“数理答疑团”为您解答,希望对你有所帮助。
弧GJ是长于弧GE且短于弧GD
因为:弧GD长于弧GE
÷ × ÷
如果你认可我的回答,敬请及时采纳,~如果你认可我的回答,请及时点击【采纳为满意回答】按钮~~手机提问的朋友在客户端右上角评价点【满意】即可。~你的采纳是我前进的动力
祝你学习进步,更上一层楼! (*^__^*)
说明:GE=2PI*AF*60/360=PI*AG/3GD=2PI*IG*150/360=PI*5/2*IG/3
设三角形ABC,角B、角C的平分线是BE、CD 作∠BEF=∠BCD;并使EF=BC ∵BE=DC ∴△BEF≌△DCB,BF=BD,∠BDC=∠EBF 设∠ABE=∠EBC=α,∠ACD=∠DCB=β ∠FBC=∠BDC+α=180°-2α-β+α=180°-(α+β); ∠CEF=∠FEB+∠CEB=β+180-2β-α=180°-(α+β); ∴∠FBC=∠CEF ∵2α+2β<180°,∴α+β<90° ∴∠FBC=∠CEF>90° ∴过C点作FB的垂线和过F点作CE的垂线必都在FB和CE的延长线上. 设垂足分别为G、H; ∠HEF=∠CBG; ∵BC=EF, ∴Rt△CGB≌Rt△FHE ∴CG=FH,BC=HE 连接CF ∵CF=FC,FH=CG ∴Rt△CGF≌△FHC ∴FG=CH,∴BF=CE,∴CE=BD ∵BD=CE,BC=CB,∴△BDC≌△CEB ∴∠ABC=∠ACB ∴AB=AC
证明:连接ED∵四边形ABCD是正方形∴AD=AB ∠D=90°∵AC是角平分线∴∠GAE=∠EAB=45°∵AE=AE ∠GAE=∠EAB AD=AB∴△AEB全等于△AED(SAS)∴EB=BE∵EF⊥CD于F,EG⊥AD于G ∠D=90°∴四边形DGEF是矩形∴ED=GF∵ED=BE∴BE=GF
生活中的数学 有一个谜语:有一样东西,看不见、摸不着,但它却无处不在,请问它是什么?谜底是:空气。而数学,也像空气一样,看不见,摸不着,但它却时时刻刻存在于我们身边。 奇妙的“黄金数” 取一条线段,在线段上找到一个点,使这个点将线段分成一长一短两部分,而长段与短段的比恰好等于整段与长段的比,这个点就是这条线段的黄金分割点。这个比值为:1:0.618…而0.618…这个数就被叫作“黄金数”。 有趣的事,这个数在生活中随处可见:人的肚脐是人体总长的黄金分割点;有些植物茎上相邻的两片叶子的夹角恰好是把圆周分成1:0.618…的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。 建筑师们对数0.618…特别偏爱,无论是古埃及的金字塔,还是巴黎圣母院,或是近代的埃菲尔铁塔,都少不了0.618…这个数。人们还发现,一些名画,雕塑,摄影的主体大都在画面的0.618…处。音乐家们则认为将琴马放在琴弦的0.618…处会使琴声更柔和甜美。 数0.618…还使优选法成为可能。优选法是一种求最优化问题的方法。如在炼钢时需要加入某种化学元素来增加钢材的强度,假设已知在每吨钢中需加某化学元素的量在1000—2000克之间。为了求得最恰当的加入量,通常是取区间的中点进行试验,然后将实验结果分别与1000克与2000克时的实验结果作比较,从中选取强度较高的两点作为新的区间,再取新区间的中点做实验,直到得到最理想的效果为止。但这种方法效率不高,如果将试验点取在区间的0.618处,效率将大大提高,这种方法被称作“0.618法”,实践证明,对于一个因素的问题,用“0.618法”做16次试验,就可以达到前一种方法做2500次试验的效果! “黄金数”在生活中竟有如此多的实例和运用。或许,在它的身上,还有更多的奥秘,等待我们去探寻,使它能更好地为我们服务,为我们解决更多问题。 美妙的轴对称 如果在一个图形上能找到一条直线,将这个图形沿着条直线对这可以使两边完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴。 如果仔细观察,可以发现飞机是一个标准的轴对称物体,俯视看,它的机翼、机身、机尾都呈左右对称。轴对称使它飞行起来更平稳,如果飞机没有轴对称,那飞行起来就会东倒西歪,那时,还有谁愿意乘飞机呢? 再仔细观察,不难发现有许多艺术品也成轴对称。举个最简单的例子:桥。它算是生活中最常见的艺术品了(应该算艺术品吧),就拿金华的桥来说:通济桥、金虹桥、双龙大桥、河磐桥。个个都呈轴对称。中国的古代建筑就更明显了,古代宫殿,基本上都呈轴对称。再说个有名的:北京城的布局。这可是最典型的轴对称布局了。它以故宫、天安门、人民英雄纪念碑、前门为中轴线成左右对称。将轴对称用在艺术上,能使艺术品看上去更优美。 轴对称还是一种生物现象:人的耳、眼、四肢、都是对称生长的。耳的轴对称,使我们听到的声音具有强烈的立体感,还可以确定声源的位置;而眼的对称,可以使我们看物体更准确。可见我们的生活离不开轴对称。 数学离我们很近,它体现在生活中的方方面面,我们离不开数学,数学,无处不在,上面只是两个极普通的例子,这样的例子根本举不完。我认为,生活中的数学能给人带来更多地发现。
上面的好长啊~我也来答:生活中的数学 有一个谜语:有一样东西,看不见、摸不着,但它却无处不在,请问它是什么?谜底是:空气。而数学,也像空气一样,看不见,摸不着,但它却时时刻刻存在于我们身边。 奇妙的“黄金数” 取一条线段,在线段上找到一个点,使这个点将线段分成一长一短两部分,而长段与短段的比恰好等于整段与长段的比,这个点就是这条线段的黄金分割点。这个比值为:1:0.618…而0.618…这个数就被叫作“黄金数”。 有趣的事,这个数在生活中随处可见:人的肚脐是人体总长的黄金分割点;有些植物茎上相邻的两片叶子的夹角恰好是把圆周分成1:0.618…的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。 建筑师们对数0.618…特别偏爱,无论是古埃及的金字塔,还是巴黎圣母院,或是近代的埃菲尔铁塔,都少不了0.618…这个数。人们还发现,一些名画,雕塑,摄影的主体大都在画面的0.618…处。音乐家们则认为将琴马放在琴弦的0.618…处会使琴声更柔和甜美。 数0.618…还使优选法成为可能。优选法是一种求最优化问题的方法。如在炼钢时需要加入某种化学元素来增加钢材的强度,假设已知在每吨钢中需加某化学元素的量在1000—2000克之间。为了求得最恰当的加入量,通常是取区间的中点进行试验,然后将实验结果分别与1000克与2000克时的实验结果作比较,从中选取强度较高的两点作为新的区间,再取新区间的中点做实验,直到得到最理想的效果为止。但这种方法效率不高,如果将试验点取在区间的0.618处,效率将大大提高,这种方法被称作“0.618法”,实践证明,对于一个因素的问题,用“0.618法”做16次试验,就可以达到前一种方法做2500次试验的效果! “黄金数”在生活中竟有如此多的实例和运用。或许,在它的身上,还有更多的奥秘,等待我们去探寻,使它能更好地为我们服务,为我们解决更多问题。 美妙的轴对称 如果在一个图形上能找到一条直线,将这个图形沿着条直线对这可以使两边完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴。 