首页

> 学术发表知识库

首页 学术发表知识库 问题

数字温度计的设计论文参考文献

发布时间:

数字温度计的设计论文参考文献

温度传感器原理及应用论文参考文献

温度传感器原理及应用论文参考文献,温度传感器是温度测量仪表的核心部分,是指能感受温度并转换成可用输出信号的传感器,品种繁多,也是用处比较广的工具。以下分享温度传感器原理及应用论文参考文献。

一、温度传感器工作原理–恒温器

恒温器是一种接触式温度传感器,由两种不同金属(如铝、铜、镍或钨)组成的双金属条组成。

两种金属的线性膨胀系数的差异导致它们在受热时产生机械弯曲运动。

一、温度传感器工作原理–双金属恒温器

恒温器由两种热度不同的金属背靠背粘在一起组成。当天气寒冷时,触点闭合,电流通过恒温器。当它变热时,一种金属比另一种金属膨胀得更多,粘合的双金属条向上(或向下)弯曲,打开触点,防止电流流动。

有两种主要类型的双金属条,主要基于它们在受到温度变化时的运动。有在设定温度点对电触点产生瞬时“开/关”或“关/开”类型动作的“速动”类型,以及逐渐改变其位置的较慢“蠕变”类型随着温度的变化。

速动型恒温器通常用于我们家中,用于控制烤箱、熨斗、浸入式热水箱的温度设定点,也可以在墙上找到它们来控制家庭供暖系统。

爬行器类型通常由双金属线圈或螺旋组成,随着温度的变化缓慢展开或盘绕。一般来说,爬行型双金属条对温度变化比标准的按扣开/关类型更敏感,因为条更长更薄,非常适合用于温度计和表盘等。

二、温度传感器工作原理–热敏电阻

热敏电阻通常由陶瓷材料制成,例如镀在玻璃中的镍、锰或钴的氧化物,这使得它们很容易损坏。与速动类型相比,它们的主要优势在于它们对温度、准确性和可重复性的任何变化的响应速度。

大多数热敏电阻具有负温度系数(NTC),这意味着它们的电阻随着温度的升高而降低。但是,有一些热敏电阻具有正温度系数 (PTC),并且它们的电阻随着温度的升高而增加。

热敏电阻的额定值取决于它们在室温下的电阻值(通常为 25 o C)、它们的时间常数(对温度变化作出反应的时间)以及它们相对于流过它们的电流的额定功率。与电阻一样,热敏电阻在室温下的电阻值从 10 兆欧到几欧姆不等,但出于传感目的,通常使用以千欧为单位的那些类型。

温度传感器类毕业论文文献有哪些?

1、[期刊论文]一种高稳定性双端出纤型光纤光栅温度传感器

期刊:《声学与电子工程》 | 2021 年第 002 期

摘要:针对双端出纤型光纤光栅温度传感器线性度较差、温度测量精度低的问题,文章首先对传感器内部结构进行了优化,使光纤光栅在整个温度测量区间内不受结构件热胀冷缩的应力影响,从而提升传感器的稳定性、实验验证,采用新工艺封装的.光纤光栅温度传感器在5~65°C的范围内温度精度达到0、1°C,且重复性良好,适用于自然环境下的温度传感、

关键词:光纤光栅;温度传感器;应力;测温精度

链接:、zhangqiaokeyan、com/academic-journal-cn_acoustics-electronics-engineering_thesis/0201290086379、html

2、[期刊论文]某型温度传感器防护套弯折疲劳试验的寿命研究

期刊:《环境技术》 | 2021 年第 001 期

摘要:由于动车组轴端温度传感器的大多数已达到三级修、四级修的修程,检修的数量和成本逐年增加,检修发现出现防护套破损的情况较多,需要大量更换,本文通过对温度传感器的防护套进行弯折疲劳试验,对数据结果进行统计分析,确认导致防护套弯折老化的主要原因、

关键词:防护套;破损;弯折疲劳

链接:、zhangqiaokeyan、com/academic-journal-cn_environmental-technology_thesis/0201288850019、html

3、[期刊论文]进气压力温度传感器锡晶须的分析

期刊:《机械制造》 | 2021 年第 004 期

摘要:对进气压力温度传感器的结构进行了介绍,对进气压力温度传感器产生锡晶须问题进行了分析,并在分析锡晶须生长机理的基础上提出了抑制方法、

关键词:传感器;锡晶须;分析

链接:、zhangqiaokeyan、com/academic-journal-cn_machinery_thesis/0201288850874、html

4、[期刊论文]一种具有±0、5℃精度的CMOS数字温度传感器

期刊:《电子设计工程》 | 2021 年第 001 期

摘要:该文设计了一种基于0、35μm CMOS工艺的采用双极型晶体管作为感温元件的数字温度传感器、该温度传感器主要由正温度系数电流产生电路、负温度系数电流产生电路、一阶连续时间Σ-Δ调制器、计数器和I2C总线接口等模块组成、为提高温度传感器的测量精度

该文深入分析了在不采用校准技术的情况下工艺漂移对温度传感器精度的影响,并在此基础上提出了简单的校准电路设计、根据电路仿真结果,在加入校准电路之后,温度传感器在-40~120℃温度范围内的精度可以达到±0、5℃、

