢谢啦,

循环泵故障诊断研究现状论文

[摘 要]火电厂辅机设备的状态检修技术开发是电厂状态检修整体技术的重要部分,热工研究院开发采用的离线状态监测+在线系统安全性监测+在线系统经济性监测+综合故障诊断与维修决策支持模式,是一个具有自主知识产权的新尝试。在福建电厂的成功实施表明,这种新模式比较适合中国电厂实际情况和需求,实现了创新性和实用性相结合的开发要求。 一、背景 随着电力体制改革的深入,发电厂对发电成本的控制越来越严格,如何合理的减少维修费用,同时有效提高运行安全性己是当务之急。汽轮机、锅炉等主机虽然是关键设备,但其制造技术已较成熟,监测技术也较完善,故其可靠性都比较高,由于火电厂系统复杂,而一些辅机设备往往是火电厂设备状态监测的薄弱环节,是造成机组非计划停机的主要原因之一,保证辅机设备的安全运行是电厂日常维护和维修的重要内容。同时,任何一个系统或主要辅机设备的故障都会影响电厂的经济性,造成发电成本的增加。因此,开展火电厂辅机状态监测工作,保证火电机组主要辅机设备良好的运行状态,达到优化检修的目的,具有十分重要的意义。近年来,针对辅机部件的状态监测和诊断技术的发展十分迅速,辅机部件(电动机和转动部件等)的状态监测技术已经成熟。主要的技术包括: 1. 振动诊断技术; 2. 油液分析技术; 3. 红外线设备诊断技术; 4. 超声波泄漏监听技术。振动监测技术主要是应用在线和便携式振动监测仪器,对设备的振动频谱进行连续或经常性检测,以分析设备的振动特性,判断运行状态变化趋势,为设备的运行和维修提供信息。油液分析主要是对润滑油的成分、污染度、机器磨损状况进行检测,以掌握润滑油的变质情况,判断磨损状态变化趋势,为设备的运行和维修提供信息。红外线设备诊断技术主要是使用便携式红外线检测仪,对电机设备的外壳超温状况进行检测,以发现设备的超温部位,采取及时维修措施。声波泄漏监听装置,也是利用超声波的特性,对设备发出的微小泄漏声音进行检测,以找出设备的泄漏部位,采取及时维修措施。国外辅机部件状态监测技术的发展已经成熟,监测装置和分析软件也比较先进,在国内电厂的应用越来越普遍。但在应用中发现,这些监测技术往往是独立的,主要是针对具体部件点的状况,并不能够全面监测辅机系统的状况;一般不能够全面综合的分析设备变化趋势,即不具有综合诊断故障功能。如何给出设备的整体状态诊断结果,为维修决策提供更全面的支持依据,有必要进行进一步的研究。二、 辅机状态检修关键技术研究简介该研究项目是国家电力公司状态检修课题的子项目,并作为与福建省电力有限公司、福建省电力试验研究院和厦门华夏国际电力发展有限公司合作课题,列为福建省电力公司2000年研究课题。主要研究内容包括:? 辅机状态检修模式的探讨;? 辅机状态监测技术的选择与实施;? 系统安全性监测技术的开发;? 系统运行经济性监测技术的开发;? 辅机状态综合诊断系统的开发;? 依托工程电厂实施;通过3年的努力。福建实施项目已经基本完成,并通过了福建省科委组织的鉴定。太仓电厂实施项目仍在进行中。 1. 辅机状态检修基本模式的探讨研究表明,辅机的维修类型主要包括:设备故障导致功能下降而维修,系统安全性下降导致的维修,系统性能(经济性)下降导致的维修等三个方面。以往的监测技术,主要注重辅机部件点的状态变化,而在系统层面上的变化没有给以重视,显然是不合理的。目前在国内推行的辅机振动状态监测方式包括在线和离线两种,在线方式费用高,信息量大,已在山东等一些电厂采用。而离线监测方式实际上早已在电厂普遍采用,近年来随着监测仪器的性能提高,离线监测的准确性已相当高,完全可以满足设备状态监测的需要,因而没有必要采用在线方式,同样可以达到满意效果。为此,热工研究院设计了辅机设备离线与在线相结合,安全性监测与经济性监测相结合,设备监测与系统监测相结合的新模式,即:离线设备状态监测+ 在线系统安全性监测+ 在线系统运行经济性监测+ 综合故障诊断与维修决策支持该模式充分考虑到中国电厂辅机运行状况和状态检修技术需求,力图提供一个完整的中国电厂辅机状态检修整体解决方案。 2. 辅机状态监测技术的选择与应用该课题在厦门华夏国际电力公司300MW 1、2号机组主要辅机上进行试点。采用国外成熟的振动监测、油液分析、电机马达监测和红外热成像等多种监测技术,定期对电厂主要辅机(旋转机械设备)的状态进行离线监测,包括有送、引风机、一次风机,给水泵、凝结水泵、循环水泵等。监测的主要内容包括辅机设备的振动、润滑油品质、电机的运行状况,转子笼条断裂、定子和转子间的机械偏心,设备的热像图(温度分布图)等。经过各方两年多的共同努力,监测工作己逐步走向规范,取得了阶段性成果。在振动监测方面,1A引风机开始监测时,其1号瓦(电机外伸端)、2号瓦(电机联轴器端)的轴向振动逐步增大,超过合格值4.5mm/s,最大分别为10.13 mm/s和5.52 mm/s,尤其是1号瓦振动接近危险值,严重影响机组的安全运行。根据分析,1号瓦轴承垂直和水平振动均在合格范围内,为 1.2 mm/s和 3.3 mm/s,说明引起轴向振动偏大的原因不是由于激振力大引起,分析其频谱图,主要是3倍频和5倍频的分量为主,而且2号瓦存在同样的问题,初步分析为风机转子止推轴承工作游隙过大引起的振动异常。由于1A引风机轴承自投用以来5年没有更换,决定在2002年4月的小修中对1、2号轴承及风机的止推轴承解体检查,确认止推轴承工作游隙过大。经更换1、2号轴承并调整好止推轴承工作间隙后,故障消除,其振动均在合格范围内。2001年5月,采用电机故障诊断仪对辅机设备进行监测,成功地诊断出2号机组电动给水泵电机出现的笼条断裂故障,电厂据此对电机进行及时的检修,避免事故的进一步恶化。2001年11月 5日和 12月 10日在电厂 1号机辅机,包括引风机润滑和液压系统、一次风机、送风机、凝结水泵、汽动给水泵、电动给水泵、循环水泵共计14台设备的轴承润滑油系统进行取样分析时,发现1A、1B引风机电机润滑油箱内存在大量可见的悬浮硬颗粒,1A、1B循环水泵在推力轴承故障后没有进行彻底清理而残留大量的磨损颗粒,颗粒度检测结果均超过NAS12级。由于大量颗粒超过滤芯精度,将会引起滤芯失效和破损,同时滤芯的堵塞会造成供油不稳,影响轴承转动面油膜的厚度,引起润滑不良;另外大颗粒进入轴承转动面间,还会引起磨料切削磨损,加剧了轴承磨损,缩短使用寿命,影响辅机运行稳定性。同时,由于颗粒度基数太大,不仅会掩盖轻度磨损的检测,而且还会堵塞传感器,损坏仪器。为此及时向电厂提出处理建议。进行油箱滤油处理,跟踪内部颗粒度变化情况。在红外监测方面,对主要辅机电机轴承进行监测。2001年5月大修后不久发现1A引风机轴承温度偏高。经检查发现由于轴承方向放置不当引起轴的轴向位移导致导油环和甩油环之间严重的磨损,2002年4月份机组小修时更换轴承,故障排除,截至 2002年11月,1A引风机的轴承温度有所下降。 3. 系统安全性监测技术的开发辅机系统的安全时电厂关心的重要方面,为此开发了烟风系统、泵组的安全监测系统。如电站风机尤其是轴流式风机,其本身具有较大的失速区,当风机运行在该区域时,风机内气流压力波动剧烈,当气流压力波动频率与叶片本身固有频率成整数倍时,容易引起风机叶片谐振、导致断裂,同时亦造成一次、二次风压及炉膛负压剧烈波动,影响燃烧、导致机组跳机。各种风机因其叶型不同,其失速区范围亦不同,我们通过冷态试验进行标定,同时建立实时失速报警系统,则当运行点接近失速区时,可提前采取措施。 图1 轴流风机实时特性曲线 4. 系统运行经济性监测技术的开发电站风机实际运行状况体现了锅炉运行的烟风阻力特性。而锅炉的烟风系统的阻力特性是随着机组的运行时间的延长而变化的,可通过电站风机的实际运行参数描绘锅炉不断变化的烟风阻力特性,同时显示出风机运行效率的变化,检测表盘开度与实际开度的偏差,为锅炉大修和风机改造提供依据。反映泵组性能的特征参数主要有温度、压力、流量、功率、电流、电压和转速等。对采集到的状态参数,通过分析计算给出泵组的性能参数,如效率、扬程等,并且与设计参数相比较,分析性能欠佳的主要原因,指出运行调整的方法和步骤。图4 风机状态监测主界面图5 泵组状态监测软件主界面 5. 辅机状态综合诊断系统的开发包括电站风烟系统故障诊断系统和电站泵组故障诊断系统两部分。电站风机故障预测及诊断维修的关键在于当设备的振动水平超过设定的报警值后能快速、准确地诊断出振动原因,并根据综合分析结果给出相应的处理方案。电站风机的振动故障主要表现在:轴承损坏、质量不平衡、弯轴、联轴器不对中、机械松动等问题。泵组故障诊断的主要内容有轴系振动、轴承温度、油液分析等,采用轴系振动、轴承温度和液力偶合器工作油温度等状态参数,分析评价泵组的运行水平,预测和诊断泵组故障,及时消除隐患,提高设备可用率。热工研究院开发了通用诊断平台,并在此基础上构建了辅机故障诊断软件,可实现包括振动在内的综合故障分析和诊断,并给出解决的措施。专家可以通过诊断平台建立诊断规则,并利用建立的规则模拟专家思维,对设备实现状态诊断,并可在电厂方便的进行规则修订。系统由知识获取、系统诊断和接口设计三部分构成。其主要特点有:图6 可视化的图形专家规则编辑器? 系统体现了电厂专用辅机设备监测的特点,弥补了电厂DCS和MIS系统中辅机运行状态监测的一些功能盲点,增加系统安全性、经济性监测功能,为维修和设备安全运行提供决策支持;? 根据电厂设备类别,内置了所需要的计算公式和分析模型,集成了电力专家的知识库,具有诊断功能,? 具有一定的组态功能;? 采用了当前比较先进的多层分布软件开发技术,提高软件的运行速度;? 系统实施方便,稳定可靠、操作方便、扩展性强、界面友好,维护量小。同时,开发的故障诊断和维修决策支持系统具有远程诊断功能,可采用就地管理+远程管理的二级管理的模式,在电厂设立一级状态监测工作站,根据不同设备和不同监测技术进行具体的监测工作,并将采集的离线数据输入到故障诊断和维修决策支持系统,这项工作由经过培训的电厂点检人员完成。远程设立设备状态监测中心,通过广域网远程访问发电厂侧的状态监测工作站,对辅机设备的运行状态进行远程监测,利用故障分析和诊断系统对设备的异常数据进行分析和诊断,判断设备状态的发展趋势,并向电厂定期提交短、中长期趋势分析和诊断报告。 三、 结束语通过三年的研究开发,热工研究院在辅机状态检修关键技术方面取得突破,主要包括以下几个方面: 1. 通过实际应用,提出并确定了中国电厂实施辅机状态检修的一种新模式; 2. 将多种监测技术如振动监测、油液分析、电机马达监测和红外热成像等集成在一起,实现对主要辅机的运行状态综合离线监测,效果比在线监测好,费用少。 3. 开发的系统安全性监测系统在线监测辅机整体的安全性,开阔了监测的范围,弥补了单个设备监测的不足,实现了硬故障和软故障的同时监测,具有创新性; 4. 开发的系统经济性监测系统在线监测辅机整体的性能,确立了监测经济性而完善维修决策的方法,实现了安全性和经济性综合监测以合理安排检修时间和检修周期新模式,具有创新性; 5. 开发的通用诊断平台软件具有先进性,适合主机、辅机的诊断软件构建,满足预知性维修的需求,同时提供远程诊断功能; 6. 设立远程诊断中心,建立辅机状态监测数据库,将多种监测数据集成在统一的数据库下,便于数据的管理和应用。实现电厂、研究院二级管理模式。