如果仔细观察,可以发现飞机是一个标准的轴对称物体,俯视看,它的机翼、机身、机尾都呈左右对称。轴对称使它飞行起来更平稳,如果飞机没有轴对称,那飞行起来就会东倒西歪,那时,还有谁愿意乘飞机呢? 再仔细观察,不难发现有许多艺术品也成轴对称。举个最简单的例子:桥。它算是生活中最常见的艺术品了(应该算艺术品吧),就拿金华的桥来说:通济桥、金虹桥、双龙大桥、河磐桥。个个都呈轴对称。中国的古代建筑就更明显了,古代宫殿,基本上都呈轴对称。再说个有名的:北京城的布局。这可是最典型的轴对称布局了。它以故宫、天安门、人民英雄纪念碑、前门为中轴线成左右对称。将轴对称用在艺术上,能使艺术品看上去更优美。 轴对称还是一种生物现象:人的耳、眼、四肢、都是对称生长的。耳的轴对称,使我们听到的声音具有强烈的立体感,还可以确定声源的位置;而眼的对称,可以使我们看物体更准确。可见我们的生活离不开轴对称。 数学离我们很近,它体现在生活中的方方面面,我们离不开数学,数学,无处不在,上面只是两个极普通的例子,这样的例子根本举不完。我认为,生活中的数学能给人带来更多地发现。
数学论文.html 高中生数学成绩分化的原因与对策 在初中数学教学中渗透数学思想和数学方法 谈小学数学教学与中学的衔接 谈小学数学教学在素质教育中的地位作用及其课堂教学 自然数集扩充后的基数理论 中学生数学学习的心理障碍及其消除 中学数学教科书中的开放题 求新 求活 求近 —精心设计习题,激发作业兴趣 提高学生数学素养的探讨 中学数学教学方法的中西比较研究 参数方程在解题中的广泛应用 关于三角教材与教法的新思考 提高小学数学课堂教学效率的几点思考 提高小学数学课堂教学效率的基本要求 提高小学数学教学质量的两点体会 提高数学课堂教学效率的一种有效形式——“班内分层教学”初探 为创新而学习——倡导机智速算 鼓励赢在创新 把握好学生动手操作的时机 2 对《新世纪小数学教材》的初步认识 运用多媒体技术上好《新世纪小学数学教科书》 一个中学数学教师的困惑 新世纪数学课程改革呼唤教师角色的转变 PowerPoint巧做教学投影片 抓教材·导学法·促思维--从两个教学片段,看学法指导与学生思维能力的培养 小学数学竞赛活动与素质教育 小学数学概念的创造性教学 数控技术与产业发展途径探讨 发挥计算机的潜力推进数学教学改革 研究突发事件——数学金融学的重要课题 数学中的问题解决 世界银行关于中国GDP数据的调整及其存在的问题 支出法国内生产总值的构成指标与有关统计指标之间的相互关系 关于进一步改革和完善贸易统计制度方法的宏观思考 GDDS的主要内容 辽宁省地方财政科技三项费用投入状况分析研究 辽宁可持续发展能力分析——兼论加强辽宁可持续发展能力建设 要坚定不移地抓好农业这个根本——对海南农业发展的思考 消费及其与经济增长关系的研究 OECD主要国家软件业发展概况 在小学数学教学中开展有意义学习活动的尝试 在小学数学教学中培养学生的思维能力 在小学数学教学中培养儿童的观察能力 在小学数学教学中巧妙安排教学过程的尝试 小学数学教学评价改革初探 “参与探究型”结构在小学数学新授课中的应用 加强小学数学教学中说的训练 低年级小学数学教学中常用的学具和主要使用方法 批改小学数学作业的几种策略 关于小学数学课堂教学评价的构想 浅谈比较法在小学数学教学中的应用 提高小学数学教学质量的两点体会 2 小学数学教学过程最优化的探讨 小学数学教学中发散思维的培养 小学数学教学中实施素质教育应注意的几个问题 在小学数学教学中对学生进行数学基本思想方法的 “问题解决”和中学数学课程 小学数学活动课的开设原则与形式 关键是创设问题情境——引导学生自主学习的教学体会点滴 如何激发学生的数学学习动机 重视高中女生数学能力的培养 五点一线备一课 浅论数学直觉思维及培养 素质教育背景下小学生自主参与数学课堂学习活动探究 遵循尝试教学规律 给学生创设思维的空间——《分数四则混合运算》教学简评 把握好学生动手操作的时机 对现行高中数学教材中几个问题的探讨 数学教学中的课程观 小学数学教学中几种主要思维能力及其关系 阅读教学新理念剪影 小学数学教学要重视质疑 回归生活学数学 把问题解决贯串于数学教学的全过程 女孩缺乏数学才能? 数学课堂教学的心理障碍及对策 浅谈数学活动中的情感教学 对有数学天赋的学生的施教对策初探 中国能走向数学强国吗? 在数学活动中促进学生的发展 小学数学自主解决问题课堂教学模式的研究 数学美与数学教学 采访质量控制数学模型研究 数学教学如何培养学生的学习兴趣 如何在数学教学中体现新理念 我们的学生真聪明 大班“小超市”数学活动 一节数学课的启迪 数学课堂中的“数学化” 数学美的哲学断想 小学数学教学中几种主要思维能力及其关系 从课程功能的转变看小学数学教学改革 课堂教学应加强对学生数学应用意识的培养 谈计算题的总复习 谈数学解题的规范 谈数学教学中的游戏设计 谈数学活动课与学科课及数学活动的联系与区别 谈如何转化中学数学学业不良的学生 谈练习及练习设计 谈如何培养学生的解题能力 谈如何培养学生的审题能力 谈幻灯投影在小学数学教学中的作用 谈复习中数学试卷的讲评 探索,猜想,论证 提高初中数学教学质量的做法 提高空间想象力的有效途径 提高平面几何教学质量之管见 谈在数学教学中如何体现学生的主体地位 谈小学数学课的导入和课末的小结 加强数学实验教学 推进新课程改革 “活动”——数学的生命 探究性教学在数学教学的实践探索 关注学生发展 实现动态生成——“面积和面积单位”说课设计 “问题解决”和中学数学课程 小学数学活动课的开设原则与形式 关键是创设问题情境——引导学生自主学习的教学体会点滴 如何激发学生的数学学习动机 重视高中女生数学能力的培养 五点一线备一课 浅论数学直觉思维及培养 素质教育背景下小学生自主参与数学课堂学习活动探究 遵循尝试教学规律 给学生创设思维的空间——《分数四则混合运算》教学简评 把握好学生动手操作的时机 对现行高中数学教材中几个问题的探讨 数学教学中的课程观 小学数学教学中几种主要思维能力及其关系 阅读教学新理念剪影 小学数学教学要重视质疑 回归生活学数学 把问题解决贯串于数学教学的全过程 女孩缺乏数学才能? 数学课堂教学的心理障碍及对策 浅谈数学活动中的情感教学 对有数学天赋的学生的施教对策初探 中国能走向数学强国吗? 在数学活动中促进学生的发展 小学数学自主解决问题课堂教学模式的研究 数学美与数学教学 采访质量控制数学模型研究 大班“小超市”数学活动 一节数学课的启迪 数学课堂中的“数学化” 数学美的哲学断想 小学数学教学中几种主要思维能力及其关系 从课程功能的转变看小学数学教学改革 课堂教学应加强对学生数学应用意识的培养 谈计算题的总复习 谈数学解题的规范 谈数学教学中的游戏设计 谈数学活动课与学科课及数学活动的联系与区别 谈如何转化中学数学学业不良的学生 谈练习及练习设计 谈如何培养学生的解题能力 谈如何培养学生的审题能力 谈如何培养学生的提问能力 谈幻灯投影在小学数学教学中的作用 谈复习中数学试卷的讲评 探索,猜想,论证 提高初中数学教学质量的做法 提高空间想象力的有效途径 提高平面几何教学质量之管见 谈在数学教学中如何体现学生的主体地位 谈小学数学课堂提问艺术 谈小学数学课的导入和课末的小结 谈谈“暴露式”的数学教学过程 不可忽视高三册英语复习 一九九七年中考英语走向和应考对策 把握知识点注重实践性 初三英语重点难点解析 高二册9—12课语言要点归纳与扩展 高一英语(SEFC)教学调研与思考 高中英语阅读选修课的选材及教学方法的新尝试 巧讲语言点二题 如何培养中学生的阅读能力 谈高中英语教学中的几个重要环节 小学英语课堂教学中的笔头练习 形容词、副词的比较级 ——中考典型试题例析 学习得法事半功倍 英语复合句的用法及解题技巧 英语格言警句——在教学中的应用 在低年级英语教学中激发兴趣例谈 怎样加深英语课的概念理解 怎样进行初中英语总复习 综合编排教学法的原则与方法 比较的特殊表达法初探 测试改革是全面贯彻英语新《大纲》的保证 初中英语活动课研究实验的尝试 初中英语教学点滴谈 初中英语课堂目标教学初探