关键词:数字温度传感器;CMOS工艺;双极型晶体管;校准

链接:、zhangqiaokeyan、com/academic-journal-cn_electronic-design-engineering_thesis/0201286451032、html

5、[期刊论文]柴油机冷却水温度传感器断裂故障分析

期刊:《内燃机与配件》 | 2021 年第 004 期

摘要:针对柴油机冷却水温度传感器断裂的问题,通过对该测点管路流腔进行CFD仿真计算,分析了流腔内部速度和压力场的变化情况,确定了传感器的断裂原因。计算结果表明:传感器位置处流速较大,导致传感器下部受振荡力,且发生了空蚀,使传感器失效。

本文针对此次传感器断裂故障提出了解决措施:对传感器的位置进行了优化布置;对传感器的结构形式进行了改进。通过改进,传感器随整机验证时间超过1500h,未再发生同类断裂故障,保证了柴油机的安全运行,为以后类似故障的分析和解决提供参考。

关键词:柴油机;温度传感器;流速;受力

链接:、zhangqiaokeyan、com/academic-journal-cn_internal-combustion-engine-parts_thesis/0201288594662、html

常见温度传感器

温度是与人类生活息息相关的物理量,在工业生产自动化流程中,温度测量点要占全部测量点的一半左右。它不仅和我们的生活环境密切相关,在科研及生产过程中,温度的变化对实验及生产的结果至关重要,所以温度传感器应用相当广泛。

温度传感器对温度敏感具有可重复性和规律性,是利用一些金属、半导体等材料与温度相关的特性制成的。现在来介绍一些温度传感器的工作原理。

铂容易提纯,其物理、化学性能在高温和氧化介质中非常稳定。铂电阻的输入-输出特性接近线性,且测量精度高,所以它能用作工业测温元件,还能作为温度计作基准器。

铂电阻在常用的热电阻中准确度最高,国际温标ITS-90中还规定,将具有特殊构造的铂电阻作为13.5033℃~961.780℃标准温度计来使用。铂电阻广泛用于-200℃~850℃范围内的温度测量,工业中通常在600℃以下。

PN结温度传感器是利用PN结的结电压随温度成近似线性变化这一特性实现对温度的检测、控制和补偿等功能。实验表明,在一定的电流模式下,PN结的正向电压与温度之间具有很好的线性关系。

根据PN结理论,对于理想二极管,只要正向电压UF大于几个kbT/e(kb为波尔兹曼常数,e为电子电荷)。其正向电流IF与正向电压UF和温度T之间的关系可表示为

由半导体理论可知,对于实际二极管,只要它们工作的PN结空间电荷区中的复合电流和表面漏电流可以忽略,而又未发生大注入效应的电压和温度范围内,其特性与上述理想二极管是相符合的[6]。实验表明,对于砷化镓、

锗和硅二极管,在一个相当宽的温度范围内,其正向电压与温度之间的关系与式(1-3)是一致的,如图1-1所示。

实验发现晶体管发射结上的正向电压随温度的上升而近似线性下降,这种特性与二极管十分相似,但晶体管表现出比二极管更好的线性和互换性。

二极管的温度特性只对扩散电流成立,但实际二极管的正向电流除扩散电流成分外,还包括空间电荷区中的复合电流和表面漏电流成分。这两种电流与温度的关系不同于扩散电流与温度的关系,因此,实际二极管的电压—温度特性是偏离理想情况的。

由于三极管在发射结正向偏置条件下,虽然发射结也包括上述三种电流成分,但是只有其中的扩散电流成分能够到达集电极形成集电极电流,而另外两种电流成分则作为基极电流漏掉,并不到达集电极。因此,晶体管的

所以表现出更好的电压-温ICUBE关系比管的IFUF关系更符合理想情况,

度线性关系。根据晶体管的有关理论可以证明,NPN晶体管的基极—发射极电压UBE与温度T和集电极电流Ic的函数关系式与二极管的UF与T和IF函数关系式(1-3)相同。因此,在集电极电流Ic恒定条件下,晶体管的基极—发射极电压UBE与温度T呈线性关系。但严格地说,这种线性关系是不完全的,因为关系式中存在非线性项。

集成温度传感器是将温敏晶体管及其辅助电路集成在同一芯片的集成化温度传感器。这种传感器的优点是直接给出正比于绝对温度的理想的线性输出[7]。目前,集成温度传感器已广泛用于-50℃~+150℃温度范围内的温度检测、控制和补偿等。集成温度传感器按输出形式可分为电压型和电流型两种。

进气温度传感器工作原理是什么?

进气温度传感器的工作原理是:进气温度传感器在工作状态下,内部安装了一个具有负温度电阻系数的热敏电阻,通过这个负温度热敏电阻感知温度变化,进而调节电阻的大小改变电路电压。

以下是关于进气温度传感器的详细介绍:

1、原理:进气温度传感器就是一个负温度系数的热敏电阻,当温度升高的时候电阻阻值会变小,当温度降低的时候电阻值会增大,汽车的电压会随着汽车电路中电阻的变化而变化,从而产生不一样的电压信号,可以完成汽车控制系统的自动操作。

