蛋白质组学在基础和应用生物学中的应用Current Opinion in Biotechnology 2000,11:408-412在过去的一年里,随着双向电泳和质谱以及不同研究程序的核心技术的改进,蛋白质组学保持持续快速进步。注释充分的蛋白质组学数据库现在在一些领域出现了,为系统研究提供了一个平台,在临床应用诸如心血管和肿瘤学中尤其有发展前途。大规模定量研究,在功能和敏感性上与基因表达所达到的相媲美,因而在蛋白质水平正变为现实。简介如果90年代是基因组的十年,新世纪的头十年正成为蛋白质组学的十年。蛋白质组学技术生成的定量表达数据第一次可以在规模和敏感性上与基因水平相媲美。这个进展对于我们理解健康和疾病的细胞组成结构以及对药物、农业生物技术有重要意义。确实蛋白质组学业已在大范围应用中产生了重要发现。这篇文章综述了蛋白质组研究中的新概念、革新技术以及生物应用。概念:结构对量化调节蛋白质组学蛋白质组学的最终目标不仅仅是将健康和疾病状态下细胞表达的蛋白质分类。最终目标是阐明细胞生命赖以进行的代谢、信号传导和调控网络的组织和动力学。另外,蛋白质组学寻求理解这些网络如何在疾病中失去功能以及如何通过干预诸如药物和基因操作操纵它们的功能。这些是模糊不清的目标,在它们能够充分实现之前需要敏感性增强的技术和新的概念,但是对调节网络作图和细胞状态诊断的任务在不断进展。在微生物中, VanBogelen等[1]已经识别了特殊细胞状态的蛋白质组信号,诸如分泌功能障碍和特殊磷来源的使用,并且目前正在结合基因组和蛋白质组方法试图作出完全的调节网络[2]。然而,大多数蛋白质组研究都指向具体生理状态下蛋白质表达和功能的更近期的目标。这里,两个对立但是互补的策略已经出现了。一个是"表达"或者"定量调节"蛋白质组学监控一个细胞或组织里大数量蛋白质的表达以及定量观察在不同环境下,诸如药物的存在或者在疾病组织里表达方式是如何改变的[3]。这使得它可能识别疾病特异性蛋白质、药物靶标和药物毒性与效力的标记物,以及通过识别表达进行协调改变的蛋白质。这是目前最广泛应用和有效的蛋白质组学模型,现在还主要依赖于双向电泳(2DE)。第二个策略被称为"细胞图谱"或者"结构"蛋白质组学[4]。这里,近期目标是识别蛋白质的结构,尤其是识别与其它蛋白质相互作用并形成复合体的蛋白质的结构。通过记录蛋白质的物理相互作用,尽管没有定量调节蛋白质组学的所集中的幅度,这个策略可能对特别通路的具体研究证明高度有效。尽管双杂交以及相关的分析[5]对特异蛋白质-蛋白质相互作用的识别是重要的,结构蛋白质组学的最重要的技术是质谱(MS)。技术:2DE和MS的改进定量调节和结构蛋白质组学的区分是有用的,然而必须强调大多蛋白质组项目结合两种方法并同时依赖2DE和MS。在过去的几年里这些核心技术已经看到了显著的进展。通过建立在zwitterionic去污剂[6]和有机溶剂[7]基础上的样品制备的持续进展,令人烦恼的用2DE分离高度憎水的膜蛋白质的问题有了逐渐的进展,但是仍然是一个重要和未解决的问题。从一个组织获得单一细胞类型样品的挑战通过使用一个激光捕获显微切割系统有所解决,一个组织样品附着在一个胶片上然后同样的兴趣细胞用一个激光束脱离下来[8]。蛋白质组学中MS的使用在功能和多样性方面已经有了一些显著改进而继续演进。一些研究组已经引入了新的蛋白质标记方法学改进MS的功能和敏感性[9,10]。Aebersold和合作者[10]已经发展了一个用同位素编码的亲和标签(ICAT)标记肽的方法,它不仅支持复杂肽混合物的增强的分析也允许在蛋白质表达水平对差异的精确定量,这是MS为基础的蛋白质组学以前所没有的功能。MS与一个软件工具FindMod的配对增强了该方法识别转录后修饰的能力[11]。定性蛋白质复合体的技术也被引进,包括基于液相色谱/串联MS[12]的系统以及发展一个新的串联亲和纯化(TAP)标签从细胞样品快速纯化复合物[13]。其它样品处理方法的进展近来允许对分泌囊中的肽用MS直接进行分析,可望用同样的技术对其它细胞器进行分析[14]。当然通过结合2DE和MS为基础的方法蛋白质组学获得最低点的功能。一个代表性的结合例子是Hochstrasser研究组[15]所发展的系统,整个2DE凝胶进行原位消化,电转移到膜上并直接用MS扫描,生成注释的2D图谱。这样的发展在一些专业蛋白质组学公司已经开创,现在可以使得蛋白质组学在与项目本身复杂性相对应的规模上开展起来。
字数可能有点超,你自己截取吧~~ 分子生物学(molecular biology) 在分子水平上研究生命现象的科学。研究生物大分子(核酸、蛋白质)的结 构、功能和生物合成等方面来阐明各种生命现象的本质。研究内容包括各种生命过程如光合作用、发育的分子机制、神经活动的机理、癌的发生等。 从分子水平研究生物大分子的结构与功能从而阐明生命现象本质的科学。自20世纪50年代以来,分子生物学是生物学的前沿与生长点,其主要研究领域包括蛋白质体系、蛋白质-核酸体系 (中心是分子遗传学)和蛋白质-脂质体系(即生物膜)。 生物大分子,特别是蛋白质和核酸结构功能的研究,是分子生物学的基础。现代化学和物理学理论、技术和方法的应用推动了生物大分子结构功能的研究,从而出现了近30年来分子生物学的蓬勃发展。分子生物学和生物化学及生物物理学关系十分密切,它们之间的主要区别在于:①生物化学和生物物理学是用化学的和物理学的方法研究在分子水平,细胞水平,整体水平乃至群体水平等不同层次上的生物学问题。而分子生物学则着重在分子(包括多分子体系)水平上研究生命活动的普遍规律;②在分子水平上,分子生物学着重研究的是大分子,主要是蛋白质,核酸,脂质体系以及部分多糖及其复合体系。而一些小分子物质在生物体内的转化则属生物化学的范围;③分子生物学研究的主要目的是在分子水平上阐明整个生物界所共同具有的基本特征,即生命现象的本质;而研究某一特定生物体或某一种生物体内的某一特定器官的物理、化学现象或变化,则属于生物物理学或生物化学的范畴。 发展简史 结构分析和遗传物质的研究在分子生物学的发展中作出了重要的贡献。结构分析的中心内容是通过阐明生物分子的三维结构来解释细胞的生理功能。1912年英国 W.H.布喇格和W.L.布喇格建立了X射线晶体学,成功地测定了一些相当复杂的分子以及蛋白质的结构。以后布喇格的学生W.T.阿斯特伯里和J.D.贝尔纳又分别对毛发、肌肉等纤维蛋白以及胃蛋白酶、烟草花叶病毒等进行了初步的结构分析。他们的工作为后来生物大分子结晶学的形成和发展奠定了基础。50年代是分子生物学作为一门独立的分支学科脱颖而出并迅速发展的年代。首先是在蛋白质结构分析方面,1951年L.C.波林等提出了 α-螺旋结构,描述了蛋白质分子中肽链的一种构象。1955年F.桑格完成了胰岛素的氨基酸序列的测定。接着 J.C.肯德鲁和M.F.佩鲁茨在X射线分析中应用重原子同晶置换技术和计算机技术分别于1957和1959年阐明了鲸肌红蛋白和马血红蛋白的立体结构。1965年中国科学家合成了有生物活性的胰岛素,首先实现了蛋白质的人工合成。 另一方面,M.德尔布吕克小组从1938年起选择噬菌体为对象开始探索基因之谜。噬菌体感染寄主后半小时内就复制出几百个同样的子代噬菌体颗粒,因此是研究生物体自我复制的理想材料。1940年G.W.比德尔和E.L.塔特姆提出了“一个基因,一个酶”的假设,即基因的功能在于决定酶的结构,且一个基因仅决定一个酶的结构。但在当时基因的本质并不清楚。1944年O.T.埃弗里等研究细菌中的转化现象,证明了DNA是遗传物质。1953年J.D.沃森和F.H.C.克里克提出了DNA的双螺旋结构,开创了分子生物学的新纪元。在此基础上提出的中心法则,描述了遗传信息从基因到蛋白质结构的流动。遗传密码的阐明则揭示了生物体内遗传信息的贮存方式。1961年F.雅各布和J.莫诺提出了操纵子的概念,解释了原核基因表达的调控。到20世纪60年代中期,关于DNA自我复制和转录生成RNA的一般性质已基本清楚,基因的奥秘也随之而开始解开了。 仅仅30年左右的时间,分子生物学经历了从大胆的科学假说,到经过大量的实验研究,从而建立了本学科的理论基础。进入70年代,由于重组DNA研究的突破,基因工程已经在实际应用中开花结果,根据人的意愿改造蛋白质结构的蛋白质工程也已经成为现实。 基本内容 蛋白质体系 蛋白质的结构单位是α-氨基酸。常见的氨基酸共20种。它们以不同的顺序排列可以为生命世界提供天文数字的各种各样的蛋白质。 蛋白质分子结构的组织形式可分为 4个主要的层次。一级结构,也叫化学结构,是分子中氨基酸的排列顺序。首尾相连的氨基酸通过氨基与羧基的缩合形成链状结构,称为肽链。肽链主链原子的局部空间排列为二级结构。二级结构在空间的各种盘绕和卷曲为三级结构。有些蛋白质分子是由相同的或不同的亚单位组装成的,亚单位间的相互关系叫四级结构。 蛋白质的特殊性质和生理功能与其分子的特定结构有着密切的关系,这是形形色色的蛋白质所以能表现出丰富多彩的生命活动的分子基础。研究蛋白质的结构与功能的关系是分子生物学研究的一个重要内容。 随着结构分析技术的发展,现在已有几千个蛋白质的化学结构和几百个蛋白质的立体结构得到了阐明。70年代末以来,采用测定互补DNA顺序反推蛋白质化学结构的方法,不仅提高了分析效率,而且使一些氨基酸序列分析条件不易得到满足的蛋白质化学结构分析得以实现。 发现和鉴定具有新功能的蛋白质,仍是蛋白质研究的内容。例如与基因调控和高级神经活动有关的蛋白质的研究现在很受重视。 蛋白质-核酸体系 生物体的遗传特征主要由核酸决定。绝大多数生物的基因都由 DNA构成。简单的病毒,如λ噬菌体的基因组是由 46000个核苷酸按一定顺序组成的一条双股DNA(由于是双股DNA,通常以碱基对计算其长度)。细菌,如大肠杆菌的基因组,含4×106碱基对。人体细胞染色体上所含DNA为3×109碱基对。 遗传信息要在子代的生命活动中表现出来,需要通过复制、转录和转译。复制是以亲代 DNA为模板合成子代 DNA分子。转录是根据DNA的核苷酸序列决定一类RNA分子中的核苷酸序列;后者又进一步决定蛋白质分子中氨基酸的序列,就是转译。因为这一类RNA起着信息传递作用,故称信使核糖核酸(mRNA)。由于构成RNA的核苷酸是4种,而蛋白质中却有20种氨基酸,它们的对应关系是由mRNA分子中以一定顺序相连的 3个核苷酸来决定一种氨基酸,这就是三联体遗传密码。 基因在表达其性状的过程中贯串着核酸与核酸、核酸与蛋白质的相互作用。DNA复制时,双股螺旋在解旋酶的作用下被拆开,然后DNA聚合酶以亲代DNA链为模板,复制出子代 DNA链。转录是在 RNA聚合酶的催化下完成的。转译的场所核糖核蛋白体是核酸和蛋白质的复合体,根据mRNA的编码,在酶的催化下,把氨基酸连接成完整的肽链。基因表达的调节控制也是通过生物大分子的相互作用而实现的。如大肠杆菌乳糖操纵子上的操纵基因通过与阻遏蛋白的相互作用控制基因的开关。真核细胞染色质所含的非组蛋白在转录的调控中具有特殊作用。正常情况下,真核细胞中仅2~15%基因被表达。这种选择性的转录与转译是细胞分化的基础。 蛋白质-脂质体系 生物体内普遍存在的膜结构,统称为生物膜。它包括细胞外周膜和细胞内具有各种特定功能的细胞器膜。从化学组成看,生物膜是由脂质和蛋白质通过非共价键构成的体系。很多膜还含少量糖类,以糖蛋白或糖脂形式存在。 1972年提出的流动镶嵌模型概括了生物膜的基本特征:其基本骨架是脂双层结构。膜蛋白分为表在蛋白质和嵌入蛋白质。膜脂和膜蛋白均处于不停的运动状态。 生物膜在结构与功能上都具有两侧不对称性。以物质传送为例,某些物质能以很高速度通过膜,另一些则不能。象海带能从海水中把碘浓缩 3万倍。生物膜的选择性通透使细胞内pH和离子组成相对稳定,保持了产生神经、肌肉兴奋所必需的离子梯度,保证了细胞浓缩营养物和排除废物的功能。 生物体的能量转换主要在膜上进行。生物体取得能量的方式,或是像植物那样利用太阳能在叶绿体膜上进行光合磷酸化反应;或是像动物那样利用食物在线粒体膜上进行氧化磷酸化反应。这二者能量来源虽不同,但基本过程非常相似,最后都合成腺苷三磷酸。对于这两种能量转换的机制,P.米切尔提出的化学渗透学说得到了越来越多的证据。生物体利用食物氧化所释放能量的效率可达70%左右,而从煤或石油的燃烧获取能量的效率通常为20~40%,所以生物力能学的研究很受重视。对生物膜能量转换的深入了解和模拟将会对人类更有效地利用能量作出贡献。 生物膜的另一重要功能是细胞间或细胞膜内外的信息传递。在细胞表面,广泛地存在着一类称为受体的蛋白质。激素和药物的作用都需通过与受体分子的特异性结合而实现。癌变细胞表面受体物质的分布有明显变化。细胞膜的表面性质还对细胞分裂繁殖有重要的调节作用。 对细胞表面性质的研究带动了糖类的研究。糖蛋白、蛋白聚糖和糖脂等生物大分子结构与功能的研究越来越受到重视。从发展趋势看,寡糖与蛋白质或脂质形成的体系将成为分子生物学研究的一个新的重要的领域。 理论意义和应用 分子生物学的成就说明:生命活动的根本规律在形形色色的生物体中都是统一的。例如,不论在何种生物体中,都由同样的氨基酸和核苷酸分别组成其蛋白质和核酸。遗传物质,除某些病毒外,都是DNA,并且在所有的细胞中都以同样的生化机制进行复制。分子遗传学的中心法则和遗传密码,除个别例外,在绝大多数情况下也都是通用的。 物理学的成就证明,一切物质的原子都由为数不多的基本粒子根据相同的规律所组成,说明了物质世界结构上的高度一致,揭示了物质世界的本质,从而带动了整个物理学科的发展。分子生物学则在分子水平上揭示了生命世界的基本结构和生命活动的根本规律的高度一致,揭示了生命现象的本质。和过去基本粒子的研究带动物理学的发展一样,分子生物学的概念和观点也已经渗入到基础和应用生物学的每一个分支领域,带动了整个生物学的发展,使之提高到一个崭新的水平。 过去生物进化的研究,主要依靠对不同种属间形态和解剖方面的比较来决定亲缘关系。随着蛋白质和核酸结构测定方法的进展,比较不同种属的蛋白质或核酸的化学结构,即可根据差异的程度,来断定它们的亲缘关系。由此得出的系统进化树,与用经典方法得到的是基本符合的。采用分子生物学的方法研究分类与进化有特别的优越性。首先,构成生物体的基本生物大分子的结构反映了生命活动中更为本质的方面。其次,根据结构上的差异程度可以对亲缘关系给出一个定量的,因而也是更准确的概念。第三,对于形态结构非常简单的微生物的进化,则只有用这种方法才能得到可靠结果。 高等动物的高级神经活动是极其复杂的生命现象,过去多是在细胞乃至整体水平上研究,近年来深入到分子水平研究的结果充分说明高级神经活动也同样是以生物大分子的活动为基础的。