毕业设计资源共享31855287

大型火电厂输煤程控系统的网络控制系统设计 这篇可以么?但是是发表过得,需要的话给我留言

天津奥特泵业 牛经理潜水泵常见故障及解决方法1 潜水泵运转有异常振动、不稳定1.1 水泵运转有异常振动、不稳定,其主要原因:(1)水泵底座地脚螺栓未拧紧或松动;(2)出水管路没有加独立支撑,管道振动影响到水泵上;(3)叶轮质量不平衡甚至损坏或安装松动;(4)水泵上下轴承损坏。1.2 排除措施(1)均匀拧紧所有地脚螺栓;(2)对水泵的出水管道设独立稳固的支撑,不让水泵的出水管法兰承重;(3)修理或更换叶轮;(4)更换水泵的上下轴承。2 潜水泵不出水或流量不足2.1 潜水泵在运行过程中常出现流量不足或不出水,其主要原因:(1)水泵安装高度过高,使得叶轮浸没深度不够,导致水泵出水量下降;(2)水泵转向相反;(3)出水阀门不能打开;(4)出水管路不畅通或叶轮被堵塞;(5)水泵下端耐磨圈磨损严重或被杂物堵塞;(6)抽送液体密度过大或粘度过高;(7)叶轮脱落或损坏;(8)多台水泵共用管路输出时,没有安装单向阀门或单向阀门密封不严。2.2 排除措施(1)控制水泵安装标高的允许偏差,不可随意扩大;(2)水泵试运转前先空转电动机,核对转向使之与水泵一致。使用过程中出现上述情况应检查电源相序是否改变;(3)检查阀门,并经常对阀门进行维护;(4)清理管路及叶轮的堵塞物,经常打捞蓄水池内杂物:(5)清理杂物或更换耐磨圈;(6)寻找水质变化的原因并加以治理;(7)加固或更换叶轮;(8)检查原因后加装或更换单向阀门。3 电流过大电机过载或超温保护动作3.1 造成电流过大电机过载或超温保护动作的主要原因:(1)工作电压中过低或过高;(2)水泵内部有动静部件擦碰或叶轮与密封圈磨擦;(3)扬程低、流量大造成电动机功率与水泵特性不符;(4)抽送的密度较大或粘度较高;(5)轴承损坏。4.2 排除措施(1)检查电源电压,调整输电压;(2)判断磨擦部件位置,消除故障;(3)调整阀门降低流量,使电动机功率与水泵相匹配;(4)检查水质变化原因,改变水泵的工作条件;(5)更换电机两端的轴承。4 绝缘电阻偏低4.1 绝缘电阻偏低其主要原因:(1)电源线安装时端头浸没在水中或电源线、信号线破损引起进水;(2)机械密封磨损或没安装到位;(3)O型圈老化,失去作用。4.2 排除措施(1)更换电缆线或信号线,烘干电机;(2)更换上下机械密封,烘干电机;(3)更换所有密封圈,烘干电机。5 水泵管配件渗漏5.1 水泵管路中,管道或法兰连接处,经常有明显的渗漏水现象。其主要原因:(1)管道本身有缺陷,未经过压力试验;(2)法兰连接处的垫片接头未处理好;(3)法兰螺栓未用合理的方式拧紧。5.2 排除措施有缺陷的管子应予以修复甚至更换,对接管子的中心偏离过大的应拆掉重排,对准后连接螺栓应在基本自由的状态下插入拧紧,管路全部安装完后,应进行系统的耐压强度和渗漏实验。必须更换新的。6 水泵停机时倒转6.1 水泵电动机断电后水泵会发生倒转,主要原因是因为出水管道中的止回阀或拍门失灵。6.2 排除措施安装前应进行检查,止回阀的安装方向要正确,拍门中心是否对准,启闭应灵活自如。运行时经常检查止回阀或拍门,对损坏的部分修理或者更换保证质量的止回阀或拍门。7 水泵内部泄漏7.1 潜水泵发生漏水时,导致绝缘破坏、轴承浸水、报警系统报警,迫使机组停止运行。其主要原因:潜水泵的动密封(机械密封)或静密封(电缆进口专用密封、0型密封圈)损坏造成渗水,动力电缆或信号电缆破损造成渗水。各种报警信号如浸水、泄漏、湿度等报警停机。7.2 排除措施安装前,应检查各密封部件的质量;安装时必须保证各密封部件端面接触良好;在运行前检查电动机的相间和接地绝缘电阻以及各报警系统的传感元器件是否完好。运行过程中发生上述故障时,更换所有损坏的密封件和电缆并且烘干电机。对拆卸的密封件和电缆不得再使用