逆向思维。顾名思义,就是从相反的方向思考问题,当你面对一道题用正向思维思索无果之后,可以考虑从结论入手:证明这个结论需要什么前提,这个前提可以如何通过已知条件获得,多从不同角度,不同方向思考问题。
反证思维。反证法是从反方向证明的证明方法,当论题从正面不容易或不能得到证明时,就需要运用反证法。首先提出反论题,在条件不变的前提下,以原论题的`结论的否定为结论,然后按照推理规则进行推演,证明反论题的虚假,从而证明原论题是真的。
初中数学几何证明题解题方法
1、认真审题。读几何证明题要准确地找出已知条件和要证明的答案,并将重要的信息标记在图中,一目了然地看懂整道题。
2、添加辅助线。有的几何证明题目从已知条件和图形无法建立已知和求证的联系,此时我们可以考虑添加适当的辅助线,将复杂的问题简单化,帮助我们进行解题。
3、书写证明过程。有些同学平时练习时总是偷懒不写证明过程,导致考试时老是丢分。书写证明过程是逻辑推理的过程,因此一定要严谨,“∵”和“∴”尤其不能写错。
[1] 熊斌. Schur不等式和H�lder不等式及其应用[J]. 数学通讯, 2005,(15) [2] 段志强. 一个不等式的妙用[J]. 数学通讯, 2004,(17) [3] 赵国松, 张晓东. 一个Cordon型不等式[J]. 许昌学院学报, 2004,(05) [4] 刘宁超. of multiply from i=1 to n (ai+bi) ≥{n~1/[ multiply from i=1 to n (ai)] +n~1/[multiply from i=1 to n (bi)]}~n的证明推广及应用[J]. 阜阳师范学院学报(自然科学版), 1997,(03) [5] 佟成军. 一个不等式的加强及证明[J]. 数学通讯, 2006,(07) [6] 曾峰. 一个不等式的证明及应用[J]. 中学课程辅导(初二版), 2005,(02) [7] 黄长风. 联想证明不等式[J]. 数学教学研究, 2005,(03) [8] 李歆. 不等式a~2+b~2≥2ab的几个推论及应用[J]. 中学生数学, 2005,(05) [9] 方辉. 浅谈哥西不等式的应用[J]. 黄山学院学报, 1997,(01) [10] 孔小波, 孙文迪. 权方和不等式的改进及其姊妹不等式[J]. 数学通报, 2008,(11)
[1] 陈计, 二次根式的三角代换, 中学数学教师(丛刊), 1982年第1期, 42-44.[2] 陈计, 艾尔兑斯——莫迪尔不等式的推广, 数学通讯, 1984年第1期(总第149期), 27-31. [3] 陈计, 反向Fermat问题的推广, 数学通讯, 1984年第5期(总第153期), 26. [4] 陈计, Kummer判别法的增补, 工科数学, 1984年第2期(总第2期), 55-56. [5] 陈计, 朱尧辰不等式的推广, 中学数学教学参考, 1985年第3期(总第77期), 15. [6] 陈计, 初等对称函数的一个不等式, 厦门数学通讯, 1986年第1期, 15-16, 26. [7] 陈计, 一个不等式的推广, 数学教学研究, 1986年第4期(总第16期), 34. [8] 陈计, 关于Hardy不等式, 玉溪师专学报(综合版), 1987年第3期(总第10期), 57-60. [9] 陈计, 王振, 罗承辉, 关于几个猜想的讨论, 玉溪师专学报(综合版), 1987年第6期(总第13期), 39-44. [10] 陈计, Polya-Szego不等式的多边形推广, 数学通讯, 1987年第6期(总第190期), 7. [11] 陈计, Heron公式的指数推广及其应用, 数学通讯, 1987年第12期(总第196期), 3-4. [12] 王挽澜, 王鹏飞, 陈计, 一些新不等式的注, 成都大学学报(自然科学版), 1988年第1期(总第7期), 15-17. [13] 陈计, 林祖成, 关于若干平均值不等式的推广, 成都大学学报(自然科学版), 1988年第2期(总第8期),75-76. [14] 陈计, 何明秋, 涉及两个三角形的不等式, 数学通讯, 1988年第1期(总第197期), 3-4. [15] 陈计, 舒海斌, Ostle-Terwilliger不等式的推广, 数学通讯, 1988年第3期(总第199期), 7-8. [16] 陈计, 马援, Neuberg-Pedoe不等式的四边形推广, 数学通讯, 1988年第5期(总第201期), 5-6. [17] 陈计, 王振, Garfunkel-Bankoff不等式的一个证明, 数学通讯, 1988年第10期(总第206期), 7-8. [18] 陈计, 王振, Barrow-Lenhard不等式的指数推广, 数学通讯, 1988年第12期(总第208期), 7-8. [19] 陈计, 王振, Heron平均和幂平均的不等式, 湖南数学通讯, 1988年第2期(总第43期), 15-16. [20] Ji Chen, Zhen Wang, The power mean and the Heron mean inequalities, Crux Mathematicorum, Vol.14 (1988), No. 4, 97-99. [21] 陈计, Mitrinovic-Djokovic不等式的推广, 中学数学教学(上海), 1988年第4期, 18, 35. [22] 陈计, 张焕明, 费恩斯列尔哈德维格尔不等式的一个类似, 数学教学研究, 1988年第5期(总第27期), 26-27. [23] 王挽澜, 李广兴, 陈计, 关于平均值的比的一些不等式,成都科技大学学报, 1988年第6期(总第42期), 83-88. [24] 张在明, 陈计, 刘竞欧,Woodall不等式的一个证明, 六盘水师专学报, 1989年第1期, 86-87. [25] 陈计, 刘竞欧, 关于圆形区域的最初几个Heilbronn数, 宁波大学学报(理工版), 1989年第1期(总第3期), 6-9. [26] 陈计, Mitrinovic-Djokovic不等式的推广, 宁波大学学报(理工版), 1989年第1期(总第3期), 115-117. [27] 陈计, 李广兴, Erdos-Florian不等式的加强(英文), 宁波大学学报(理工版), 1989年第2期(总第4期), 12-14. [28] Ji