例如,在高等动物学习与记忆的过程中,大脑中RNA和蛋白质的组成发生明显的变化,并且一些影响生物体合成蛋白质的药物也显著地影响学习与记忆的能力。又如,“生物钟”是一种熟知的生物现象。用鸡进行的实验发现,有一种重要的神经传递介质(5-羟色胺)和一种激素(褪黑激素)以及控制它们变化的一种酶,在鸡脑中的含量呈24小时的周期性变化。正是这种变化构成了鸡的“生物钟”的物质基础。 在应用方面,生物膜能量转换原理的阐明,将有助于解决全球性的能源问题。了解酶的催化原理就能更有针对性地进行酶的人工模拟,设计出化学工业上广泛使用的新催化剂,从而给化学工业带来一场革命。 分子生物学在生物工程技术中也起了巨大的作用,1973年重组DNA技术的成功,为基因工程的发展铺平了道路。80年代以来,已经采用基因工程技术,把高等动物的一些基因引入单细胞生物,用发酵方法生产干扰素、多种多肽激素和疫苗等。基因工程的进一步发展将为定向培育动、植物和微生物良种以及有效地控制和治疗一些人类遗传性疾病提供根本性的解决途径。 从基因调控的角度研究细胞癌变也已经取得不少进展。分子生物学将为人类最终征服癌症做出重要的贡献。 [编辑本段]分子生物学的应用 1,亲子鉴定 近几年来,人类基因组研究的进展日新月异,而分子生物学技术也不断完善,随着基因组研究向各学科的不断渗透,这些学科的进展达到了前所未有的高度。在法医学上,STR位点和单核苷酸(SNP)位点检测分别是第二代、第三代DNA分析技术的核心,是继RFLPs(限制性片段长度多态性)VNTRs(可变数量串联重复序列多态性)研究而发展起来的检测技术。作为最前沿的刑事生物技术,DNA分析为法医物证检验提供了科学、可靠和快捷的手段,使物证鉴定从个体排除过渡到了可以作同一认定的水平,DNA检验能直接认定犯罪、为凶杀案、强奸杀人案、碎尸案、强奸致孕案等重大疑难案件的侦破提供准确可靠的依据。随着DNA技术的发展和应用,DNA标志系统的检测将成为破案的重要手段和途径。此方法作为亲子鉴定已经是非常成熟的,也是国际上公认的最好的一种方法。参考资料:蛋白质质谱分析研究进展 摘 要: 随着科学的不断发展,运用质谱法进行蛋白质的分析日益增多,本文简要综述了肽和蛋白质等生物大分子质谱分析的特点、方法及蛋白质质谱分析的原理、方式和应用,并对其发展前景作出展望。 关键词: 蛋白质,质谱分析,应用 前言: 蛋白质是生物体中含量最高,功能最重要的生物大分子,存在于所有生物细胞,约占细胞干质量的50%以上, 作为生命的物质基础之一,蛋白质在催化生命体内各种反应进行、调节代谢、抵御外来物质入侵及控制遗传信息等方面都起着至关重要的作用,因此蛋白质也是生命科学中极为重要的研究对象。关于蛋白质的分析研究,一直是化学家及生物学家极为关注的问题,其研究的内容主要包括分子量测定,氨基酸鉴定,蛋白质序列分析及立体化学分析等。随着生命科学的发展,仪器分析手段的更新,尤其是质谱分析技术的不断成熟,使这一领域的研究发展迅速。 自约翰.芬恩(JohnB.Fenn)和田中耕一(Koichi.Tanaka)发明了对生物大分子进行确认和结构分析的方法及发明了对生物大分子的质谱分析法以来,随着生命科学及生物技术的迅速发展,生物质谱目前已成为有机质谱中最活跃、最富生命力的前沿研究领域之一[1]。它的发展强有力地推动了人类基因组计划及其后基因组计划的提前完成和有力实施。质谱法已成为研究生物大分子特别是蛋白质研究的主要支撑技术之一,在对蛋白质结构分析的研究中占据了重要地位[2]。 1.质谱分析的特点 质谱分析用于蛋白质等生物活性分子的研究具有如下优点:很高的灵敏度能为亚微克级试样提供信息,能最有效地与色谱联用,适用于复杂体系中痕量物质的鉴定或结构测定,同时具有准确性、易操作性、快速性及很好的普适性。 2.质谱分析的方法 近年来涌现出较成功地用于生物大分子质谱分析的软电离技术主要有下列几种:1)电喷雾电离质谱;2)基质辅助激光解吸电离质谱;3)快原子轰击质谱;4)离子喷雾电离质谱;5)大气压电离质谱。在这些软电离技术中,以前面三种近年来研究得最多,应用得也最广泛[3]。 3.蛋白质的质谱分析 蛋自质是一条或多条肽链以特殊方式组合的生物大分子,复杂结构主要包括以肽链为基础的肽链线型序列[称为一级结构]及由肽链卷曲折叠而形成三维[称为二级,三级或四级]结构。目前质谱主要测定蛋自质一级结构包括分子量、肽链氨基酸排序及多肽或二硫键数目和位置。 3.1蛋白质的质谱分析原理 以往质谱(MS)仅用于小分子挥发物质的分析,由于新的离子化技术的出现,如介质辅助的激光解析/离子化、电喷雾离子化,各种新的质谱技术开始用于生物大分子的分析。其原理是:通过电离源将蛋白质分子转化为气相离子,然后利用质谱分析仪的电场、磁场将具有特定质量与电荷比值(M/Z值)的蛋白质离子分离开来,经过离子检测器收集分离的离子,确定离子的M/Z值,分析鉴定未知蛋白质。 3.2蛋白质和肽的序列分析 现代研究结果发现越来越多的小肽同蛋白质一样具有生物功能,建立具有特殊、高效的生物功能肽的肽库是现在的研究热点之一。因此需要高效率、高灵敏度的肽和蛋白质序列测定方法支持这些研究的进行。现有的肽和蛋白质测序方法包括N末端序列测定的化学方法Edman法、C末端酶解方法、C末端化学降解法等,这些方法都存在一些缺陷。例如作为肽和蛋白质序列测定标准方法的N末端氨基酸苯异硫氰酸酯(phenylisothiocyanate)PITC分析法(即Edman法,又称PTH法),测序速度较慢(50个氨基酸残基/天);样品用量较大(nmol级或几十pmol级);对样品纯度要求很高;对于修饰氨基酸残基往往会错误识别,而对N末端保护的肽链则无法测序[4]。C末端化学降解测序法则由于无法找到PITC这样理想的化学探针,其发展仍面临着很大的困难。在这种背景下,质谱由于很高的灵敏度、准确性、易操作性、快速性及很好的普适性而倍受科学家的广泛注意。在质谱测序中,灵敏度及准确性随分子量增大有明显降低,所以肽的序列分析比蛋白容易许多,许多研究也都是以肽作为分析对象进行的。近年来随着电喷雾电离质谱(electrospray ionisation,ESI)及基质辅助激光解吸质谱(matrix assisted laser desorption/ionization,MALDI)等质谱软电离技术的发展与完善,极性肽分子的分析成为可能,检测限下降到fmol级别,可测定分子量范围则高达100000Da,目前基质辅助的激光解吸电离飞行时间质谱法(MALDI TOF MS)已成为测定生物大分子尤其是蛋白质、多肽分子量和一级结构的有效工具,也是当今生命科学领域中重大课题——蛋白质组研究所必不可缺的关键技术之一 [5] 。目前在欧洲分子生物实验室(EMBL)及美国、瑞士等国的一些高校已建立了MALDI TOF MS蛋白质一级结构(序列)谱库,能为解析FAST谱图提供极大的帮助,并为确证分析结果提供可靠的依据[6]。 蛋白质质谱分析研究进展 来自: 免费论文网 3.3蛋白质的质谱分析方式 质谱用于肽和蛋白质的序列测定主要可以分为三种方法:一种方法叫蛋白图谱(proteinmapping),即用特异性的酶解或化学水解的方法将蛋白切成小的片段,然后用质谱检测各产物肽分子量,将所得到的肽谱数据输入数据库,搜索与之相对应的已知蛋白,从而获取待测蛋白序列。将蛋白质绘制“肽图”是一重要测列方法。第二种方法是利用待测分子在电离及飞行过程中产生的亚稳离子,通过分析相邻同组类型峰的质量差,识别相应的氨基酸残基,其中亚稳离子碎裂包括“自身”碎裂及外界作用诱导碎裂.第三种方法与Edman法有相似之处,即用化学探针或酶解使蛋白或肽从N端或C端逐一降解下氨基酸残基,形成相互间差一个氨基酸残基的系列肽,名为梯状测序(laddersequencing),经质谱检测,由相邻峰的质量差知道相应氨基酸残基。 3.3.1蛋白消化 蛋白的基团越大,质谱检测的准确率越低。因此,在质谱检测之前,须将蛋白消化成小分子的多肽,以提高质谱检测的准确率。一般而言,6-20个氨基酸的多肽最适合质谱仪的检测。现今最常用的酶为胰蛋白酶(trypsin),它于蛋白的赖氨酸(lysine)和精氨酸(arginine)处将其切断。因此,同一蛋白经胰蛋白酶消化后,会产生相同的多肽。 3.3.2基质辅助激光解吸电离/飞行时间质谱测量法(MALDI-TOF MS) [7] 简而言之,基质辅助激光解吸电离/飞行时间质谱测量仪是将多肽成分转换成离子信号,并依据质量/电荷之比(mass/charge,m/z)来对该多肽进行分析,以判断该多肽源自哪一个蛋白。待检样品与含有在特定波长下吸光的发光团的化学基质(matrix)混合,此样品混合物随即滴于一平板或载玻片上进行挥发,样品混合物残余水份和溶剂的挥发使样品整合于格状晶体中,样品然后置于激光离子发生器(lasersource)。激光作用于样品混合物,使化学基质吸收光子而被激活。此激活产生的能量作用于多肽,使之由固态样品混合物变成气态。由于多肽分子倾向于吸收单一光子,故多肽离子带单一电荷.这些形成的多肽离子直接进入飞行时间质量分析仪(TOFmassanalyzer)。飞行时间质量分析仪用于测量多肽离子由分析仪的一端飞抵另一端探测器所需要的时间。而此飞行时间同多肽离子的质量/电荷的比值成反比,即质量/电荷之比越高,飞行时间越短。最后,由电脑软件将探测器录得的多肽质量/电荷比值同数据库中不同蛋白经蛋白酶消化后所形成的特定多肽的质量/电荷比值进行比较,以鉴定该多肽源自何种蛋白.此法称为多肽质量指纹分析(peptidemassfin-gerprinting)。基质辅助激光解吸电离/飞行时间质谱测量法操作简便,敏感度高,同许多蛋白分离方法相匹配,而且,现有数据库中有充足的关于多肽质量/电荷比值的数据,因此成为许多实验室的首选蛋白质谱鉴定方法。 3.3.3电子喷雾电离质谱测量法(electrosprayion-izationmassspectrometry,ESI-MS)[8 ] 同基质辅助激光解吸电离/飞行时间质谱测量法在固态下完成不同,电子喷雾电离质谱测量法是在液态下完成,而且多肽离子带有多个电荷,由高效液相层析等方法分离的液体多肽混合物,在高压下经过一细针孔。当样本由针孔射出时,喷射成雾状的细小液滴,这些细小液滴包含多肽离子及水份等其他杂质成分。去除这些杂质成分后,多肽离子进入连续质量分析仪(tan- demmassanalyzer),连续质量分析仪选取某一特定质量/电荷比值的多肽离子,并以碰撞解离的方式将多肽离子碎裂成不同电离或非电离片段。随后,依质量/电荷比值对电离片段进行分析并汇集成离子谱(ionspectrum),通过数据库检索,由这些离子谱得到该多肽的氨基酸序列。依据氨基酸序列进行的蛋白鉴定较依据多肽质量指纹进行的蛋白鉴定更准确、可靠。而且,氨基酸序列信息即可通过蛋白氨基酸序列数据库检索,也可通过核糖核酸数据库检索来进行蛋白鉴定。 蛋白质质谱分析研究进展 来自: 免费论文网 4.蛋白质质谱分析的应用 1981年首先采用FAB双聚焦质谱测定肽分子量,分析十一肽(Mr=1318),质谱中出现准分子离子[M+1]+=1319强峰。分子量小于6kDa肽或小蛋白质合适用FAB质谱分析,更大分子量的多肽和蛋自质可用MALDI质谱或ESI质谱分析。用MALDI-TOF质谱分析蛋自质最早一例是Hillen Kramp等[9]于1988年提出用紫外激光以烟酸为基质在TOF谱仪上测出质量数高达60kDa蛋白质,精确度开始只有0.5%,后改进到0.1-0.2%。质谱技术主要用于检测双向凝胶电泳或“双向”高效柱层析分离所得的蛋白质及酶解所得的多肽的质量,也可用于蛋白质高级结构及蛋白质间相互作用等方面的研究[10,11],三条肽段的精确质量数便可鉴定蛋白质。近年来,串联质谱分析仪发展迅猛,其数据采集方面的自动化程度、检测的敏感性及效率都大大提高,大规模数据库和一些分析软件(如:SEQUEST)的应用使得串联质谱分析仪可以进行更大规模的测序工作。目前,利用2D电泳及MS技术对整个酵母细胞裂解产物进行分析,已经鉴定出1484种蛋白质,包括完整的膜蛋白和低丰度的蛋白质[12];分析肝细胞癌患者血清蛋白质组成分[13],并利用质谱进行鉴定磷酸化蛋白研究工作[14]及采用质谱技术研究许旺细胞源神经营养蛋白(SDNP)的分子结构[15]等。 结束语: 在蛋白质的质谱分析中,质谱的准确性(accuracy)对测定结果有很大影响,因此质谱测序现在仍很难被应用于未知蛋白的序列测定。肽和蛋白的质谱序列测定方法具有快速、用量少、易操作等优点,这些都非常适合于现在科学研究的需要。我们相信,随着各种衍生化方法和酶解方法的不断改进,蛋白双向电泳的应用[16]以及质谱技术的不断完善,质谱将会成为多肽和蛋白质分析最有威力的工具之一。
