首页

> 学术发表知识库

首页 学术发表知识库 问题

量子力学的论文的项目的研究过程

发布时间:

量子力学的论文的项目的研究过程

量子力学是怎么发展的?量子到底是什么意思?都有哪些科学家做出贡献?爱因斯坦又做了哪些贡献?

1913年,玻尔在卢瑟福有核模型的基础上运用量子化概念,提出玻尔的原子理论,对氢光谱作出了满意的解释,使量子论取得了初步胜利。随后,玻尔、索末菲和其他物理学家为发展量子理论花了很大力气,却遇到了严重困难,旧量子论陷入困境。

1923年,德布罗意提出了物质波假说,将波粒二象性运用于电子之类的粒子束,把量子论发展到一个新的高度。

1925年-1926年薛定谔率先沿着物质波概念成功地确立了电子的波动方程,为量子理论找到了一个基本公式,并由此创建了波动力学。

几乎与薛定谔同时,海森伯写出了以“关于运动学和力学关系的量子论的重新解释”为题的论文,创立了解决量子波动理论的矩阵方法。

1925年9月,玻恩与另一位物理学家约丹合作,将海森伯的思想发展成为系统的矩阵力学理论。不久,狄拉克改进了矩阵力学的数学形式,使其成为一个概念完整、逻辑自洽的理论体系。

1926年薛定谔发现波动力学和矩阵力学从数学上是完全等价的,由此统称为量子力学,而薛定谔的波动方程由于比海森伯的矩阵更易理解,成为量子力学的基本方程。

不确定性

海森伯不确定原则是量子论中最重要的原则之一。最初的不确定性原理指出,不可能同时精确地测量出粒子的动量和位置,因为在测量过程中仪器会对测量过程产生干扰,测量其动量就会改变其位置,反之亦然。

量子理论跨越了牛顿力学中的死角,在解释事物的宏观行为时,只有量子理论能处理原子和分子现象中的细节。但是,这一新理论所产生的似是而非的矛盾说法比光的波粒二重性还要多。牛顿力学以确定性和决定性来回答问题,量子理论则用可能性和统计数据来回答。