故障诊断论文范文

引言机械零部件的磨损是机械设备发生的故障中最常见、最主要的故障形式,是影响机械设备正常运行的主要障碍之一。据统计,磨损故障占机械设备故障的80%〔1〕,而且磨损还可诱发其它形式的故障。随着现代工业的发展,对生产的连续性和运转机械设备的可靠性要求不断提高,因而对机械设备进行磨损工况监测和故障诊断具有重要意义。 机械零部件发生磨损时,磨损颗粒便进入润滑系统并悬浮在润滑油中。这些微小的磨损颗粒携带有机械设备发生磨损故障的重要信息。为了从润滑油里的磨损颗粒中获取有关机械设备磨损故障的特征信息,常采用“油液监测技术”,其中包括磁塞法、光谱法、铁谱法、放射性示踪法、过滤法、颗粒计数法[2,3]。实践证明,在上述这些方法中,铁谱分析技术是监测磨损工况和诊断磨损故障最为有效的方法,在设备日常管理、预测性维修、可靠性分析和寿命预测方面起到了重要作用。然而,在铁谱诊断技术应用的近20年中,诊断过程中的磨粒识别和故障诊断这两个关键步骤主要凭借人的经验。由于磨损现象的复杂性、研究的对象不同以及铁谱分析者间缺乏充分交流,导致使用磨粒术语和描述磨损故障的混乱,尽管在磨粒分类与磨粒术语标准化方面还有一些基础工作要做,但经过一些研究者的努力,已有比较一致的观点。相比之下,对磨损故障分类与磨损故障描述规范化的研究则较少。在人工诊断时,重点在磨粒识别,磨损故障描述方面的混乱对故障诊断的影响并不突出。随着现场监测对智能化诊断的迫切要求以及计算机图像处理技术和智能(人工智能和神经网络)技术在铁谱诊断中的应用,对磨损故障的分类与铁谱诊断方法提出了新的要求。本文系统分板到几械设备磨损故障和铁谱诊断过程,舞在综合分析铁谱诊断方法的基础上,提出了一个智能化铁请诊断模型。1机械设备磨损故障分析1.1机械设备磨损故障的原因机械设备磨损故障(以下简称磨损故障)是指由于相对运动的两个表面之间的摩擦磨损致使设备的功能低于规定水平的状态。概括地讲,引起磨损故障有两种情况:①由设备设计时预计之中的常规磨损引起的故障。在一般机械零件摩擦副中,正常的零件磨损过程大致分为磨合磨损、稳定磨损和剧烈磨损三个阶段川。在稳定磨损达到一定时期时,设备的磨损率随时间而迅速增大,超出设备设计时规定的磨损量水平,使工作条件急剧恶化,进而使设备出现故障甚至完全失效;②设备安装与使用过程中的异常磨损导致的故障。机械零件在安装过程中由于安装不良或(和)清洗不干净会导致设备在运转过程中的异常磨损,或者在使用过程中由于偶然的外来因素(磨料进入、载荷条件变化、a划伤:由于犁沟作用,在滑动方向上产生宽而深的划痕。b点蚀:在接触应力反复作用下使金属咬死等)和内部因素(润滑不良、摩擦发热等)影响而出现异常磨损。异常磨损弓!发的故障具有偶然性和突发性,对此类故障的诊断具有重要意义。1.2磨损故障的分类分类的目的是为了将人们常用而又实际存在的各式各样的磨损故障按一定的标准归纳为几个基本类型。合理的分类能够使诊断工作简化,有利于故障诊断的状态识别过程的进行,提高故障诊断的有效性。由于铁谱技术在诊断磨损类故障方面具有独特的优越性,因而本文的分类主要是针对铁谱诊断方法的。根据不同的应用目的,磨损故障从以下几个方面进行分类比较合适。 1.2.1按磨损机理划分不同的磨损机理产生的磨粒各异,因而可通过磨粒分析来识别引起磨损故障的磨损机理,以便为设备的设计、制造服务。与润滑油分析有关的磨损机理可分为以下几类:a粘着磨损:接触表面作相对运动时,由于固相焊涪作用使材料从一个表面转移到另一个表面而造成的一种磨损。 b 磨料磨损:由于硬颗粒或硬突起物使材料产生迁移而造成的一种磨损。 c疲劳磨损:由于循环交变应力引起疲劳而使材料脱落的一种磨损。微动磨损应归入此类。d腐蚀磨损:由于与周围介质发生化学反应而产生的一种磨损。其中包括氧化磨损、氢致磨拐、介质腐蚀磨损。 1.1.2按磨损形式划分磨粒的产生与磨损表面有着密切的联系,因而可从磨损表面的破坏形式来分类。按磨损形式来分,磨损故障可分为:疲劳破坏而形成的表面凹坑。c剥落:金属表面由于变形强化而变脆,在载荷作用下产生微裂纹随后剥落。 d胶合:由粘着效应形成的表面结点具有较高的连接强度,使剪切破坏发生在表面层内一定深度,因而导致严重磨损。 e腐蚀:由于润滑油中含水和润滑油膜破裂而使金属与周围介质发生化学反应而产生的表面损伤。上述的划伤、点蚀、剥落和胶合有宏观与微观之分,对于铁谱诊断而言,主要是针对微观形式的。 1.2.3按磨损类型划分对于磨损故障的描述,铁谱分析者针对铁谱分析的特点采用一套适用的分类方法,归纳起来可以说是按磨损类型来分: a正常磨损和磨合期磨损:滑动表面经常发生的正常磨损。b切削磨损:由于滑动表面的相互穿入引起的非正常磨料磨损。c滚动疲劳磨损:滚动接触表面的疲劳磨损。了滚滑复合磨损:与齿轮系相关的疲劳磨损和粘着磨损。e严重滑动磨损:滑动表面的过载和高速造成的磨损。 1.2.4按磨损原因划分按磨损原因来分,磨损故障可分为由磨料进入、润滑不良、油中含水、安装不良或有裂纹、过载、高速、过热和疲劳等引起的故障。这可为设备设计、保养和维修提供有用信息。1.2.5按磨损程度划分按磨损程度来分,磨损故障可分为正常磨损和严重磨损。正常磨损与严重磨损间并无明确的定量界限。根据设备的重要性和诊断的灵敏性,磨损程度可分为3级:正常、b从谱片上的磨损颗粒中提取设备磨损状态的有用信息(征兆):磨粒识别与统计,注意、极高(报警);也可分成4级:正常、较正常、异常、严重异常磨损。 1.2.6‘按磨损材料划分按磨损材料来分,磨损故障可分为黑色金属磨损故障、有色金属磨损故障和非金属磨损故障。1.2.7按诊断对象划分有的磨损故障在实际应用中采用俗称,比如在柴油机中有“拉缸”、“拉瓦”、“烧瓦”和“抱轴”等叫法。因而磨损故障也可按诊断的特定设备来分类,并制定出相应的诊断标准。在故障诊断时,根据不同的诊断目的和任务要求,尽量采用某一分类方法并逐层推进,不要出现交叉使用的现象。2铁谱诊断过程铁谱诊断技术是一种以磨损颗粒分析为基础的诊断技术。采用该技术监测机械零部件的磨损状态,无需将正在运转的机械设备打开或关闭,就可确定其磨损状态。.由机械零部件产生的磨损颗粒作为分离相存在于润滑油中,通过铁谱仪磁场的作用将它们从润滑油中分离出来,特定的工况条件和冤同的金属零件产生的磨粒具有不同的特性。通过观察磨粒的颜色、形态、数量、尺寸及尺寸分布,可以推断机械设备的磨损程度、磨损原因和磨损部位。根据机械设备诊断学的观点[4],故障诊断过程有3个主要步骤:信号测取(检测设备状态的特征信号),征兆提取(从所检测的特征信号中提取征兆)和状态识别(根据这些征兆和其它诊断信息来识别设备状态)。 具体来讲,铁谱诊断过程可分为以下几个步骤:a取油样,制谱片,得到设备磨损状态的特征信纂一磨损颗粒;磨损参数测量;c根据上述征兆,识别设备的磨损状态(状态诊断),包括识别设备的磨损状态将有无异常(故障早期诊断)与是否已有异常(故障诊断);d根据设备的征兆与状态,进一步分析设备的磨损状态及其发展趋势(状态分析),包括当设备有故障时,分析故障位置、类型、性质、原因与趋势等;e根据设备的状态与趋势,作出决策,干预设备及其运行过程。3磨损故障铁谱诊断方法与智能化铁谱诊断模型3.1铁谱诊断方法自铁谱技术问世以来,其发展重点主要是在诊断过程的前两步,对磨损故障识别理论与方法的研究较少,这可从众多有关铁谱技术用于磨损工况监测与故障诊断的资料中看出。目前铁谱技术用于故障诊断所采用的方法归纳起来有3种:定性铁谱诊断法、定量铁谱诊断法(严格地说是准定量铁谱诊断法)、定性与定量相结合的铁谱诊断法。定性铁谱诊断能够在铁谱片上获取大量有关磨损状态的信息,但在很大程度上受操作者的经验和其它主观因素的影响,状态识别过程由领域专家或分析者来完成。诊断是依据谱片上磨粒的形态、数量、颜色、尺寸及尺寸分布等信息来推断机器的磨损状态。目前普遍得到应用的铁谱分析报告单就是定性铁谱诊断的总结。将模糊数学方法应用到定性铁谱诊断,可让计算机模拟专家的识别方法进行磨损状态诊断,这种方法具有一定的智能性,但这并不是铁谱诊断技术发展的关键所在。目前的定量铁谱诊断是根据铁谱片上磨粒的浓度和磨粒的尺寸分布来对设备的磨损状态作出诊断。诊断主要采用函数分析法、趋势分析法和灰色理论等方法,有些方法已能在一定程度上反映出智能性。定量铁谱诊断具有较大的客观性,但所提供的数据只反映出少量的磨损状态信息,而且不能应用在脂样分析中。定量与定性相结合铁谱诊断是目前实际应用的最多的一种方法,一般是先用定量参数进行故障可能性和趋势判断,再辅之以铁谱片上磨粒特征分析来确诊。为了提高铁谱诊断技术的准确性和智能性,必须进一步发展定量铁谱诊断方法。该方法应能综合定量分析磨粒的形态、尺寸、数量、颜色和尺寸分布等特征并应角人工智能和神经网络的方法加以诊断。随着计算机图像分析技术以波人工智能特别是神经网络技术不断发展,为实现综合定量铁谱诊断及其智能化创造了有力的条件。将智能化技术应用到铁谱诊断,其诊断过程的第三步不仅变得同前二步一样重要,而且将会成为智能诊断技术的关键,因而对磨损故障识别理论与方法的研究很有必要。由于磨损现象的复杂性和磨粒分析的困难性,铁谱诊断智能化的发展一直较缓慢。1989年美国的Carborundum公司开发出一套被称之为FAST的铁谱分析专家系统[5],并在最近将其发展成FASTPLUS系统。据报道,利用这一专家系统可以对铁谱片进行分析并以人机对话的方式进行决策。但从原理上看,该系统主要是将谱片上的特征磨粒与存储在系统的光盘中的磨粒图谱的照片进行比较而得出结论,因而具有较大的局限性。在国内,文献[6]困将计算机图像分析技术和人工智能理论与方法引人到铁谱分析技术中,建立了基于黑板的铁谱图像解释系统的模型,并进行了部分研究,取得一些很有意义的研究成果。由于追求铁谱诊断的完全智能化使得该技术离实用还有较远的距离。3.2磨损故障铁谱诊断水平根据铁谱诊断的目的和实际应用的需要,将磨损故障铁谱诊断水平划分成3个级别:第一级诊断水平三对设备状态进行监测、确定磨损状态是否正常;第二级诊断水平:在第一级诊断的基础上,判别引起磨损状态异常的磨损原因、类型、形式乃至趋势分析,以便采取维修措施或改进设计。不同原因导致的故障具有不同的表现形式,从而反映出不同的故障状态。通过磨粒的形态、尺寸、数量、分布等特征可对磨损原因进行识别;第三级诊断水平:用以判断发生故障的部位或部件,同时也为第二级诊断提供补充信息。不同的材料产生的磨粒经谱片加热或湿化学处理在铁谱显微镜下可以区分出来,从而将故障隔离到不同零件上。由于设备结构的复杂性、同台设备使用摩擦副材料相同性以及鉴别材料手段的局限性,使得故障隔离与定位并不能总是有效。但为了提高磨损故障诊断的有效性和全面性,此级诊断无疑是必要的。在人工诊断时,上述3级诊断常常是同步完成的,但随着现场监测对智能化诊断的需要,在人工智能或神经网络技术引入到铁谱诊断后,就需要对磨损故障诊断水平进行分级。3.3智能化铁谱诊断模型本文从实际应用的需要出发,提出一种智能化铁谱诊断系统模型,如图1所示。其中的些主要工作已经完成。该系统包括3大模块:磨粒分析模块、磨粒识别与统计模块和机械磨损故障铁谱诊断模块:在磨粒分析模块中可以采用计算机图像分析和模拟人工分析两种方式。铁谱图像分析子系统 [7]能够提取定量的磨粒特征参数。这包括形态数字特征和光密度特征,提取的信息中的一部分输入磨粒识别与统计模块,并采用神经网络技术识别磨粒[8],经统计后,将结果送入磨粒信息库;一部分直接送入磨粒信息库。模拟人工分析子系统,采用人一机协作的方法,人工提取定性的磨粒特征参数,应用神经网络专家系统进行磨粒识别[9],识别结果经统计后送入磨粒信息库;定量钳普参数采用光密度计测量,测量结果直接送入磨粒信息库。根据不同的需要,磨粒信息库中的数据可按不同的方式组织,形成不同的数据文件,以备故障诊断与监测取用。机械磨损故障铁谱诊断模块根据用户需要可实现磨损状态诊断、磨损故障类型诊断和磨损原因诊断,三者的实现均采用神经网络模型[l0转自深圳培训吧www.szpxb.com]。在铁谱诊断时,除了利用磨粒信息库的数据文件作为输入向量外,还应充分利用被监测设备知识库的知识。该系统还可以直接从磨粒信息库中提取数据,采用神经网络技术进行磨损趋势预测