【关键词】 蛋白质组 【关键词】 线粒体;蛋白质组 0引言 线粒体拥有自己的DNA(mtDNA),可以进行转录、翻译和蛋白质合成. 根据人类的基因图谱,估计大约有1000~2000种线粒体蛋白,大约有600多种已经被鉴定出来. 线粒体蛋白质只有2%是线粒体自己合成的,98%的线粒体蛋白质是由细胞核编码、细胞质核糖体合成后运往线粒体的,线粒体是真核细胞非常重要的细胞器,在细胞的整个生命活动中起着非常关键的作用. 线粒体的蛋白质参与机体许多生理、病理过程,如ATP的合成、脂肪酸代谢、三羧酸循环、电子传递和氧化磷酸化过程. 线粒体蛋白质结构与功能的改变与人类许多疾病相关,如退行性疾病、心脏病、衰老和癌症. 尤其是在神经退行性疾病方面,线粒体蛋白质的研究日益受到关注. 蛋白质组研究技术的产生与发展为线粒体蛋白质组的研究提供了有力的支持,使得从整体上研究线粒体蛋白质组在生理、病理过程中的变化成为可能. 1线粒体的结构、功能与人类疾病 线粒体一般呈粒状或杆状,也可呈环形、哑铃形或其他形状,其主要化学成分是蛋白质和脂类. 线粒体由内外两层膜封闭,包括外膜、内膜、膜间隙和基质四个部分. 线粒体在细胞内的分布一般是不均匀的,根据细胞代谢的需要,线粒体可在细胞质中运动、变形和分裂增殖. 线粒体是细胞进行呼吸的主要场所,在细胞代谢旺盛的需能部位比较集中,其主要功能是进行氧化磷酸化,合成ATP,为细胞生命活动提供直接能量. 催化三羧酸循环、氨基酸代谢、脂肪酸分解、电子传递、能量转换、DNA复制和RNA合成等过程所需要的一百多种酶和辅酶都分布在线粒体中. 这些酶和辅酶的主要功能是参加三羧酸循环中的氧化反应、电子传递和能量转换. 线粒体具有独立的遗传体系,能够进行DNA复制、转录和蛋白质翻译. 线粒体不仅为细胞提供能量,而且还与细胞中氧自由基的生成、细胞凋亡、细胞的信号转导、细胞内离子的跨膜转运及电解质稳态平衡的调控等有关. 许多实验证实,线粒体功能改变与细胞凋亡〔1〕、衰老〔2〕、肿瘤〔3,4〕的发生密切相关;另外,有许多人类疾病的发生与线粒体功能缺陷相关,如线粒体肌病和脑肌病、线粒体眼病,老年性痴呆、帕金森病、2型糖尿病、心肌病及衰老等,有人统称为线粒体疾病〔5〕. 2线粒体蛋白质组学研究现状 2.1线粒体蛋白质组的蛋白质鉴定Rabilloud等〔6〕在1998年,以健康人的胎盘作为组织来源,分离提取线粒体进行蛋白质组研究,试图建立线粒体蛋白质组的数据库,为研究遗传性或获得性线粒体功能障碍时线粒体蛋白质的变化提供依据. 他们使用IPG(pH 4.0~8.0)双相电泳技术, 共获得1500个蛋白点. 通过MALDITOFMS和PMF等技术鉴定其中的一些蛋白点,鉴于当时基因组信息的局限性,只有46种蛋白被鉴定出来. 随着人类基因组图谱的完成,应该有更多的蛋白点被鉴定出来. Fountoulakis等〔7〕从大鼠的肝脏中分离线粒体,并分别利用宽范围和窄范围pH梯度IPG对线粒体蛋白质进行双相电泳,通过MALDIMS鉴定出192个基因产物,大约70%的基因产物是具有广谱催化能力的酶,其中8个基因产物首次被检测到并且由一个点构成,而大多数蛋白质都是由多个点构成,平均10~15个点对应于一个基因产物. Mootha等〔8〕从小鼠大脑、心脏、肾脏、肝脏中分离提取线粒体蛋白质,进行线粒体蛋白质组研究,他们参照已有的基因信息共鉴定出591个线粒体蛋白质,其中新发现了163个蛋白质与线粒体有关. 这些蛋白质的表达与RNA丰度的检测在很大程度上是一致的. 不同组织的RNA表达图谱揭示出线粒体基因在功能、调节机制方面形成的网络. 对这些蛋白与基因的整合分析使人们对哺乳动物生物起源的认识更加深入,对理解人类疾病也具有参考价值. 2.2线粒体亚组分的研究线粒体对维持细胞的体内平衡起着关键作用,因此加速了人们对线粒体亚组分的研究. 线粒体内膜不仅包含有呼吸链复合物,它还包含多种离子通道和转运蛋白. 对线粒体发挥正常的功能起着重要作用. Cruz等〔9〕专注于线粒体内膜蛋白质的研究,他们通过二维液相色谱串联质谱技术鉴定出182个蛋白质,pI(3.9~12.5),MW(Mr 6000~527 000),这些蛋白与许多生化过程相关,比如电子传递、蛋白质运输、蛋白质合成、脂类代谢和离子运输. 2.3线粒体蛋白质复合物的研究线粒体内膜上嵌有很多蛋白质复合物,对于线粒体的功能具有重要作用,应用常规的双相电泳很难将这些蛋白质复合物完整地分离出来. Devreese等〔10〕采用Bluenative polyacrylamide gel electrophoresis(BNPAGE)分离线粒体内膜上的五个氧化磷酸化复合物,结合肽质量指纹图谱,成功地鉴定出氧化磷酸化复合物中60%的已知蛋白质. BNPAGE在分离蛋白质复合物时可以保持它们的完整性,因此这项技术可以用于研究在不同的生理病理状态下蛋白质复合物的变化及临床诊断等. 2.4线粒体蛋白质组数据库目前人们查询最多的线粒体蛋白质组数据库有MITOP, MitoP2和SWISSPROT三种. MITOP〔11〕是有关线粒体、核编码的基因和相应的线粒体蛋白质的综合性数据库,收录了1150种线粒体相关的基因和对应的蛋白质,人们可依据基因、蛋白质、同源性、通道与代谢、人类疾病分类查询相关的信息.MitoP2〔12〕数据库中主要为核编码的线粒体蛋白质组的数据,MitoP2数据库将不同来源的线粒体蛋白质的信息整合在一起,人们可以根据不同的参数进行查询. MitoP2数据库既包括最新的数据也包括最初的MITOP〔11〕数据库中的数据. 目前数据库中主要为酵母和人的线粒体蛋白质组的数据,以后还将收录小鼠、线虫等的数据. 数据库旨在为人们提供线粒体蛋白质的综合性数据. SWISSPROT数据库包含269种人类线粒体蛋白质,其中与人类疾病相关的蛋白质有225种. 数据库中有相当一部分蛋白质没有明确的定位和功能信息的描述. 随着线粒体研究热潮到来和蛋白质组学技术的发展,将有更多的数据被填充到数据库中. 3线粒体蛋白质组研究中存在的问题 3.1线粒体碱性蛋白质与低分子量蛋白质线粒体蛋白质中,具有碱性等电点的蛋白质占有很大比例,在等电聚焦时难以溶解,一些碱性程度很大的蛋白质如细胞色素C(pH 10.3)在pH 3~10的IPG胶上不能被分离出. 线粒体蛋白质中相当一部分蛋白是低分子量蛋白,因此在SDSPAGE电泳时要分别应用高浓度和低浓度分离胶,以更好地分离低分子量蛋白质和高分子量蛋白质. 3.2线粒体膜蛋白质线粒体是一个具有双层膜结构的细胞器,内膜和外膜上整和有很多膜蛋白质,这些膜蛋白质对于线粒体功能的发挥具有重要作用,但是膜蛋白质具有很强的疏水性,在等电聚焦时,用常规的水化液难以溶解,因此用常规的IPG胶检测不出来. 换用不同的裂解液对膜蛋白的溶解具有帮助. 有研究人员在等电聚焦缓冲液中加入SB310以增加膜蛋白的溶解性. 在等电聚焦前对样品进行有机酸处理也可以增加膜蛋白的溶解性. 在研究中人们发现,不同的样品应该选用不同的裂解液,没有一种裂解液能够适合于所有的膜蛋白质.百事通针对膜蛋白质的难溶和等电聚焦时的沉淀,一些研究人员另辟径,避开双相电泳而进行一维SDSPAGE电泳,如Taylor等〔13〕先通过蔗糖梯度离心将线粒体蛋白质分成不同的组分,而后将每一个组分进行一维电泳,一维电泳中SDS可以很好地溶解疏水性蛋白质和膜整合蛋白质,他们鉴定出600多种线粒体蛋白质,其中有很多蛋白质以前应用双相电泳没有被鉴定出来. 他们鉴定的蛋白质中有很多具有跨膜结构域,如adenine nucleotide translocator(ANT1)和VDACs蛋白质,这些蛋白质对于调节线粒体的功能具有关键作用而且应用常规双相电泳很难被鉴定出来. 提高质谱鉴定的灵敏性对于一维SDSPAGE电泳后蛋白质分析鉴定具有很大的帮助,Pflieger等〔14〕应用液相色谱串联质谱(LCMS/MS)成功地鉴定出179种线粒体蛋白质,其中43%是膜蛋白质而且23%具有跨膜结构域. 液相色谱串联质谱(LCMS/MS)检测灵敏度较高,SDS可以很好地溶解膜蛋白,因此这种方法比传统的双相电泳具有更高的灵敏性而且不受蛋白质等电点、分子量、疏水性的限制. 3.3线粒体样品的纯度线粒体样品的纯度对于蛋白质组分析非常重要,在样品制备的过程中,具有与线粒体相同沉降系数的成分会同线粒体一起沉降下来,如内质网、微粒体、胞浆蛋白的一些成分. 这些蛋白斑点出现在双相电泳胶上,会影响整体蛋白质组分析的结果. 因此提高样品的纯度至关重要. Scheffler等〔15〕采用多步percoll/metrizamide密度梯度离心纯化线粒体样品,双相电泳后鉴定出61个蛋白质,几乎全部是线粒体蛋白质. 4未来展望 随着人类基因组工作草图的完成,生命科学的研究进入后基因组时代,蛋白质组学的研究遂成为重点. 蛋白质组学旨在采用全方位、高通量的技术路线,确认生物体全部蛋白质的表达和功能模式,从一个机体、一个器官组织或一个细胞的蛋白质整体活动来揭示生命规律,并研究疾病的发生机制、建立疾病的早期诊断和防治方法. 抗体技术在线粒体蛋白质组学领域中具有重要的应用价值. 单克隆抗体还具有高度的特异性,应用于亲和层析技术中不仅可以去除组织细胞样品中高表达的蛋白质成分,同样也可以富集表达量极低的组分. 结合蛋白免疫转印、流式细胞术和免疫组织细胞化学,实现对相应蛋白质的定性、定量和细胞(内)定位分析. 与微阵列技术(芯片)结合,可以研制出含有成百上千种抗体的蛋白(抗体)芯片,这种新技术使得研究人员可以在一次实验中比较生物样品中成百上千的蛋白质的相对丰度,能够检测到样品中浓度很低的抗原,以实现蛋白质组学对复杂组分高通量、高效率的检测. 某些抗体可以特异性识别蛋白质翻译后修饰的糖基化或磷酸化位点、降解产物、功能状态和构象变化,成为基因芯片检测不可替代的补充. 抗体捕获组分的分析有助于蛋白质复合物及其相互作用的研究,也在新的蛋白质发现和确认方面提供重要信息和证据. 随着抗体技术的不断提高,抗体数目的不断增多,蛋白质组学的研究也将更加深入. 线粒体不仅参与细胞重要的生命活动,而且对于生物进化的研究也有重要意义. 随着线粒体研究热潮的到来,将有更多的蛋白质被发现,对于蛋白质功能的研究也将更加深入,相信线粒体蛋白质组的研究对于人类疾病的发病机制和早期诊断将做出重要贡献. 【参考文献】 〔1〕 Jiang X, Wang X. Cytochrome Cmediated apoptosis 〔J〕. Annu Rev Biochem, 2004,73: 87-106. 〔2〕 Chen XJ, Wang X, Kaufman BA, et al. Aconitase couples metabolic regulation to mitochondrial DNA maintenance 〔J〕. Science, 2005,307(5710): 714-717. 〔3〕 Petros JA, Baumann AK, RuizPesini E, et al. mtDNA mutations increase tumorigenicity in prostate cancer 〔J〕. PNAS, 2005,102(3):719-724. 〔4〕 Wonsey DR, Zeller KI, Dang CV. The cMyc target gene PRDX3 is required for mitochondrial homeostasis and neoplastic transformation 〔J〕. PNAS, 2002, 99(10): 6649-6654. 〔5〕 Taylor RW, Turnbull DM. Mitochondrial DNA mutations in human disease〔J〕. Nat Rev Genet, 2005,6:389-402. 〔6〕 Rabilloud T, Kieffer S, Procaccio V, et al. Twodimensional electrophoresis of human placental mitochondria and protein identification by mass spectrometry: toward a human mitochondrial proteome 〔J〕. Electrophoresis, 1998,19:1006-1014. 〔7〕 Fountoulakis M, Berndt P, Langen H, et al. The rat liver mitochondrial proteins〔J〕. Electrophoresis, 2002,23:311-328. 〔8〕 Mootha VK, Bunkenborg J, Olsen JV, et al. Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria 〔J〕. Cell, 2003,115(5): 629-640. 〔9〕 Cruz SD, Xenarios I, Langridge J, et al. Proteomic analysis of the mouse liver mitochondrial inner membrane 〔J〕. J Biol Chem, 2003, 278(42): 41566-41571. 〔10〕 Devreese B, Vanrobaeys F, Smet J, et al. Mass spectrometric identification of mitochondrial oxidative phosphorylation subunits separated by twodimensional bluenative polyacrylamide gel electrophoresis 〔J〕. Electrophoresis, 2002,23: 2525-2533. 〔11〕 Scharfe C, Zaccaria P, Hoertnagel K, et al. MITOP, the mitochondrial proteome database: 2000 update 〔J〕. Nuc Acid Res, 2000,28(1):155-158. 〔12〕 Andreoli C, Prokisch H, Hortnagel K, et al. MitoP2, an integrated database on mitochondrial proteins in yeast and man 〔J〕. Nuc Acid Res, 2004,32(90001):459-462. 〔13〕 Taylor SW, Warnock DE, Glenn GM, et al. An alternative strategy to determine the mitochondrial proteome using sucrose gradient fractionation and 1D PAGE on highly purified human heart mitochondria 〔J〕. J Proteome Res, 2002,1(5):451-458. 〔14〕 Pflieger D, Le Caer JP, Lemaire C, et al. Systematic identi?cation of mitochondrial proteins by LCMS/MS 〔J〕. Anal Chem, 2002,74:2400-2406. 〔15〕 Scheffler NK, Miller SW, Carroll AK, et al. Twodimensional electrophoresis and mass spectrometric identification of mitochondrial proteins from an SHSY5Y neuroblastoma cell line〔J〕. Mitochondrion, 2001,1(2):161-179.