2、作用:汽车的进气温度传感器就是检测汽车发动机的进气温度,将进气温度转变为电压信号输入为ecu作为喷油修正的信号使用。

江苏省联合职业技术学院常州旅游商贸分院专科毕业论文 基于51单片机及DS18B20温度传感器的数字温度计设计 姓 名:(××××××××3号黑体)学 号:(××××××××3号黑体)班 级:(联院班级号×××3号黑体)专 业:(××××××××3号黑体)指导教师:(××××××××3号黑体)系 部:创意信息系××××3号黑体)二〇二0年××月××日摘 要本设计采用的主控芯片是ATMEL公司的AT89S52单片机,数字温度传感器是DALLAS公司的DS18B20。本设计用数字传感器DS18B20测量温度,测量精度高,传感器体积小,使用方便。所以本次设计的数字温度计在工业、农业、日常生活中都有广泛的应用。单片机技术已经广泛应用社会生活的各个领域,已经成为一种非常实用的技术。51单片机是最常用的一种单片机,而且在高校中都以51单片机教材为蓝本,这使得51单片机成为初学单片机技术人员的首选。本次设计采用的AT89S52是一种flash型单片机,可以直接在线编程,向单片机中写程序变得更加容易。本次设计的数字温度计采用的是DS18B20数字温度传感器,DS18B20是一种可组网的高精度数字式温度传感器,由于其具有单总线的独特优点,可以使用户轻松地组建起传感器网络,并可使多点温度测量电路变得简单、可靠。本设计根据设计要求,首先设计了硬件电路,然后绘制软件流程图及编写程序。本设计属于一种多功能温度计,温度测量范围是-55℃到125℃。温度值的分辨率可以被用户设定为9-12位,可以设置上下限报警温度,当温度不在设定的范围内时,就会启动报警程序报警。本设计的显示模块是用四位一体的数码管动态扫描显示实现的。在显示实时测量温度的模式下还可以通过查询按键查看设定的上下限报警温度。 关键词:单片机、数字温度计、DS18B20、AT89S52目 录 1 引言 12 系统总体方案及硬件设计 22.1 系统总体方案 22.1.1系统总体设计框图 22.1.2各模块简介 22.2 系统硬件设计 62.2.1 单片机电路设计 62.2.2 DS18B20温度传感器电路设计 62.2.3 显示电路设计 72.2.4 按键电路设计 72.2.5 报警电路设计 83 软件设计 93.1 DS18B20程序设计 93.1.1 DS18B20传感器操作流程 93.1.2 DS18B20传感器的指令表 93.1.3 DS18B20传感器的初始化时序 103.1.4 DS18B20传感器的读写时序 103.1.5 DS18B20获取温度程序流程图 113.2 显示程序设计 133.3 按键程序设计 134实物制作及调试 145电子综合设计体会 15参考文献 161 引言本系统所设计的数字温度计采用的是DS18B20数字温度传感器测温,DS18B20直接输出的就是数字信号,与传统的温度计相比,具有读数方便,测温范围广,测温准确,上下限报警功能。其输出温度采用LED数码管显示,主要用于对测温比较准确的场所。该设计控制器使用的是51单片机AT89S52,AT89S52单片机在工控、测量、仪器仪表中应用还是比较广泛的。测温传感器使用的是DS18B20,DS18B20是一种可组网的高精度数字式温度传感器,由于其具有单总线的独特优点,可以使用户轻松地组建起传感器网络,并可使多点温度测量电路变得简单、可靠。显示是用4位共阴极LED数码管实现温度显示,LED数码管的优点是显示数字比较大,查看方便。蜂鸣器用来实现当测量温度超过设定的上下限时的报警功能。2 系统总体方案及硬件设计2.1 系统总体方案2.1.1系统总体设计框图由于DS18B20数字温度传感器具有单总线的独特优点,可以使用户轻松地组建起传感器网络,并可使多点温度测量电路变得简单、可靠,所以在该设计中采用DS18B20数字温度传感器测量温度。 温度计电路设计总体设计框图如图2-1所示,控制器采用单片机AT89S52,温度传感器采用DS18B20,显示采用4位LED数码管,报警采用蜂鸣器、LED灯实现,键盘用来设定报警上下限温度。 图2-1 温度计电路总体设计框图2.1.2各模块简介1.控制模块AT89S52单片机是美国ATMEL公司生产的低功耗,高性能CMOS 8位单片机,片内含有8kb的可系统编程的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准8051指令系统及引脚。在单芯片上,拥有灵巧的8 位CPU 和在系统可编程的Flash,使得AT89S52为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。AT89S52具有以下标准功能:8k字节Flash,256字节RAM,32 位I/O 口线,看门狗定时器,2 个数据指针,三个16 位定时器/计数器,一个6向量2级中断结构,全双工串行口,片内晶振及时钟电路。另外,AT89S52 可降至0Hz 静态逻辑操作,支持2种软件可选择节电模式。空闲模式下,CPU停止工作,允许RAM、定时器/计数器、串口、中断继续工作。