一、定义在微观领域中,某些物理量的变化是以最小的单位跳跃式进行的,而不是连续的,这个最小的单位叫做量子。 量子:震动的微粒子的解说——量子论 量子一词来自拉丁语quantus,意为“多少”,代表“相当数量的某事”。在物理学中常用到量子的概念,量子是一个不可分割的基本个体。例如,一个“光的量子”是光的单位。而量子力学、量子光学等等更成为不同的专业研究领域。 其基本概念是所有的有形性质也许是"可量子化的"。"量子化" 指其物理量的数值会是一些特定的数值,而不是任意值。例如, 在(休息状态)的原子中,电子的能量是可量子化的。这能决定原子的稳定和一般问题。 在20世纪的前半期,出现了新的概念。许多物理学家将量子力学视为了解和描述自然的的基本理论。 [编辑本段]二、历史 量子物理是根据量子化的物理分支,在1900年以理论来建立。由于马克斯•普朗克(M. Planck)释所谓的黑体辐射。他的工作根本上合并了量子化用同样方式,到了今天它仍被使用。但他严重地冲击了古典物理学,需要了另外30年的研究,就是在量子论未确立之前。直到现在一些主张仍然不能被充分地了解。这里有很多需要学习的地方。包括科学的本质是怎么出现。 不光是普朗克对这个新概念感到困扰。当时德国物理社会中黑体研究成为焦点。在10月、11月和12月会议前夕,对他的科学同事报告公开他的新想法。就这样谨慎的实验学家(包括F. Paschen,O.R. Lummer,E. Pringsheim,H.L. Rubens,和F. Kurlbaum)和一位理论家迎接最巨大的科学革命。 [编辑本段]三、黑体辐射量子方程 当物体被加热,它以电磁波的形式散发红外线辐射。这是了解清楚和明白最明显的重要性。当物体变得炽热,红色波长部分开始变得可见。但是大多数热辐射仍然是红外线,除非直到物体变得像太阳的表面一样热。这是当时的实验室内不能够达成的而且只可以量度部分黑体光谱。 黑体辐射量子方程是量子力学的第一部分。在1900年10月7日面世。 能量 E、辐射频率 f 及温度 T 可以被写成: E=hf/(e^(hf/κT)-1) h 是普朗克常数及 k 是玻尔兹曼常数。两者都是物理学中的基础。基础能量的量子是 hf。可是这个单位正常之下不存在并不需要量子化。 [编辑本段]四、量子力学的诞生 从实验中普郎克推算到h 及 k的数值。因此他在1900年12月14日的德国物理学学会会议中第一次发表能量量子化数值、 Avogadro-Loschmidt数的数值、一个份子模(mole)的数值及电荷单位。这数值比以前更准确。这代表量子力学的诞生。 [编辑本段]五、量子力学诠释:霍金膜上的四维量子论 类似10维或11维的“弦论”=振动的弦、震荡中的象弦一样的微小物体。 霍金膜上四维世界的量子理论的近代诠释(邓宇等,80年代): 振动的量子(波动的量子=量子鬼波)=平动微粒子的振动;振动的微粒子;震荡中的象量子(粒子)一样的微小物体。 波动量子=量子的波动=微粒子的平动+振动 =平动+振动 =矢量和 量子鬼波的DENG'S诠释:微粒子(量子)平动与振动的矢量和 粒子波、量子波=粒子的震荡(平动粒子的震动) [编辑本段]六、“波”和“粒子”统一的数学关系 振动粒子的量子论诠释 物质的粒子性由能量 E 和动量 p 刻划,波的特征则由电磁波频率 ν 和其波长 λ 表达,这两组物理量的比例因子由普朗克常数 h(h=6.626*10^-34J•s) 所联系。 E=hv , E=mc^2 联立两式,得:m=hv/c^2(这是光子的相对论质量,由于光子无法静止,因此光子无静质量)而p=mc 则p=hv/c(p 为动量) 粒子波的一维平面波的偏微分波动方程,其一般形式为 ∂ξ/∂x=(1/u)(∂ξ/∂t) 5 三维空间中传播的平面粒子波的经典波动方程为 ∂ξ/∂x+∂ξ/∂y+∂ξ/∂z=(1/u)(∂ξ/∂t) 6 波动方程实际是经典粒子物理和波动物理的统一体,是运动学与波动学的统一.波动学是运动学的一部分,是运动学的延伸,即平动与振动的矢量和.对象不同,一个是连续介质,一个是定域的粒子,都可以具有波动性.(邓宇等,80年代) 经典波动方程1,1'式或4--6式中的u,隐含着不连续的量子关系E=hυ和德布罗意关系λ=h/p,由于u=υλ,故可在u=υλ的右边乘以含普朗克常数h的因子(h/h),就得到 u=(υh)(λ/h) =E/p 等关系u=E/p,使经典物理与量子物理,连续与不连续(定域)之间产生了联系,得到统一. 2.粒子的波动与德布罗意物质波的统一 德布罗意关系λ=h/p,和量子关系E=hv(及薛定谔方程)这两个关系式实际表示的是波性与粒子性的统一关系, 而不是粒性与波性的两分.德布罗意物质波是粒波一体的真物质粒子,光子,电子等的波动. [编辑本段]七、参考书籍 ■M. Planck,A Survey of Physical Theory,transl. by R. Jones and D.H. Williams,Methuen & Co.,Ltd.,London 1925 (Dover editions 1960 and 1993) including the Nobel lecture. ■J. Mehra and H. Rechenberg,The Historical Development of Quantum Theory,Vol.1,Part 1,Springer-Verlag New York Inc.,New York 1982. ■Lucretius,"On the Nature of the Universe",transl. from the Latin by R.E. Latham,Penguin Books Ltd.,Harmondsworth 1951. There are,of course,many translations,and the translation's title varies. Some put emphasis on how things work,others on what things are found in nature. [编辑本段]八、参看 量子力学 量子光学 量子信息 量子状态 量子数 量子场论 量子计算机 量子密码学 量子演算 磁束量子 量子化 次原子粒子 基本粒子 量子引力论 扩展阅读: 1.M. Planck,A Survey of Physical Theory,transl. by R. Jones and D.H. Williams,Methuen & Co.,Ltd.,London 1925 (Dover editions 1960 and 1993) including the Nobel lecture. 2.J. Mehra and H. Rechenberg,The Historical Development of Quantum Theory,Vol.1,Part 1,Springer-Verlag New York Inc.,New York 1982. 3.Lucretius,"On the Nature of the Universe",transl. from the Latin by R.E. Latham,Penguin Books Ltd.,Harmondsworth 1951. There are,of course,many translations,and the translation's title varies. Some put emphasis on how things work,others on what things are found in nature. 4.physics 量子态隐形传输 目录[隐藏]量子态隐形传输 中国实现世界上最远距离的量子态隐形传输 多粒子量子纠缠态隐形传输与三旋理论 证实穿越大气层可行[编辑本段]量子态隐形传输 量子态隐形传输是一种全新通信方式,它传输的不再是经典信息而是量子态携带的量子信息,是未来量子通信网络的核心要素。利用量子纠缠技术,需要传输的量子态如同科幻小说中描绘的“超时空穿越”,在一个地方神秘消失,不需要任何载体的携带,又在另一个地方瞬间神秘出现。 [编辑本段]中国实现世界上最远距离的量子态隐形传输 中国实现世界上最远距离的量子态隐形传输 (2010年06月04日 08:53 来源:光明日报) 量子态隐形传输穿越大气层证实为全球化量子通信网络奠定基础。 由中国科大和清华大学组成的联合小组成功实现了世界上最远距离的量子态隐形传输,16公里的传输距离比原世界纪录提高了20多倍。实验结果首次证实了在自由空间进行远距离量子态隐形传输的可行性,为全球化量子通信网络最终实现奠定了重要基础。 据联合小组研究成员彭承志教授介绍,量子态隐形传输是一种全新通信方式,它传输的不再是经典信息而是量子态携带的量子信息,是未来量子通信网络的核心要素。利用量子纠缠技术,需要传输的量子态如同科幻小说中描绘的“超时空穿越”,在一个地方神秘消失,不需要任何载体的携带,又在另一个地方瞬间神秘出现。这一奇特的现象引起了学术界广泛兴趣。1997年,奥地利蔡林格小组在室内首次完成了量子态隐形传输的原理性实验验证。2004年,这个小组利用多瑙河底的光纤信道,成功地将量子态隐形传输距离提高到600米。但由于光纤信道中的损耗和环境的干扰,量子态隐形传输的距离难以大幅度提高。 2004年,中国科大潘建伟、彭承志等研究人员开始探索在自由空间实现更远距离的量子通信。在自由空间,环境对光量子态的干扰效应极小,而光子一旦穿透大气层进入外层空间,其损耗更是接近于零,这使得自由空间信道比光纤信道在远距离传输方面更具优势。这个小组2005年在合肥创造了13公里的自由空间双向量子纠缠分发世界纪录,同时验证了在外层空间与地球之间分发纠缠光子的可行性。2007年开始,中国科大——清华大学联合小组在北京八达岭与河北怀来之间架设长达16公里的自由空间量子信道,并取得了一系列关键技术突破,最终在2009年成功实现了世界上最远距离的量子态隐形传输,证实了量子态隐形传输穿越大气层的可行性。 联合小组在自由空间量子通信领域的一系列工作,得到了科技部重大科学研究计划、中科院知识创新工程重大项目和国家自然科学基金项目等支持,并引起了国际学术界的广泛关注,6月1日出版的英国《自然》杂志子刊《自然•光子学》以封面论文形式发表了这一研究成果。英国的《新科学家》、美国的《今日物理》、美国物理学会新闻网站均及时报道了这个研究成果。 [编辑本段]多粒子量子纠缠态隐形传输与三旋理论 王德奎(绵阳日报社,四川绵阳,621000 ) 摘要:环量子的三种自旋编码和对DNA双螺旋结构的孤立波模拟,奠定了量子信息学及其量子计算机新的理论基础;而原子间量子态及多粒子纠缠态隐形传输的探索,会更多拓展三旋理论的这一基础。 关键词:量子计算机、量子信息学、量子纠缠、隐形传输、三旋理论 一、潘建伟教授的多粒子态隐形传输 量子信息学告诉人们:量子态是指原子、中子、质子等粒子的状态,它可表征粒子的能量、旋转、运动、磁场以及其他的物理特性。1993年,美国物理学家贝尼特等人提出了“量子态隐形传输”的方案,即位将原粒子物理特性的信息发向远处的另一个粒子,该粒子在接收到这些信息后,会成为原粒子的复制品。而在此过程中,传输的是原粒子的量子态,而不是原粒子本身。传输结束后,原粒子已经不具备原来的量子态,而有了新的量子态。因为制造量子计算机需要量子态的隐形传输,因此,实现原子间量子态隐形传输是奠定研制量子计算机的基础之一。2004年6月,美国和奥地利的物理学家在没有任何物理连接的情况下,实现了原子间的量子态隐形传输。与此同时,我国潘建伟教授等科学家已实现了五粒子纠缠态以及终端开放的量子态隐形传输,他们的实验方法在量子计算和网络化的量子通信中也有重要的应用。 美国国家标准与技术研究所的科学家是利用激光技术,对三个带有正电荷的铍原子的量子态进行操作。