随着分子生物学的飞速发展,最为世人瞩目的人类基因组计划即将提前完成。人类将向了解自己的生命奥秘这一目标迈进一大步。但是,由于基因是遗传信息的携带者,而生命活动的执行者却是蛋白质,即基因的表达产物。因此,即使得到人类全部基因序列,也只是解决了遗传信息库的问题。人类揭示整个生命活动的规律,就必须研究基因的物产——蛋白质。相对于基因组而言,后者称为蛋白质组。1 蛋白质组概述及其相关研究技术和方法鉴于基因组研究的局限性,1994年澳大利亚Macquaie 大学的Wilkins和Williams等在意大利的一次科学会议上首次提出了蛋白质组(Proteome)这个概念。定义为“蛋白质组指的是一个基因组所表达的蛋白质”,即“PROTEOME”是由蛋白质的”PROTE”和基因组的“OME”字母拼接而成[1].这个新术语很快得到了国际生物学界的认可。目前对蛋白质组的分析工作大两个方面。一方面,通过二维胶电泳等技术得到正常生理条件下的机体、组织或细胞的全部蛋白质的图谱,相关数据将作为待测机体、组织或细胞的二维参考图谱和数据库。另一方面是比较分析在变化了生理条件下蛋白质组所发生的变化。目前蛋白质组研究技术常用以下手段:(1)用于蛋白质分离技术方面的如双向凝胶电泳(2-DE)、双向“高效”柱层析等。(2)用于蛋白质鉴定的技术如质谱技术、凝胶图像分析、蛋白质和多肽的N端、C端测序及氨基酸组成分析等。(3)用于蛋白质相互作用及作用方式研究的双杂交系统。(4)用于分析大量数据的生物工程信息学等[2].。2 蛋白质组在医学研究中的现状和前景自蛋白质组概念提出以来,已发表相关论文及论著数篇。并于是1997年举行了第一届国际性的“蛋白质组学”会议。同年出版式了第一部蛋白质组学的专著。目前蛋白质组在医学方面的研究重点在于对人类疾病的发病机制、早期诊断及治疗,对致病微生物的致病机理、耐药性及发现新的抗生素为主。现将这两方面的进展情况综述如下。2.1 人类疾病的蛋白质组研究2.1.1 直肠癌 直肠癌的发生是因多个基因的突变,导致肿瘤抑制基因失能所致,但确切机制仍不清楚。为探讨其发病机制,Sanchez等对15例结肠癌和13例正常人的结肠上皮进行2-DE,每个多肽模式用Melanie I12-DE分析软件进行分析。据此建立了包括882和861个斑点的结肠癌及正常人结肠粘膜的标准胶图。结果发现在分子量为13kD和pI值为5.6处的蛋白质仅出现在结肠癌的组织中。15例结肠癌患者中13/5.6蛋白有13例(87%)。此外,发现13/5.6蛋白不仅在中度、低度分化的结肠癌及有24年病史的溃疡性结肠炎过度表达,而且出现在7例分化程度不同的腺瘤的癌前病灶。但对照组则极少出现。这表明该蛋白的出现对检测早期直肠癌有很强提示。通过对该蛋白HPLC及测序等分析后,发现与钙粒蛋白B(calgranulin B)及钙卫蛋白(calprotectin)有很大关系[3]。2.1.2 肝癌 醛糖还原酶(aldose reductase, E.C.1.1.1.21)是醛酮还原酶超家族中的一个成员。它催化葡萄糖还原为山梨醇,通过减少内源或外源性代谢产物而起到解毒作用。Peter R等在用N-甲基-N-亚基脲诱导(N-methly-N-nitrosourea-induced)的小鼠肝癌中,用2-DE及氨基酸微型测序可分辩出一种肝癌诱导的醛糖还原酶样的蛋白质(35Kd/P17.4)。而在小鼠的晶状体中,则发现一种醛糖还原的同工酶,该酶与已知的小鼠醛糖还原酶有98%的同源性,而与肝癌诱导的醛糖还原酶样的蛋白质截然不同。这表明两种蛋白质是由相关的两条基因编码,在小鼠不同的器官中表达不同。肝癌诱导的醛糖还原酶蛋白质优先表达在肝癌及胎肝中,它们均受到纤维细胞生长因子的刺激,但随小鼠鼠器官的生理及病理环境而表现不同的形式。经免疫组化证实,肝癌诱导的醛糖还原酶样的蛋白质在成人肝脏中不表达,但在小鼠的肝癌 中又重新表达。同时发现该蛋白在癌前病变及肝癌中表达强烈,而在肝脏周围的正常组织不表达[4]。表明该蛋白可能与肝癌的发病有很大关系。2.1.3 扩张型心肌病 扩张型心肌病是一种严重的可导致心衰的心脏病,大多数患者需行心脏移植术。目前其发病机理不明,推测可能为多种因素所致。1990年已有两组人员进行该病的蛋白质组分析。其后不久心肌的2-DE数据库建成,并进入国际互联网络。Knecht等采用2-DE取得了3300个心肌蛋白条带,通过氨基酸序列分析、Edman降解法及基质辅助的激光解吸离子化质谱(MALDI-MS)等分析了其中150条。经活检及术后病理证实,有12条为扩张性心肌病特有的蛋白。但具体资料尚在进一步分析之中[5]。Arnott D等对新福林诱导的肥大心肌细胞进行蛋白质组分析,同对照相比亦发现有8种蛋白质的表达水平发现了变化[6]。2.1.4 膀胱癌 IFN-γ除抗病毒外,还有一项重要的功能即抗肿瘤作用。目前其抗肿瘤作用机制不明。有资料表明,IFN-γ可能通过在相关细胞中增强或抑制有关基因而发挥抗肿瘤作用。重组IFN-γ和IL-2已开始应用于膀胱癌的治疗中。为探明其作用机制,George等将四种分级程度不同的人膀胱癌新鲜活检标本,用50U/ml IFN-γ作用20个小时后,采用2-DE、微型序列分析、等电聚集、蛋白质印迹等方法,对标本进行蛋白质组分析。结果表明有五种蛋白质(色按酸-tRNA合成酶、IFN-γ诱导的r3,超氧化物歧化酶及两种分子量为35.8kD和11.2kD的未知蛋白)的表达量增加了75%,而醛糖还原酶表达量则下降。为研究IFN-γ对治疗膀胱癌的作用机制提供了一种方法[7]。此外,由于缺乏对膀胱鳞状细胞癌客观可靠的组织学分级标准,因而很其进行早期诊断。为此,Morten等对150例膀胱癌进行双盲法2-DE,并结合了蛋白质印迹法、微型序列分析及质谱等技术,建立了新鲜膀胱癌标本的2-DE数据库,且发现角蛋白10、14及银屑病相关的脂肪酸结合蛋白(psoriasis-associated fatty acid-binding protein,PA-FABP)等可以作为膀胱癌不同分化程度的标记物[8]。为早期诊断提供了一种新的手段。[ 本帖最后由 snow_white 于 2007-7-20 16:32 编辑 ]查看完整版本请点击这里:蛋白质组学研究〔综述〕05我也来说两句 查看全部回复 最新回复snow_white (2007-7-20 16:31:50)2.1.5 其它 目前人的各种组织、器官、细胞乃至各种细胞器已被广泛研究。以期为疾病诊治及了解发病机制提供新的手段。在一项利用蛋白质组研究技术进行的酒精对人体毒性的研究中发现,乙醇 会改变血清蛋白糖基化作用,导致许多糖蛋白的糖基缺乏,如转铁蛋白[9]。Jagathpala等对免疫所致的不孕症的男性精子蛋白质进行蛋白质组分析,发现了导致不孕症的6种自体及异体抗 精子抗体[10]。在对肾癌的研究中,发现有4种蛋白质存在于正常肾组织而在肾癌细胞中缺失。其中两种分别是辅酶Q蛋白色素还原酶和线粒体乏醌氧化还原复合物I。这提示线粒体功能低下可能在肿瘤发生过程中起重要作用[11]。Ekkehard Brockstedt等利用2-DE、Edman微型序列法、MALDI-MS等对人BL60-2伯基特淋巴瘤细胞系进行了细胞凋亡机制的研究,结果发现RNA聚合酶转录因子3a(BTF3a)和/或BTF3b与抗IgM抗体介导(anti-IgM antibody-mediated)的细胞凋亡有很大关系[12]。2.2 致病微生物的蛋白质组研究 近年来,WHO越来越重视感染性疾病对人类健康的影响。除结核、多重耐药链球菌感染及机会致病菌外,出现了一些新的感染因素如HIV、博氏疏螺旋体及埃博拉病毒等。因此这些致病微生物的蛋白质组分析,对于了解其毒性因子、抗原及疫苗的制备非常重要,此外对疾病的诊断、治疗和预防也同样重要。现已获得18种微生物的全部基因组序列,另有60余种的基因序列正在研究之中。这些工作的开展为蛋白质组的研究提供了有利条件。2.2.1 检测博氏疏螺旋体与免疫有关的蛋白质 博氏疏螺旋体(Borrelia burgdorferi)是莱姆病的主要病因,表现为环形红斑及流感样症状,大约有50%的未治患者发展为神经系统及关节系统疾病。该螺旋体可分为3种类型:B.burgdorferi sensu stricto,B.garinii, B.afzelii。其诊断需依靠血清学检查,但存在敏感性及特异性变化的缺点。为获得更可靠的血清学检查,Peter等用2-DE从B.garinii得到217个银染的蛋白斑点。从中国兔多克隆抗体鉴别出6个已知的讥原。将不同临床表现莱姆病患者的血浆用b.garinii 2-DE图杂交。用抗IgM及抗IgG作为第二抗体,在10例有游走性红斑的患者血浆中,检测出60~80个抗原。同时发现在有关节炎的患者血浆中,包含有抗15种抗原的IgM抗体及抗76种不同抗原的IgG抗体。而晚期有神经系统症状的患者血浆中,则包含有抗33种抗原的IgM抗体及抗76种抗原的IgG抗体。上述3种类型患者的血浆中均包含有抗6种已知抗原的抗体,且被SDSPAGE杂交所证实。这些抗原均是潜在的具有特异性诊断的标志物。2.2.2 弓形体抗原的检测 弓形体病是由鼠弓形体虫引起的寄生虫病。全球人口大约有30%是携带者,在欧洲是最常见的寄生虫病。如果妊娠者感染,该虫可通过胎盘引起胎儿的感染。且随着妊娠时间的增加,感染的机会也增加。大约50%母体的感染可引起新生儿先天性疾病。因此诊断及治疗越早越好。目前要依靠血清学及PCR,而单独采用血清学如用IgG,IgM,或IgA抗体对疾病活动期敏感性不够,尤其对于妊娠或有免疫抑制的患者。潜在感染常发生在有免疫抑制的患者中。对AIDS患者来说,鼠弓形体虫是最主要的致命性脑损伤的病因。因此,能否早期诊断对治疗来说尤为关键。Jungblut等将鼠弓形体虫RH株在人羊膜细胞系FL521中传代后,用2-DE得到300个银染的斑点。再将其与以下3种患者的血浆进行免疫杂交:(1)患有急性弓形体病的妊娠女性(n=11); (2)患急性弓形体病的非妊娠者(n=6)(3)有潜在感染的患者(n=9)。结果有9个斑点对各阶段的弓形体感染均反应,这9种斑点被用来当作弓形体感染的标记。其中7种标记可用作区别疾病的不同阶段。但对区别急性期与潜在期仍需联合应用多种抗原[4]。2.2.3 白色念珠菌 芽管结构是白色念珠菌向菌丝体转变的早期阶段,该结构能增强白色念珠菌对宿主细胞的粘附力、穿透力及破坏性。目前通过蛋白质组分析方法如2-DE、质谱等已检测出在芽管结构所表达的一组特异蛋白如DNA结合蛋白等,为致病提高了一些参考指标[13]。Monkt等发现,在conA反应后的SDS-PAGE图中,在芽管结构的膜上,分子量为80kD复合糖处,出现很淡的考马斯亮蓝染色,而在孢子时则未出现。提示膜的整合、出现未与ConA结合的80kD复合糖可能与芽管结构的发生及生长有关。粘附素(adhesin)是白色念珠菌表面的组成部分,介导其与宿主的结合,是侵入宿主所需的重要蛋白,包含多种成分如白色念珠菌胞壁上的疏水蛋白等,通过增强菌株的粘附性而在其致病机制中发挥一定作用。但由于这些蛋白有很大同源性、多种糖基化作用及与胞壁或胞浆膜上其它成分形成共价结合,故提纯及分析很难。现通过等电聚集、2-DE及洗脱电泳等方法,可使这些蛋白得到很好的纯化、分离及分析[14]。抗真菌药通过改变真菌胞壁组分的生物合成和重组胞壁相关酶的结合位置而发挥作用。抗真菌药远少于抗细菌药就在于对真菌细胞壁蛋白分析了解太少。现在临床上用于抗真菌的药物多为咪唑类(咪康唑、酮康唑)及三唑类(氟康唑、伊曲康唑),但有很多患者出现耐药现象。在白色念珠菌中,目前发现至少有8种CDR家族的基因可产生耐药株的表现型。且有55种基因分别表达ABC及MFS蛋白(菌内药物输出泵)[15.16]。但这些基因、蛋白与耐药之间的关系仍未清楚。应用2-DE、免疫检测蛋白质等技术,对这些蛋白在菌内的表达量进行分析,发现Cdrlp及CaMdrlp蛋白在耐咪唑类菌株中过量表达。在对咪唑类每感及去除CDR1基因的白色念珠菌株CA114中,提取并检测耐氟康唑突变子(FL3)的表达。结果发现FL3对氟康唑的耐是去除CDR1的基因的白色念珠菌株CA114的500倍 ,是CA114的250倍。且CDR1 mRNA在FL3的量是Ca114的8倍[17]。同时,对敏感性及耐药株蛋白质的2-DE图分析发现,在耐中有25种蛋白质增加,有76种蛋白质减少。推测白色念株菌是通过改变染色体数目或染色体重组来调节基因的表达量,进而产生耐药性[18]。随着蛋白质组技术成熟完善,将对真菌壁及耐药基因分泌的各种蛋白组成分析带来重大突破,并对抗真菌的研制提供重要资料。虽然蛋白质组学还处在一个初期发展研段,但我们相信随着其不断地深入发展,蛋白质组(学)研究在提示诸如生长、发育和代谢调控等生命活动的规律上将会有所突破,对探讨重大疾病的机理、疾病诊断、疾病防治和新药开发将提供重要的理论基础。[ 本帖最后由 snow_white 于 2007-7-20 16:33 编辑 ]snow_white (2007-7-20 16:34:25)二、蛋白质组学的研究进展蛋白质组学强调的是针对蛋白质的一个整体思路。从整体的角度看,蛋白质组研究大致可分为两种类型:一种是针对细胞或组织的全部蛋白质,也就是着眼点是整个蛋白质组;而另一种是以与一个特定的生物学机制或机制相关的全部蛋白质为着眼点,在这里整体是局部性的。针对细胞蛋白质组的完整分析的工作已经比较全面地展开,不仅如大肠杆菌、酵母等低等模式生物的蛋白质组数据库在建立之中,高等生物如水稻和小鼠等的蛋白质研究也已开展,人类一些正常和病变细胞的蛋白质数据库也已在建立之中。与此同时,更多的蛋白质组研究工作则是将着眼点放在蛋白质组的变化或差异上,也就是通过对蛋白质组的比较分析。首先发现并去鉴定在不同生理条件下或不同外界条件下蛋白质组中有差异的蛋白质组分。限于篇幅,本文不对这方面的工作做进一步论述。