Chen, An extension of Oppenheim's area inequality for triangles, Crux Mathematicorum, Vol.15 (1989), No. 1, 1-3. [29] Ji Chen, Zhen Wang, A generalization of Lenhard's inequality, Crux Mathematicorum, Vol.15 (1989), No.9, 257-259. [30] 陈计, 马援, 涉及两个单形的一类不等式, 数学研究与评论, Vol.9 (1989), No.2, 282-284; 几何不等式在中国, 江苏教育出版社, 1996年第一版, 397-400. [31] 陈计, 李广兴, 多边形中的不等式, 湖南数学通讯, 1989年第3期(总第50期), 32-33. [32] 李广兴, 陈计, 樊畿不等式的推广, 湖南数学通讯, 1989年第4期(总第51期), 37-39. [33] 陈计, 胡波, Klamkin不等式的推广, 数学教学研究, 1989年第4期(总第32期), 2-3. [34] 李文志, 陈计, 一道有奖征解题的推广, 成都大学学报(自然科学版), 1989年第4期(总第12期), 13-15. [35] 陈计, 王振, 关于Erdos和Fejes Toth的猜想, 数学通讯, 1989年第5期(总第213期), 3-4. [36] 陈计, Barrow-Oppenheim不等式的推广及其应用, 数学通讯, 1989年第6期(总第214期), 3-4. [37] 陈计, 高海明, 一道征解题的拓广和加强, 数学通讯, 1989年第8期(总第217期), 4-5. [38] 陈计, 刘竞欧, Catalan不等式的指数推广, 数学通迅, 1989年第11期(总第220期), 3. [39] 陈计, Guggenheimer不等式的指数推广, 数学通讯, 1989年第12期(总第221期), 3. [40] Ji Chen, Bo Hu, The identric mean and the power mean inequalities of Ky Fan type, Facta Universitatis(Nis), Series: Mathematics and Informatics, 4 (1989), 9-12. [41] 王振, 陈计, Ky Fan不等式的推广(英文), 宁波大学学报(理工版), 1990年第1期(总第5期), 23-26. [42] 胡波, 陈计, Heron平均和幂平均的樊畿型不等式, 宁波大学学报(理工版), 1990年第2期(总第6期), 32-35. [43] 陈计, 王振, 关于对数平均的下界, 成都科技大学学报, 1990年第2期(总第50期), 100-102. [44] 刘启铭, 陈计, 关于Beckenbach不等式的推广, 成都科技大学学报, 1990年第2期(总第50期), 117-118, 124. [45] 陈计, 关于单位分数的一个定理的初等证明, 成都科技大学学报, 1990年第2期(总第50期), 119-123. [46] 陈计, Makowski-Berkes不等式的变形, 数学教学研究, 1990年第2期(总第36期), 34. [47] 陈计, Padoa不等式的加权推广(研究通讯2), 湖南数学通讯, 1990年第3期(总第56期), 40. [48] 王振, 陈计, n(≥5)边形的最大面积一般不能用边长的根式表示, 成都大学学报(自然科学版), 1991年第1期, 38-42. [49] 陈计, 关于多边形面积的Oppenheim不等式的推广(英文), 宁波大学学报(理工版), 1991年第1期(总第7期), 17-20. [50] Mitrinovic, Pecaric, Volence, 陈计, 专著《几何不等式新进展》的补遗(I)(英文), 宁波大学学报(理工版),1991年第2期(总第8期), 79-145. (定价: 3.00元) [51] 王振, 陈计, 关于Erdos-Mordell不等式, 数学通讯, 1991年第7期(总第240期), 28-29. [52] 陈计, Janous不等式的初等证明, 数学通讯, 1991年第11期(总第244期), 14. [53] 陈计, 《几何不等式》中译本序, 北京大学出版社, 1991年9月第一版, 1-2. (定价: 3.20元) [54] Zhen Wang, Ji Chen, A generalization of Ky Fan inequality, Math. Balkanica, 5 (1991), 373-380. [55] 陈计, Bencze不等式的加强, 苏州教育学院学报(自然科学版), 1992年第1期(总第28期), 37-38, 40. [56] 陈计, 王振, 一个分析不等式的证明, 宁波大学学报(理工版), 1992年第2期(总第10期), 12-14. [57] 李国富, 陈计, 次数k≤10的Steinhaus循环的计算, 宁波大学学报(理工版), 1992年第2期(总第10期), 15-25. [58] 陈计, 关于Kooistra不等式的推广, 成都大学学报(自然科学版), 1992年第3期(总第23期), 43-46, 13. [59] 王振, 陈计, Mitrinovic-Djakovic不等式的推广(英文), 数学季刊, 1992年第4期, 95-99. [60] 陈计, 埃德温·福特·贝肯巴赫教授逝世十周年纪念, 玉溪师专学报(自然科学版), 1992年第5期(总第42期), 34-35. [61] 陈计, 关于Gerber不等式的加强, 福建中学数学, 1992年第5期(总第75期), 8-9. [62] 陈计, Janous不等式的一个加强, 福建中学数学, 1992年第6期(总第76期), 8-9. [63] 陈计, 《几何不等式》书评, 数学通讯, 1992年第5期, (总第250期), 40. [64] 陈计, Janous猜想的简单证明, 数学通讯, 1992年第9期(总第254期), 16-17. [65] 陈计, 泰国提供给第31届IMO的预选题2创作的一些看法, 数学通讯, 1992年第10期(总第255期), 39-40. [66] 陈计, 一个三角不等式的加强, 湖南数学通迅, 1992年第6期(总第71期), 27, 7. [67] 陈计, 一个三角不等式的加强, 中学数学(武汉), 1992年第8期(总第126期), 23-24. [68] 陈计, 关于三角形的一个不等式的新证, 中学数学(武汉), 1992年第10期(总第128期), 33. [69] 陈计, 两个新发现的三角不等式, 中学数学(武汉), 1992年第12期(总第130期), 21. [70] 陈计, 一个几何不等式的加强, 中学数学(苏州), 1992年第10期(总第113期), 20. [71] 陈计, 关于三角形的不等式族, 中学教研(数学版), 1992年第10期(总第139期), 29-30. [72] 陈计, 一个新的三角不等式, 