首先,他们利用量子纠缠技术使其中两个原子的量子态完全一致。接着,他们准确地测量了这两个原子的量子态,然后通过激光将它们的量子态复制到8微米外的另一个原子上。整个过程由计算机控制,仅耗时4毫秒,传输成功率达到78%。而另一个研究小组的奥地利因斯布鲁克大学的科学家则采用钙原子,同样实现了量子态隐形传输,成功率为75%。其基本原理也是利用第三个原子为辅助,用激光将一个原子的量子态传递给另一个原子。但两项实验在具体方法上有所不同,奥地利小组使两个原子距离相对较远,以便用激光单独地改变一个原子的状态;美国小组则将原子冷却以保持操作的可靠性。 为了进行远距离的量子密码通信或量子态隐形传输,事先需要让距离遥远的两地共同拥有最大的“量子纠缠态”。所谓“量子纠缠”是指不论两个粒子间距离多远,一个粒子的变化都会影响另一个粒子的现象,即两个粒子之间不论相距多远,从根本上讲它们还是相互联系的。这是一种“神奇的力量”,可成为具有超级计算能力的量子计算机和“万无一失”的量子保密系统的基础。但由于在量子通信通道中存在种种不可避免的环境噪声,“量子纠缠态”的品质会随着传送距离的增加而逐渐降低,也就是说,两个粒子之间的纠缠会因传播距离的增大而不断退化,其纠缠数量也会随之越来越少。这是导致量子通信手段目前只能停留在短距离应用上的根本原因。 量子计算机处理量子信息的基本信息单位是量子比特,但现有技术还不能使量子比特快速移动。美国国家标准与技术研究所的原子间量子态隐形传输技术,可以提升量子比特的移动速度,加快逻辑运算的速度。这以前科学家曾经成功地对光子进行量子态隐形传输,而光子主要用于量子通信,原子在量子计算中更有潜力。但多粒子纠缠态的制备与操纵,是近年来国际上蓬勃发展的量子物理与量子信息研究领域长盛不衰的研究热点。此前,三粒子和四粒子之间的量子纠缠已在实验上得到了实现,并被用来证明量子力学的非定域性,即一种被爱因斯坦称为“遥远地点间幽灵般的相互作用”。但是,在现实世界中,如何把量子纠缠应用到量子计算和量子通信中还面临着巨大挑战。为确保量子计算的可靠性,就必须掌握量子纠错这一最关键的技术。但要实现普遍适用的量子纠错,仅仅靠三粒子和四粒子之间的纠缠已无法满足需要,须得同时把五个粒子纠缠起来,并加以相干控制才行。这在技术上难度极大,因此五粒子纠缠态的制备与操纵一直是国际上长期以来公认的高难课题。潘建伟教授等科学家利用五光子纠缠源,在实验上还演示了一种新的“终端开放”的量子态隐形传输,即在不确定选择某个粒子作为量子态输出终端的情况下,先将一个粒子的量子态隐形传输到另外多个纠缠着的粒子上,尽管这些粒子分别在相距遥远的不同地点,但只要通过适当操作,仍可将输入的量子态在任意选定的一个粒子上读出。这种新颖的量子隐形传输态正是量子纠错和分布式量子信息处理中必须掌握的一项关键技术。这一研究成果被称之为远距离量子通信开辟了研究的新方向。 二、与爱因斯坦纠缠的量子力学非定域性 潘建伟1970年3月出生在浙江东阳,1987年考入中国科技大学。2003年,潘建伟由于在量子态隐形传输以及量子纠缠态纯化实验实现上的重要贡献,他被奥地利科学院授予ErichSchmid奖,此奖为奥地利科学院授予40岁以下的青年物理学家的最高奖,两年一度,每次一人。在最近的7年时间里,潘建伟做出5个首次:首次成功地实现了量子态隐形传送以及纠缠态交换;首次成功实现三光子、四光子纠缠态,并利用多粒子纠缠态首次成功地实现了GHZ定理的实验验证;首次成功地实现了自由量子态的隐形传送;首次实现纠缠态纯化以及量子中继器的成功实验;首次取得五粒子纠缠态的制备与操纵。粒子中出现的“纠缠”现象,被爱因斯坦称之为“遥远地点间幽灵般的相互作用”,潘建伟教授和爱因斯坦的这一未解之谜“纠缠”,还须提到我国对粒子“纠缠”的这一有关的三旋理论科学研究。 南京大学博士生导师沈骊天教授说,三旋是决定物性的内禀运动,三旋理论不仅仅是在阐释西方学者所主张的超弦理论,它在一定程度上还超越了西方弦理论家的视野,显示出其独特的创新思维——它将闭合的弦(弦圈、环量子)称为类圈体(《三旋理论初探》4页)。一维的弦圈,除了超弦理论所说的各种外在运动;还应有三旋理论所说的体旋——绕圈面内轴线的旋转,面旋——绕垂直于圈面的圈中心轴线的旋转,线旋——绕圈体内环状中心线的旋转(《三旋理论初探》5-6页、32页、105~107页、356页)这三种“内禀”运动。弦圈的“外在运动”决定物理学所观察的粒子的“运动特性”,弦圈的“内禀运动”(三旋运动)则决定粒子的“物性”,或者说,集中地表现在“圈态密码”观念的提出:三旋理论指出三旋的体旋有二种状态(正、反),面旋有二种状态(正、反),线旋中的平凡线旋有二种状态(正、反),线旋中的非平凡线旋有四种状态(左斜:正、反,右斜;正、反);按单动(只做一种旋动)、双动(同时做两种旋动)、三动(同时做三种旋动)可以有62种不同的三旋状态组合(《三旋理论初探》11页、323页、392页)。而基本粒子的不同种类(基本粒子连同赫格斯粒子在内也恰恰有62种)及其各自的性质,则都由不同的三旋状态组合决定;它们还分别对应于一定的流形的固有拓扑性质(《三旋理论初探》35~47页)。三旋理论将表示各种基本粒子的“三旋状态组合”称为“圈态密码”(圈态指弦圈的三旋状态)。圈态密码以弦圈的三旋状态组合表示基本粒字子,较之人类对物质的认识史上的化学以分子式表示物质结构,原子物理学以质子、中子、电子的组合表示上百种原子,夸克理论以夸克组合表示数百种强子,堪称又一座崭新的里程碑;破译“圈态密码”不仅意味着找到形成各种粒子的圈态;而且还应当意味着建立起三旋状态和现有物理学所认识的各种基本粒子属性的联系。 其实,有了三旋模型这种隐秩序,反过来对于爱因斯坦、波多尔斯基、罗森发现的量子EPR效应也好理解。 众所周知,潘建伟进行远距离的量子密码通信科普演示:五颗骰子在电脑上滚来滚去,生动地表现了五粒子相互“纠缠”中的情景;但正如爱因斯坦“上帝不会投骰子”之所言,五粒子其实不是五骰子,也绝不是靠投骰子、碰运气,而是来自量子态叠加原理及其应用,其研究工作是和爱因斯坦、波多尔斯基、罗森发现的量子EPR效应有纠缠的,即跟爱因斯坦迷惑一辈子的量子力学非定域性有纠缠。但三旋模型却能为前人所不了解的量子力学非定域性特性提供解答的理论帮助,即量子力学非定域性与三旋的关系,道理类似指南针在地球各地除两极外,都能定向相同指向南方,是因为地球磁场对指南针的作用引起的,因此也说明如航天飞机或人造卫星离开地球,或在受磁性材料干扰的地方,用指南针定向是不适用的;但科学家们却找到了一种陀螺罗盘,不需靠磁力线的作用来定向,而是利用陀螺本身的多层自旋来定向的;这种自旋定向的原理,揭示了自然界中自旋调制耦合功能的EPR效应普遍存在。然而在宏观物体身上是很难做到。非粒子量子圈态线旋客体,因为三旋是它的自然属性。因此是一种天然的超级陀螺罗盘。在EPR实验中之所以曾经耦合过去的光子,在分开以后还会出现整体效应,这正是因为象陀螺罗盘在出发之前经调制一样,耦合过的光子,它们象经过调制的陀螺一样,离开地面的陀螺罗盘的方位测量,是跟它调制配对时的陀螺罗盘的方向测量一致的,因此在EPR测量中,两者的量子效应是一样的。所以说,三旋理论是多粒子量子纠缠态隐形传输理论入门的基础理论之一。 曾有人把量子缠结看成是超光速,但这不是严格证明。一是,三旋理论证明,任何量子本身就是一个类似超级陀螺仪的三旋陀螺,量子之间进行缠结,类似陀螺仪使用前进行的测量与标准之间作的调整校对,所以陀螺仪使用中间产生的任何测量信息,使用者之间都是明确的,即是“超光速”的。其二,超光速测量不能排除时间克隆。量子概率克隆应用于量子信息提取和量子态识别,是量子隐形传态的一个主要途径,类似电子传真、电子邮件;基因复制出一个古代的“冰人”,并不等于已经超光速地追上了远古的时间。正是从量子信息学的基础出发,有学者证明能够用3个基本部件构建出通用量子计算机:缠结粒子、量子移物器和每次处理单个量子比特的门。例如从移物器制造两量子比特的方法是采用经仔细修饰的缠结对把两个量子比特从门的输入传送到门的输出,而修饰缠结对的方法恰好是让门的输出接收适当处理的量子比特。这样,对两个未知的量子比特执行量子逻辑的任务就简化为准备预先定义的特殊缠结对并进行传输的任务。显然,使移物成功率达到100%所需的完整贝尔态测量本身就是一种两量子比特的处理过程。由于各个粒子的状态彼此紧密相关,一旦某个粒子的状态因受到测量而确定下来,其它粒子的状态也随之确定。但区区几个量子比特不足以实现任何稍微复杂的运算功能,要制造出实用的量子计算机,就必须掌握大量粒子实现“缠结”状态的技术。 但过去的量子态隐形传输实验,在确定传输量子态成功的同时,必须以破坏被传输的量子态为代价,这就使其不可能在量子通讯和量子计算中有进一步的应用。潘建伟教授及其同事在研究中发现,适当降低被传输量子态的亮度可在不破坏被传输态的条件下成功传输量子态。这一研究成果,与高精度的纠缠态纯化一起,可从根本上解决目前在远距离量子通讯中由“退相干效应”带来的困难,并将极大地推动可容错量子计算的实验研究。 如今潘建伟开展的一项实验表明,不管两个粒子之间的距离有多远,哪怕其间全是“自由空间”,二者也有根本的互相联系,其中一个粒子状态的变化都会影响到第二个粒子的状态。而且,两个相距遥远的光子即使在没有光纤联结和存在噪声干扰的情况下,也可以纠缠在一起。而在他们开展以上实验之前,两个粒子间的量子纠缠要么发生在相对很短的距离,要么将两个粒子通过光纤联结起来。然而,也许今后能解开爱因斯坦之谜密钥的三旋理论,更会形成超级量子计算机和“万无一失”的密码系统的基础而做出贡献。 三、量子计算机原理与量子信息学基础 目前最快的超级计算机,对一个400位的阿拉伯数字进行因子分解,要耗时上百亿年,而具有相同时钟脉冲速度的量子计算机,只需大约一分钟。因此,人们一旦拥有了一台量子计算机,那么目前的密码系统将毫无保密性可言!潘建伟教授的量子纠缠经典信息处理的最基本单元是比特,即二进制数0或1;而一个按照一定数学规则给出的随机二进制数据串构成一个密钥,经典通信中最难解决的问题是密钥分配问题。如果密钥分配不是绝对保密,经典密码通信也就不可能绝对保密。但潘建伟等科学家最近开展的研究发现,基于量子力学线性叠加原理和不可克隆定理的量子密钥分配,却可以从根本上解决密钥分配这一世界性难题。虽然目前美国马萨诸塞州技术研究所与洛斯阿拉莫斯国家实验室,研制量子计算机运算器已成事实,但由于没有三旋理论的指导,西方量子计算机原理中存在有纰漏。例如Neil Gershenfeld等人阐释量子计算机能同时处于多个状态且能同时作用于它的所有不同状态的量子陀螺原理图时,对量子位不动的几种陀螺旋转,就分辨不清,明显的错误是把陀螺绕Y轴的体旋称为“进动”,这是不确切的。其原因是体旋实际比面旋复杂。而这一点却让量子计算机原理研究的专家所忽视,这类量子计算机原理中的纰漏,与量子计算机以量子态作为信息的载体有关。 因为,人们已提出用光子、电子、原子、离子、量子点、核自旋以及超导体中的库柏对等物理系统作为量子比特的方案,这使量子行为与经典物理的联系更紧密,但它也揭示出经典物理概念天生的不足,从而,非引入三旋概念莫属。即Neil Gershenfeld等人阐释量子计算机能同时处于多个状态且能同时作用于它的所有不同状态的量子陀螺原理图,也类似陀螺或廻转仪,它们的进动和公转,是旋转概念中不好区分的一个问题,把自旋的定义转换成截面的定义来看待三旋,就很明白了。 (1)面旋:用一系列平行的截面来切一个作自旋的物体,如果能在每个截面内找到一个且仅有一个不动的转点的旋转,称为面旋。如果由这些不动点组成的转轴与截面正交,这些截面就称为面旋正面,这条转轴就称为面旋轴,也称面旋Z轴。 (2)体旋:物体作面旋,面旋轴只有一条,而面旋正面却有很多个,并且物体还可以绕其中一个面旋正面内的一条轴作旋转,这称为体旋。而这个面旋正面就称为体旋面,这根转轴称为体旋轴。但过这个面旋正面不动点的体旋轴还可以有许多条,因此在体旋面内选定一条作体旋X轴,那么体旋面内过不动