掉电保护方式下,RAM内容被保存,振荡器被冻结,单片机一切工作停止,直到下一个中断或硬件复位为止。2.显示模块显示电路采用4位共阴LED数码管,从P0口输出段码,P2口的高四位为位选端。用动态扫描的方式进行显示,这样能有效节省I/O口。3.温度传感器模块DS18B20温度传感器是美国DALLAS半导体公司最新推出的一种改进型智能温度传感器,与传统的热敏电阻等测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。DS18B20的性能特点如下:独特的单线接口仅需要一个端口引脚进行通信;多个DS18B20可以并联在惟一的三线上,实现多点组网功能;无须外部器件;可通过数据线供电,电压范围为3.0~5.5v;零待机功耗;温度以9或12位二进制数字表示;用户可定义报警设置;报警搜索命令识别并标志超过程序限定温度(温度报警条件)的器件;负电压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作;DS18B20采用3脚TO-92封装或8脚SO或µSOP封装,其其封装形式如图2-2所示。图2-2 DS18B20的封装形式DS18B20的64位ROM的结构开始8位是产品类型的编号,接着是每个器件的惟一的序号,共有48位,最后8位是前面56位的CRC检验码,这也是多个DS18B20可以采用一线进行通信的原因。温度报警触发器TH和TL,可通过软件写入户报警上下限。DS18B20温度传感器的内部存储器还包括一个高速暂存RAM和一个非易失性的可电擦除的EEPRAM。高速暂存RAM的结构为8字节的存储器,结构如图2-3所示。图2-3 DS18B20的高速暂存RAM的结构头2个字节包含测得的温度信息,第3和第4字节TH和TL的拷贝是易失的,每次上电复位时被刷新。第5个字节,为配置寄存器,它的内容用于确定温度值的数字转换分辨率,DS18B20工作时寄存器中的分辨率转换为相应精度的温度数值,该字节各位的定义如表2-1所示。表2-1:配置寄存器D7 D6 D5 D4 D3 D2 D1 D0TM R1 R0 1 1 1 1 1配置寄存器的低5位一直为1,TM是工作模式位,用于设置DS18B20在工作模式还是在测试模式,DS18B20出厂时该位被设置为0,用户要去改动,R1和R0决定温度转换的精度位数,来设置分辨率,“R1R0”为“00”是9位,“01”是10位,“10”是11位,“11”是12位。当DS18B20分辨率越高时,所需要的温度数据转换时间越长。因此,在实际应用中要将分辨率和转换时间权衡考虑。高速暂存RAM的第6、7、8字节保留未用,表现为全逻辑1。第9字节读出前面所有8字节的CRC码,可用来检验数据,从而保证通信数据的正确性。当DS18B20接收到温度转换命令后,开始启动转换。转换完成后的温度值就以16位带符号扩展的二进制补码形式存储在高速暂存存储器的第1、2字节。单片机可以通过单线接口读出该数据,读数据时低位在先,高位在后,数据格式以0.0625℃/LSB形式表示。当符号位s=0时,表示测得的温度值为正值,可以直接将二进制位转换为十进制;当符号位s=1时,表示测得的温度值为负值,要先将补码变成原码,再计算十进制数值。输出的二进制数的高5位是符号位,最后4位是温度小数点位,中间7位是温度整数位。表2-2是一部分温度值对应的二进制温度数据。表2-2 DS18B20输出的温度值温度值 二进制输出 十六进制输出+125℃ 0000 07D0h+85℃ 0000 0550h+25.0625℃ 0001 0191h+10.125℃ 0010 00A2h+0.5℃ 1000 0008h0℃ 0000 0000h-0.5℃ 1000 FFF8h-10.125℃ 1110 FF5Eh-25.0625℃ 1111 FF6Fh-55℃ 0000 FC90hDS18B20完成温度转换后,就把测得的温度值与RAM中的TH、TL字节内容作比较。若T>TH或T<TL,则将该器件内的报警标志位置位,并对主机发出的报警搜索命令作出响应。因此,可用多只DS18B20同时测量温度并进行报警搜索。在64位ROM的最高有效字节中存储有循环冗余检验码(CRC)。主机ROM的前56位来计算CRC值,并和存入DS18B20的CRC值作比较,以判断主机收到的ROM数据是否正确。4.调节模块介绍调节模块是由四个按键接地后直接接单片机的I/O口完成的。当按键没有按下时单片机管脚相当于悬空,默认下为高电平,当按键按下时相当于把单片机的管脚直接接地,此时为低电平。程序设计为低电平触发。5.报警模块介绍报警模块是由一个PNP型的三极管9012驱动的5V蜂鸣器,和一个加一限流电阻的发光二极管组成的。报警时蜂鸣器间歇性报警,发光二极管闪烁。 2.2 系统硬件设计2.2.1 单片机电路设计 图2-4 单片机最小系统原理图单片机最小系统是由晶振电路,上电复位、按键复位电路,ISP下载接口和电源指示灯组成。原理图如图2-4所示。2.2.2 DS18B20温度传感器电路设计DS18B20温度传感器是单总线器件与单片机的接口电路采用电源供电方。