本文接下来重点介绍近期发表的关于蛋白质组学的几个工作,从中可以看到蛋白质组学的思想方法在蛋白质整体(或局部整体)水平上是如何解决生理学的一些重要问题的。1999年11月《Nature》杂志发表了一篇用蛋白质组学方法研究蛋白质折叠的研究论文[10]。在这篇文章中,Houry等报道了在大肠杆菌胞质中的2500种新生多肽链种只有近300种以GroEL作为分子伴侣来帮助其折叠成正确构象。在以往的相关研究中,通常只是针对某个或某些特定的蛋白质,观察它(们)在折叠过程中是否需要诸如GroEL等分子伴侣的帮助。而在这个工作中,研究是从一个整体的思路出发,首先通过免疫共沉淀的方法获得所有与GroEL结合的肽链,再通过二维电泳和数据库比较等蛋白质研究的手段对这些肽链进行分析鉴定,从而实现了对大肠杆菌近2500条新生多肽链与分子伴侣GroEL的关系的全面分析。在这个工作中,研究者还通过对其中50种与GroEL作用的肽链的鉴定,进一步揭示了决定这些蛋白质能与GroEL相互作用的关键结构特征。应该说,这个工作很好地体现了蛋白质组学的思想方法和技术手段的运用。过去在细胞生物学领域还没有得到过一个主要亚细胞结构的完整的分子图。核孔复合体是一个巨大的跨核膜的八角形结构,是控制大分子在胞质和核质间运输的通道。多年来,很多方法被用来分析这一复合体的组成成分。虽然这些工作取得了很大的进展,但究竟在多大程度上反映了这一复合体的分子原貌仍然是一个未知数。最近通过使用蛋白质组学的手段,Rout等[11]鉴定了完整的酵母核孔复合体所有能检测到的多肽,并系统地对每种可能的蛋白质组分在细胞中定位,结合免疫电镜的方法将各组分在复合体内定位并定量,从而揭示了酵母核孔复合体的完整分子构造,并在此基础上揭示了其工作原理。这个工作可以说是蛋白质组学解决构造生物学问题的一个典范,为揭示其他巨大分子机器的"构造"和工作原理指出了一条新路[12]。通过分析一个蛋白质是否跟功能已知的蛋白质相互作用可得到揭示其功能的线索。因为经验告诉我们,如果两个蛋白质相互作用,那么它们一般参与相同或相关的细胞活动[13]。从近期国际上蛋白质组学研究的发展动向可以看出,揭示蛋白质之间的相互作用关系,建立相互作用关系的网络图,已成为揭示蛋白质组复杂体系与蛋白质功能模式的先导,业已成为蛋白质组学领域的研究热点。2000年初,《Science》登载了一篇应用蛋白质组学的大规模双杂交技术研究线虫生殖器发育的文章[14]。在这个工作中,Walhout等以线虫的生殖发育过程作为研究对象,从已知的27个与线虫发育的蛋白质出发,构造了一个大规模的酵母双杂交系统,得到了100多个相互作用的结果,初步建立了与线虫生殖发育相关的蛋白质相互作用图谱,从而为深入研究和揭示线虫发育的机制等提供了丰富的线索。这个工作不同于一般的应用酵母双杂交进行研究的地方在于,它出于对一个生物学问题的整体思考,尽可能地从所有已知的蛋白质而不只是个别的蛋白质为出发点。这一个工作为以前专注于信号转导过程中单个蛋白质作用的科学家们提供了一个新的思路,即将整个途径的相关蛋白质一起考虑。那么,能否通过酵母双杂交系统来分析一种细胞或特定组织的所有可能的蛋白质之间的相互作用呢?在今年初,《Nature》发表了一篇通过大规模双杂交技术研究酵母近6000个蛋白质之间相互作用的论文[15]。啤酒酵母基因组DNA的全序列业已测定,这为通过双杂交技术来鉴定酵母基因组编码的全部6000种左右的蛋白质间的可能相互作用提供了非常有利的条件。在这个工作中,研究人员采用了两种不同的策略对酵母的蛋白质间的相互作用作了全面分析。一是所谓的列阵筛选法(array screening)。在此方法中,6000株表达不同"猎物"蛋白的酵母单克隆分别加在微滴定板上,带有不同的"诱饵"蛋白的酵母株与前面6000株细胞一一接合形成二倍体细胞,"猎物"蛋白与"诱饵"蛋白的相互作用通过报道基因的表达而被鉴定。这篇文章中报道了192种不同的"诱饵"蛋白与近6000种"猎物"蛋白的相互作用的结果。另一种方法是文库筛选法。该方法与前一种方法的区别是,将表达6000种不同"猎物"蛋白的酵母细胞混在一起构成文库,再将这个文库分别与6000株表达不同"诱饵"蛋白的酵母细胞接合,再进一步筛选鉴定阳性克隆,即"诱饵"与"猎物"发生相互作用的克隆。根据这篇报告,上述两种策略得到了不同的结果,相比之下阵列筛选法更为有效,而文库筛选法的长处是通量大。这一工作的重要意义在于我们已经看到,在基因组序列被了解的基础上,可以利用大规模双杂交技术全面地,当然也是初步地,分析其物种或其细胞、组织的所有蛋白质之间的相互作用关系。相信类似的工作将很快针对其他物种开展,特别是基因组序列已被揭示的物种。由此可见,蛋白质组学已经开始从建立数据库走向解决生命科学的重大问题,成为研究生物学问题或机制的强有力手段。snow_white (2007-7-20 16:37:32)三、蛋白质组学研究进展与趋势曾 嵘 夏其昌(中国科学院上海生命科学研究院生物化学与细胞生物学研究所蛋白质组学研究分析中心 上海 200031)如果在五年前提到蛋白质组学(Proteomics),恐怕知之者甚少,而在略知一二者中,部分人还抱有怀疑态度。但是,2001年的Science杂志已把蛋白质组学列为六大研究热点之一,其“热度”仅次于干细胞研究,名列第二。蛋白质组学的受关注程度如今已令人刮目相看。1.蛋白质组学研究的研究意义和背景随着人类基因组计划的实施和推进,生命科学研究已进入了后基因组时代。在这个时代,生命科学的主要研究对象是功能基因组学,包括结构基因组研究和蛋白质组研究等。尽管现在已有多个物种的基因组被测序,但在这些基因组中通常有一半以上基因的功能是未知的。目前功能基因组中所采用的策略,如基因芯片、基因表达序列分析(Serial analysis of gene expression, SAGE)等,都是从细胞中mRNA的角度来考虑的,其前提是细胞中mRNA的水平反映了蛋白质表达的水平。但事实并不完全如此,从DNA mRNA 蛋白质,存在三个层次的调控,即转录水平调控(Transcriptional control ),翻译水平调控(Translational control),翻译后水平调控(Post-translational control )。从mRNA角度考虑,实际上仅包括了转录水平调控,并不能全面代表蛋白质表达水平。实验也证明,组织中mRNA丰度与蛋白质丰度的相关性并不好,尤其对于低丰度蛋白质来说,相关性更差。更重要的是,蛋白质复杂的翻译后修饰、蛋白质的亚细胞定位或迁移、蛋白质-蛋白质相互作用等则几乎无法从mRNA水平来判断。毋庸置疑,蛋白质是生理功能的执行者,是生命现象的直接体现者,对蛋白质结构和功能的研究将直接阐明生命在生理或病理条件下的变化机制。蛋白质本身的存在形式和活动规律,如翻译后修饰、蛋白质间相互作用以及蛋白质构象等问题,仍依赖于直接对蛋白质的研究来解决。虽然蛋白质的可变性和多样性等特殊性质导致了蛋白质研究技术远远比核酸技术要复杂和困难得多,但正是这些特性参与和影响着整个生命过程。传统的对单个蛋白质进行研究的方式已无法满足后基因组时代的要求。这是因为:(1) 生命现象的发生往往是多因素影响的,必然涉及到多个蛋白质。(2) 多个蛋白质的参与是交织成网络的,或平行发生,或呈级联因果。(3) 在执行生理功能时蛋白质的表现是多样的、动态的,并不象基因组那样基本固定不变。因此要对生命的复杂活动有全面和深入的认识,必然要在整体、动态、网络的水平上对蛋白质进行研究。因此在上世纪90年代中期,国际上产生了一门新兴学科-蛋白质组学(Proteomics),它是以细胞内全部蛋白质的存在及其活动方式为研究对象。可以说蛋白质组研究的开展不仅是生命科学研究进入后基因组时代的里程碑,也是后基因组时代生命科学研究的核心内容之一。虽然第一次提出蛋白质组概念是在1994年,但相关研究可以追溯到上世纪90年代中期甚至更早,尤其是80年代初,在基因组计划提出之前,就有人提出过类似的蛋白质组计划,当时称为Human Protein Index计划,旨在分析细胞内的所有蛋白质。但由于种种原因,这一计划被搁浅。90年代初期,各种技术已比较成熟,在这样的背景下,经过各国科学家的讨论,才提出蛋白质组这一概念。国际上蛋白质组研究进展十分迅速,不论基础理论还是技术方法,都在不断进步和完善。相当多种细胞的蛋白质组数据库已经建立,相应的国际互联网站也层出不穷。1996年,澳大利亚建立了世界上第一个蛋白质组研究中心:Australia Proteome Analysis Facility ( APAF )。丹麦、加拿大、日本也先后成立了蛋白质组研究中心。在美国,各大药厂和公司在巨大财力的支持下,也纷纷加入蛋白质组的研究阵容。去年在瑞士成立的GeneProt公司,是由以蛋白质组数据库“SWISSPROT” 著称的蛋白质组研究人员成立的,以应用蛋白质组技术开发新药物靶标为目的,建立了配备有上百台质谱仪的高通量技术平台。而当年提出Human Protein Index 的美国科学家Normsn G. Anderson也成立了类似的蛋白质组学公司,继续其多年未实现的梦想。2001年4月,在美国成立了国际人类蛋白质组研究组织(Human Proteome Organization, HUPO),随后欧洲、亚太地区都成立了区域性蛋白质组研究组织,试图通过合作的方式,融合各方面的力量,完成人类蛋白质组计划(Human Proteome Project)。snow_white (2007-7-20 16:37:49)2.蛋白质组学研究的策略和范围蛋白质组学一经出现,就有两种研究策略。一种可称为“竭泽法”,即采用高通量的蛋白质组研究技术分析生物体内尽可能多乃至接近所有的蛋白质,这种观点从大规模、系统性的角度来看待蛋白质组学,也更符合蛋白质组学的本质。但是,由于蛋白质表达随空间和时间不断变化,要分析生物体内所有的蛋白质是一个难以实现的目标。另一种策略可称为“功能法”,即研究不同时期细胞蛋白质组成的变化,如蛋白质在不同环境下的差异表达,以发现有差异的蛋白质种类为主要目标。这种观点更倾向于把蛋白质组学作为研究生命现象的手段和方法。早期蛋白质组学的研究范围主要是指蛋白质的表达模式(Expression profile), 随着学科的发展,蛋白质组学的研究范围也在不断完善和扩充。蛋白质翻译后修饰研究已成为蛋白质组研究中的重要部分和巨大挑战。蛋白质-蛋白质相互作用的研究也已被纳入蛋白质组学的研究范畴。而蛋白质高级结构的解析即传统的结构生物学,虽也有人试图将其纳入蛋白质组学研究范围,但目前仍独树一帜。
蛋白质(protein)是生命的物质基础,没有蛋白质就没有生命。因此,它是与生命及与各种形式的生命活动紧密联系在一起的物质。机体中的每一个细胞和所有重要组成部分都有蛋白质参与。蛋白质占人体重量的16.3%,即一个60kg重的成年人其体内约有蛋白质9.8kg。人体内蛋白质的种类很多,性质、功能各异,但都是由20多种氨基酸按不同比例组合而成的,并在体内不断进行代谢与更新。被食入的蛋白质在体内经过消化分解成氨基酸,吸收后在体内主要用于重新按一定比例组合成人体蛋白质,同时新的蛋白质又在不断代谢与分解,时刻处于动态平衡中。因此,食物蛋白质的质和量、各种氨基酸的比例,关系到人体蛋白质合成的量,尤其是青少年的生长发育、孕产妇的优生优育、老年人的健康长寿,都与膳食中蛋白质的量有着密切的关系[编辑本段]蛋白质的生理功能1、构造人的身体:蛋白质是一切生命的物质基础,是肌体细胞的重要组成部分,是人体组织更新和修补的主要原料。人体的每个组织:毛发、皮肤、肌肉、骨骼、内脏、大脑、血液、神经、内分泌等都是由蛋白质组成,所以说饮食造就人本身。蛋白质对人的生长发育非常重要。比如大脑发育的特点是一次性完成细胞增殖,人的大脑细胞的增长有二个高峰期。第一个是胎儿三个月的时候;第二个是出生后到一岁,特别是0---6个月的婴儿是大脑细胞猛烈增长的时期。到一岁大脑细胞增殖基本完成,其数量已达成人的9/10。所以0到1岁儿童对蛋白质的摄入要求很有特色,对儿童的智力发展尤关重要。2、修补人体组织:人的身体由百兆亿个细胞组成,细胞可以说是生命的最小单位,它们处于永不停息的衰老、死亡、新生的新陈代谢过程中。例如年轻人的表皮28天更新一次,而胃黏膜两三天就要全部更新。所以一个人如果蛋白质的摄入、吸收、利用都很好,那么皮肤就是光泽而又有弹性的。反之,人则经常处于亚健康状态。组织受损后,包括外伤,不能得到及时和高质量的修补,便会加速机体衰退。3、维持肌体正常的新陈代谢和各类物质在体内的输送。载体蛋白对维持人体的正常生命活动是至关重要的。可以在体内运载各种物质。比如血红蛋白—输送氧(红血球更新速率250万/秒)、脂蛋白—输送脂肪、细胞膜上的受体还有转运蛋白等。4、白蛋白:维持机体内的渗透压的平衡及体液平衡。5、维持体液的酸碱平衡。6、免疫细胞和免疫蛋白:有白细胞、淋巴细胞、巨噬细胞、抗体(免疫球蛋白)、补体、干扰素等。七天更新一次。当蛋白质充足时,这个部队就很强,在需要时,数小时内可以增加100倍。7、构成人体必需的催化和调节功能的各种酶。我们身体有数千种酶,每一种只能参与一种生化反应。人体细胞里每分钟要进行一百多次生化反应。酶有促进食物的消化、吸收、利用的作用。相应的酶充足,反应就会顺利、快捷的进行,我们就会精力充沛,不易生病。否则,反应就变慢或者被阻断。8、激素的主要原料。具有调节体内各器官的生理活性。胰岛素是由51个氨基酸分子合成。生长素是由191个氨基酸分子合成。7、构成神经递质乙酰胆碱、五羟色氨等。维持神经系统的正常功能:味觉、视觉和记忆。8、胶原蛋白:占身体蛋白质的1/3,生成结缔组织,构成身体骨架。如骨骼、血管、韧带等,决定了皮肤的弹性,保护大脑(在大脑脑细胞中,很大一部分是胶原细胞,并且形成血脑屏障保护大脑)9、提供热能。[编辑本段]蛋白质的作用蛋白质在细胞和生物体的生命活动过程中,起着十分重要的作用。