机械故障标准的话~你可以去参考<机械工程与技术>/<仪器与设备>等相关的资料吧~找下自己的思路

一、汽车点火系统的分类 汽车点火系统一般分为有分电器和无分电器两大类。有分电器一般都是由一个点火线圈管理全部汽缸的点火。无分电器点火系统又分两种,一种是两个缸共用一个点火线圈,同时点火,其中一个缸为有效点火,另一个缸为无效点火;还有一种是一个缸一个点火线圈,无高压线顺序独立点火。 下面介绍几种常见故障:发动机不能起动、发动机运转不平稳和发动机功率下降、油耗增大、加速不良。 故障分析及排除方法:(1)发动机不能起动故障部位:点火开关至分电器间电路,电流表、点火开关,断电器,电容器,传感器,点火控制器,分电器盖或分火头,高压导线,火花塞,分电器,分缸线。故障原因:有短路、断路、接触不良处,电流表、点火开关损坏,点火线圈损坏、附加电阻断路,触点氧化、烧蚀,固定触点搭铁不良,连线断路、搭铁,触点间隙过大、过小,损坏,传感器线圈短路、断路、搭铁,转子凸轮与铁心间隙不当,霍尔元件损坏,损坏,漏电,漏电或断路,积炭或油污,间隙过大、过小,漏电,分电器安装位置有误,分缸线位置插错。排除方法:检查、紧固、更换导线,更换,更换,清洁或更换,修理加强搭铁,修理,调整,更换,修理或更换,调整,更换,更换,更换,更换,清洁或更换热特性适当的火花塞,调整,更换,调整后重新对点火正时,重新配线。(2)发动机运转不稳定故障部位:点火正时,火花塞,高压导线。故障原因:点火正时调整不当,点火提前角调节装置故障,分电器轴松旷、断电器凸轮磨损不均,个别缸火花塞绝缘损坏或积炭,个别分缸线损坏、漏电。排除方法:重新对点火正时,修理或更换分电器,更换分电器,更换火花塞,更换。(3)发动机功率下降、油耗增大、加速不良故障部位:点火正时,断电器。故障原因:点火正时调整不当,点火提前角调节装置故障,触点间隙过大。排除方法:重新对点火正时,维修或更换分电器,修理或更换。 传统点火系故障诊断(触点式) 传统点火系由电源、点火开关、附加电阻、附加电阻短路开关、点火线圈、分电器(包括断电器、配电器及点火提前角调节装置)、高压线、火花塞组成。 断电器触点的闭合与断开控制点火线圈初级电路的通断,当初级电路切断时,产生点火高压,经配电器、高压线送至火花塞跳火,点燃汽缸内的可燃混合气。 传统点火系常见的故障原因有:⑴低压电路接触不良、断路、短路、搭铁或搭铁不良;⑵断电器触点烧蚀、油污、间隙过大或过小、连线断路、触点弹簧弹力过弱;⑶电容器损坏、附加电阻断路;⑷蓄电池亏电、点火开关接触不良;⑸点火线圈损坏、高压线漏电;⑹分电器盖破裂、分火头损坏;⑺火花塞积炭、油污、绝缘体破裂或间隙不当;⑻分电器凸轮磨损不均;⑼分电器轴弯曲或磨损松旷;⑽分电器真空点火提前装置或离心点火提前装置失效;⑾点火正时失准、缸线错乱。通常把故障⑴—⑸称为低压电路故障,⑹—⑻称为高压电路故障,⑼—⑾称为综合故障。 电子点火系故障诊断(无触点式) 电子点火系统由传感器、点火控制器、分电器、火花塞等组成,取消了断电器触点,点火线圈初级电流通断受点火控制器控制,按点火信号传感器工作原理不同,有磁脉冲式、霍尔效应式等多种形式。 脉冲无触点电子点火装置的组成及故障诊断 磁脉冲无触点电子点火装置由磁脉冲式传感器、点火控制器、点火线圈、点火开关和蓄电池等组成。发动机工作时,磁脉冲传感器产生交变的点火信号,通过点火控制器控制点火线圈初级电流的通断和点火系工作。 磁脉冲无触点电子点火装置常见故障原因有: ⑴磁脉冲信号发生器损坏;⑵点火控制器损坏;⑶点火线圈损坏或性能不佳;⑷线路接触不良或有断路、短路;⑸分电器盖破裂、分火头损坏;⑹火花塞积炭、油污、绝缘体破裂或间隙不当;⑺分电器真空点火提前装置或离心点火提前装置失效;⑻点火正时失准、缸线错乱。 霍尔效应式无触点电子点火装置的组成及故障诊断 霍尔效应式无触点电子点火装置由点火开关、蓄电池、点火线圈、高压分线、火花塞、分电器、霍尔信号发生器和点火控制器等组成。点火信号由霍尔传感器产生,点火控制器将点火信号放大整形后控制点火线圈初级电流的通断和点火系工作。 霍尔效应式无触点电子点火装置与磁脉冲式无触点电子点火装置故障现象非常相似,不同的是点火信号由霍尔传感器产生。 点火正时失准故障诊断 最佳点火时刻是随发动机工况变化而变化的,为了使发动机在各种工况都能获得最佳点火提前角,分电器内装有离心式点火调节器和真空点火调节装置,初始点火提前角检查调整(点火正时)需人工进行。将发动机运转至正常温度,在车速为25—30km/h(试验转速因车型而不同)时突然急加速,若能听到短促而轻微的爆燃声并立即消失,表明点火正时正确; 若无爆燃声为点火过迟;若爆燃声严重为点火过早。点火过迟或点火过早均应进行调整。松开分电器固定板,逆着分火头旋转方向转动分电器外壳(增大点火提前角)或顺着分火头旋转方向转动分电器外壳(减小点火提前角)。重复上述过程,点火提前角达到正常后将分电器固定。 利用点火正时灯检查点火正时 经验法诊断点火正时准确性较差,不能测量准确的点火提前角。利用点火正时灯可以测量不同转速下的点火提前角。 点火正时灯是一种频率闪光灯,当延时电位器处于零位时,闪光与一缸点火时刻同步。通过调整延时电位器可推迟闪光时刻,当闪光时刻与上止点标记对正时,电位器上的指示值就是点火提前角。测量怠速是的点火提前角,可得到该发动机的初始点火提前角。测量不同工况的点火提前角,还可以反映出离心式点火调节器和真空点火调节装置的工作情况。将测量的值与标准值相比较,就可以判断点火正时是否准确,并为点火正时调整提供技术数据。 少数气缸不工作故障诊断和排除步骤:少数气缸不工作故障诊断 回火放炮车发抖,“突突”声音有节奏, 稍高怠速更明显,缺缸故障莫迟犹。 汽车在行驶过程中,如果发动机在各种转速下,消声器均发出有节奏的突突声,并拌有化油器回火、消声器放炮、车身发抖等现象,应停车检查,排除故障。在判断此故障时,应在稍高于怠速的转速下察听,这时,消声器有节奏突突声较为明显。另外,还可以用小油门快提速的方法判断。 气缸不工作故障排除步骤: 第一步,外部检查:不熄火,检查高压分线是否脱落、漏电或插错。脱落或插错,要重新插置。漏电,要更换高压分线。如果正常,就要断开分电器盖上各高压分线,观察发动机工作情况。 第二步,断火试验:断开某缸高压分线后,如果发动机转速下降,为该缸工作良好。如果发动机转速升高,为分电器盖上有两缸旁插孔串电。如果发动机转速没有变化,为该缸不工作,这时,要检查该缸高压分线火花。 第三步,吊火试验:高压分线火花无火,是分电器盖旁插孔漏电或凸轮角磨损不均。高压分线火花有火,观察发动机工作情况。 第四步,看转速:发动机转速有好转,是火花塞工作不良。如果发动机转速不变,检查火花塞端高压分线跳火情况。 第五步,跳火试验:有跳火,是火花塞不工作。不跳火,是高压分线损坏。 第六步,检查配气机构的技术状况:可能是气门弹簧折断、过软,也可能是气缸垫损坏,气门座松脱或气门关闭不严。 高压火花弱的故障诊断 “突突”之声无节奏,低中高速它都有。 回火放炮冒黑烟,容易熄火难发动。 跳火距离五至七,颜色明亮声清脆。 粗细正常看标准,中央跳火莫看错。 发动机在各种转速下,消声器均发出无节奏的“突突”声,并冒黑烟,而且高转速比低转速明显,急加速时这种“突突”声加重,并伴有消声器放炮,有时化油器回火,还易造成发动机熄火。这是高压火花弱的故障特征。另外,在判断此故障时,还可观察高压分线跳火情况。以做进一步的检查。即:从分电器盖上取下高压分线,查看跳火情况。如果火花跳距短、声音小、火花较细、颜色发红,有时还有断火现象,即为高压火花弱故障。 另外,如果分电器分线轻微漏电,就会出现检查中央高压线时火花强,而检查分线时火花弱的现象。诊断故障时,应特别区分中央高压线故障和分线故障这两个层次。

电控发动机与化油器式发动机最大的不同在燃油供给系。电控发动机的燃油供给系取消了化油器,却增加了不少电子自动控制装置。其中包括许多传感器,执行元件和ECU。电控发动机不仅要完成化油器所要完成的任务,而且要完成化油器难以完成的任务。例如,使可燃混合气的空燃比浓度能控制在所需要的范围内。化油器式发动机油路和电路划分的非常清楚,互相影响不大。而电控发动机燃油供给系统增加了电子控制部分,这就使得油路和电路相互联系,它不仅影响发动机燃油系的工作,而且还影响发动机的正常运行。由于电控发动机电子控制装置的增加,这就使发动机的整个结构(包括电控系)更为复杂。快速导航结构组成 工作原理 待测参数 优点基本思想在初期,是以电子技术替代机械控制技术实现系统的功能,并对其功能进行扩展,使性能得到大幅度提高;发展到一定程度后,电子技术可以促使系统原理发生本质变化,从而可以突破局限,使发动机性能得以大幅度提高。电控发动机结构组成电子控制单元电控单元(ECU)是发动机电子控制系统的核心。它完成发动机各种参数的采集和喷油量、喷油定时的控制,决定整个电控系统的功能。传感器传感器(Sensor)将发动机工况与环境的信息通过各种信号即时、真实的传递到ECU。换句话说,ECU所了解到的只是一个由诸多信号所构成的发动机。所以,传感器信息的准确性、再现性与即时性就直接决定控制的好坏。执行器电控系统要完成的各种控制功能,是靠各种执行器来实现的。在控制过程中,执行器将ECU传来的控制信号转换成某种机械运动或电器的运动,从而引起发动机运行参数的改变,完成控制功能。工作原理以发动机转速和负荷作为反映发动机实际工况的基本信号,参照由试验得出的发动机各工况相对应的喷油量和喷油定时脉谱图来确定基本的喷油量和喷油定时,然后根据各种因素(如水温、油温、、大气压力等)对其进行各种补偿,从而得到最佳的喷油量和喷油正时或点火定时,然后通过执行器进行控制输出。