开始是由两个著名实验引起(黑体辐射实验和迈克尔逊莫雷实验),黑体辐射实验人们无法用经典物理学解释,布朗克首次提出能量子假设后,引入了量子这一概念,后来爱因斯坦受到启发,采用光量子的假设,成功解释了光电效应,光具有波粒二象性。因而,量子这一概念成为科学家谈论的焦点,人们开始意识到牛顿力学在微观世界里面已经不再适用,必须有一个理论来量化微观系统。这时德布罗意提出了物质波的概念,即实物粒子和光子一样也具有波粒二象性,但对于实物粒子波的物理意义,人们还不能给出解释。薛定谔写出了薛定谔方程,建立微观粒子的波动方程;波恩对波函数给出了统计解释,粒子在空间的分布是有一定概率;海森堡建立了矩阵力学,将力学量都用矩阵表示。考虑的粒子随空间位置而呈概率分布,那其他力学量是否也是呈概率分布呢?海森堡提出不确定性原理,并利用矩阵变换解释了力学量在不同表象中的表示,粒子的其他力学量也是呈概率分布,只是采用了不同的表象。这样波动力学和矩阵力学完整理论正式形成,也标志着量子力学理论正式形成。

关于量子力学的论文题目

有关量子力学论文,题目好象是波函数的:量子力学精选论文:

第五次索尔维会议结束以后,爱因斯坦并没有放弃对世界的经典描述,他仍然认为量子力学对世界本质的解释并不完备。 比如说,波恩的概率解释,爱因斯坦认为这只能算得上是对一个系统的概率描述,并不符合单个量子客体,因为爱因斯坦认为单个量子客体具有确定的物理量,只是我们现在还无法把握而已,所以只能退而求其次,给出概率解释。 同样的,他也对测不准原理很不满意,他决定这次从测不准原理入手,证明量子力学的逻辑不一致,从而证明量子力学现在还算不上是一个完备的理论。 1930年的10月,爱因斯斯坦在第六次索尔维会议上,提出了一个思想实验,这就是我们熟知的“爱因斯坦光盒”。 爱因斯坦说,现在有一个不透明的箱子,在箱子上开有一个小孔,里面装着一些光子,还有一个钟表,这个钟表作为计时装置链接这一个快门,可以控制小孔的开合。 整个装置用弹簧挂在支架上,下面有一个配重G,现在我们把箱子里的钟表和外面的钟表对好钟,也就是两个钟表的时间是同步的。 现在箱子上小孔处的快门瞬间打开,然后闭合,在这个过程中只允许一个光子逃逸,快门打开到闭合,这个极短的时间Δt可以根据外面的钟表测出来,因为里面的钟表和外面的钟表是同步的。 所以我们现在就测量出了时间,这个物理量,由于光子飞出去以后,整个箱子的质量会减小,质量变化的量Δm可以根据箱子上的指针测量出来; 然后根据,质能方程我们就能够知道能量的变化量ΔE,这样我们就同时准确地测量出了时间和能量这两个物理量。 那么你哥本哈根说的测不准关系就不成立。玻尔听了这个思想实验以后,瞬间就懵了,感觉这次像是被爱因斯坦击中了要害。 他一时间想不出这个思想实验那里有问题,玻尔整天都是面如死灰,闷闷不乐,海森堡和泡利还安慰玻尔说,没事没事,爱因斯坦的光盒肯定哪里有问题。 在当天会议结束以后,他们返回住处的的时候,就有了这张照片。 爱因斯坦笑了,笑得像一个刚考了满分的孩子。而玻尔的表情就显得比较凝重,他在后面追着爱因斯坦,不知道说着什么。 当天晚上,玻尔在房间里一直转圈,他思考问题的时候经常这样,据海森堡的回忆,当天晚上玻尔睡得很晚,第二天早晨,当他们再次见到玻尔的时候,玻尔的脸上已经乐开了花。 因为他想到了爱因斯坦错在了哪里?而且爱因斯坦要是知道了他所犯的错误,估计会被气得说不出话来。 玻尔说,光子逃逸以后确实能测量出能量的变化,但是当光子逃逸以后,整个箱子会在重力场中的位置发生变化,由于广义相对论的红移效应,这就导致了箱子内的钟表的时间发生改变,当箱子内的钟表不再和外面的钟表同步的时候,我们就无法精确的测量时间了。 你看看,爱因斯坦为了攻击量子力学,竟然把自己的相对论给忘了。爱因斯坦只能接受玻尔的反驳。 在与玻尔两次的交锋当中,爱因斯坦都败下阵来,其实他也承认量子力学肯定是包含了某种最高的真理,但是在他的内心深处总是觉得量子力学还不完备。 所以从以后,爱因斯坦也不再说量子力学的逻辑不一致,他将攻击方向转向了证明量子力学还不是一个完善的理论,也就是存在隐变量。 隐变量就是隐藏着的变量,还没有被我们发现的现实性的物理量,爱因斯坦认为,正是因为量子力学没有考虑到这个变量,所以才有了几率解释,才有了测不准关系。 比如说,以前我们没有发现原子的时候,我们就无法对气体表现出来的温度和压力做出描述,那么原子就是一个隐变量,当我们确认了有原子存在的时候,只要算出他们的平均动能,那气体的温度和压力就得到了解释。 在第六届索尔维会议结束以后,爱因斯坦就和玻尔很少有接触了,1934年因为德国 社会 的问题,爱因斯坦来到了美国,他选择在普林斯顿度过他的后半生。 在普林斯顿大学,爱因斯坦只有两件事,他关于统一场论的梦想,就像麦克斯韦当年统一电磁和光学一样,他希望将电磁理论和引力统一起来。 这个方向和逻辑没有问题,现在的物理学的终极任务就是寻找可以描述万物的统一理论,只需要一个方程就可以解释四种基本自然力。 爱因斯坦是第一个尝试和上帝对话的人,虽然他失败了,但他的理想值得我们每一个人的尊重,而且爱因斯坦还觉得,只要有了统一场论,就能证明量子力学是不是完备。 因为量子力学应该是统一场论的副产品。这个逻辑也没有问题,毕竟统一场论是万物至理。 不过就在爱因斯坦还抓着量子力学的尾巴不放的时候,量子力学已经在各个方面展现出了他的魔力,年轻的物理学家不再讨论量子力学是否完备,也不在乎量子力学对世界的解释是否违反直觉。 他们利用量子力学解决了很多的问题,也做出了很多新的发现,比如在1930年,剑桥的查德威克就发现了中子,费米和他的团队发现了中子可以诱发重核裂变,开创了核物理。 1932年,卢瑟福的实验室制造出了第一台粒子加速器,开启了高能物理的时代。与此同时,人们还发现了中微子的迹象,等等。 所以在当时的年轻人眼里,爱因斯坦就是一个无法接受量子力学的“老白痴”,说爱因斯坦是过去的 历史 遗迹,爱因斯坦也承认在普林斯顿就有一些年轻人这样说他。 因此,就很少有研究生去找爱因斯坦,毕竟爱因斯坦的研究方向也很难出啥成果。不过,毕竟爱因斯坦是可以比肩牛顿的人,总会有一些小迷弟,比如罗森,25岁,1934年从麻省理工过来给爱因斯坦当助手,他俩还合作发表过一篇论文,也就是我们现在熟知的爱因斯坦-罗森桥,说的是可以穿越时间和空间的虫洞。 还有一位小迷弟叫波多尔斯基,39岁,俄罗斯人,1935年初,爱因斯坦告诉他俩,自己已经有了可以证明量子力学不完备的想法了,并且口述了自己的观点。 罗森负责计算,波多尔斯基负责写文章,3月底他们就完成了这篇只有4页纸的论文,史称爱因斯坦-波多尔斯基-罗森论文,也就是众所周知的EPR论文。 论文题目为:可以认为量子力学所描述的物理现实是完备的吗?当然论文中给出了否定的答案。 由于时间的关系,我们下节课在聊,EPR论文都说了啥。

有关量子力学论文的题目

有关量子力学论文,题目好象是波函数的:量子力学精选论文:

第五次索尔维会议结束以后,爱因斯坦并没有放弃对世界的经典描述,他仍然认为量子力学对世界本质的解释并不完备。 比如说,波恩的概率解释,爱因斯坦认为这只能算得上是对一个系统的概率描述,并不符合单个量子客体,因为爱因斯坦认为单个量子客体具有确定的物理量,只是我们现在还无法把握而已,所以只能退而求其次,给出概率解释。 同样的,他也对测不准原理很不满意,他决定这次从测不准原理入手,证明量子力学的逻辑不一致,从而证明量子力学现在还算不上是一个完备的理论。 1930年的10月,爱因斯斯坦在第六次索尔维会议上,提出了一个思想实验,这就是我们熟知的“爱因斯坦光盒”。 爱因斯坦说,现在有一个不透明的箱子,在箱子上开有一个小孔,里面装着一些光子,还有一个钟表,这个钟表作为计时装置链接这一个快门,可以控制小孔的开合。 整个装置用弹簧挂在支架上,下面有一个配重G,现在我们把箱子里的钟表和外面的钟表对好钟,也就是两个钟表的时间是同步的。 现在箱子上小孔处的快门瞬间打开,然后闭合,在这个过程中只允许一个光子逃逸,快门打开到闭合,这个极短的时间Δt可以根据外面的钟表测出来,因为里面的钟表和外面的钟表是同步的。 所以我们现在就测量出了时间,这个物理量,由于光子飞出去以后,整个箱子的质量会减小,质量变化的量Δm可以根据箱子上的指针测量出来; 然后根据,质能方程我们就能够知道能量的变化量ΔE,这样我们就同时准确地测量出了时间和能量这两个物理量。 那么你哥本哈根说的测不准关系就不成立。玻尔听了这个思想实验以后,瞬间就懵了,感觉这次像是被爱因斯坦击中了要害。 他一时间想不出这个思想实验那里有问题,玻尔整天都是面如死灰,闷闷不乐,海森堡和泡利还安慰玻尔说,没事没事,爱因斯坦的光盒肯定哪里有问题。 在当天会议结束以后,他们返回住处的的时候,就有了这张照片。 爱因斯坦笑了,笑得像一个刚考了满分的孩子。而玻尔的表情就显得比较凝重,他在后面追着爱因斯坦,不知道说着什么。 当天晚上,玻尔在房间里一直转圈,他思考问题的时候经常这样,据海森堡的回忆,当天晚上玻尔睡得很晚,第二天早晨,当他们再次见到玻尔的时候,玻尔的脸上已经乐开了花。 因为他想到了爱因斯坦错在了哪里?而且爱因斯坦要是知道了他所犯的错误,估计会被气得说不出话来。 玻尔说,光子逃逸以后确实能测量出能量的变化,但是当光子逃逸以后,整个箱子会在重力场中的位置发生变化,由于广义相对论的红移效应,这就导致了箱子内的钟表的时间发生改变,当箱子内的钟表不再和外面的钟表同步的时候,我们就无法精确的测量时间了。 你看看,爱因斯坦为了攻击量子力学,竟然把自己的相对论给忘了。爱因斯坦只能接受玻尔的反驳。 在与玻尔两次的交锋当中,爱因斯坦都败下阵来,其实他也承认量子力学肯定是包含了某种最高的真理,但是在他的内心深处总是觉得量子力学还不完备。 所以从以后,爱因斯坦也不再说量子力学的逻辑不一致,他将攻击方向转向了证明量子力学还不是一个完善的理论,也就是存在隐变量。 隐变量就是隐藏着的变量,还没有被我们发现的现实性的物理量,爱因斯坦认为,正是因为量子力学没有考虑到这个变量,所以才有了几率解释,才有了测不准关系。 比如说,以前我们没有发现原子的时候,我们就无法对气体表现出来的温度和压力做出描述,那么原子就是一个隐变量,当我们确认了有原子存在的时候,只要算出他们的平均动能,那气体的温度和压力就得到了解释。 在第六届索尔维会议结束以后,爱因斯坦就和玻尔很少有接触了,1934年因为德国 社会 的问题,爱因斯坦来到了美国,他选择在普林斯顿度过他的后半生。 在普林斯顿大学,爱因斯坦只有两件事,他关于统一场论的梦想,就像麦克斯韦当年统一电磁和光学一样,他希望将电磁理论和引力统一起来。 这个方向和逻辑没有问题,现在的物理学的终极任务就是寻找可以描述万物的统一理论,只需要一个方程就可以解释四种基本自然力。 爱因斯坦是第一个尝试和上帝对话的人,虽然他失败了,但他的理想值得我们每一个人的尊重,而且爱因斯坦还觉得,只要有了统一场论,就能证明量子力学是不是完备。 因为量子力学应该是统一场论的副产品。这个逻辑也没有问题,毕竟统一场论是万物至理。 不过就在爱因斯坦还抓着量子力学的尾巴不放的时候,量子力学已经在各个方面展现出了他的魔力,年轻的物理学家不再讨论量子力学是否完备,也不在乎量子力学对世界的解释是否违反直觉。 他们利用量子力学解决了很多的问题,也做出了很多新的发现,比如在1930年,剑桥的查德威克就发现了中子,费米和他的团队发现了中子可以诱发重核裂变,开创了核物理。 1932年,卢瑟福的实验室制造出了第一台粒子加速器,开启了高能物理的时代。与此同时,人们还发现了中微子的迹象,等等。 所以在当时的年轻人眼里,爱因斯坦就是一个无法接受量子力学的“老白痴”,说爱因斯坦是过去的 历史 遗迹,爱因斯坦也承认在普林斯顿就有一些年轻人这样说他。 因此,就很少有研究生去找爱因斯坦,毕竟爱因斯坦的研究方向也很难出啥成果。不过,毕竟爱因斯坦是可以比肩牛顿的人,总会有一些小迷弟,比如罗森,25岁,1934年从麻省理工过来给爱因斯坦当助手,他俩还合作发表过一篇论文,也就是我们现在熟知的爱因斯坦-罗森桥,说的是可以穿越时间和空间的虫洞。 还有一位小迷弟叫波多尔斯基,39岁,俄罗斯人,1935年初,爱因斯坦告诉他俩,自己已经有了可以证明量子力学不完备的想法了,并且口述了自己的观点。 罗森负责计算,波多尔斯基负责写文章,3月底他们就完成了这篇只有4页纸的论文,史称爱因斯坦-波多尔斯基-罗森论文,也就是众所周知的EPR论文。 论文题目为:可以认为量子力学所描述的物理现实是完备的吗?当然论文中给出了否定的答案。 由于时间的关系,我们下节课在聊,EPR论文都说了啥。