电源供电方式如图2-7,此时DS18B20的1脚接地,2脚作为信号线,3脚接电源。 图2-7 DS18B20电源供电方式当DS18B20处于写存储器操作和温度A/D转换操作时,总线上必须有强的上拉,上拉开启时间最大为10us。采用寄生电源供电方式时VDD端接地。由于单线制只有一根线,因此发送接口必须是三态的。2.2.3 显示电路设计显示电路是由四位一体的共阴数码管进行显示的,数码管由三极管9013驱动。四位一体的共阴数码管的管脚分布图如图2-5所示。 图2-5 四位一体的共阴数码管管脚分布图显示电路的总体设计如图2-6所示。 图2-6 显示电路2.2.4 按键电路设计按键电路是用来实现调节设定报警温度的上下限和查看上下报警温度的功能。电路原理图如图2-10所示。 图2-10 按键电路原理图 2.2.5 报警电路设计报警电路是在测量温度大于上限或小于下限时提供报警功能的电路。该电路是由一个蜂鸣器和一个红色的发光二极管组成,具体的电路如图2-9所示。 图2-9 报警电路原理图3 软件设计3.1 DS18B20程序设计3.1.1 DS18B20传感器操作流程根据DS18B20的通讯协议,主机(单片机)控制DS18B20完成温度转换必须经过三个步骤:• 每一次读写之前都要对DS18B20进行复位操作• 复位成功后发送一条ROM指令• 最后发送RAM指令这样才能对DS18B20进行预定的操作。复位要求主CPU将数据线下拉500μs,然后释放,当DS18B20收到信号后等待16~60μs左右,后发出60~240μs的存在低脉冲,主CPU收到此信号表示复位成功。DS18B20的操作流程如图3-1所示。 如图3-1 DS18B20的操作流程3.1.2 DS18B20传感器的指令表DS18B20传感器的操作指令如表3-1所示。传感器复位后向传感器写相应的命令才能实现相应的功能。表3-1 DS18B20的指令表指 令 指令代码 功 能读ROM 0x33 读DS1820温度传感器ROM中的编码(即64位地址)符合 ROM 0x55 发出此命令之后,接着发出 64 位 ROM 编码,访问单总线上与该编码相对应的 DS1820 使之作出响应,为下一步对该 DS1820 的读写作准备。搜索 ROM 0xF0 用于确定挂接在同一总线上 DS1820 的个数和识别 64 位 ROM 地址。为操作各器件作好准备。跳过 ROM 0xCC 忽略 64 位 ROM 地址,直接向 DS1820 发温度变换命令。适用于单片工作。告警搜索命令 0xEC 执行后只有温度超过设定值上限或下限的片子才做出响应。温度变换 0x44 启动DS1820进行温度转换,12位转换时最长为750ms(9位为93.75ms)。结果存入内部9字节RAM中。读暂存器 0xBE 读内部RAM中9字节的内容写暂存器 0x4E 发出向内部RAM的3、4字节写上、下限温度数据命令,紧跟该命令之后,是传送两字节的数据。复制暂存器 0x48 将RAM中第3 、4字节的内容复制到EEPROM中。重调 EEPROM 0xB8 将EEPROM中内容恢复到RAM中的第3 、4字节。读供电方式 0xB4 读DS1820的供电模式。寄生供电时DS1820发送“ 0 ”,外接电源供电 DS1820发送“ 1 ”。3.1.3 DS18B20传感器的初始化时序DS18B20传感器为单总线结构器件,在读写操作之前,传感器芯片应先进性复位操作也就是初始化操作。DS18B20的初始化时序如图3-2所示。首先控制器拉高数据总线,接着控制器给数据总线一低电平,延时480μs,控制器拉高数据总线,等待传感器给数据线一个60-240μs的低电平,接着上拉电阻将数据线拉高,这样才初始化完成。 图3-2 DS18B20初始化时序3.1.4 DS18B20传感器的读写时序 1.写时序DS18B20传感器的读写操作是在传感器初始化后进行的。每次操作只能读写一位。当主机把数据线从高电平拉至低电平,产生写时序。有两种类型的写时序:写“0”时序,写“1”时序。所有的时序必须有最短60μs的持续期,在各个写周期之间必须有最短1μs的恢复期。在数据总线由高电平变为低电平之后,DS18B20在15μs至60μs的时间间隙对总线采样,如果为“1”则向DS18B20写“1”, 如果为“0”则向DS18B20写“0”。如图3-2的上半部分。对于主机产生写“1”时序时,数据线必须先被拉至低电平,然后被释放,使数据线在写时序开始之后15μs内拉至高电平。对于主机产生写“1”时序时,数据线必须先被拉至低电平,且至少保持低电平60μs。2.读时序在数据总线由高电平变为低电平之后,数据线至少应保持低电平1μs,来自DS18B20的输出的数据在下降沿15μs后有效,所以在数据线保持低电平1μs之后,主机将数据线拉高,等待来自DS18B20的数据变化,在下降沿15μs之后便可开始读取DS18B20的输出数据。整个读时序必须有最短60μs的持续期。如图3-2的下半部分。读时序结束后数据线由上拉电阻拉至高电平。 图3-3 DS18B20传感器的读写时序3.1.5 DS18B20获取温度程序流程图DS18B20的读字节,写字节,获取温度的程序流程图如图3-3所示。