齿轮传动故障诊断研究论文

引言机械零部件的磨损是机械设备发生的故障中最常见、最主要的故障形式,是影响机械设备正常运行的主要障碍之一。据统计,磨损故障占机械设备故障的80%〔1〕,而且磨损还可诱发其它形式的故障。随着现代工业的发展,对生产的连续性和运转机械设备的可靠性要求不断提高,因而对机械设备进行磨损工况监测和故障诊断具有重要意义。 机械零部件发生磨损时,磨损颗粒便进入润滑系统并悬浮在润滑油中。这些微小的磨损颗粒携带有机械设备发生磨损故障的重要信息。为了从润滑油里的磨损颗粒中获取有关机械设备磨损故障的特征信息,常采用“油液监测技术”,其中包括磁塞法、光谱法、铁谱法、放射性示踪法、过滤法、颗粒计数法[2,3]。实践证明,在上述这些方法中,铁谱分析技术是监测磨损工况和诊断磨损故障最为有效的方法,在设备日常管理、预测性维修、可靠性分析和寿命预测方面起到了重要作用。然而,在铁谱诊断技术应用的近20年中,诊断过程中的磨粒识别和故障诊断这两个关键步骤主要凭借人的经验。由于磨损现象的复杂性、研究的对象不同以及铁谱分析者间缺乏充分交流,导致使用磨粒术语和描述磨损故障的混乱,尽管在磨粒分类与磨粒术语标准化方面还有一些基础工作要做,但经过一些研究者的努力,已有比较一致的观点。相比之下,对磨损故障分类与磨损故障描述规范化的研究则较少。在人工诊断时,重点在磨粒识别,磨损故障描述方面的混乱对故障诊断的影响并不突出。随着现场监测对智能化诊断的迫切要求以及计算机图像处理技术和智能(人工智能和神经网络)技术在铁谱诊断中的应用,对磨损故障的分类与铁谱诊断方法提出了新的要求。本文系统分板到几械设备磨损故障和铁谱诊断过程,舞在综合分析铁谱诊断方法的基础上,提出了一个智能化铁请诊断模型。1机械设备磨损故障分析1.1机械设备磨损故障的原因机械设备磨损故障(以下简称磨损故障)是指由于相对运动的两个表面之间的摩擦磨损致使设备的功能低于规定水平的状态。概括地讲,引起磨损故障有两种情况:①由设备设计时预计之中的常规磨损引起的故障。在一般机械零件摩擦副中,正常的零件磨损过程大致分为磨合磨损、稳定磨损和剧烈磨损三个阶段川。在稳定磨损达到一定时期时,设备的磨损率随时间而迅速增大,超出设备设计时规定的磨损量水平,使工作条件急剧恶化,进而使设备出现故障甚至完全失效;②设备安装与使用过程中的异常磨损导致的故障。机械零件在安装过程中由于安装不良或(和)清洗不干净会导致设备在运转过程中的异常磨损,或者在使用过程中由于偶然的外来因素(磨料进入、载荷条件变化、a划伤:由于犁沟作用,在滑动方向上产生宽而深的划痕。b点蚀:在接触应力反复作用下使金属咬死等)和内部因素(润滑不良、摩擦发热等)影响而出现异常磨损。异常磨损弓!发的故障具有偶然性和突发性,对此类故障的诊断具有重要意义。1.2磨损故障的分类分类的目的是为了将人们常用而又实际存在的各式各样的磨损故障按一定的标准归纳为几个基本类型。合理的分类能够使诊断工作简化,有利于故障诊断的状态识别过程的进行,提高故障诊断的有效性。由于铁谱技术在诊断磨损类故障方面具有独特的优越性,因而本文的分类主要是针对铁谱诊断方法的。根据不同的应用目的,磨损故障从以下几个方面进行分类比较合适。 1.2.1按磨损机理划分不同的磨损机理产生的磨粒各异,因而可通过磨粒分析来识别引起磨损故障的磨损机理,以便为设备的设计、制造服务。与润滑油分析有关的磨损机理可分为以下几类:a粘着磨损:接触表面作相对运动时,由于固相焊涪作用使材料从一个表面转移到另一个表面而造成的一种磨损。 b 磨料磨损:由于硬颗粒或硬突起物使材料产生迁移而造成的一种磨损。 c疲劳磨损:由于循环交变应力引起疲劳而使材料脱落的一种磨损。微动磨损应归入此类。d腐蚀磨损:由于与周围介质发生化学反应而产生的一种磨损。其中包括氧化磨损、氢致磨拐、介质腐蚀磨损。 1.1.2按磨损形式划分磨粒的产生与磨损表面有着密切的联系,因而可从磨损表面的破坏形式来分类。按磨损形式来分,磨损故障可分为:疲劳破坏而形成的表面凹坑。c剥落:金属表面由于变形强化而变脆,在载荷作用下产生微裂纹随后剥落。 d胶合:由粘着效应形成的表面结点具有较高的连接强度,使剪切破坏发生在表面层内一定深度,因而导致严重磨损。 e腐蚀:由于润滑油中含水和润滑油膜破裂而使金属与周围介质发生化学反应而产生的表面损伤。上述的划伤、点蚀、剥落和胶合有宏观与微观之分,对于铁谱诊断而言,主要是针对微观形式的。 1.2.3按磨损类型划分对于磨损故障的描述,铁谱分析者针对铁谱分析的特点采用一套适用的分类方法,归纳起来可以说是按磨损类型来分: a正常磨损和磨合期磨损:滑动表面经常发生的正常磨损。b切削磨损:由于滑动表面的相互穿入引起的非正常磨料磨损。c滚动疲劳磨损:滚动接触表面的疲劳磨损。了滚滑复合磨损:与齿轮系相关的疲劳磨损和粘着磨损。e严重滑动磨损:滑动表面的过载和高速造成的磨损。 1.2.4按磨损原因划分按磨损原因来分,磨损故障可分为由磨料进入、润滑不良、油中含水、安装不良或有裂纹、过载、高速、过热和疲劳等引起的故障。这可为设备设计、保养和维修提供有用信息。1.2.5按磨损程度划分按磨损程度来分,磨损故障可分为正常磨损和严重磨损。正常磨损与严重磨损间并无明确的定量界限。根据设备的重要性和诊断的灵敏性,磨损程度可分为3级:正常、b从谱片上的磨损颗粒中提取设备磨损状态的有用信息(征兆):磨粒识别与统计,注意、极高(报警);也可分成4级:正常、较正常、异常、严重异常磨损。 1.2.6‘按磨损材料划分按磨损材料来分,磨损故障可分为黑色金属磨损故障、有色金属磨损故障和非金属磨损故障。1.2.7按诊断对象划分有的磨损故障在实际应用中采用俗称,比如在柴油机中有“拉缸”、“拉瓦”、“烧瓦”和“抱轴”等叫法。因而磨损故障也可按诊断的特定设备来分类,并制定出相应的诊断标准。在故障诊断时,根据不同的诊断目的和任务要求,尽量采用某一分类方法并逐层推进,不要出现交叉使用的现象。2铁谱诊断过程铁谱诊断技术是一种以磨损颗粒分析为基础的诊断技术。采用该技术监测机械零部件的磨损状态,无需将正在运转的机械设备打开或关闭,就可确定其磨损状态。.由机械零部件产生的磨损颗粒作为分离相存在于润滑油中,通过铁谱仪磁场的作用将它们从润滑油中分离出来,特定的工况条件和冤同的金属零件产生的磨粒具有不同的特性。通过观察磨粒的颜色、形态、数量、尺寸及尺寸分布,可以推断机械设备的磨损程度、磨损原因和磨损部位。根据机械设备诊断学的观点[4],故障诊断过程有3个主要步骤:信号测取(检测设备状态的特征信号),征兆提取(从所检测的特征信号中提取征兆)和状态识别(根据这些征兆和其它诊断信息来识别设备状态)。 具体来讲,铁谱诊断过程可分为以下几个步骤:a取油样,制谱片,得到设备磨损状态的特征信纂一磨损颗粒;磨损参数测量;c根据上述征兆,识别设备的磨损状态(状态诊断),包括识别设备的磨损状态将有无异常(故障早期诊断)与是否已有异常(故障诊断);d根据设备的征兆与状态,进一步分析设备的磨损状态及其发展趋势(状态分析),包括当设备有故障时,分析故障位置、类型、性质、原因与趋势等;e根据设备的状态与趋势,作出决策,干预设备及其运行过程。3磨损故障铁谱诊断方法与智能化铁谱诊断模型3.1铁谱诊断方法自铁谱技术问世以来,其发展重点主要是在诊断过程的前两步,对磨损故障识别理论与方法的研究较少,这可从众多有关铁谱技术用于磨损工况监测与故障诊断的资料中看出。目前铁谱技术用于故障诊断所采用的方法归纳起来有3种:定性铁谱诊断法、定量铁谱诊断法(严格地说是准定量铁谱诊断法)、定性与定量相结合的铁谱诊断法。定性铁谱诊断能够在铁谱片上获取大量有关磨损状态的信息,但在很大程度上受操作者的经验和其它主观因素的影响,状态识别过程由领域专家或分析者来完成。诊断是依据谱片上磨粒的形态、数量、颜色、尺寸及尺寸分布等信息来推断机器的磨损状态。目前普遍得到应用的铁谱分析报告单就是定性铁谱诊断的总结。将模糊数学方法应用到定性铁谱诊断,可让计算机模拟专家的识别方法进行磨损状态诊断,这种方法具有一定的智能性,但这并不是铁谱诊断技术发展的关键所在。目前的定量铁谱诊断是根据铁谱片上磨粒的浓度和磨粒的尺寸分布来对设备的磨损状态作出诊断。诊断主要采用函数分析法、趋势分析法和灰色理论等方法,有些方法已能在一定程度上反映出智能性。定量铁谱诊断具有较大的客观性,但所提供的数据只反映出少量的磨损状态信息,而且不能应用在脂样分析中。定量与定性相结合铁谱诊断是目前实际应用的最多的一种方法,一般是先用定量参数进行故障可能性和趋势判断,再辅之以铁谱片上磨粒特征分析来确诊。为了提高铁谱诊断技术的准确性和智能性,必须进一步发展定量铁谱诊断方法。该方法应能综合定量分析磨粒的形态、尺寸、数量、颜色和尺寸分布等特征并应角人工智能和神经网络的方法加以诊断。随着计算机图像分析技术以波人工智能特别是神经网络技术不断发展,为实现综合定量铁谱诊断及其智能化创造了有力的条件。将智能化技术应用到铁谱诊断,其诊断过程的第三步不仅变得同前二步一样重要,而且将会成为智能诊断技术的关键,因而对磨损故障识别理论与方法的研究很有必要。由于磨损现象的复杂性和磨粒分析的困难性,铁谱诊断智能化的发展一直较缓慢。1989年美国的Carborundum公司开发出一套被称之为FAST的铁谱分析专家系统[5],并在最近将其发展成FASTPLUS系统。据报道,利用这一专家系统可以对铁谱片进行分析并以人机对话的方式进行决策。但从原理上看,该系统主要是将谱片上的特征磨粒与存储在系统的光盘中的磨粒图谱的照片进行比较而得出结论,因而具有较大的局限性。在国内,文献[6]困将计算机图像分析技术和人工智能理论与方法引人到铁谱分析技术中,建立了基于黑板的铁谱图像解释系统的模型,并进行了部分研究,取得一些很有意义的研究成果。由于追求铁谱诊断的完全智能化使得该技术离实用还有较远的距离。3.2磨损故障铁谱诊断水平根据铁谱诊断的目的和实际应用的需要,将磨损故障铁谱诊断水平划分成3个级别:第一级诊断水平三对设备状态进行监测、确定磨损状态是否正常;第二级诊断水平:在第一级诊断的基础上,判别引起磨损状态异常的磨损原因、类型、形式乃至趋势分析,以便采取维修措施或改进设计。不同原因导致的故障具有不同的表现形式,从而反映出不同的故障状态。通过磨粒的形态、尺寸、数量、分布等特征可对磨损原因进行识别;第三级诊断水平:用以判断发生故障的部位或部件,同时也为第二级诊断提供补充信息。不同的材料产生的磨粒经谱片加热或湿化学处理在铁谱显微镜下可以区分出来,从而将故障隔离到不同零件上。由于设备结构的复杂性、同台设备使用摩擦副材料相同性以及鉴别材料手段的局限性,使得故障隔离与定位并不能总是有效。但为了提高磨损故障诊断的有效性和全面性,此级诊断无疑是必要的。在人工诊断时,上述3级诊断常常是同步完成的,但随着现场监测对智能化诊断的需要,在人工智能或神经网络技术引入到铁谱诊断后,就需要对磨损故障诊断水平进行分级。3.3智能化铁谱诊断模型本文从实际应用的需要出发,提出一种智能化铁谱诊断系统模型,如图1所示。其中的些主要工作已经完成。该系统包括3大模块:磨粒分析模块、磨粒识别与统计模块和机械磨损故障铁谱诊断模块:在磨粒分析模块中可以采用计算机图像分析和模拟人工分析两种方式。铁谱图像分析子系统 [7]能够提取定量的磨粒特征参数。这包括形态数字特征和光密度特征,提取的信息中的一部分输入磨粒识别与统计模块,并采用神经网络技术识别磨粒[8],经统计后,将结果送入磨粒信息库;一部分直接送入磨粒信息库。模拟人工分析子系统,采用人一机协作的方法,人工提取定性的磨粒特征参数,应用神经网络专家系统进行磨粒识别[9],识别结果经统计后送入磨粒信息库;定量钳普参数采用光密度计测量,测量结果直接送入磨粒信息库。根据不同的需要,磨粒信息库中的数据可按不同的方式组织,形成不同的数据文件,以备故障诊断与监测取用。机械磨损故障铁谱诊断模块根据用户需要可实现磨损状态诊断、磨损故障类型诊断和磨损原因诊断,三者的实现均采用神经网络模型[l0转自深圳培训吧www.szpxb.com]。在铁谱诊断时,除了利用磨粒信息库的数据文件作为输入向量外,还应充分利用被监测设备知识库的知识。该系统还可以直接从磨粒信息库中提取数据,采用神经网络技术进行磨损趋势预测