量子力学对维度的扩张研究论文

经的住考验,能反复验证。包括自然科学和社会科学。

在一定领域内可以解释某些现象的一套理论

科学 SCIENCE 从狭义上讲,科学单单指的是自然科学, 即常讲的理科(理性的学科). 这种 "科学",指的是一门探求一切自然的客观规律(把人文学科与自然相对的分开),以标准化的方式来丈量认识世界,追求自然界客观真理和事实的学科. 而如今,科学一词以不仅仅是这么狭义.广义上的科学,指的是: 世界上一切事物皆理皆科学,无论人文和自然,皆追求符合客观规律, 探求所有事物的联系,产生原因和本质. 这种"科学"是博大的,是精华,是包容,体现了人类认识的进步. 人们的追求,必定是这种科学.

科学家们试想着有一天能够利用量子力学中的量子纠缠的特性,用某种先进的科技手段对一个大活人进行穿越时空的传输。先解释一下什么是量子纠缠,如果你看了我之前写的关于量子理论的文章,会有所了解。什么是量子纠缠呢?通俗点可以这样理解,构成我们身体微观下的极微小的一种粒子,也就是量子具有一种特殊的属性,它可以同时存在于不同的时空中,而且当一对有关联的量子分别向它们相反的方向发射后,无论它们分离的多么遥远,哪怕一粒在地球上,另外一粒已经穿越出了银河系。

当一方显示出某种信息的时候,另一方的粒子马上就可以测量到同样的信息,这样一种神奇的现象被科学家们称为“量子纠缠”,这个理论并不是空想,已经得到了证实。目前人类利用量子纠缠理论已经实现了量子通信,也就是说从理论上完全可以对人类进行同样的传输过程。

举个例子。如果A在北京,他想到上海,普通的方式需要几个小时时间,但如果用量子纠缠技术可以瞬间达到,起码理论上可行。只需要在上海放置一个装满粒子的容器,并且与放在北京的同样的容器发生纠缠,这时A就可以进入位于北京的容器,然后启动容器,这个容器会扫描A身体里大量的粒子(有点像扫描机和传真机)。

同时,位于上海的容器内粒子也要接受扫描,并生成一份两组粒子的量子态的对比清单,接着纠缠现象加入作用,基于远距离幽灵作用的结果,那份清单也会显示A身体粒子的原始状态与北京那些粒子状态的符合度。

接着这份清单会发给上海,在那里利用这些资讯来重建与A身体的每个粒子完全相同的量子态,然后形成了一个新的A。这并不是将构成A身体的粒子从北京送到上海,而是通过量子纠缠理论,提取身处北京的A身体内的量子态信息,并在上海重组起来。

不过A真的是从北京被传输到了上海了吗?在上海的只是A的复制品,在北京测量A身体内所有粒子量子态的过程已经摧毁了原来的那个A,这里涉及到了量子力学中有关量子纠缠相关的原理,在量子传输协议中必须说明,物理在传输途中已被摧毁。

如果是这样的话,是不是意味着我们人类的身体其实只是承载我们灵魂的一个机器呢?这个机器由于有能量的循环和适合的条件才使得我们的灵魂飘落在其上,当摧毁人体这个机器的时候,我们的灵魂就无法附着在这个机器上了,就会展现在量子存在的空间里,其实也是可以在这个宇宙的任何一个它能够存在的地方。

第三个问题是,假如现在我们用特殊的机器设别同时提取三个不同状态下的A身体的信息,结果又将会是怎样的呢?是不是说,能将三个不同状态在的A全部信息完整地进行传输复制呢?

在这种情况下,量子纠缠对人体进行传输就存在一个悖论,假如传输人的特殊仪器能录入三种完全不同的生命信息,那么就意味着人类确实存在灵魂,死人与活人所带有的物质信息在极微观下是可以度量的。如果所得到的生命信息是同一种,那么利用量子纠缠理论对人类进行传输就根本无法实现。

无论如何理解,量子纠缠理论让我们看到了一个可能存在的事实真相,人类的灵魂是存在的,可能就是以量子的物质状态表现的,所以它可以同时存在于不同的时空中,比如我们所说的人的灵魂出窍,比如我们在睡梦中到了不同的地方,经历了不同的事情,还有比如我们在休克和昏厥的状态下,有可能就是灵魂离体了!