图3-4 DS18B20程序流程图3.2 显示程序设计显示电路是由四位一体的数码管来实现的。由于单片机的I/O口有限,所以数码管采用动态扫描的方式来进行显示。程序流程图如图3-4所示。图3-5 显示程序流程图3.3 按键程序设计按键是用来设定上下限报警温度的。具体的程序流程图如图3-5所示。图3-6 按键程序流程图4实物制作及调试制作好的实物如图4-1所示。 图4-1 数字温度计实物正面图在做实物时出现了不少问题。比如本来是采用NPN型9013驱动蜂鸣器,但是在实际调试中蜂鸣器驱动不了,经多次试验,在三极管的基极电阻与单片机的接口处接一个1、2kΩ的上拉电阻就能驱动了。但考虑到单片机的I/O口默认状态时为高电平,这样一上电蜂鸣器就会响,所以将NPN型9013换成了PNP型的9012三极管,效果还不错。5电子综合设计体会经过将近一个月的设计、焊接、编程、调试,我们终于完成了数字温度计的设计,基本能够达到设计要求,而且还设计了一些其他功能,比可以开启或消除按键音功能,开机动画功能,查看报警上下限温度功能。此次的设计使我从中学到了一些很重要的东西,那就是如何从理论到实践的转化,怎样将我们所学到的知识运用到实践中去。在大学课堂的学习只是给我们灌输专业知识,而我们应把所学的知识应用到我们现实的生活中去。这次的设计不仅使我们将课堂上学到的理论知识与实际应用结合了起来,而且使我们对电子电路、电子元器件、印制电路板等方面的知识有了更进一步的认识,同时在软件编程、焊板调试、相关调试仪器的使用等方面得到较全面的锻炼和提高,为今后能够独立进行某些单片机应用系统的开发设计工作打下一定的基础。此次单片机设计也为我们以后进行更复杂的单片机系统设计提供了宝贵的经验。在本次设计的过程中,我们遇到不少的问题,刚开始焊好的板子下不进去程序,经过一再仔细的检查,才发现是在下载口处出了问题,由于焊盘口比较小,排针插不进去,最后使了很大力气才插进去,插进去后才发现坏了,结果在去排针的时候把焊盘给去下来了,最后只能在旁边将下载口引了出来。还有就是文章中提到的蜂鸣器驱动问题等等。经过此次的硬件制作与调试,锻炼了我们的动手实践能了。本次设计的另一个重点就是软件程序的设计,其中需要有很巧妙的程序算法,虽然以前写过几次程序,但我觉的写好一个程序并不是一件简单的事,有好多的东西,只有我们去试着做了,才能真正的掌握,只学习理论,有些东西是很难理解的,更谈不上掌握。通过此次的综合设计,我们初步掌握了单片机系统设计的基本原理。充分认识到理论学习与实践相结合的重要性,对于书本上的很多知识,不但要学会,更重要的是会运用到实践中去。在以后的学习中,我们会更加注重实践方面的锻炼,多提高自己的动手实践能力。参考文献[1] 谭浩强.C程序设计(第三版).北京:清华大学出版社,2005.7 .[2] 余发山,王福忠.单片机原理与应用技术.徐州:中国矿业大学出版社,2008.6 .[3] 求是科技.单片机典型模块设计实例导航.北京:人民邮电出版社,2005.5 .[4] 求是科技.8051系列单片机C程序设计完全手册.北京:人民邮电出版社,2006.4 .[5] 于永,戴佳,刘波.51单片机C语言常用模块与综合系统设计实例精讲(第2版).北京:电子工业出版社,2008.10 .[6]刘腾远.基于单片机的温度控制系统设计[J].科技经济导刊,2018(01):77-78.[7]苏康友.基于51单片机的无线温度控制系统设计[J].电子技术与软件工程,2017(10):250-251.[8]刘丰年.基于AT89C51的简易智能化加湿器设计[J].三门峡职业技术学院学报,2016,15(04):139-142.[9]杨伟才.基于DS18B20的多点温度测量系统研究[J].山东工业技术,2016(24):266.[10]严敏.基于单片机的智能温控系统的设计与实现[J].无锡职业技术学院学报,2016,15(03):61-64.[11]吴嘉颖. 基于单片机的地铁低压设备触点温度监测系统的设计与实现[D].西南交通大学,2017.[12]孙晓倩.基于51单片机的温度监测报警系统设计研究[J].赤峰学院学报(自然科学版),2015,31(24):24-26.[13]仲霞.基于DS18B20的多点温度测量系统探讨[J].山东工业技术,2015(22):156.[14]吕晓磊.基于单片机智能控温的仿真与设计[J].安徽电子信息职业技术学院学报,2015,14(03):34-37.[15]贺争汉.基于51单片机的温度控制系统[J].黑龙江科技信息,2015(16):145.[16]谭虹.智能型滑雪保温鞋温控系统的设计与实现[J].体育世界(学术版),2014(11):19-20.[17]王云飞.DS18B20温度传感器的应用设计[J].电子世界,2014(12):355.[18]刘金魁.基于DS18B20的数字测温系统[J].焦作大学学报,2014,28(02):99-100.[19]杨丹丹,杨风,马慧卿.基于单片机的温度采集系统设计[J].山西电子技术,2014(03):19-21.[20]曹美霞.单片机与数字温度传感器DS18B20的接口设计[J].电子制作,2014(11):9-10.