1.FFT-FS频谱细化技术及其在机械故障诊断中的应用,武汉科技大学学报(自然科学版)2000年01期(EI01035575059)2.小波分析及其在振动诊断中的应用,武汉科技大学学报(自然科学版)2000年04期(EI01035574405)3.小波分析—AR谱及其工程应用,振动与冲击,2001年01期(EI01246544631)4.基于三维有限元法的卷取机助卷辊支臂焊缝强度分析,湖北工学院学报,2002年02期5.振动信号分析法用于回转支承故障诊断,工程机械,2002.66.斗轮式堆取料机回转支承故障诊断研究,振动与冲击,2002.37.结晶器非正弦振动研究,机械传动,2002.48.轧机主传动系统减速机故障诊断研究,重型机械,2002.49.椭圆齿轮传动在结晶器非正弦振动装置中的应用,冶金设备,2002.610.高炉过程多智能体控制系统的开发,炼铁,2003.311.一种用于低速重载轴承故障诊断的共振解调法,煤矿机械,2002.812.非接触式扭矩在线监测系统的研究,武汉科技大学学报(自然科学版)2001年03期(EI01556802095)13.2800轧机万向接轴联轴器十字轴断裂事故分析,重型机械,2002年01期14.轧机主传动万向联轴器辊端接头结构探讨,重型机械,2002年02期15.中板轧机主传动万向接轴辊端接头断裂事故分析,冶金设备,2002年01期16. 虚拟仪器技术及其在机械故障诊断中的应用,武汉科技大学学报(自然科学版)2002年02期(EI04238195408)17.中板轧机主传动万向接轴十字轴断裂事故分析,武汉科技大学学报(自然科学版)2002年02期(EI04238195407)18.CALCULATION OF THERMOMECHANICAL STRESS OF LADLE LINING DURING PRE-HEATING AND OPTIMIZATION OF REFRACTORY PROPERTIES, Proceedings of the fourth international symposium on refractories, Dalian, China, March 24~28, 2003, ISBN 7-5062-5863-319.WAVELET ANALYSIS WITH ITS APPLICATION IN DEVICE FAULT DIAGNOSIS, Proceedings of IE & EM’2003, Global Industrial Engineering in E-century, ISBN 7-89492-025-820.高线精轧机组远程监测与诊断应用研究, 冶金设备,2003,521.地下卷取机卷筒主传动系统强度分析, 武汉科技大学学报,2003,4(EI04238195541)22.Calculation Of Temperature And Stress Distribution For Ladle Lining, Refractories Applications and News, 2004,vol.9,323.长水口热机械应力研究 耐火材料,2004.2(EI 04298271946)24.降低长水口颈部应力的研究 炼钢,2004.425.钢包底工作衬的热应力分布及结构优化 《耐火材料》2004.4(EI 04448438852)26.钢包底温度场和应力场模拟,冶金能源,2004.427.炉衬热应力分析中几类特殊结构的建模方法,工业炉,2004.328.基于谐波小波变换的低速轴承故障诊断,轴承,2004.1029.高线精轧机组轴承振动监测与故障分析,轴承,2004.530.基于FFT-FS频谱细化及共振解调技术的电机轴承故障诊断,矿山机械,2004.331.可逆式轧机十字轴式万向联轴器辊端叉头的有限元分析,冶金设备,2004.432.一种改进的广义自洽模型及其在耐火材料性能预测中的应用,中国科协第二届优秀博士生学术年会论文集,2004.12,苏州33.Research On Thermomechanical Stress Of Long Nozzle And Improvement Measures,Refractories Applications and News, 2005,vol.10,134.基于人工神经网络的轧机轧制力矩在线监测方法研究,机械研究与应用,2005.235.基于internet的风机远程监测与诊断系统研究,风机技术,2005.236.基于谐波小波分析的故障诊断方法研究,振动与冲击(已录用)37.基于谐波小波变换的共振解调法及其在轴承故障诊断中的应用,振动与冲击(已录用)38.基于Morlet小波变换与最大似然估计方法的降噪技术,振动、测试与诊断,2005.2(EI05189081905)39.Prediction of properties of Al2O3-C refractory based on microstructure by an improved generalized self-consistent scheme, Metallurgical and Materials Transactions B 2005.10(SCI、EI收录)

故障诊断技术在设备维修的应用论文

摘要 :根据矿山机电设备的特点及使用情况,对现代故障诊断技术在矿山机电设备维修中的应用做了进一步的探讨,尤其是对其中的智能故障诊断技术进行了重点研究,希望借此可以为矿山机电设备的维修提供参考。

关键词 :故障诊断;机电维修;智能诊断

在现代矿山生产过程中,高技术含量的机电设备在煤矿生产一线获得了广泛的应用,但是因为受到工作环境等方面因素的影响,机电设备在运行过程中会出现故障,给煤矿安全、稳定生产带来了隐患。利用故障诊断技术能够深入地了解机电设备运行过程的典型状态,还能够检测出设备运行过程中存在的潜在隐患,及时发现设备存在的主要问题,为故障预测和处理提供可靠依据。因此,找到矿山机电设备故障产生的主要原因,并利用故障诊断技术对原因进行及时准确的诊断分析,对保证机电设备的正常稳定运行以及矿山的生产安全都是非常重要的。

一、矿山机电设备产生故障的原因

(一)机械零部件配合关系变化。导致矿山机电设备出现故障的原因主要是设备的机械零部件关系变化或者零部件自身损伤而造成的。其中,零部件损伤有设备运行过程中相关零件之间的相互影响的因素,这种影响使零部件自身在形态、尺寸、功能等方面发生了变化,不能够充分发挥其应有的性能。

(二)设备长期超负荷运行。在实际的使用过程中,若一台设备的实际运行情况超出了其极限应用范围,则该设备会在很大程度上因为超负荷而出现故障。

(三)设备自身性能损耗。机电设备在运行过程中会因为内部和外部因素的影响而使其运行能力持续消耗,包括设备机械零部件的磨损、电子设备的老化等,这些因素使得设备的综合能力开始下降,最终出现各种类型的生产故障。

二、矿山机电设备的故障诊断

(一)设备故障诊断的方法。在通常情况下,设备故障诊断属于一种防护措施,是在不影响基本生产流程的情况下判断该设备各个部分的参数是否处于最佳的应用状态中。在诊断中,通过使用精密设备获得被检测机电设备的运行数据,确定其是否适合运行,是否发挥其正常的功能,是否存在出现损坏的因素等。若发现异常,则分析导致该异常的主要原因、损坏程度有多大、是否能够继续使用,并根据其实际受损程度判断其继续使用的时间。

(二)设备故障诊断的原理。所谓设备故障主要是指设备因为零部件受损或者在使用过程中因为不同因素的影响。这时,一旦出现故障,这些参数的变化将直接作用于设备的零部件,使得其发生物理变化,导致零部件的性能也随之出现变化,这种变化就是所谓的特征因子。这些特征因子可以精确的反映机械系统的实际故障状态,因此也被称作为故障敏感因子,只有这些故障敏感因子处于正常的阈值范围内时,设备才不会出现故障。故障诊断技术就是监测这些敏感因子,一旦矿山设备的故障敏感因子超出了阈值范围,就要发出告警。

三、故障诊断技术在矿山机电设备维修中的具体应用

(一)故障历史记录诊断方法的应用。当机电设备出现故障时,应该及时的分析导致该设备出现故障的相关原因,分析哪些是造成故障的主要因素。这是基于矿山机电设备组成原理而采取的一种典型故障诊断方法。当设备出现故障时,必须分析造成故障的因素,检查设备运行过程,获得最终的分析结果,并将这些结果进行归纳总结,形成一个该类型设备的故障诊断手册。在设备的后续运行过程中,当设备再次出现故障使,就可以根据典型的故障类型判断导致故障的原因,对故障进行针对性的处理、维修。

(二)温度、压力监测诊断方法的`应用。矿山机电设备中大量使用摩擦副、轴承和齿轮传动箱等机械设备,在这些部位设置温度、压力传感器可以实现对这些关键零部件运行状态的在线监测。通过连续对这些部位进行监测、记录相关数据的历史变化情况,可以快速、直观、准确的反应出机电设备的实际运行状态,还能够预测其运行状态变化趋势,从而为设备的维修提供可靠依据。温度、压力是矿山机电设备需要检测的典型参数,能够正确、精确的反映设备的真实工作状态。

共3页: 上一页123下一页

(三)智能诊断方法的应用。智能诊断方法就是通过系统控制的方式,模拟人脑特征,能够快速的获得机电设备的故障信息,并及时的进行传递、处理、再生及应用,通过与系统配合还能够实现设备运行状态的实时监测和预测,为机电设备及系统的运行、维修提供可靠的数据参考。智能诊断方法包括模糊诊断法、灰色系统诊断法、专家系统、神经网络诊断方法等。当前,智能故障诊断领域中最为活跃的方法是专家系统和神经网络方法,这两种方法在矿山机电设备故障诊断中具有较大的应用潜力。这主要是因为矿山机电设备的故障一般具有较强的复杂性和隐蔽性,使用传统的故障诊断方法难以精确、快速的对故障进行定位和分析,而通过应用专家系统或者神经网络,能够模拟人脑思维方式,根据反馈的故障信息快速的进行分析和求解,获得可靠的分析结果。

参考文献:

[1]张瑞景.运用故障诊断技术进行矿山机电设备维修[J].房地产导刊,2014(18).