生物的结构和性状都与蛋白质有关。蛋白质还参与基因表达的调节,以及细胞中氧化还原、电子传递、神经传递乃至学习和记忆等多种生命活动过程。在细胞和生物体内各种生物化学反应中起催化作用的酶主要也是蛋白质。许多重要的激素,如胰岛素和胸腺激素等也都是蛋白质。此外,多种蛋白质,如植物种子(豆、花生、小麦等)中的蛋白质和动物蛋白、奶酪等都是供生物营养生长之用的蛋白质。有些蛋白质如蛇毒、蜂毒等是动物攻防的武器。蛋白质和健康蛋白质是荷兰科学家格里特在1838年发现的。他观察到有生命的东西离开了蛋白质就不能生存。蛋白质是生物体内一种极重要的高分子有机物,占人体干重的54%。蛋白质主要由氨基酸组成,因氨基酸的组合排列不同而组成各种类型的蛋白质。人体中估计有10万种以上的蛋白质。生命是物质运动的高级形式,这种运动方式是通过蛋白质来实现的,所以蛋白质有极其重要的生物学意义。人体的生长、发育、运动、遗传、繁殖等一切生命活动都离不开蛋白质。生命运动需要蛋白质,也离不开蛋白质。球状蛋白质(三级结构)人体内的一些生理活性物质如胺类、神经递质、多肽类激素、抗体、酶、核蛋白以及细胞膜上、血液中起“载体”作用的蛋白都离不开蛋白质,它对调节生理功能,维持新陈代谢起着极其重要的作用。人体运动系统中肌肉的成分以及肌肉在收缩、作功、完成动作过程中的代谢无不与蛋白质有关,离开了蛋白质,体育锻炼就无从谈起。在生物学中,蛋白质被解释为是由氨基酸借肽键联接起来形成的多肽,然后由多肽连接起来形成的物质。通俗易懂些说,它就是构成人体组织器官的支架和主要物质,在人体生命活动中,起着重要作用,可以说没有蛋白质就没有生命活动的存在。每天的饮食中蛋白质主要存在于瘦肉、蛋类、豆类及鱼类中。蛋白质缺乏:成年人:肌肉消瘦、肌体免疫力下降、贫血,严重者将产生水肿。未成年人:生长发育停滞、贫血、智力发育差,视觉差。蛋白质过量:蛋白质在体内不能贮存,多了肌体无法吸收,过量摄入蛋白质,将会因代谢障碍产生蛋白质中毒甚至于死亡。[编辑本段]必需氨基酸和非必需氨基酸纤维状蛋白质(二级结构)食物中的蛋白质必须经过肠胃道消化,分解成氨基酸才能被人体吸收利用,人体对蛋白质的需要实际就是对氨基酸的需要。吸收后的氨基酸只有在数量和种类上都能满足人体需要身体才能利用它们合成自身的蛋白质。营养学上将氨基酸分为必需氨基酸和非必需氨基酸两类。必需氨基酸指的是人体自身不能合成或合成速度不能满足人体需要,必须从食物中摄取的氨基酸。对成人来说,这类氨基酸有8种,包括赖氨酸、蛋氨酸、亮氨酸、异亮氨酸、苏氨酸、缬氨酸、色氨酸、苯丙氨酸。对婴儿来说,组氨酸和精氨酸也是必需氨基酸。非必需氨基酸并不是说人体不需要这些氨基酸,而是说人体可以自身合成或由其它氨基酸转化而得到,不一定非从食物直接摄取不可。这类氨基酸包括谷氨酸、丙氨酸、甘氨酸、天门冬氨酸、胱氨酸、脯氨酸、丝氨酸和酪氨酸等。有些非必需氨基酸如胱氨酸和酪氨酸如果供给充裕还可以节省必需氨基酸中蛋氨酸和苯丙氨酸的需要量。
生态 的蛋白质我肯定好的
是指将两个或多个基因的编码区首尾相连,由同一调控序列控制构成基因表达产物的技术。该技术可以构建具有双重功能的目的蛋白,在医药、农业、环境等中有广泛的应用。
蛋白质的改造,从简单的物理、化学法到复杂的基因重组等等有多种方法。物理、化学法:对蛋白质进行变性、复性处理,修饰蛋白质侧链官能团,分割肽链,改变表面电荷分布促进蛋白质形成一定的立体构像等等;生物化学法:使用蛋白酶选择性地分割蛋白质,利用转糖苷酶、酯酶、酰酶等去除或连接不同化学基团,利用转酰胺酶使蛋白质发生胶连等等。以上方法只能对相同或相似的基团或化学键发生作用,缺乏特异性,不能针对特定的部位起作用。采用基因重组技术或人工合成DNA,不但可以改造蛋白质而且可以实现从头合成全新的蛋白质。 蛋白质是由不同氨基酸按一定顺序通过肽键连接而成的肽构成的。氨基酸序列就是蛋白质的一级结构,它决定着蛋白质的空间结构和生物功能。而氨基酸序列是由合成蛋白质的基因的DNA序列决定的,改变DNA序列就可以改变蛋白质的氨基酸序列,实现蛋白质的可调控生物合成。在确定基因序列或氨基酸序列与蛋白质功能之间关系之前,宜采用随机诱变,造成碱基对的缺失、插入或替代,这样就可以将研究目标限定在一定的区域内,从而大大减少基因分析的长度。一旦目标DNA明确以后,就可以运用定位突变等技术来进行研究。 定位突变蛋白质中的氨基酸是由基因中的三联密码决定的,只要改变其中的一个或两个就可以改变氨基酸。通常是改变某个位置的氨基酸,研究蛋白质结构、稳定性或催化特性。噬菌体M13的生活周期有二个阶段,在噬菌体粒子中其基因组为单链,侵入宿主细胞以后,通过复制以双链形式存在。将待研究的基因插入载体M13,制得单链模板,人工合成一段寡核苷酸(其中含一个或几个非配对碱基)作为引物,合成相应的互补链,用T4连接酶连接成闭环双链分子。经转染大肠杆菌,双链分子在胞内分别复制,因此就得到两种类型的噬菌斑,含错配碱基的就为突变型。再转入合适的表达系统合成突变型蛋白质。 盒式突变1985年Wells提出的一种基因修饰技术——盒式突变,一次可以在一个位点上产生20种不同氨基酸的突变体,可以对蛋白质分子中重要氨基酸进行“饱和性”分析。利用定位突变在拟改造的氨基酸密码两侧造成两个原载体和基因上没有的内切酶切点,用该内切酶消化基因,再用合成的发生不同变化的双链DNA片段替代被消化的部分。这样一次处理就可以得到多种突变型基因。 PCR技术DNA聚合酶链式反应是应用最广泛的基因扩增技术。以研究基因为模板,用人工合成的寡核苷酸(含有一个或几个非互补的碱基)为引物,直接进行基因扩增反应,就会产生突变型基因。分离出突变型基因后,在合适的表达系统中合成突变型蛋白质。这种方法直接、快速和高效。 高突变率技术从大量的野生型背景中筛选出突变型是一项耗时、费力的工作。有两种新的突变方法具有较高的突变率:①硫代负链法:核苷酸间磷酸基的氧被硫替代后修饰物(α-(S)-dCTP)对某些内切酶有耐性,在有引物和(α-(S)-dCTP)存在下合成负链,然后用内切酶处理,结果仅在正链上产生“缺口”,用核苷酸外切酶III从3`→5`扩大缺口并超过负链上错配的核苷酸,在聚合酶作用下修复正链,就可以得到二条链均为突变型的基因;②UMP正链法:大肠杆菌突变株RZ1032中缺少脲嘧啶糖苷酶和UTP酶,M13在这种宿主中可以用脲嘧啶(U)替代胸腺嘧啶(T)掺入模板而不被修饰。用这种含U的模板产生的突变双链转化正常大肠杆菌,结果含U的正链被寄主降解,而突变型负链保留并复制。 蛋白质融合将编码一种蛋白质的部分基因移植到另一种蛋白质基因上或将不同蛋白质基因的片段组合在一起,经基因克隆和表达,产生出新的融合蛋白质。这种方法可以将不同蛋白质的特性集中在一种蛋白质上,显著地改变蛋白质的特性。现在研究的较多的所谓“嵌合抗体”和“人缘化抗体”等,就是采用的这种方法。
生态 的蛋白质我肯定好的
蛋白质(protein)是生命的物质基础,没有蛋白质就没有生命。因此,它是与生命及与各种形式的生命活动紧密联系在一起的物质。机体中的每一个细胞和所有重要组成部分都有蛋白质参与。蛋白质占人体重量的16.3%,即一个60kg重的成年人其体内约有蛋白质9.8kg。人体内蛋白质的种类很多,性质、功能各异,但都是由20多种氨基酸按不同比例组合而成的,并在体内不断进行代谢与更新。被食入的蛋白质在体内经过消化分解成氨基酸,吸收后在体内主要用于重新按一定比例组合成人体蛋白质,同时新的蛋白质又在不断代谢与分解,时刻处于动态平衡中。因此,食物蛋白质的质和量、各种氨基酸的比例,关系到人体蛋白质合成的量,尤其是青少年的生长发育、孕产妇的优生优育、老年人的健康长寿,都与膳食中蛋白质的量有着密切的关系[编辑本段]蛋白质的生理功能1、构造人的身体:蛋白质是一切生命的物质基础,是肌体细胞的重要组成部分,是人体组织更新和修补的主要原料。人体的每个组织:毛发、皮肤、肌肉、骨骼、内脏、大脑、血液、神经、内分泌等都是由蛋白质组成,所以说饮食造就人本身。蛋白质对人的生长发育非常重要。比如大脑发育的特点是一次性完成细胞增殖,人的大脑细胞的增长有二个高峰期。第一个是胎儿三个月的时候;第二个是出生后到一岁,特别是0---6个月的婴儿是大脑细胞猛烈增长的时期。到一岁大脑细胞增殖基本完成,其数量已达成人的9/10。所以0到1岁儿童对蛋白质的摄入要求很有特色,对儿童的智力发展尤关重要。2、修补人体组织:人的身体由百兆亿个细胞组成,细胞可以说是生命的最小单位,它们处于永不停息的衰老、死亡、新生的新陈代谢过程中。例如年轻人的表皮28天更新一次,而胃黏膜两三天就要全部更新。所以一个人如果蛋白质的摄入、吸收、利用都很好,那么皮肤就是光泽而又有弹性的。反之,人则经常处于亚健康状态。组织受损后,包括外伤,不能得到及时和高质量的修补,便会加速机体衰退。3、维持肌体正常的新陈代谢和各类物质在体内的输送。载体蛋白对维持人体的正常生命活动是至关重要的。可以在体内运载各种物质。比如血红蛋白—输送氧(红血球更新速率250万/秒)、脂蛋白—输送脂肪、细胞膜上的受体还有转运蛋白等。4、白蛋白:维持机体内的渗透压的平衡及体液平衡。5、维持体液的酸碱平衡。6、免疫细胞和免疫蛋白:有白细胞、淋巴细胞、巨噬细胞、抗体(免疫球蛋白)、补体、干扰素等。七天更新一次。当蛋白质充足时,这个部队就很强,在需要时,数小时内可以增加100倍。7、构成人体必需的催化和调节功能的各种酶。我们身体有数千种酶,每一种只能参与一种生化反应。人体细胞里每分钟要进行一百多次生化反应。酶有促进食物的消化、吸收、利用的作用。相应的酶充足,反应就会顺利、快捷的进行,我们就会精力充沛,不易生病。否则,反应就变慢或者被阻断。8、激素的主要原料。具有调节体内各器官的生理活性。胰岛素是由51个氨基酸分子合成。生长素是由191个氨基酸分子合成。7、构成神经递质乙酰胆碱、五羟色氨等。维持神经系统的正常功能:味觉、视觉和记忆。8、胶原蛋白:占身体蛋白质的1/3,生成结缔组织,构成身体骨架。如骨骼、血管、韧带等,决定了皮肤的弹性,保护大脑(在大脑脑细胞中,很大一部分是胶原细胞,并且形成血脑屏障保护大脑)9、提供热能。[编辑本段]蛋白质的作用蛋白质在细胞和生物体的生命活动过程中,起着十分重要的作用。生物的结构和性状都与蛋白质有关。蛋白质还参与基因表达的调节,以及细胞中氧化还原、电子传递、神经传递乃至学习和记忆等多种生命活动过程。在细胞和生物体内各种生物化学反应中起催化作用的酶主要也是蛋白质。许多重要的激素,如胰岛素和胸腺激素等也都是蛋白质。此外,多种蛋白质,如植物种子(豆、花生、小麦等)中的蛋白质和动物蛋白、奶酪等都是供生物营养生长之用的蛋白质。有些蛋白质如蛇毒、蜂毒等是动物攻防的武器。蛋白质和健康蛋白质是荷兰科学家格里特在1838年发现的。他观察到有生命的东西离开了蛋白质就不能生存。蛋白质是生物体内一种极重要的高分子有机物,占人体干重的54%。蛋白质主要由氨基酸组成,因氨基酸的组合排列不同而组成各种类型的蛋白质。人体中估计有10万种以上的蛋白质。生命是物质运动的高级形式,这种运动方式是通过蛋白质来实现的,所以蛋白质有极其重要的生物学意义。人体的生长、发育、运动、遗传、繁殖等一切生命活动都离不开蛋白质。生命运动需要蛋白质,也离不开蛋白质。球状蛋白质(三级结构)人体内的一些生理活性物质如胺类、神经递质、多肽类激素、抗体、酶、核蛋白以及细胞膜上、血液中起“载体”作用的蛋白都离不开蛋白质,它对调节生理功能,维持新陈代谢起着极其重要的作用。人体运动系统中肌肉的成分以及肌肉在收缩、作功、完成动作过程中的代谢无不与蛋白质有关,离开了蛋白质,体育锻炼就无从谈起。在生物学中,蛋白质被解释为是由氨基酸借肽键联接起来形成的多肽,然后由多肽连接起来形成的物质。通俗易懂些说,它就是构成人体组织器官的支架和主要物质,在人体生命活动中,起着重要作用,可以说没有蛋白质就没有生命活动的存在。每天的饮食中蛋白质主要存在于瘦肉、蛋类、豆类及鱼类中。蛋白质缺乏:成年人:肌肉消瘦、肌体免疫力下降、贫血,严重者将产生水肿。未成年人:生长发育停滞、贫血、智力发育差,视觉差。蛋白质过量:蛋白质在体内不能贮存,多了肌体无法吸收,过量摄入蛋白质,将会因代谢障碍产生蛋白质中毒甚至于死亡。[编辑本段]必需氨基酸和非必需氨基酸纤维状蛋白质(二级结构)食物中的蛋白质必须经过肠胃道消化,分解成氨基酸才能被人体吸收利用,人体对蛋白质的需要实际就是对氨基酸的需要。吸收后的氨基酸只有在数量和种类上都能满足人体需要身体才能利用它们合成自身的蛋白质。营养学上将氨基酸分为必需氨基酸和非必需氨基酸两类。必需氨基酸指的是人体自身不能合成或合成速度不能满足人体需要,必须从食物中摄取的氨基酸。对成人来说,这类氨基酸有8种,包括赖氨酸、蛋氨酸、亮氨酸、异亮氨酸、苏氨酸、缬氨酸、色氨酸、苯丙氨酸。对婴儿来说,组氨酸和精氨酸也是必需氨基酸。非必需氨基酸并不是说人体不需要这些氨基酸,而是说人体可以自身合成或由其它氨基酸转化而得到,不一定非从食物直接摄取不可。这类氨基酸包括谷氨酸、丙氨酸、甘氨酸、天门冬氨酸、胱氨酸、脯氨酸、丝氨酸和酪氨酸等。有些非必需氨基酸如胱氨酸和酪氨酸如果供给充裕还可以节省必需氨基酸中蛋氨酸和苯丙氨酸的需要量。