#include #define uchar unsigned char#define uint unsigned intsbit DS=P2^2; //define interfaceuint temp; // variable of temperatureuchar flag1; // sign of the result positive or negativesbit dula=P2^6;sbit wela=P2^7;unsigned char code table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d, 0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71};unsigned char code table1[]={0xbf,0x86,0xdb,0xcf,0xe6,0xed,0xfd, 0x87,0xff,0xef};void delay(uint count) //delay{ uint i; while(count) { i=200; while(i>0) i--; count--; }}void dsreset(void) //send reset and initialization command{ uint i; DS=0; i=103; while(i>0)i--; DS=1; i=4; while(i>0)i--;}bit tmpreadbit(void) //read a bit{ uint i; bit dat; DS=0;i++; //i++ for delay DS=1;i++;i++; dat=DS; i=8;while(i>0)i--; return (dat);}uchar tmpread(void) //read a byte date{ uchar i,j,dat; dat=0; for(i=1;i<=8;i++) { j=tmpreadbit(); dat=(j<<7)|(dat>>1); //读出的数据最低位在最前面,这样刚好一个字节在DAT里 } return(dat);}void tmpwritebyte(uchar dat) //write a byte to ds18b20{ uint i; uchar j; bit testb; for(j=1;j<=8;j++) { testb=dat&0x01; dat=dat>>1; if(testb) //write 1 { DS=0; i++;i++; DS=1; i=8;while(i>0)i--; } else { DS=0; //write 0 i=8;while(i>0)i--; DS=1; i++;i++; } }}void tmpchange(void) //DS18B20 begin change{ dsreset(); delay(1); tmpwritebyte(0xcc); // address all drivers on bus tmpwritebyte(0x44); // initiates a single temperature conversion}uint tmp() //get the temperature{ float tt; uchar a,b; dsreset(); delay(1); tmpwritebyte(0xcc); tmpwritebyte(0xbe); a=tmpread(); b=tmpread(); temp=b; temp<<=8; //two byte compose a int variable temp=temp|a; tt=temp*0.0625; temp=tt*10+0.5; return temp;}void display(uint temp) //显示程序{ uchar A1,A2,A2t,A3; A1=temp/100; A2t=temp%100; A2=A2t/10; A3=A2t%10; dula=0; P0=table[A1]; //显示百位 dula=1; dula=0; wela=0; P0=0x7e; wela=1; wela=0; delay(1); dula=0; P0=table1[A2]; //显示十位 dula=1; dula=0; wela=0; P0=0x7d; wela=1; wela=0; delay(1); P0=table[A3]; //显示个位 dula=1; dula=0; P0=0x7b; wela=1; wela=0; delay(1);}void main(){ uchar a; do { tmpchange(); for(a=10;a>0;a--) { display(tmp()); } } while(1);}