电力变压器故障诊断研究论文

三比值法气体分析在变压器故障判断中的应用论文

摘要: 变压器故障条件下在绝缘油中产生大量气体,三比值法气体分析能根据各组分的含量、比值、产气速率判断变压器的故障原因及性质,在解决各类变压器故障中发挥了十分重要的作用。本文对三比值法气体分析在变压器故障判断中的应用做了介绍,供广大电力人员作参考。

关键词: 三比值法 气体分析变压器故障判断应用

电力变压器内部故障主要有过热性故障、放电性故障及绝缘受潮等多种类型。据有关资料介绍,对359台故障变压器统计表明:过热性故障占63%;高能量放电故障占18.1%;过热兼高能量放电故障占10%;火花放电故障占7%;受潮或局部放电故障占1.9%。电气测量不能发现以上很多隐性故障,如何找到一种能早期发现这些隐性故障的检测手段和方法以快速判断变压器故障的原因、性质和发展趋势是十分必要的。而三比值法气体分析就是在变压器故障分析中被大量采用的有效的化学测量方法。

一、绝缘油产气原理

1、 产品老化及故障条件下温度上升与放电导致绝缘油分解并产生气体

绝缘油是由许多不同分子量的碳氢化合物分子组成的混合物,分子中含有CH3、CH2和CH化学基团并由C-C键键合在一起。由于电或热故障的结果可以使某些C-H键和C-C键断裂,伴随生成少量活泼的氢原子和不稳定的碳氢化合物的自由基如:CH3*、CH2*CH*,或C*(其中包括许多更复杂的形式),这些氢原子或自由基通过复杂的化学反应迅速重新化合,形成氢气和低分子烃类气体,如甲烷、乙烷、乙烯、乙炔等,也可能生成碳的固体颗粒及碳氢聚合物(X-蜡)。

故障初期,所形成的气体溶解于油中;当故障能量较大时,也可能聚集成自由气体。碳的固体颗粒及碳氢聚合物可沉积在设备的内部。 低能量故障,如局部放电,通过离子反应促使最弱的键C-H键(338 kJ/mol)断裂,大部分氢离子将重新化合成氢气而积累。对C-C键的断裂需要较高的温度(较多的能量),然后迅速以C-C键(607 kJ/mol)、C=C键(720 kJ/mol)和C 三C(960 kJ/mol)键的.形式重新化合成烃类气体,依次需要越来越高的温度和越来越多的能量。 乙烯是在大约为500℃(高于甲烷和乙烷的生成温度)下生成的。乙炔的生成一般在800℃~1200℃的温度。因此,大量乙炔是在电弧的弧道中产生的(低于800℃也会有少量的乙炔生成)。油起氧化反应时伴随生成少量的CO和CO2。油碳化生成碳粒的温度在500℃~800℃。

2、 固体绝缘材料分解产生气体

纸、层压纸板或木块等固体绝缘材料分子内含有大量的无水右旋糖环和弱的C-O键及葡萄糖甙键,它们的热稳定性比油中的碳氢键要弱,并能在较低的温度下重新化合。聚合物裂解的有效温度高于105℃,完全裂解和碳化高于300℃,在生成水的同时生成大量的CO和CO2以及少量烃类气体和呋喃化合物,同时油被氧化。CO和CO2的形成不仅随温度而且随油中氧的含量和纸的湿度增加而增加。

二、产气与故障关系

故障气体的组成和含量与故障的类型及其严重程度有密切关系。在变压器里,当产气速率大于溶解速率时,会有一部分气体进入气体继电器或储油柜中。当变压器气体继电器内出现气体时,分析其中的气体,同样有助于对设备的状况做出判断。

不同的故障类型产生的主要特征气体和次要特征气体可归纳为表1。

变压器内部是否正常或存在故障,常用气相色谱分析结果的三项主要指标(总烃、已炔、氢)来判断。油中气体含量正常值和注意值见表2。

仅根据表3所列气体含量的绝对值很难对故障的严重程度作出正确判断,还必须考察故障的发展趋势,这与故障的产气速率密切相关。产气速率分为绝对产气速率和相对产气速率两种。规范规定对于密封式(隔膜式)变压器,总烃产气速率的注意值为0.5mL/h;总烃的相对产气速率大于10%时应引起注意。

三、判断故障性质的三比值法

三比值法是利用气相色谱分析结果中五种特征气体含量的三个比值(C2H2 /C2H4、CH4/ H2 、C2H4 /C2H6)来判断变压器内部故障性质。实践表明,这一方法判断故障性质的准确率相当高。由于当采用不完全脱气方法脱气时,各组分的脱气速率可能相差很大;但三比值法中,每一对比值之两种气体脱气速率之比都接近于1。所以采用三比值法克服了因脱气速率的差异所带来的不利影响。

三比值法按照比值范围,把三个比值以不同的编码来表示,编码规则如表4。

四、故障判断的步骤

1、气相色谱分析结果的三项指标(总烃、乙炔、氢)与规程的注意值进行比较,并分析CO、CO2的含量。

2、当主要指标达到或超过注意值时,应进行追踪分析、查明原因,结合产气速率估计是否存在故障或故障严重程度及发展趋势。有一项或几项主要指标超过注意值时,说明设备存异常情况,要引起注意。但规程推荐注意值是指导性,它不是划分设备是否异常唯一判据,不应当作强制性标准执行;而应进行跟踪分析,加强监视,注意观察其产生速率变化。有设备特征气体低于注意值,但增长速度很高,也应追踪分析,查明原因;有设备因某种原因使气体含量超过注意值,能立即判定有故障,而应查阅原始资料,若无资料,则应考虑一定时间内进行追踪分析;当增长率低于产气速率注意值,仍可认为是正常。判断设备是否存故障时,不能只一次结果来判定,而应多次分析以后,将分析结果绝对值与导则注意值作比较,将产气速率与产气速率参考值作比较,当两者都超过时,才判定为故障。当确定设备存潜伏性故障时,就要对故障严重性作出正确判断。判断设备故障严重程度,除分析结果绝对值外,必须用产气速率来考虑故障发展趋势,计算故障产气速率可确定设备内部有无故障,又可估计故障严重程度。当有意识用产气速率考察设备故障程度时,必须考察期间变压器不要停运而尽量保持负荷稳定性,考察时间以1~3个月为宜。考察期间,对油进行脱气处理或较短运行期间及油中含气量很低时进行产气速率考察,会带来较大误差。

3、可能发生故障时,用特征气体法或三比值法对故障类型作初步判断,一般用三比值法更准确。但用三比值法应注意有关问题有:

(1)采用三比值法来判断故障性质时必须符合条件:

1)色谱分析气体成分浓度应不少于分析方法灵敏度极根值10倍。

2)应排除非故障原因引入数值干扰。

3)一定时间间隔内(1~3个月)产气速率超过10%/月。

(2)注意三比值表以外比值应用,如122、121、222等组合形式表中找不到相应比值组合,对这类情况要进行对应分析和分解处理。如有认为122组合可以分解为102+020,即说明故障是高能放电兼过热。另外,追踪监视中,要认真分析含气成分变化规律,找出故障类型变化、发展过程,例如三比值组合方式由102—122,则可判断故障是先过热,后发展为电弧放电兼过热。当然,分析比值组合方式时,还要结合设备历史状况、运行检修和电气试验等资料,最后作出正确结论。

(3)注意对低温过热涉及固体绝缘老化正确判断。绝缘纸150˙C以下热裂解时,主要产生CO2外,还会产生一定量CO、乙烯和甲烷,此时,成分三比值会出现001、002、021、022等组合,这样就可能造成误判断。这种情况下,必须首先考虑各气体成分产气速率,CO2始终占主要成分,产气速率一直比其他气体高,则对001--002及021--022等组合,应认为是固体绝缘老化或低温过热。

(4)注意设备结构与运行情况。三比值法引用色谱数据是针对典型故障设备,而不涉及故障设备各种具体情况,如设备保护方式、运行情况等。如开放式变压器,应考虑到气体逸散损失,特别是甲烷和氢气损失率,引用三比值时,应对甲烷、H2比值作些修正。另外,引用三比值是各成分气体超过注意值,特别是产气速率,有理由判断可能存故障时才应用三比值进一步判断其故障性质,用三比值监视设备故障性质应故障不断产气过程中进行。设备停运,故障产气停止,油中各成分能会逐渐散失,成分比值也会发生变化,,不宜应用三比值法。

(5)目前对尚没有列入三比值法某些组合判断正研究之中。例如121或122对应于某些过热与放电同时存情况,202或212装有载调压开关变压器应考虑开关油箱油可能渗漏到本体油中情况。

4、气体继电器内出现气体时,应将其中气体分析结果与油中气体分析结果作比较。比较时应将气、液两相气体进行换算。若故障气体含量均很少,说明设备是正常的。若溶解气体略高于气体继电器,说明设备存在产气较慢的潜伏性故障;若气体继电器明显超过油内气体含量,则说明设备存在产气较快的故障。

5、结合其他检查性试验(直流电阻、空载试验、绝缘试验、局部放电试验和测量微量水分、外部检查等)及设备结构、运行、检修等情况作综合性分析,可相应采取红外检测、超声波检测和其它带电检测等技术手段加以综合诊断判断故障的性质和部位,采取相应措施如缩短试验周期、加强监视、限制负荷、近期安排内部检查或立即停运检查等。综合分析诊断应注意问题:

1)变压器内部故障形式和发展是比较复杂,往往与多种因素有关,这就特别需要进行全面分析。首先要历史情况和设备特点以及环境等因素,确定所分析气体究竟是来自外部还是内部。所谓外部原因,包括冷却系统潜油泵故障、油箱带油补焊、油流继电器接点火花,注入油本身未脱净气等。排除外部可能,分析内部故障时,也要进行综合分析。例如,绝缘预防性试验结果和检修历史档案、设备当时运行情况,包括温升、过负荷、过励磁、过电压等,及设备结构特点,制造厂同类产品有无故障先例、设计和工艺有无缺陷等。

2)油中气体分析结果,对设备进行诊断时,还应从安全和经济两方面考虑。某些过热故障,一般不应盲目建议吊罩、吊心,进行内部检查修理,而应首先考虑这种故障是否可以采取其他措施,如改善冷却条件、限制负荷等来予以缓和或控制其发展,有些过热性故障吊罩、吊心也难以找到故障源。这一类设备,应采用临时对策来限制故障发展,油中溶解气体未达到饱和,不吊罩、吊心修理,仍有可能安全运行一段时间,观察其发展情况,再考虑进一步处理方案。这样处理方法,既能避免热性损坏,又能避免人力、物力浪费。

3)油脱气处理必要性,要分几种情况区别对待:当油中溶解气体接近饱和时,应进行油脱气处理,避免气体继电器动作或油中析出气泡发生局部放电;当油中含气量较高而不便于监视产气速率时,也可考虑脱气处理后,从起始值进行监测。但需要明确是,油脱气并非处理故障必须手段,少量可燃性气体油中并不危及安全运行,监视故障过程中,过分频繁脱气处理是不必要。

4)分析故障同时,应广泛采用新测试技术,例如电气或超声波法局部放电测量和定位、红外成像技术检测、油及固体绝缘材料中微量水分测定,以及油中金属微粒测定等,以利于寻找故障线索,分析故障原因,并进行准确诊断。