随着分子生物学的飞速发展,最为世人瞩目的人类基因组计划即将提前完成。人类将向了解自己的生命奥秘这一目标迈进一大步。但是,由于基因是遗传信息的携带者,而生命活动的执行者却是蛋白质,即基因的表达产物。因此,即使得到人类全部基因序列,也只是解决了遗传信息库的问题。人类揭示整个生命活动的规律,就必须研究基因的物产——蛋白质。相对于基因组而言,后者称为蛋白质组。1 蛋白质组概述及其相关研究技术和方法鉴于基因组研究的局限性,1994年澳大利亚Macquaie 大学的Wilkins和Williams等在意大利的一次科学会议上首次提出了蛋白质组(Proteome)这个概念。定义为“蛋白质组指的是一个基因组所表达的蛋白质”,即“PROTEOME”是由蛋白质的”PROTE”和基因组的“OME”字母拼接而成[1].这个新术语很快得到了国际生物学界的认可。目前对蛋白质组的分析工作大两个方面。一方面,通过二维胶电泳等技术得到正常生理条件下的机体、组织或细胞的全部蛋白质的图谱,相关数据将作为待测机体、组织或细胞的二维参考图谱和数据库。另一方面是比较分析在变化了生理条件下蛋白质组所发生的变化。目前蛋白质组研究技术常用以下手段:(1)用于蛋白质分离技术方面的如双向凝胶电泳(2-DE)、双向“高效”柱层析等。(2)用于蛋白质鉴定的技术如质谱技术、凝胶图像分析、蛋白质和多肽的N端、C端测序及氨基酸组成分析等。(3)用于蛋白质相互作用及作用方式研究的双杂交系统。(4)用于分析大量数据的生物工程信息学等[2].。2 蛋白质组在医学研究中的现状和前景自蛋白质组概念提出以来,已发表相关论文及论著数篇。并于是1997年举行了第一届国际性的“蛋白质组学”会议。同年出版式了第一部蛋白质组学的专著。目前蛋白质组在医学方面的研究重点在于对人类疾病的发病机制、早期诊断及治疗,对致病微生物的致病机理、耐药性及发现新的抗生素为主。现将这两方面的进展情况综述如下。2.1 人类疾病的蛋白质组研究2.1.1 直肠癌 直肠癌的发生是因多个基因的突变,导致肿瘤抑制基因失能所致,但确切机制仍不清楚。为探讨其发病机制,Sanchez等对15例结肠癌和13例正常人的结肠上皮进行2-DE,每个多肽模式用Melanie I12-DE分析软件进行分析。据此建立了包括882和861个斑点的结肠癌及正常人结肠粘膜的标准胶图。结果发现在分子量为13kD和pI值为5.6处的蛋白质仅出现在结肠癌的组织中。15例结肠癌患者中13/5.6蛋白有13例(87%)。此外,发现13/5.6蛋白不仅在中度、低度分化的结肠癌及有24年病史的溃疡性结肠炎过度表达,而且出现在7例分化程度不同的腺瘤的癌前病灶。但对照组则极少出现。这表明该蛋白的出现对检测早期直肠癌有很强提示。通过对该蛋白HPLC及测序等分析后,发现与钙粒蛋白B(calgranulin B)及钙卫蛋白(calprotectin)有很大关系[3]。2.1.2 肝癌 醛糖还原酶(aldose reductase, E.C.1.1.1.21)是醛酮还原酶超家族中的一个成员。它催化葡萄糖还原为山梨醇,通过减少内源或外源性代谢产物而起到解毒作用。Peter R等在用N-甲基-N-亚基脲诱导(N-methly-N-nitrosourea-induced)的小鼠肝癌中,用2-DE及氨基酸微型测序可分辩出一种肝癌诱导的醛糖还原酶样的蛋白质(35Kd/P17.4)。而在小鼠的晶状体中,则发现一种醛糖还原的同工酶,该酶与已知的小鼠醛糖还原酶有98%的同源性,而与肝癌诱导的醛糖还原酶样的蛋白质截然不同。这表明两种蛋白质是由相关的两条基因编码,在小鼠不同的器官中表达不同。肝癌诱导的醛糖还原酶蛋白质优先表达在肝癌及胎肝中,它们均受到纤维细胞生长因子的刺激,但随小鼠鼠器官的生理及病理环境而表现不同的形式。经免疫组化证实,肝癌诱导的醛糖还原酶样的蛋白质在成人肝脏中不表达,但在小鼠的肝癌 中又重新表达。同时发现该蛋白在癌前病变及肝癌中表达强烈,而在肝脏周围的正常组织不表达[4]。表明该蛋白可能与肝癌的发病有很大关系。2.1.3 扩张型心肌病 扩张型心肌病是一种严重的可导致心衰的心脏病,大多数患者需行心脏移植术。目前其发病机理不明,推测可能为多种因素所致。1990年已有两组人员进行该病的蛋白质组分析。其后不久心肌的2-DE数据库建成,并进入国际互联网络。Knecht等采用2-DE取得了3300个心肌蛋白条带,通过氨基酸序列分析、Edman降解法及基质辅助的激光解吸离子化质谱(MALDI-MS)等分析了其中150条。经活检及术后病理证实,有12条为扩张性心肌病特有的蛋白。但具体资料尚在进一步分析之中[5]。Arnott D等对新福林诱导的肥大心肌细胞进行蛋白质组分析,同对照相比亦发现有8种蛋白质的表达水平发现了变化[6]。2.1.4 膀胱癌 IFN-γ除抗病毒外,还有一项重要的功能即抗肿瘤作用。目前其抗肿瘤作用机制不明。有资料表明,IFN-γ可能通过在相关细胞中增强或抑制有关基因而发挥抗肿瘤作用。重组IFN-γ和IL-2已开始应用于膀胱癌的治疗中。为探明其作用机制,George等将四种分级程度不同的人膀胱癌新鲜活检标本,用50U/ml IFN-γ作用20个小时后,采用2-DE、微型序列分析、等电聚集、蛋白质印迹等方法,对标本进行蛋白质组分析。结果表明有五种蛋白质(色按酸-tRNA合成酶、IFN-γ诱导的r3,超氧化物歧化酶及两种分子量为35.8kD和11.2kD的未知蛋白)的表达量增加了75%,而醛糖还原酶表达量则下降。为研究IFN-γ对治疗膀胱癌的作用机制提供了一种方法[7]。此外,由于缺乏对膀胱鳞状细胞癌客观可靠的组织学分级标准,因而很其进行早期诊断。为此,Morten等对150例膀胱癌进行双盲法2-DE,并结合了蛋白质印迹法、微型序列分析及质谱等技术,建立了新鲜膀胱癌标本的2-DE数据库,且发现角蛋白10、14及银屑病相关的脂肪酸结合蛋白(psoriasis-associated fatty acid-binding protein,PA-FABP)等可以作为膀胱癌不同分化程度的标记物[8]。为早期诊断提供了一种新的手段。[ 本帖最后由 snow_white 于 2007-7-20 16:32 编辑 ]查看完整版本请点击这里:蛋白质组学研究〔综述〕05我也来说两句 查看全部回复 最新回复snow_white (2007-7-20 16:31:50)2.1.5 其它 目前人的各种组织、器官、细胞乃至各种细胞器已被广泛研究。以期为疾病诊治及了解发病机制提供新的手段。在一项利用蛋白质组研究技术进行的酒精对人体毒性的研究中发现,乙醇 会改变血清蛋白糖基化作用,导致许多糖蛋白的糖基缺乏,如转铁蛋白[9]。Jagathpala等对免疫所致的不孕症的男性精子蛋白质进行蛋白质组分析,发现了导致不孕症的6种自体及异体抗 精子抗体[10]。在对肾癌的研究中,发现有4种蛋白质存在于正常肾组织而在肾癌细胞中缺失。其中两种分别是辅酶Q蛋白色素还原酶和线粒体乏醌氧化还原复合物I。这提示线粒体功能低下可能在肿瘤发生过程中起重要作用[11]。Ekkehard Brockstedt等利用2-DE、Edman微型序列法、MALDI-MS等对人BL60-2伯基特淋巴瘤细胞系进行了细胞凋亡机制的研究,结果发现RNA聚合酶转录因子3a(BTF3a)和/或BTF3b与抗IgM抗体介导(anti-IgM antibody-mediated)的细胞凋亡有很大关系[12]。2.2 致病微生物的蛋白质组研究 近年来,WHO越来越重视感染性疾病对人类健康的影响。除结核、多重耐药链球菌感染及机会致病菌外,出现了一些新的感染因素如HIV、博氏疏螺旋体及埃博拉病毒等。因此这些致病微生物的蛋白质组分析,对于了解其毒性因子、抗原及疫苗的制备非常重要,此外对疾病的诊断、治疗和预防也同样重要。现已获得18种微生物的全部基因组序列,另有60余种的基因序列正在研究之中。这些工作的开展为蛋白质组的研究提供了有利条件。2.2.1 检测博氏疏螺旋体与免疫有关的蛋白质 博氏疏螺旋体(Borrelia burgdorferi)是莱姆病的主要病因,表现为环形红斑及流感样症状,大约有50%的未治患者发展为神经系统及关节系统疾病。该螺旋体可分为3种类型:B.burgdorferi sensu stricto,B.garinii, B.afzelii。其诊断需依靠血清学检查,但存在敏感性及特异性变化的缺点。为获得更可靠的血清学检查,Peter等用2-DE从B.garinii得到217个银染的蛋白斑点。从中国兔多克隆抗体鉴别出6个已知的讥原。将不同临床表现莱姆病患者的血浆用b.garinii 2-DE图杂交。用抗IgM及抗IgG作为第二抗体,在10例有游走性红斑的患者血浆中,检测出60~80个抗原。同时发现在有关节炎的患者血浆中,包含有抗15种抗原的IgM抗体及抗76种不同抗原的IgG抗体。而晚期有神经系统症状的患者血浆中,则包含有抗33种抗原的IgM抗体及抗76种抗原的IgG抗体。上述3种类型患者的血浆中均包含有抗6种已知抗原的抗体,且被SDSPAGE杂交所证实。这些抗原均是潜在的具有特异性诊断的标志物。2.2.2 弓形体抗原的检测 弓形体病是由鼠弓形体虫引起的寄生虫病。全球人口大约有30%是携带者,在欧洲是最常见的寄生虫病。如果妊娠者感染,该虫可通过胎盘引起胎儿的感染。且随着妊娠时间的增加,感染的机会也增加。大约50%母体的感染可引起新生儿先天性疾病。因此诊断及治疗越早越好。目前要依靠血清学及PCR,而单独采用血清学如用IgG,IgM,或IgA抗体对疾病活动期敏感性不够,尤其对于妊娠或有免疫抑制的患者。潜在感染常发生在有免疫抑制的患者中。对AIDS患者来说,鼠弓形体虫是最主要的致命性脑损伤的病因。因此,能否早期诊断对治疗来说尤为关键。Jungblut等将鼠弓形体虫RH株在人羊膜细胞系FL521中传代后,用2-DE得到300个银染的斑点。再将其与以下3种患者的血浆进行免疫杂交:(1)患有急性弓形体病的妊娠女性(n=11); (2)患急性弓形体病的非妊娠者(n=6)(3)有潜在感染的患者(n=9)。结果有9个斑点对各阶段的弓形体感染均反应,这9种斑点被用来当作弓形体感染的标记。其中7种标记可用作区别疾病的不同阶段。但对区别急性期与潜在期仍需联合应用多种抗原[4]。2.2.3 白色念珠菌 芽管结构是白色念珠菌向菌丝体转变的早期阶段,该结构能增强白色念珠菌对宿主细胞的粘附力、穿透力及破坏性。目前通过蛋白质组分析方法如2-DE、质谱等已检测出在芽管结构所表达的一组特异蛋白如DNA结合蛋白等,为致病提高了一些参考指标[13]。Monkt等发现,在conA反应后的SDS-PAGE图中,在芽管结构的膜上,分子量为80kD复合糖处,出现很淡的考马斯亮蓝染色,而在孢子时则未出现。提示膜的整合、出现未与ConA结合的80kD复合糖可能与芽管结构的发生及生长有关。粘附素(adhesin)是白色念珠菌表面的组成部分,介导其与宿主的结合,是侵入宿主所需的重要蛋白,包含多种成分如白色念珠菌胞壁上的疏水蛋白等,通过增强菌株的粘附性而在其致病机制中发挥一定作用。但由于这些蛋白有很大同源性、多种糖基化作用及与胞壁或胞浆膜上其它成分形成共价结合,故提纯及分析很难。现通过等电聚集、2-DE及洗脱电泳等方法,可使这些蛋白得到很好的纯化、分离及分析[14]。抗真菌药通过改变真菌胞壁组分的生物合成和重组胞壁相关酶的结合位置而发挥作用。抗真菌药远少于抗细菌药就在于对真菌细胞壁蛋白分析了解太少。现在临床上用于抗真菌的药物多为咪唑类(咪康唑、酮康唑)及三唑类(氟康唑、伊曲康唑),但有很多患者出现耐药现象。在白色念珠菌中,目前发现至少有8种CDR家族的基因可产生耐药株的表现型。且有55种基因分别表达ABC及MFS蛋白(菌内药物输出泵)[15.16]。但这些基因、蛋白与耐药之间的关系仍未清楚。应用2-DE、免疫检测蛋白质等技术,对这些蛋白在菌内的表达量进行分析,发现Cdrlp及CaMdrlp蛋白在耐咪唑类菌株中过量表达。在对咪唑类每感及去除CDR1基因的白色念珠菌株CA114中,提取并检测耐氟康唑突变子(FL3)的表达。结果发现FL3对氟康唑的耐是去除CDR1的基因的白色念珠菌株CA114的500倍 ,是CA114的250倍。且CDR1 mRNA在FL3的量是Ca114的8倍[17]。同时,对敏感性及耐药株蛋白质的2-DE图分析发现,在耐中有25种蛋白质增加,有76种蛋白质减少。推测白色念株菌是通过改变染色体数目或染色体重组来调节基因的表达量,进而产生耐药性[18]。随着蛋白质组技术成熟完善,将对真菌壁及耐药基因分泌的各种蛋白组成分析带来重大突破,并对抗真菌的研制提供重要资料。虽然蛋白质组学还处在一个初期发展研段,但我们相信随着其不断地深入发展,蛋白质组(学)研究在提示诸如生长、发育和代谢调控等生命活动的规律上将会有所突破,对探讨重大疾病的机理、疾病诊断、疾病防治和新药开发将提供重要的理论基础。[ 本帖最后由 snow_white 于 2007-7-20 16:33 编辑 ]snow_white (2007-7-20 16:34:25)二、蛋白质组学的研究进展蛋白质组学强调的是针对蛋白质的一个整体思路。从整体的角度看,蛋白质组研究大致可分为两种类型:一种是针对细胞或组织的全部蛋白质,也就是着眼点是整个蛋白质组;而另一种是以与一个特定的生物学机制或机制相关的全部蛋白质为着眼点,在这里整体是局部性的。针对细胞蛋白质组的完整分析的工作已经比较全面地展开,不仅如大肠杆菌、酵母等低等模式生物的蛋白质组数据库在建立之中,高等生物如水稻和小鼠等的蛋白质研究也已开展,人类一些正常和病变细胞的蛋白质数据库也已在建立之中。与此同时,更多的蛋白质组研究工作则是将着眼点放在蛋白质组的变化或差异上,也就是通过对蛋白质组的比较分析。首先发现并去鉴定在不同生理条件下或不同外界条件下蛋白质组中有差异的蛋白质组分。限于篇幅,本文不对这方面的工作做进一步论述。本文接下来重点介绍近期发表的关于蛋白质组学的几个工作,从中可以看到蛋白质组学的思想方法在蛋白质整体(或局部整体)水平上是如何解决生理学的一些重要问题的。1999年11月《Nature》杂志发表了一篇用蛋白质组学方法研究蛋白质折叠的研究论文[10]。在这篇文章中,Houry等报道了在大肠杆菌胞质中的2500种新生多肽链种只有近300种以GroEL作为分子伴侣来帮助其折叠成正确构象。在以往的相关研究中,通常只是针对某个或某些特定的蛋白质,观察它(们)在折叠过程中是否需要诸如GroEL等分子伴侣的帮助。而在这个工作中,研究是从一个整体的思路出发,首先通过免疫共沉淀的方法获得所有与GroEL结合的肽链,再通过二维电泳和数据库比较等蛋白质研究的手段对这些肽链进行分析鉴定,从而实现了对大肠杆菌近2500条新生多肽链与分子伴侣GroEL的关系的全面分析。