中学教研(数学版), 1992年第12期(总第141期), 23-24. [73] 陈计, 王振, Neuberg-Pedoe不等式与Oppenheim不等式, 初等数学研究论文选, 上海教育出版社, 1992年10月第一版, 303-334. (定价:10.00元) [74] 陈计, Erdos-Klamkin不等式的推广(英文), 宁波大学学报(理工版), 1993年第1期(总第11期), 98-100. [75] 王振, 陈计, OYZ不等式的初等证明, 宁波大学学报(理工版), 1993年第2期(总第12期), 25-27. [76] 王振, 陈计, 三角形角平分线的平方和, 中学教研(数学版), 1993年第1期(总第142期), 34-36. [77] 陈计, 谈一个三角不等式的加强及其它, 中学教研(数学版), 1993年第7期(总第148期), 29-30. [78] 陈计, 两个三角形不等式链的加细, 中学教研(数学版), 1993年第11期(总第152期), 15-17. [79] 何明秋, 陈计, 平面凸图形内n点问题, 中学教研(数学版), 1993年第12期(总第153期), 23-24. [80] 陈计, 一个三角不等式的加强, 数学通讯, 1993年第1期(总第258期), 22-23. [81] 陈计, 从Garfunkel的猜想谈起, 数学通讯, 1993年第9期(总第266期), 22-23. [82] 陈计, 两个新的三角不等式, 上海中学数学, 1993年第2期, 37-38. [83] 陈计, 一个新的三角形不等式链, 中学数学(武汉), 1993年第2期(总第132期), 2, 22. [84] 陈计, 何明秋, 三角形内八点问题, 中学数学(武汉), 1993年第8期(总第138期), 26-27. [85] 王振, 陈计, Mitrinovic-Djakovic不等式的另一个扩展(英文), 数学季刊, 1993年第3期, 108-110. [86] 陈计, 王振, 广义Heron平均和幂平均的不等式, 成都大学学报(自然科学版), 1993年第4期(总第28期), 6-8. [87] 王振, 陈计, 一个三角形不等式的再加强(研究简讯40), 湖南数学通讯, 1993年第6期(总第77期), 39. [88] 陈计, 关于一个几何不等式的探讨(一), 福建中学数学, 1993年第6期(总第82期), 10-11. [89] 陈计, 王振, 最初几个Heilbronn数的计算, 福建省初等数学研究文集, 福建教育出版社, 1993年7月第一版, 49-53. (定价: 4.20元) [90] 陈计, 胡波, 指数平均和幂平均的樊畿型不等式, 福建省初等数学研究文集, 福建教育出版社, 1993年7月第一版, 53-56. [91] Ji Chen, Xei-Zhi Yang, On A. Zirakzadeh inequality to the triangles inscribed one inthe other, Univ. Beograd. Publ. Elektrotehn. Fak., Ser.: Mat., 4 (1993), 25-27. [92] 陈计, 王振,一个分析不等式的反向,宁波大学学报(理工版), 1994年第1期(总第13期),13-15. [93] 陈计, Bager第二图的改进,宁波大学学报(理工版),1994年第2期(总第14期), 10-15. [94] 陈计,余切和下界的改进, 福建中学数学, 1994年第1期(总第83期), 12. [95] 陈计, 黄军华,两个三角不等式的加细, 湖南数学通讯, 1994年第1期(总第78期), 44-45. [96] 黄军华,陈计,一个三角不等式链的加细(研究简讯56), 湖南数学通讯, 1994年第5期(总第82期), 44-45. [97] 王振,陈计,第25届IMO第1题的讨论,数学通讯,1994年第1期(总第270期), 33-34. [98] 陈计,王振,Neuberg-Pedoe不等式的四面体推广, 数学通讯, 1994年第2期(总第271期),22-24. [99] 陈计,对一个三角形不等式的加细(标题文摘), 数学通讯,1994年第6期(总第275期), 22. [100]陈计,两个三角形不等式的加细(标题文摘), 数学通讯,1994年第6期(总第275期), 22-23. [101]陈计, 关于∑sin3A-∑cos3A的下界,数学通讯, 1994年第10期(总第279期), 25-26. [102]陈琦, 陈计,凸图形和覆盖问题, 中学数学(武汉), 1994年第3期(总第145期), 33-36. [103]陈计, 关于Carlitz-Klamkin不等式,中学数学教学(合肥), 1994年第6期(总第90期), 41. [104]王振, 陈计,两个猜想不等式的加强及其它, 中学教研(数学版), 1994年第7-8期(总第160期), 51-53. [105]陈计,一个几何不等式的别证, 初中生数学学习, 1994年第7-8期(总第117-118期), 67. [106]王振, 陈计, 从一道Putnam竞赛题谈起,数学竞赛, 第18辑, 湖南教育出版社, 1994年4月第一版, 27-32. (定价: 2.70元) [107]陈计,从三角形的圆心距谈起, 数学竞赛, 第19辑, 湖南教育出版社, 1994年4月第一版, 82-87. (定价: 2.70元) [108]陈计, 王振,一个三角形不等式族的完善, 数学竞赛, 第21辑, 湖南教育出版社, 1994年4月第一版, 105-112. (定价:2.70元) [109]王振, 陈计,一个三角不等式的简证及应用, 宁波大学学报(理工版), 1995年第1期(总第15期),70-72. [110]陈计,季文,某些分析不等式的矩阵类似,宁波大学学报(理工版), 1995年第3期(总第17期),21-26. [111]石世昌, 陈计,三元二次初等对称平均对幂平均的分隔及其应用,成都大学学报(自然科学版), 1995年第2期(总第34期),2-8. [112]陈计, 王振,Garfunkel-Kuczma循环不等式的推广, 安徽教育学院(自然科学版),1995年第2期(总第62期), 8-10. [113]陈计,关于三角形的一个不等式, 中学数学(武汉), 1995年第3期(总第157期),34. [114]陈计,关于四边形旁切圆半径的不等式, 福建中学数学,1995年第3期(总第89期), 10-11. [115]王振, 陈计,初等对称函数的一个不等式, 湖南数学年刊(国际奥林匹克数学专辑),Vol.15(1995),No.4(Summary No.32),3-5. [116]陈计,关于三角形重心的垂足三角形, 湖南数学年刊(国际奥林匹克数学专辑),Vol.15(1995),No.4(Summary No.32),42-44. [117]陈计,几个樊畿型不等式, 湖南数学通讯, 1995年第5期(总第88期), 30-32. [118]陈计,一道全俄数学奥林匹克试题的推广与改进,数学通讯,1995年第9期(总第290期), 28-29. [119]陈计, 