五、按国家规定的气体分析检测周期对变压器加强检测,保障变压器的正常稳定运行,减少故障的发生。

1、 出厂设备的检测

220KV变压器在出厂试验全部完成后要做一次色谱分析。制造过程中的色谱分析由用户和制造厂协商决定。

2、 投运前的检测

定期检测的新设备及大修后的设备,投运前应至少做一次检测。如果在现场进行感应耐压和局部放电试验,则应在试验后停放一段时间再做一次检测。

3、投运时的检测

新的或大修后的变压器至少应在投运后4天、10天、30天各做一次检测,若无异常,可转为定期检测。

4、运行中的定期检测

220 kV及以上定期检测 6个月一次。

5、特殊情况下的检测

当设备出现异常情况时(如气体继电器动作,受大电流冲击或过励磁等),或对测试结果有怀疑时,应立即取油样进行检测,并根据检测出的气体含量情况,适当缩短检测周期。

结语: 变压器油气体色谱分析是预防性试验和故障分析判断的重要方法,已得到广泛应用。在用气体特征值和注意值及产气速率估计已存在故障的条件下,三比值法分析能较准确地做出故障分析、判断故障类型、性质和严重程度,采用三比值法时要注意结合其他检测试验和新式先进在线监测工具及设备结构、运行、检修情况,经综合分析和判断后对故障准确定位并采取相应措施。变压器故障原因可能十分复杂,往往同时有多种故障存在,并在发展中。加强预防性试验和定期分析检测对保障变压器的正常运行十分必要。三比值法也在实践中被人们不断探索中,必将在电力应用中发挥更大作用。

浅议电力变压器论文

在现实的学习、工作中,大家都跟论文打过交道吧,论文写作的过程是人们获得直接经验的过程。写起论文来就毫无头绪?以下是我帮大家整理的浅议电力变压器论文,希望对大家有所帮助。

摘要: 随着我国经济建设的发展,电力工业规模迅速的壮大起来,电力变压器的单台容量和安装容量快速增长。本文针对实际工作中常遇到的问题,从变压器的构成;变压器的噪音;变压器的防雷;变压器故障四个方面,来进行阐述。

关键词: 构成噪音防雷故障

变压器是一种用于交流电能转换的电气设备。它可以把一种交流电压、交流电流的电能转换成相同频率的另一种交流电压、交流电流的电能。变压器在电力系统中的主要作用是变换电压,以利于电能的传输。电压经升压变压器升压后,可以减少线路损耗,提高送电经济性,达到远距离送电的目的。电压经降压变压器降压后,获得各级用电设备的所需电压,以满足用户使用的需要。

一、变压器的构成

为了改善散热条件,大、中容量的电力变压器的铁心和绕组浸入盛满变压器油的封闭油箱中,各绕组对外线路的联接由绝缘套管引出。变压器由器身、油箱、冷却装置、保护装置、出线装置及调压装置等部分组成:器身包括铁心、绕组、绝缘结构及引线等;油箱包括本体(箱盖、箱壁和箱底)和一些附件(放油阀门、小车、油样油门、接地螺栓及铭牌等);冷却装置包括散热器和冷却器;保护装置包括储油柜、油位计、安全气道、吸湿器、测温元件、浮油器及气体继电器等;出线装置包括高压套管、低压套管等;调压装置即分接开关,分为无载调压和有载调压装置。

二、变压器的噪音极其措施

变压器在运行中产生的声音主要是硅钢片在磁场的作用下产生的磁致伸缩和器身由于电磁力所引起的振动,和冷却系统风机和风扇产生的噪音。声音的振动频率在16Hz~2000 Hz之间可引起人们的'听觉,次声和超声都是人们的听觉所感受不到的。电力变压器噪声的传播是由铁心到夹件、绕组,同时由铁心到空气。为了降低噪声可以减少铁心硅钢片磁致伸缩,降低磁通密度是降低噪声的有效措施,但降低磁密又会导致铁心尺寸增大,从而增加铁心硅钢片的数量,会造成成本的增加。所以应该把成本控制在一定的范围内来降低噪声。也可以在变压器适当的位置加缓冲件,如在铁心和低压绕组间加橡胶适形撑块,其作用是一面撑紧低压绕组,一方面起到缓冲作用,使声音通过缓冲结构而得到衰减。

三、变压器的防雷

据不完全统计,年平均雷暴日数在35—45的地区,10kV级配电变压器被雷击损坏率占其总数的4%—10%。损坏的主要原因是变压器避雷器装设不当和接地引下线接线不妥。主要表现为:变压器高压侧避雷器利用支架作接地引下线;变压器中性点及高低压侧避雷器分别接地;避雷器未作预防性试验;低压侧未装设避雷器;接地引下线截面过小及引线过长等。

四、变压器故障

根据变压器运行现场的实际状态,在发生以下情况变化时:需对变压器进行故障诊断。正常停电状态下进行的交接、检修验收或预防性试验中一项或几项指标超过标准;运行中出现异常而被迫停电进行检修和试验;运行中出现其他异常(如出口短路)或发生事故造成停电,但尚未解体(吊心或吊罩)。当出则上述任何一种情况时,往往要迅速进行有关试验,以确定有无故障情况。

故障判断的步骤:

①判断变压器是否存在故障,是隐性故障还是显性故障。

②判断属于什么性质的故障,是电性故障还是热性故障,是固体绝缘故障还是油性故障等。

③判断变压器故障的状况,如热点温度、故障功率、严重程度、发展趋势以及油中气体的饱和程度和达到饱和而导致继电器动作所需的时间等。

④提出相应的反事故措施,如能否继续运行,继续运行期间的安全技术措施和监视手段或是否需要内部检查修理等。

由于变压器故障涉及面较广,具体类型的划分方式较多,如从回路划分主要有电路故障、磁路故障和油路故障。而对变压器本身影响最严重、目前发生机率最高的又是变压器出口短路故障,同时还存在变压器放电故障等。

变压器短路故障主要指变压器出口短路,以及内部引线或绕组间对地短路、及相与相之间发生的短路而导致的故障。这类故障的案例很多,特别是变压器低压出口短路时形成的故障一般要更换绕组,严重时可能要更换全部绕组,从而造成十分严重的后果和损失,因此,尤应引起足够的重视。例如:某110kV、31。5MVA变压器(SFS2E8—31500/110)发生短路事故,重瓦斯保护动作,跳开主变压器三侧开关。返厂吊罩检查,发现C相高压绕组失团,C相中压绕组严重变形,并挤欢囚板造成中、低压绕组短路;C相低压绕组校烧断二股;B相低压、中压绕组严重变形;所有绕组匝问散布很多细小铜珠、铜末;上部铁芯、变压器底座有锈迹(事故发生当天有雷雨)。原因:①变压器绕组松散。②该变压器撑条不齐且有移位、垫块有松动位移。③绝缘结构的强度不高。

放电对绝缘有两种破坏作用:一种是由于放电质点直接轰击绝缘,使局部绝缘受到破坏并逐步扩大,使绝缘击穿。另一种是放电产生的热、臭氧、氧化氯等活性气体的化学作用,使局部绝缘受到腐蚀,介质损耗增大,最后导致热击穿。如某63MvA、220kv变压器在进行1。5倍电压局部放电时,有放电声响,放电量达4000—5000pC。改为匝间1.0倍电压,线端1.5倍电压的支撑法时,无放电声响,放电量也降为1000pC以下。拆升变压器检查,发现沿端部绝缘角环有树枝状放电痕迹,系绝缘角环材质不良所致。沿固体绝缘表面的局部放电,以电场强度同时有切线和法线分量时最严重。原因:局部放电故障可能发生在任何电场集中或绝缘材质不良的部位,如高压绕组静电屏出线、高电压引线、相间围屏以及绕组匝间等处。

变压器是在电力系统和电子线路中应用广泛的电气设备。在电能的传输、分配和使用中,变压器是关键设备,具有极其重要意义,所以在实际工作中要对变压器予以高度的注意。

参考文献:

[1] 李丹娜、孙成普编著, 电力变压器应用技术[M]. 中国电力出版社. 2009(05).

[2] 谢毓城主编,电力变压器手册[M].机械工业出版社. 出版时间: 2003(02).

摘要:

变压器在发生事故之前,通常都会有异常情况,因为变压器内部故障是由轻微发展为严重的。变压器的故障常被分为内部故障和外部故障两种。内部故障为变压器油箱内发生的各种故障;外部故障为变压器油箱外部绝缘套管及其引出线上发生的各种故障。文章主要分析变压器运行的检查维护及故障处理的方法,可供广大同行技术参考。

关键词:

变压器;运行维护;故障:分析;处理

一、变压器运行中的检查维护

变压器在发生事故之前,一般都会有异常情况,因为变压器内部故障是由轻微发展为严重的。值班人员应随时对变压器的运行状况进行监视和检查。通过对变压器运行时的声音、震动、气味、变色、温度及外部状况等现象的变化,来判断有无异常,分析异常运行的原因、部位及程度,以便采取相应措施。

(1)检查变压器上层油温是否超过允许范围。

(2)检查油质,应为透明、微带黄色,由此可判断油质的好坏。

(3)应检查套管是否清洁,有无裂纹和放电痕迹,冷却装置应正常。

(4)变压器的声音应正常。正常运行时一般有均匀的嗡嗡电磁声。

(5)天气有变化时,应重点进行特殊检查。

二、变压器运行中出现的不正常现象的分析

(一)声音异常

1.变压器正常运行时声音应为连续均匀的“嗡嗡”声,如果产生不均匀或其他响声都属于不正常现象。

2.内部有较高且沉着的“嗡嗡”声,则可能是过负荷运行,可根据变压器负荷情况鉴定并加强监视。

3.内部有短时“哇哇”声,则可能是电网中发生过电压,可根据有无接地信号,表计有无摆动来判定。

4.变压器有放电声,则可能是套管或内部有放电现象,这时应对变压器作进一步检测或停用。

5.变压器有水沸声,则为变压器内部短路故障或接触不良,这时应立即停用检查。

6.变压器有爆裂声,则为变压器内部或表面绝缘击穿,这时应立即停用进行检查。

7.其他可能出现“叮当”声或“嘤嘤”声,则可能是个别零件松动,可以根据情况处理。

(二)油温异常

1.变压器的绝缘耐热等级为A级时,线圈绝缘极限温度为105℃,根据国际电工委员会的推荐,保证绝缘不过早老化,温度应控制在85℃以下。若发现在同等条件下温度不断上升,则认为变压器内部出现异常,内部故障等多种原因,这时应根据情况进行检查处理。

2.导致温度异常的原因有:散热器堵塞、冷却器异常、内部故障等多种原因。这时应根据情况进行检查处理。

(三)油位异常

变压器油位变化应该在标记范围之间,如有较大波动则认为不正常。常见的油位异常有:

1.假油位,如果温度正常而油位不正常,则说明是假油位。运行中出现假油位的原因有呼吸器堵塞、防暴管通气孔堵塞等。

2.油位下降,原因有变压器严重漏油、油枕中油过少、检修后缺油、温度过低等。

相关百科

热门百科

首页
发表服务