量子力学对社会的影响研究论文

一百年以前,爱因斯坦写下了五篇科学史上著名的论文,他们是关于光的产生和转化的一个启发性观点。这篇论文讨论了光量子及光电效应。第二篇是分子大小的新测定,推导出分子计算速度的计算公式。第三篇是热的分子运动论,所要求静止一体中圆副小分子的运动,提出了原子确实存在的证明。第四篇是论动体的变动力学,提出了时空关系的新理论,正是因为这篇论文,拉开了近代物理学的序幕。第五篇是物体的惯性是否决定其内能,根据狭义相对论提出了质量与能量可互换的思想,这应该是原子能释放的理论基础。 以量子论和相对论为基础的近代物理学革命,将科学引入到了一个新的时代,人类认知的初期伸向了广袤的宇宙,伸向了遥远的宇宙起源之初,伸向人类未曾了解过的微观物质层面,伸向了生命领域跟神经、脑等认知器官的领域。近代物理学革命,在以后的岁月里,还引发了生命科学的革命,这一切都改变了人类的物质观、时空观、生命观和宇宙观。近代物理学革命,它催生出了核能、半导体、激光、新材料和超导技术等,促进了一批新技术的飞速发展,并且籍此而改变了人类现代的生产与生活方式,将人类推进到了一个知识经济的新时代。 现在来看看他们的成就究竟给我们带来一些什么启示呢? 第一、是实验和理论之间的矛盾,催生了新的科学概念。当时一些物理现象的发现,新物理现象的发现,以及预示了经典物理学解释的局限性。比如热辐射现象的新的实验观测对当时的经典物理学理论提出了置疑,麦克斯伟电磁场理论虽然能够比较好的解释电磁波以及光的传播,但是对于热辐射它的辐射跟吸收无能为力。而热辐射研究又引发了一系列物理学新的发现,成为了量子论诞生的逻辑起点,作为能量的量子概念诞生它是在1900年,普郎克最早提出的,他的推广导致描述微观粒子运动的量子力学在1920年以后逐步完善,大概25、26年左右,并且进而与狭义相对论结合,发展出描述微观粒子产生跟奥秘的量子场论。量子场论的发展,也经历了经典量子场论,规范量子场论,分别是对称的跟不对称的,和超对称量子场论这三个发展阶段,量子场论不仅揭开了人们肉眼看不见的微观物质世界的规律,也加深了人类对宇宙演化的理解,更新了人们认识客观世界的方式,并且也带来了一系列重大的技术方面的突破。所以从这点可以看到,科学归根到底是证实知识体系,一旦理论与严密的实验结果出现了不一致,无论这种理论权威性如何,无论这种理论曾经得到多少人,多少年的信奉,作为一名科学家,都有理由去质疑这个理论本身,并且努力去完善它,或者创造新的理论去替代它。科学探索的最终结果是对发现的自然现象做出精确的理论解释,而做出理论解释,不仅需要有严谨的科学态度,理性的质疑精神,更需要深邃的思考能力和缜密的分析能力,以及理论思维的能力。我们前面看到的这些科学家,他们不光注重实验,而且注重理性的思维,而且注重运用数学的工具来进行科学的概括。这是第一点。 第二、重大的科学突破往往始于凝练出重要的科学问题。提出问题,可能比解决问题来的更重要。问题提出了,即便你提出问题的人在有生之年没有能解决,其他的科学家或者我们的子孙后代,总有一天会解决这个问题。所以凝练科学目标,凝练科学问题,在当代现代更加的重要。如果你提不出科学问题,你就没有明确的工作目标。爱因斯坦提出的相对论,就是一种崭新的时空观。相对论的关键科学问题,是在于同时的相对性。相对论合理地解释了时空相互之间的联系,时空空间与物质分布相联系,物质和能量相联系,根本改造了牛顿以来经典的物理学知识体系,不仅与量子力学一起构成了20世纪物理学发展的基础,而且把人类对于自然的认识提升到了一个全新的水平,深刻的影响了人们以后的思维方式以及世界观。 第三、给我们的启示,我认为是科学的想象力需要严谨的实验证据支持。前面讲到了提出科学问题很重要,要勇于挑战已有的科学理论,勇敢的提出质疑,但是这种质疑绝不是胡思乱想,绝不是毫无根据的,狂妄的去挑战已有的真理,而是需要严谨的实验作为依据。1917年荷兰著名的天文学家德西特,1922年俄国数学家副里德曼以及1927年比利时的物理学家勒每特先后提出了膨胀宇宙论,美国的天文学家哈玻,所观测到的红移定律等,红移现象等有力地支持了宇宙膨胀理论。俄国出身的美国物理学家加莫夫 1946年基于膨胀理论的基础上,根据引入合物理的知识,提出了宇宙大爆炸理论,认为宇宙的起源是温度和密度接近无穷大的原始火球爆炸而产生的。1964年,美国两位电讯工程师彭齐亚跟威尔逊在研究卫星的电波通信的时候,他们制作了一个非常灵敏的接收机,接收到了来自宇宙各方向强度都不变的背景微波辐射,这种微波辐射恰好相当于3.5K左右的遥远宇宙的黑体辐射,跟前面的预言是非常之接近的。这一表现被认为是证实了宇宙大爆炸学说的背景辐射的预言,随后大爆炸学说被广泛的接受,并且发展成为当代宇宙学的一个标准模型。 第四、从物理学启示当中,一条重要的启示是物理学包括其他的自然科学,都需要数学语言。因为数学是对数与形的简捷的概括和优美的表达方式,所以物理的规律,往往用数学语言来表达。近代物理学的书写语言几乎都是数学,革命导师马克思曾经认为,只有当一门科学成功地运用数学才可以认为是成熟了的学科。但是现在马克思的这一结论,还需要在生命科学领域里边得到证实,因为生命科学尤其到了分子生物学这个阶段,目前还没有一个统一的、成熟的数学方程可以概括它的规律,也许人们还没有走到这一步。在20世纪,物理学与数学的紧密关系,远非其前三个世纪所能比,并且越来越显示出数学与物理的内在的一致性。可以认为,物理学不仅是数学家面临大量新的数学问题,而且某种意义上也能够引领着数学家朝着起先还梦想不到的地方前进。 第五、新仪器的发明为当代科学打开了新的途径跟窗口在科学已经越来越依赖于研究手段的今天,实验手段的进步不仅可以有助于理论突破,甚至可以打开新的窗口,改变科学家的思路,开辟新的研究领域,任何轻视实验手段和方法的思想,都可能使科学处于停滞和陷于困境。这也是为什么在理论物理取得巨大成就的今天,人们还要耗费须资,去制造对撞机,去制造天文望远镜,去制造聚变实验装置,去制造一个又一个有巨大分辨率的电子计算机,核磁共振设备等等。 第六个启示是物理学与生命科学之间相互作用。生命是物质的,所以物理学的发展也必定要涉及涵盖生命物质的规律的研究。物理学与其他自然科学交叉与相互作用,曾经产生并形成了科学物理学,生物物理学和心理物理学,天体物理学、地球物理学,大气物理学海洋物理学和空间物理学等诸多的交叉学科,这种交叉和相互作用最突出的表现还在于,20世纪的生命科学在物理学的基础上发生了革命性的变化,也就是DNA双螺旋结构的发现以及分子生物学的信息。 1970年基因重组开辟了基因技术工程应用的可能性,从而使人类看到了运用生物技术造福人类的广阔的前景。生命科学的这种革命性的变革正是物理学、化学和生物学等相互交叉的结果,在这个过程当中,物理学的概念与方法以及物理学家深入到生命科学领域进行探索,为此做出了重要的贡献。所以现在看来,学生命科学跟学物理之间,包括跟数学之间,没有不可跨越的鸿沟,许多有成就的生命科学家,有些就是来自于物理学、化学等其他领域。有许多原本学物理的科学家,他成名以后,兴趣转移到去参与生命科学的研究,量子力学的创立者薛定蛾,1944年写过《生命是什么》,这一书曾深刻影响了一批物理学家和生物学家的思想,促成了分子生物学诞生出了三个基本的学派,这就是比德尔代表的化学学派,德尔布吕克代表的信息学派,以及肯德鲁代表的结构学派。 第七、社会需求的拉动以及科学与技术之间的相互作用是推动物理学近百年进步的根本原因。以纳米技术为基础新的工具将导致小于100纳米超微分子器件的诞生,这些分子器件可能具有更为主动和复杂的性能,能够帮助人类完成更为复杂的操作,或者精确的操作,基于分子装配的纳米技术,将能够对物质结构进行完全的事先的设计跟控制,使人类能够按照自然规律制备出超微的智能器件,半导体集成电路和纳米科技的发展表明,导致科技进步的动力不仅来源于科学家工程师的创造欲,而且来源于社会需求的拉动。 物理学在为我们解释周边物质世界的同时,也为我们营造出了内容丰富、思维缜密,不断创新,妙趣无穷的理论方法和实验体系。20世纪的近代物理学革命与19到20世纪之交的物理学形势相关,那时物理学上空有两朵所谓乌云,竟使得一些物理学家惊呼出现了物理学危机。近代物理学革命不仅解决了两朵乌云导致的这场危机,而且把整个物理学自然科学都置于以量子论和相对论两大理论为支柱的现代物理学的基础之上。19世纪的最后一天,欧洲著名的科学家曾经欢聚一堂,会上,有一位英国著名的物理学家汤姆生,回顾物理学所取得的伟大成就时说,物理大厦已经落成,所剩的只是一些修饰工作,同时他在展望20世纪物理学前景时,却若有所思的讲,动力理论肯定了热和光是运动的两种方式,现在它的美丽而晴朗的天空却被两朵乌云笼罩了,第一朵乌云出现在光的波动理论上,第二朵乌云出现在关于能量均分的麦克斯韦波兹曼理论上。这两朵乌云,现在被量子论跟相对论所驱散,虽然目前今天的物理学,诚然面临着一些重要的理论与实验问题亟待解决,比如类星体的能源问题,暗物质,暗能量和反物质的问题,爱因斯坦场方城的宇宙项问题等,中微子振荡问题,质子衰变问题等,但是到现在为止,物理学家还没有人像19世纪20世纪惊呼物理学的危机。相对论和量子论在科学各个领域的扩展与应用,虽然已经取得了很大成功,但科学永无止境,没有到非常完善的成动,看来一直作为精密科学典范的物理学还是魅力未减,作为其他经验科学基础的地位短时期还不会改变。现在我们的科学技术发展的重心开始向生命科学,向信息科学等倾斜,但是物理学依然是基础,数学依然是基础,是重要的工具,这一点并没有改变。物理学的巨大魅力还在于他从理论认识中,延伸出众多的技术原理,20世纪物理学为我们这个社会提供了四个主要的新技术的原理,这就是核能技术,半导体技术,包括大规模集成电路的技术,激光技术和超导技术。半导体技术,激光技术还衍生出网络技术,虽然在20世纪近代物理学革命以后,在约为3/4世纪的时间内,物理学并没有发生新的基础性的革命性的重大变革,物理学的进展主要还表现为对于相对论量子论的完善及推广应用上,但这并不意味着物理学的发展已经走到了尽头。 当代科学发展的态势和社会对科学的迫切需要,将在很大程度上影响科学未来发展的方向及特征。一些传统科学将继续保持相当的独特性,物理科学作为整个自然科学发展的基础地位一时还不会动摇,但是科学的学科结构重心无疑将转移到生命领域。 数学科学作为数与形的科学,其简洁精确优美的表述方式继续在子自然科学,应用技术与社会人文科学中得到更为广泛的利用。信息技术作为研究与知识信息交流,传播的技术手段,会随着自身发展及其与其他领域的结合不断进步,并通过广泛渗透促进社会各个领域的发展。各自然系统的研究以及自然科学人文社会科学之间的结合将成为跨学科研究的新的生长点,他们的发展和广泛运用,都将有力地推动学科间整合和交叉学科的诞生与繁荣。