单墫,一个角平分线不等式的推广, 数学通讯, 1995年第11期(总第292期),17-18. [120]朱再宇, 陈计,关于锐角三角形的一个不等式,中国中学数学教师优秀论文集(第二卷),贵州教育出版社, 1995年5月第一版, 177-178. (定价:8.80元) [121]Zhen Wang, Ji Chen, Another extension of the Mitrinovic-Dokovic inequality, Univ. Beograd.Publ. Elektrotehn. Fak., Ser.: Mat., 6 (1995), 25-28. [122]陈计,有关四面体的一个不等式的加强, 中学数学教学(合肥),1996年第1期(总第97期), 36. [123]陈计,关于中线的若干估计(研究简讯), 湖南数学通讯,1996年第1期(总第90期), 39. [124]陈计, 王振, Oppenheim不等式推广的简单证明,数学研究与评论, Vol. 16 (1996), No. 1, 62-64;几何不等式在中国, 江苏教育出版社, 1996年9月,第一版, 213-217. [125]陈计, 庞火茂, 陈聪杰,角平分线构成的三角形, 数学通讯, 1996年第3期(总第296期), 29-31. [126]陈琦, 陈计,关于三角形半径的一个不等式链,中国中学数学教师优秀论文集(第三卷),内蒙古人民出版社, 1996年3月第一版, 95-96. (定价:10.00元) [127]王振, 陈计, 互补型Ky Fan不等式的推广, 初等数学前沿(第一辑),江苏教育出版社, 1996年4月第一版, 56-69. (定价:13.60元) [128]王振, 陈计, Zirakzadeh不等式的推广,初等数学前沿(第一辑), 江苏教育出版社, 1996年4月第一版, 104-111. [129]王巧林, 陈计, 叶中豪,编后记, 初等数学前沿(第一辑), 江苏教育出版社, 1996年4月第一版, 470-471. [130]陈计, 陈聪杰,三角形中的线性不等式, 几何不等式在中国, 江苏教育出版社, 1996年9月第一版, 87-110. (定价:13.40元) [131]陈计, 陈聪杰,三角形中的负一次不等式, 几何不等式在中国, 江苏教育出版社, 1996年9月第一版, 111-121. [132]Zhen Wang, Ji Chen, Guang-Xing Li, A generalization of the Ky Fan inequality, Univ. Beograd. Publ. Elektrotehn. Fak., Ser.: Mat., 7 (1996), 9-17. [133]陈计, 庞火茂, Bager第三图的完善, 宁波大学学报(理工版),1997年第1期(总第23期), 12-15. [134]王振, 陈计, 盛宓杰,Bager第四图的完善,宁波大学学报(理工版),1997年第3期(总第25期),74-78. [135]陈计, 陈聪杰, Bager第五图的完善,宁波大学学报(理工版),1997年第4期(总第26期), 49-55. [136] 陈计, 王振,一个三角形不等式的推广和加强,成都大学学报(自然科学版),1998年第2期(总第46期), 1-5. [137]陈计, 夏时洪,虞立军,Bager第六图的完善,宁波大学学报(理工版), 1998年第3期(总第29期),52-56. [138] 陈计,黄勇,夏时洪,关于Neuberg-Pedoe不等式高维推广的一个注记, 四川大学学报(自然科学版), 1999年第2期(总第128期), 197-200. [139] 许康华,陈计,Euclid平面上8点间的不同距离,宁波大学学报(理工版), 1999年第4期(总第34期), 16-22. [140] 陈计,通用数学软件及其网址,科学,1999年(第51卷)第5期,61-62. [141] 田廷彦,陈计,凸四边形的边长与直径的不等式,宁波大学学报(理工版), 2000年第2期(总第36期), 43-47. [142] 陈计,量词对7种联结词的分配律 --计算机自动推理的1个实例,宁波大学学报(理工版), 2001年第3期(总第41期),60-63.[143] 季潮丞, 陈计, 一道越南竞赛题的推广, 中学教研(数学版), 2007年第6期, 44-45. [144] 季潮丞, 陈计, Gordon不等式的推广, 中学教研(数学版), 2008年第5期, 48. [145] 季潮丞, 陈计, 浅谈不等式与恒等式的关系, 中学教研(数学版), 2009年第12期,26-28. 陈计翻译的文著目录 [1] Albert W. Marshall, Ingram Olkin 著; 陈计, 曹冬极 译; 张在明 校,不等式优超方法引论, 玉溪师专学报(自然科学版),1989年第4期(总第23期), 86-101. [2] R. E. Woodrow 编选; 陈计提供, 初等数学问题选, 福建省初等数学研究文集, 福建教育出版社, 1993年7月第一版, 235-242. [3] H. Harborth, A. Kemnitz著,陈计 编译,Fibonacci三角形, 数学通讯, 1994年第5期(总第274期),41-42. [4] S. Vajda著, 陈计 编译,广义Fibonacci数列简介, 数学通讯, 1994年第12期(总第281期), 24-25. [5] O. Bottema著, 陈聪杰,陈计, 陈胜利 译, 关于R, r与s的不等式, 初等数学前沿(第一辑), 江苏教育出版社, 1996年4月第一版,378-391. (定价: 13.60元) 陈计指导的学生论文目录 [1] 杨任尔, 曹冬极, 对数平均的推广(英文), 宁波大学学报(理工版), 1989年第2期(总第4期), 105-108. [2] 王呈斌, 章建成, 关于SOP数的估计, 宁波大学学报(理工版), 1990年第2期(总第6期), 125-129. [3] 连加志, Garfunkel-Kuczma不等式的多边形推广, 数学通讯, 1992年第1期(总第246期), 22-23. [4] 徐一萍, 反调和平均与幂平均的Ky Fan型不等式(英文), 成都大学学报(自然科学版), 1992年第2期(总第22期), 10-12. [5] 杨任尔, 一个三角形不等式的加强, 数学通讯, 1992年第11期(总第256期), 20-21. [6] 杨任尔, Child不等式与Kooistra不等式的加强, 初等数学研究论文选, 上海教育出版社, 1992年10月第一版, 359-364. [7] 丁义明, 再谈自生数, 数学通讯, 1993年第4期(总第261期), 35-36. [8] 丁义明, 自守数, 宁波大学学报(理工版), 1993年第2期(总第12期), 39-48. [9] 陈聪杰,一个几何问题的解与推广, 宁波大学学报(理工版), 1995年第3期(总第17期),76-78. [10] 丁义明, 裘伟平,连加志, Kaprekar映射周期轨的衍生性, 初等数学前沿(第一辑), 江苏教育出版社, 1996年第一版,24-47.