在这个工作中,研究者还通过对其中50种与GroEL作用的肽链的鉴定,进一步揭示了决定这些蛋白质能与GroEL相互作用的关键结构特征。应该说,这个工作很好地体现了蛋白质组学的思想方法和技术手段的运用。过去在细胞生物学领域还没有得到过一个主要亚细胞结构的完整的分子图。核孔复合体是一个巨大的跨核膜的八角形结构,是控制大分子在胞质和核质间运输的通道。多年来,很多方法被用来分析这一复合体的组成成分。虽然这些工作取得了很大的进展,但究竟在多大程度上反映了这一复合体的分子原貌仍然是一个未知数。最近通过使用蛋白质组学的手段,Rout等[11]鉴定了完整的酵母核孔复合体所有能检测到的多肽,并系统地对每种可能的蛋白质组分在细胞中定位,结合免疫电镜的方法将各组分在复合体内定位并定量,从而揭示了酵母核孔复合体的完整分子构造,并在此基础上揭示了其工作原理。这个工作可以说是蛋白质组学解决构造生物学问题的一个典范,为揭示其他巨大分子机器的"构造"和工作原理指出了一条新路[12]。通过分析一个蛋白质是否跟功能已知的蛋白质相互作用可得到揭示其功能的线索。因为经验告诉我们,如果两个蛋白质相互作用,那么它们一般参与相同或相关的细胞活动[13]。从近期国际上蛋白质组学研究的发展动向可以看出,揭示蛋白质之间的相互作用关系,建立相互作用关系的网络图,已成为揭示蛋白质组复杂体系与蛋白质功能模式的先导,业已成为蛋白质组学领域的研究热点。2000年初,《Science》登载了一篇应用蛋白质组学的大规模双杂交技术研究线虫生殖器发育的文章[14]。在这个工作中,Walhout等以线虫的生殖发育过程作为研究对象,从已知的27个与线虫发育的蛋白质出发,构造了一个大规模的酵母双杂交系统,得到了100多个相互作用的结果,初步建立了与线虫生殖发育相关的蛋白质相互作用图谱,从而为深入研究和揭示线虫发育的机制等提供了丰富的线索。这个工作不同于一般的应用酵母双杂交进行研究的地方在于,它出于对一个生物学问题的整体思考,尽可能地从所有已知的蛋白质而不只是个别的蛋白质为出发点。这一个工作为以前专注于信号转导过程中单个蛋白质作用的科学家们提供了一个新的思路,即将整个途径的相关蛋白质一起考虑。那么,能否通过酵母双杂交系统来分析一种细胞或特定组织的所有可能的蛋白质之间的相互作用呢?在今年初,《Nature》发表了一篇通过大规模双杂交技术研究酵母近6000个蛋白质之间相互作用的论文[15]。啤酒酵母基因组DNA的全序列业已测定,这为通过双杂交技术来鉴定酵母基因组编码的全部6000种左右的蛋白质间的可能相互作用提供了非常有利的条件。在这个工作中,研究人员采用了两种不同的策略对酵母的蛋白质间的相互作用作了全面分析。一是所谓的列阵筛选法(array screening)。在此方法中,6000株表达不同"猎物"蛋白的酵母单克隆分别加在微滴定板上,带有不同的"诱饵"蛋白的酵母株与前面6000株细胞一一接合形成二倍体细胞,"猎物"蛋白与"诱饵"蛋白的相互作用通过报道基因的表达而被鉴定。这篇文章中报道了192种不同的"诱饵"蛋白与近6000种"猎物"蛋白的相互作用的结果。另一种方法是文库筛选法。该方法与前一种方法的区别是,将表达6000种不同"猎物"蛋白的酵母细胞混在一起构成文库,再将这个文库分别与6000株表达不同"诱饵"蛋白的酵母细胞接合,再进一步筛选鉴定阳性克隆,即"诱饵"与"猎物"发生相互作用的克隆。根据这篇报告,上述两种策略得到了不同的结果,相比之下阵列筛选法更为有效,而文库筛选法的长处是通量大。这一工作的重要意义在于我们已经看到,在基因组序列被了解的基础上,可以利用大规模双杂交技术全面地,当然也是初步地,分析其物种或其细胞、组织的所有蛋白质之间的相互作用关系。相信类似的工作将很快针对其他物种开展,特别是基因组序列已被揭示的物种。由此可见,蛋白质组学已经开始从建立数据库走向解决生命科学的重大问题,成为研究生物学问题或机制的强有力手段。snow_white (2007-7-20 16:37:32)三、蛋白质组学研究进展与趋势曾 嵘 夏其昌(中国科学院上海生命科学研究院生物化学与细胞生物学研究所蛋白质组学研究分析中心 上海 200031)如果在五年前提到蛋白质组学(Proteomics),恐怕知之者甚少,而在略知一二者中,部分人还抱有怀疑态度。但是,2001年的Science杂志已把蛋白质组学列为六大研究热点之一,其“热度”仅次于干细胞研究,名列第二。蛋白质组学的受关注程度如今已令人刮目相看。1.蛋白质组学研究的研究意义和背景随着人类基因组计划的实施和推进,生命科学研究已进入了后基因组时代。在这个时代,生命科学的主要研究对象是功能基因组学,包括结构基因组研究和蛋白质组研究等。尽管现在已有多个物种的基因组被测序,但在这些基因组中通常有一半以上基因的功能是未知的。目前功能基因组中所采用的策略,如基因芯片、基因表达序列分析(Serial analysis of gene expression, SAGE)等,都是从细胞中mRNA的角度来考虑的,其前提是细胞中mRNA的水平反映了蛋白质表达的水平。但事实并不完全如此,从DNA mRNA 蛋白质,存在三个层次的调控,即转录水平调控(Transcriptional control ),翻译水平调控(Translational control),翻译后水平调控(Post-translational control )。从mRNA角度考虑,实际上仅包括了转录水平调控,并不能全面代表蛋白质表达水平。实验也证明,组织中mRNA丰度与蛋白质丰度的相关性并不好,尤其对于低丰度蛋白质来说,相关性更差。更重要的是,蛋白质复杂的翻译后修饰、蛋白质的亚细胞定位或迁移、蛋白质-蛋白质相互作用等则几乎无法从mRNA水平来判断。毋庸置疑,蛋白质是生理功能的执行者,是生命现象的直接体现者,对蛋白质结构和功能的研究将直接阐明生命在生理或病理条件下的变化机制。蛋白质本身的存在形式和活动规律,如翻译后修饰、蛋白质间相互作用以及蛋白质构象等问题,仍依赖于直接对蛋白质的研究来解决。虽然蛋白质的可变性和多样性等特殊性质导致了蛋白质研究技术远远比核酸技术要复杂和困难得多,但正是这些特性参与和影响着整个生命过程。传统的对单个蛋白质进行研究的方式已无法满足后基因组时代的要求。这是因为:(1) 生命现象的发生往往是多因素影响的,必然涉及到多个蛋白质。(2) 多个蛋白质的参与是交织成网络的,或平行发生,或呈级联因果。(3) 在执行生理功能时蛋白质的表现是多样的、动态的,并不象基因组那样基本固定不变。因此要对生命的复杂活动有全面和深入的认识,必然要在整体、动态、网络的水平上对蛋白质进行研究。因此在上世纪90年代中期,国际上产生了一门新兴学科-蛋白质组学(Proteomics),它是以细胞内全部蛋白质的存在及其活动方式为研究对象。可以说蛋白质组研究的开展不仅是生命科学研究进入后基因组时代的里程碑,也是后基因组时代生命科学研究的核心内容之一。虽然第一次提出蛋白质组概念是在1994年,但相关研究可以追溯到上世纪90年代中期甚至更早,尤其是80年代初,在基因组计划提出之前,就有人提出过类似的蛋白质组计划,当时称为Human Protein Index计划,旨在分析细胞内的所有蛋白质。但由于种种原因,这一计划被搁浅。90年代初期,各种技术已比较成熟,在这样的背景下,经过各国科学家的讨论,才提出蛋白质组这一概念。国际上蛋白质组研究进展十分迅速,不论基础理论还是技术方法,都在不断进步和完善。相当多种细胞的蛋白质组数据库已经建立,相应的国际互联网站也层出不穷。1996年,澳大利亚建立了世界上第一个蛋白质组研究中心:Australia Proteome Analysis Facility ( APAF )。丹麦、加拿大、日本也先后成立了蛋白质组研究中心。在美国,各大药厂和公司在巨大财力的支持下,也纷纷加入蛋白质组的研究阵容。去年在瑞士成立的GeneProt公司,是由以蛋白质组数据库“SWISSPROT” 著称的蛋白质组研究人员成立的,以应用蛋白质组技术开发新药物靶标为目的,建立了配备有上百台质谱仪的高通量技术平台。而当年提出Human Protein Index 的美国科学家Normsn G. Anderson也成立了类似的蛋白质组学公司,继续其多年未实现的梦想。2001年4月,在美国成立了国际人类蛋白质组研究组织(Human Proteome Organization, HUPO),随后欧洲、亚太地区都成立了区域性蛋白质组研究组织,试图通过合作的方式,融合各方面的力量,完成人类蛋白质组计划(Human Proteome Project)。snow_white (2007-7-20 16:37:49)2.蛋白质组学研究的策略和范围蛋白质组学一经出现,就有两种研究策略。一种可称为“竭泽法”,即采用高通量的蛋白质组研究技术分析生物体内尽可能多乃至接近所有的蛋白质,这种观点从大规模、系统性的角度来看待蛋白质组学,也更符合蛋白质组学的本质。但是,由于蛋白质表达随空间和时间不断变化,要分析生物体内所有的蛋白质是一个难以实现的目标。另一种策略可称为“功能法”,即研究不同时期细胞蛋白质组成的变化,如蛋白质在不同环境下的差异表达,以发现有差异的蛋白质种类为主要目标。这种观点更倾向于把蛋白质组学作为研究生命现象的手段和方法。早期蛋白质组学的研究范围主要是指蛋白质的表达模式(Expression profile), 随着学科的发展,蛋白质组学的研究范围也在不断完善和扩充。蛋白质翻译后修饰研究已成为蛋白质组研究中的重要部分和巨大挑战。蛋白质-蛋白质相互作用的研究也已被纳入蛋白质组学的研究范畴。而蛋白质高级结构的解析即传统的结构生物学,虽也有人试图将其纳入蛋白质组学研究范围,但目前仍独树一帜。
虽然我国蛋白质组学研究启动不久,我国科学家已经在重大疾病如肝癌、维甲酸诱导白血病细胞凋亡启动模型及维甲酸定向诱导胚胎干细胞向神经系统分化的模型等比较蛋白质组研究以及一些重要生理和病理体系的蛋白质组成分研究方面获得了重要成就。在胚胎干细胞诱导向神经干细胞方向分化前后分离出了19个与定向诱导神经分化相关的蛋白;在HL-60细胞凋亡研究中初步筛选到21个凋亡相关蛋白。已进行了肝癌细胞系及正常肝细胞蛋白质组的比较分析研究,发现了两者间不同的蛋白表达群;自行建立了肝癌高/低转移细胞系,进行了原位食管癌/转移食管癌间的比较蛋白质组研究,初步发现了一批与肿瘤转移相关的蛋白质群。通过蛋白质芯片技术对肺癌病人和正常人血清中的蛋白质谱的对比分析,找到了15个差异蛋白并利用Biomarker Pattern 分析软件建立了肺癌诊断分类树模型。初步盲筛结果表明,这15个分子标志可能成为临床诊断肺癌的新指标,有重要应用价值。在大规模人胎肝蛋白表达谱方面初步鉴定出500个高丰度蛋白,150个磷酸化相关蛋白等等。这些研究证明了我国的蛋白质组学技术平台已能支撑一定规模的研究,为我国在该研究领域争得了一席之地,也为未来的发展奠定了良好的基础。目前,由军事医学科学院牵头的 973计划项目和由上海生命科学院牵头的863计划项目集中了国内十余家优势单位,针对严重影响我国人民健康的重大疾病和重要生命科学问题开展“重大疾病的比较蛋白质组研究”和“重要生理、病理体系的功能蛋白质组研究”。力争在3~5年内建立国际领先水平的蛋白质组学研究通用技术平台,发现一批有重要生命科学价值或与重大疾病相关的蛋白质,为探索基因转录, 翻译调控的规律、获得重大疾病预警、诊断标志物和新药研究的靶标作出贡献。目前,国内已有若干蛋白质组学研究中心或重点实验室相继成立,如复旦大学蛋白质研究中心,军事医学科学院蛋白质组中心,高等院校蛋白质组学研究院,中国科学院蛋白质组学重点实验室和中国医学科学院蛋白质组学研究中心等。其中高校蛋白质组研究院是由国内多所高校、临床单位和国内外有关公司联合建立的研究机构,是我国高校大规模打破学校界限,与国内外多方面力量联手,进军蛋白组组学研究领域所采取的新举措。统一协调有关国内研究的中国人类蛋白质组组织(Chinese HUPO)和蛋白质组专业委员会等也在筹备中。
核酸与蛋白质是构成生物体的主要大分子。随着人类基因组等大量生物体全基因组序列的破译和功能基因组研究的展开,生命科学家越来越关注如何用基因组研究的模式开展蛋白质组学的研究。正因如此,《Nature》、《Science》在2001年2月公布人类基因组草图的同时,分别发表了“And now for the proteome”和“Proteomics in genomeland”的述评与展望,将蛋白质组学的地位提到前所未有的高度,认为蛋白质组学将成为新世纪最大战略资源---人类基因争夺战的战略制高点之一。蛋白质组学虽然问世时间很短,但已经在研究细胞的增殖、分化、异常转化、肿瘤形成等方面进行了有力的探索,涉及到白血病、乳腺癌、结肠癌、膀胱癌、前列腺癌、肺癌、肾癌和神经母细胞瘤等,鉴定了一批肿瘤相关蛋白,为肿瘤的早期诊断、药靶的发现、疗效判断和预后提供了重要依据。鉴于蛋白质组学发展前景的重要性和技术的先进性,西方各主要发达国家纷纷投巨资全面启动蛋白质组的研究。如美国国立卫生研究院,美国能源部、欧共体等均启动了不同生物蛋白质组的研究并取得明显进展,一批高质量的研究论文相继在国际著名学术刊物发表。由于蛋白质组学研究比基因组学研究更接近实用,有着巨大的市场前景,企业与制药公司也纷纷斥巨资开展蛋白质组研究。独立完成人类基因组测序的Celera公司已宣布投资上亿美元于此领域;日内瓦蛋白质组公司与布鲁克质谱仪制造公司联合成立了国际上最大的蛋白质组研究中心。为了促进国家与地区性的蛋白质组的发展、合作与交流,成立了国际人类蛋白质组组织 (HUPO),在法国召开了首届国际蛋白质组大会,并迅即在北美、欧洲、韩国、日本成立了相应的分支机构。蛋白质组学已成为西方各主要发达国家、各跨国制药集团竞相投入的“热点”。