量子信息的发展对未来的生活可能有重大影响,但就在目前考虑,量子力学最大的影响是半导体芯片

通过量子力学,人们了解到电子的运行规律,发展起来了一系列的全新研究领域,从固体物理,金属物理,到半导体物理,以及其他极端的高压物理,低温物理,超导物理,这些都是建立在量子力学理论基础之上现在物理的基础研究,都脱离不了量子力学的理论基础,其他例如量子化学,分子生物学,也都是量子力学理论在跨学科中的应用。目前基于量子力学原理,一些新的量子信息学应用例如量子通信,量子计算机还在实验室阶段进行,媒体也有很多报道,但都是原型开发阶段,离实际应用还有较远距离。只能期待这些利用量子效应的新应用,能早日带来更多的生活便利和技术进步。

很多作用,说实话,很简单一个例子就是1982年,IBM瑞士苏黎士实验室的葛·宾尼(Gerd Binning)和海•罗雷尔(Heinrich Rohrer)根据量子力学原理研制出世界上第一台扫描隧道显微镜(Scanning Tunneling Microscope,简称STM).STM使人类第一次能够实时地观察单个原子在物质表面的排列状态和与表面电子行为有关的物化性质,在表面科学、材料科学、生命科学等领域的研究中有着重大的意义和广泛的应用前景,被国际科学界公认为80年代世界十大科技成就之一.为表彰STM的发明者们对科学研究的杰出贡献,1986年宾尼和罗雷尔被授予诺贝尔物理学奖.与其它表面分析技术相比,STM具有如下独特的优点: 1.具有原子级高分辨率,STM在平行和垂直于样品表面方向的分辨率分别可达0.1nm和0.01nm,即可以分辨出单个原子. 2.可实时再现样品表面的三维图象,用于对表面结构的研究及表面扩散等动态过程的研究. 3.可以观察单个原子层的局部表面结构,因而可直接观察到表面缺陷、表面重构、表面吸附体的形态和位置. 4.可在真空、大气、常温等不同环境下工作,样品甚至可浸在水和其它溶液中.不需要特别的制样技术并且探测过程对样品无损伤.这些特点特别适用于研究生物样品和在不同实验条件下对样品表面的评价,例如对于多相催化机理、超导机制、电化学反应过程中电极表面变化的监测等. 5.配合扫描隧道谱(STS)可以得到有关表面电子结构的信息,例如表面不同层次的态密度、表面电子阱、电荷密度波、表面势垒的变化和能隙结构等. 6.利用STM针尖,可实现对原子和分子的移动和操纵,这为纳米科技的全面发展奠定了基础. STM也存在因本身的工作方式所造成的局限性.STM所观察的样品必须具有一定的导电性,因此它只能直接观察导体和半导体的表面结构,对于非导电材料,必须在其表面覆盖一层导电膜,但导电膜的粒度和均匀性等问题会*图象对真实表面的分辨率.然而,有许多感兴趣的研究对象是不导电的,这就*了STM应用.另外,即使对于导电样品,STM观察到的是对应于表面费米能级处的态密度,如果样品表面原子种类不同,或样品表面吸附有原子、分子时,即当样品表面存在非单一电子态时,STM得到的并不是真实的表面形貌,而是表面形貌和表面电子性质的综合结果.量子技术即为利用量子理论形成新事物,改变现有事物功能、性能的方法。量子技术包括这三类要知素:量子经验性要素、量子实体性要素和量子知识性要素。量子经验性要素表明量子技术的使用也需要有人的经验的积累,但它并不构成量子技术的主道要性要回素,这一要素的作用可以忽略。量子实体性要素是量子知识性要素的载体,表现为量子技术人工物(量子技术客体)。量子知识性要素主要是指量子技术是量子力学和量子信息论等量子理论的应用。没有量子理论就不可能有量子技术,也不可能凭宏观的技术经验发明出量子技术人工物。答量子信息技术更是量子理论的产物。因此,量子技术必定是量子理论的应用

相关百科

热门百科

首页
发表服务