在数学教学中,只有把数学理论知识和现实问题相结合,才能激发学生的数学思维,调动他们的积极探究欲望,使学生在探究数学知识时能够不断获得发展。本文是我为大家整理的初二的数学教学论文内容,欢迎查看!
一、注重概念教学理念的创新
(一)以适学情境的构建激发学生学习兴趣
在教学理念方面,教师应改变以往完全将概念教学集中在抽象的教学材料方面,可适时引入一定的情境素材以激发学生学习的动机。具体实践中可引入相关的数学 故事 或数学趣闻等。如关于数学概念的形成,可引入“杨辉三角形”概念的提出或祖冲之对圆周率的计算过程等,也可将国外许多如哥德巴赫猜想或象棋发明者塞萨的 事迹 等内容融入课堂中,集中学生注意力的同时也能加深学生对数学知识的理解。以初中数学“平面直角坐标系”教学内容为例,教学中教师可首先为学生讲述笛卡尔的故事,笛卡尔通过对蜘蛛结网的观察而推出由点的运动可以形成直线或曲线,进而得出直角坐标系的概念。此时学生便会对平面直角坐标系的概念产生一定的求知欲望,既增强了与教师之间的互动交流,也能够满足以学生为主体的教学目的。
(二)注重对概念教学“形式”与“实质”关系的处理
教学中的“形式”可理解为初中数学教学中的相关概念与定理,而“实质”为数学知识的具体应用。概念教学中教师可充分发挥自身的引导作用,如关于代数式教学过程中,不必对代数式给予更多繁琐的定义,其会为学生带来更多抽象性问题,可首先在概念引入前列举相关的代数式使学生从中体会代数式的内涵。再如,初中数学中的乘法公式教学内容,只需使学生理解字母a与b即可,不必要求学生完全进行文字叙述,如(a+b)(a-b)=a2-b2,对括号内项特征掌握后便能理解该公式,当面对其他如(a+b-c)(a-b+c)类型题时,学生能够直接通过平方差公式的概念对其进行解答。另外,在其他内容教学中如平行线判定或方程教学中也需注意“形式”与“实质”关系的处理,确保学生能够得到实质性的训练。
二、对概念教学内容的创新
现阶段,大多初中数学课堂教学在教学内容体系上仍存在以本为本、以纲为纲的现象,使学生的学习过程中以及教师的教学受到一定程度的制约,所以需改变这种照本宣科的教学方式,注重对教学内容进行创新,具体创新策略主要表现在以下两方面。
(一)把握教材整体内容与概念层次特征
初中数学教材中的概念内容本身具有螺旋式上升特点,无法一次为学生所理解,需要教师对教材的相关概念进行整体把握,并注重各部分概念能够层层推进。以初中数学教学中的绝对值概念为例,教材中对其定义为正数绝对值为其本身,负数绝对值为其相反数,而零的绝对值仍为零。若单纯依靠此定义,学生很难理解,所以在教材内容中又对绝对值概念提出其主要为原点与此时数的点的距离,学生能够初步认识绝对值概念。而在二次根式教学内容时,教学内容又涉及到绝对值概念,学生可将开平方运算联系到绝对值,领会概念的实质。因此,实际概念教学过程中教师需在掌握教学内容整体的基础上按照概念层次性特点进行教学。
(二)概念知识与实际应用的结合
数学学习的目的在于使学生将习得的概念与规律运用在实际生活中,促进实践动手能力的提高。然而大多数学教师为防止信息丢失,对所有的概念内容在讲授中面面俱到,如在学生未练习应用因式分解概念的情况下,便将因式分解可在哪种数系范围中进行或具体分解为哪种形式等进行系统讲解,但是学生尚未掌握前一部分概念的应用便涉及更多内容,很难形成良好的知识体系。因此,要求教师在概念知识教学中应在保证不脱离教材的前提下,对教材内容适当取舍,使学生能够边学边用。
三、注重 教学 方法 的创新
素质 教育 的推行更强调对学生创新意识的培养。以往教学中过于陈旧的教学模式很难构建良好的课堂氛围,促进学生思维能力的提高,因此需要在概念教学中改变以往“满堂灌”或“填鸭式”的教学方法,引入一定的问题情境以调动学生参与课堂积极性。
(一)对数学概念本质的揭示
概念教学过程中,问题情境的引入需考虑到素材的选择问题,避免造成数学概念内容失去自身的层次性特征与连续性特征。以函数的概念为例,若从字面概念定义,可引入x,y两个变量,在一定范围中y都存在与x值相对应的确定值,此时y为x的函数,而x为自变量。此时,教师可将生活中的摩天轮运动引入其中,提出假设学生坐在摩天轮上,运动过程中与地面高度会存在那种变化,不同时间内高度能否确定等,学生便会寻找相关的函数数学语言去分析摩天轮运动时间与高度存在的关系,以此使抽象化的函数概念具体化,通过对事物本质的揭示促进数学思维能力的增强。
(二)对数学教学信息的概括
数学概念本身是对事物本质的反映,具有极为明显的抽象特点,要求教学过程中教师能够采用正确的教学方法使概念中的内容特征与表现规律展示出来,引导学生对信息内容进行概括,这样数学概念将更为清晰。例如,数学教学中引入摩天轮旋转实例,其旋转的时间与高度本身存在一定函数关系,且保持相互对应。通过学生对摩天轮旋转特征的描述,找出与时间相对应的高度,这样在教师的适时引导下将会完整的概括出函数的概念,习得函数知识的同时也提高学生对数学概念的概括能力。因此,概念教学中教师应采取切合实际的教学方法,避免脱离学生生活,使学生能够自然掌握数学概念。
四、注重教学手段的创新
信息化时代的到来使传统数学教学手段受到一定的冲击,要求初中数学教学过程中应引入更具形、色、声等特征的多媒体教学手段,使原本较为枯燥的课堂教学更为生动,并将抽象的数学概念形象化,有效地提高数学教学效果。
(一)充分发挥多媒体教学设备的作用
在教育心理学内容中,提出学生 抽象思维 能力的培养要求采用直观教学的方式,无论在数学概念掌握或数学知识结构形成方面都需充分发挥教学中形象直观教学的应用。而传统初中数学教学中并未注重引入更加生动的教具,不具备可感性,所以可通过多媒体设备的引入,将较为抽象的概念以及图形参数等融入其中。例如,平面几何教学过程中,教师可利用计算机进行图形的绘制,将整个过程向学生展示,这样关于平面几何的相关概念与图形都可为学生所理解。
(二)课堂演示与实践过程的结合
多媒体手段应用过程中,在课堂演示方面需由教师操作完成,可使关于数学概念的电子课件利用教学网络向终端屏幕传送,讲解的同时应向学生提问确保学生能够参与到课堂活动中,并对学生学习情况给出适时的评价。例如,关于平面几何中“圆”的概念,讲解过程中可将圆心为O、半径为R的圆在屏幕中画出,然后引导学生利用数学概念对圆的画法进行描述,并实际操作验证。教师可组织学生利用数学概念自行画圆,对于完成情况较好的可在屏幕中体现出来,以此增强学生的自信心,激发学生学习兴趣并促进实践动手能力的提高。
作者:陈建芳 单位:昆山市周庄中学
一、问题探究教学模式的基本涵义与基本原则
要想让问题探究教学模式在初中数学教学中获得良好的教学效果,教师就要准确把握问题探究教学模式的基本涵义和基本原则.问题探究教学模式的主要内容是教师通过各种方式,让学生在教学过程中,能够自主地发现问题、提出问题和解决问题,并且在探索问题的过程中获取知识和培养能力.在初中数学教学中有效运用问题探究教学模式的基本原则:(1)以学生为主体的原则.在问题探究教学模式中,要注重教师的主导作用,更要充分发挥学生的主体作用,让学生能够积极主动地参与到教学过程中.(2)以问题为核心的原则.以问题为核心就是指在教学过程中培养学生的问题意识,学生具有良好的问题意识是实施问题探索教学模式的源头,教师要让学生知道如何去发现问题、提出问题和解决问题,这也是决定问题探究教学模式能否成功的关键原则.(3)以情感为依托的原则.在教学过程中,教师要注重知识的传授,还要注重与学生之间的情感交流.构建和谐的课堂师生情感关系,对实施问题探究教学模式具有十分重要的促进作用,也是问题探究教学模式获得良好效果的保证.
二、在初中数学教学中有效运用问题探究教学模式的策略
初中数学课堂实施问题探究教学模式的目的主要是:为了促进学生综合能力的发展和提高课堂教学效率和质量.
1.准确把握学生实际的认知水平
任何教学方式要想获得良好的教学效果,都必须要遵循课堂教学中学生实际的认识结构才行.不然的话,就算再好的教学模式,也是不可能获得良好教学质量和效果的.学生实际的数学认知结构是整个问题探究模式的出发点.因此,在初中数学教学中运用问题探究教学模式时,教师一定要对学生现有的认知结构有准确的把握和认识,这样才能有针对性地对学生开展问题探究教学模式.
2.注重培养学生课堂教学中的问题意识
培养学生课堂教学中的问题意识是整个问题探索教学模式的核心内容,也是该教学模式能否成功的关键因素.因此,在初中数学教学中运用问题探究教学模式时,教师一定要认真研究,并运用多种方式,将要教授的学习内容转化为数学问题思维情境,让学生在问题思维模式下自主学习,真正遵循初中数学教学中“提出问题—建构数学—解决问题”的探究过程.例如,在讲“相似形”时,教师可以设计这样一个问题情境:用多媒体播放埃及的金字塔,让学生观察大小金字塔的外形之间有什么相似之处,之间有什么联系.根据这个问题情境,教师可以设置如下两个问题:(1)根据相似形能否测出大金字塔的高度?(2)相似形各边比例是否相等?各个对应的角是否相等?为什么?让学生自己去寻求解答.通过教师创设的这种问题情境,再由学生自主去探索,这种让学生亲身去经历提出问题、解决问题、应用 反思 的过程,就能使学生切实感受到在探索中学习的快乐,而且这种模式也能使教师课堂教学的知识目标、能力目标都得到较好的落实.
3.探索课堂师生之间的情感体验模式
初中数学教学中运用问题探究教学模式,不仅要关注学生数学学习的效果和质量,也要关注学生在数学课堂活动中所表现出来的情感与态度.因为问题探究式教学模式就是让学生在课堂中根据教师创设的问题进行探索、讨论和交流,这就使学生只有在态度上真正接受、喜欢和参与,才能使相关的讨论或探索获得良好的效果.因此,学生的情感态度对开展问题探究式教学是有重要影响的,也是教师需要认真去关注的一个问题.教师在运用问题探究式教学向学生传授知识的同时,也要采取各种方式在课堂上构建一个和谐、民主的师生情感关系,这对培养学生的学习兴趣是非常重要的.总之,本文对初中数学教学中有效运用问题探究式教学进行了一些理论和实践的探讨,其中最主要的就是对初中数学问题探究式教学如何开展的问题,无论采用探究什么形式和方法,最重要的是要适合学生的发展,扬长避短,最终使数学教学优点发挥到最大化,让这种探究模式成为教学的主流,让数学教学发展得更好,这对今后初中数学教学改革有非常重要的意义.
作者:李权 单位:江苏沭阳县马厂中学
不会吧,高中也写论文
数形结合就是运用图形来简化解题思路,数与形是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。 中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合,或形数结合。我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事非。”“数”与“形”反映了事物两个方面的属性。我们认为,数形结合,主要指的是数与形之间的一一对应关系。数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”即通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的。 作为一种数学思想方法,数形结合的应用大致又可分为两种情形:或者借助于数的精确性来阐明形的某些属性,或者借助形的几何直观性来阐明数之间某种关系,即数形结合包括两个方面:第一种情形是“以数解形”,而第二种情形是“以形助数”。“以数解形”就是有些图形太过于简单,直接观察却看不出什么规律来,这时就需要给图形赋值,如边长、角度等等。 数形结合的思想方法是数学教学内容的主线之一,应用数形结合的思想,可以解决以下问题: 一、解决集合问题:在集合运算中常常借助于数轴、Venn图来处理集合的交、并、补等运算,从而使问题得以简化,使运算快捷明了。 二、解决函数问题:借助于图象研究函数的性质是一种常用的方法。函数图象的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。 三、解决方程与不等式的问题:处理方程问题时,把方程的根的问题看作两个函数图象的交点问题;处理不等式时,从题目的条件与结论出发,联系相关函数,着重分析其几何意义,从图形上找出解题的思路。 四、解决三角函数问题:有关三角函数单调区间的确定或比较三角函数值的大小等问题,一般借助于单位圆或三角函数图象来处理,数形结合思想是处理三角函数问题的重要方法。 五、解决线性规划问题:线性规划问题是在约束条件下求目标函数的最值的问题。从图形上找思路恰好就体现了数形结合思想的应用。 六、解决数列问题:数列是一种特殊的函数,数列的通项公式以及前n项和公式可以看作关于正整数n的函数。用数形结合的思想研究数列问题是借助函数的图象进行直观分析,从而把数列的有关问题转化为函数的有关问题来解决。 七、解决解析几何问题:解析几何的基本思想就是数形结合,在解题中善于将数形结合的数学思想运用于对点、线、曲线的性质及其相互关系的研究中。 八、解决立体几何问题:立体几何中用坐标的方法将几何中的点、线、面的性质及其相互关系进行研究,可将抽象的几何问题转化纯粹的代数运算。多做几个类似的题目啊....找本专题什么的强化一下就可以了
去找导师啊,想当年我毕业论文网上都搜不到什么,导师给一部分,自己做一部分,在就差不多啦