823. 110kv变电站电气二次部分设计 824. 基于AT89C51的电话远程控制系统 825. 数字电子秤的设计 826. 基于单片机的数字电子钟设计 827. 湿度传感器在农作物生长环境参数监测仪中的应用 828. 基于单片机的数字频率计的设计 829. 简易数控直流稳压源的设计 830. 基于凌阳单片机的语音实时采集系统设计 831. 简单语音识别算法研究 832. 基于数字温度计的多点温度检测系统 833. 家用可燃气体报警器的设计 834. 基于61单片机的语音识别系统设计 835. 红外遥控密码锁的设计 836. 简易无线对讲机电路设计 837. 基于单片机的数字温度计的设计 838. 甲醛气体浓度检测与报警电路的设计 839. 基于单片机的水温控制系统设计 840. 设施环境中二氧化碳检测电路设计 841. 基于单片机的音乐合成器设计 842. 设施环境中湿度检测电路设计 843. 基于单片机的家用智能总线式开关设计 844. 篮球赛计时记分器 845. 汽车倒车防撞报警器的设计 846. 设施环境中温度测量电路设计 847. 等脉冲频率调制的原理与应用 848. 基于单片机的电加热炉温 849. 病房呼叫系统 850. 单片机打铃系统设计 851. 智能散热器控制器的设计 852. 电子体温计的设计 853. 基于FPGA音频信号处理系统的设计 854. 基于MCS-51数字温度表的设计 855. 基于SPCE061A的语音控制小车设计 856. 基于VHDL的智能交通控制系统 857. 基于VHDL语言的数字密码锁控制电路的设计 858. 基于单片机的超声波测距系统的设计 859. 基于单片机的八路抢答器设计 860. 基于单片机的安全报警器 861. 基于SPCE061A的易燃易爆气体监测仪设计 862. 基于CPLD的LCD显示设计 863. 基于单片机的电话远程控制家用电器系统设计 864. 基于单片机的交通信号灯控制电路设计 865. 单片机的数字温度计设计 866. 基于单片机的可编程多功能电子定时器 867. 基于单片机的空调温度控制器设计 868. 数字人体心率检测仪的设计 869. 基于单片机的室内一氧化碳监测及报警系统的研究 870. 基于单片机的数控稳压电源的设计 871. 原油含水率检测电路设计 872. 基于AVR单片机幅度可调的DDS信号发生器 873. 四路数字抢答器设计 874.单色显示屏的设计875.基于CPLD直流电机控制系统的设计876.基于DDS的频率特性测试仪设计877.基于EDA的计算器的设计878.基于EDA技术的数字电子钟设计879.基于EDA技术的智力竞赛抢答器的设计880.基于FPGA的18路智力竞赛电子抢答器设计881.基于USB接口的数据采集系统设计与实现882.基于单片机的简易智能小车的设计883.基于单片机的脉象信号采集系统设计884.一种斩控式交流电子调压器设计885.通信用开关电源的设计886.鸡舍灯光控制器 887.三相电机的保护控制系统的分析与研究888.信号高精度测频方法设计889.高精度电容电感测量系统设计890.虚拟信号发生器设计和远程实现891.脉冲调宽型伺服放大器的设计892.超声波测距语音提示系统的研究893.电表智能管理装置的设计894.智能物业管理器的设计895.基于虚拟仪器技术的数字滤波及频率测试896.基于无线传输技术的室温控制系统设计----温度控制器软件设计897.基于计算机视觉的构件表面缺陷特征提取898.基于无线传输技术的室温控制系统设计----温度控制器硬件设计899.基于微控制器的电容器储能放电系统设计890.基于单片机的语音提示测温系统的研究891.基于单片机的数字钟设计892.基于单片机的数字电压表的设计893.基于单片机的交流调功器设计894.基于SPI通信方式的多道信号采集器设计895.基于LabVIEW的虚拟频谱分析仪的设计896.功率因数校正器的设计897.全自动电压表的设计898.基于Labview的虚拟数字钟设计899.温度箱模拟控制系统900.水塔智能水位控制系统901.基于单片机的全自动洗衣机902.数字流量计903.简易无线电遥控系统 904.基于单片机的步进电机的控制905.基于AT89S51单片机的数字电子时钟906.基于51单片机的LED点阵显示屏系统的设计与实现 907.超声波测距仪的设计 908.简易数字电压表的设计 909.虚拟信号发生器设计及远程实现 910.智能物业管理器的设计911.信号高精度测频方法设计912.三相电机的保护控制系统的分析与研究 913.温度监控系统设计914.数字式温度计的设计 915.全自动节水灌溉系统--硬件部分916.电子时钟的设计917.基于单片机的电阻炉温度控制系统918.基于GSM网络的无线LED广告牌系统的设计919.基于单片机的数字函数发生器的设计920.基于AT89S52的无线自动车库门921.基于单片机的自动门控系统设计922.基于单片机的遥控灯光系统923.基于MultiSim 8的高频电路仿真技术 924.数字式脉搏计 925.实用信号源的设计 926.无线多路遥控发射与接收 927.TL494开关电源的设计 928.数字频率计设计 929.基于单片机的电梯控制系统 930.基于单片机的产品自动计数器 931.水温控制系统的设计 932.智能音乐闹钟设计 933.防盗门密码锁的设计 934.多功能时钟打点系统设计 935.多功能倒计时显示牌 936.程控滤波器的设计 937.多功能程控电源设计 938.电子秤的设计 939.电红外线感应自动门的设计 940.单片机控制的语音录放系统的设计 941.超声波测距仪 942.MP3的设计与实现 943.±5V直流稳压电源的设计 944.用单片机进行温度的控制及LCD显示系统的设计945.双音报警器 946.可编程动态广告牌控制系统设计947.基于单片机的遥控灯光系统 ·单片机交通灯控制系统设计--带仿真的 ·压力容器液位检测装置 ·电子密码锁设计 ·多路智能报警器设计 ·病房无线呼叫系统 ·太阳能热水器中央控制器的设计与实现 ·汽车安全气囊应用研究 ·煤气报警器的设计 ·基于AT89S51单片机的出租车计价器 ·红外防盗报警器的设计 ·红外声控报警系统的设计 ·智能家居的发展 ·超声波倒车雷达设计 ·直流开关变送器的研究 ·基于AT89S51单片机的数字电子钟设计 ·电子时钟设计 课程设计 ·基于凌阳16位单片机的智能录音电话 ·基于单片机的照明控制系统 ·电子日历钟 ·电力监控系统 ·电梯控制系统的设计 ·电压型三相交流变频调速系统设计 ·多点温度采集系统与控制器设计 ·多功能秒表系统设计 ·多路开关直流稳压电源 ·公交车自动报站系统的硬件设计原理 ·红外线感应灯控制系统 ·交通灯定时控制系统 ·快速煤质监测仪的I/O单元设计 ·锂电池智能充电控制器的设计 ·六相异步电机缺相运行性能分析 ·煤矿井下安全监控系统的设计 ·数控可调稳压电源 ·音乐控制系统的设计 ·面向移动机器人的远程PDA控制器通信系统设计 ·面向移动机器人的远程PDA控制器主控电路设计 ·开关电源的设计研究 ·220KV变电站电气部分设计 ·直流电机PWM控制系统 ·医用数显测温仪设计 ·电力负荷预测技术 ·串联电容补偿装置的设计研究 ·充电电池容量测试电路设计 ·间冷式电冰箱电气控制实验模拟台 ·基于51单片机数控直流电源的设计 ·基于单片机实现红外测温仪设计 ·基于单片机的数字万用表设计 ·基于单片机的直流同步电机调速系统研究 ·基于单片机的电子秤毕业设计论文 ·红外感应水龙头 ·路灯的节能控制 ·多功能智能信号发生器 ·锅炉液位控制系统 ·电气传动控制系统 ·电动自行车调速系统的设计 ·脉冲电镀电源的设计 ·基于MSP430单片机的多路数据采集系统的设计 ·水塔水位自动控制装置 ·印染丝光过程的浓烧碱的在线控制 ·基于单片机的自动化点焊控制系统 ·100kW微机控制单晶硅加热电源设计 ·防火卷帘门智能控制装置设计 ·基于单片机温湿度控制系统 ·出租车计费系统设计 ·基于PID控制算法的恒温控制系统 ·基于CAN总线的教学模拟汽车模型的设计 ·基于单片机的温度测量系统设计 ·智能化住宅中的防盗防火报警系统设计 ·火灾自动监控报警系统设计 ·旅客列车自动报站多媒体系统 ·锂电池智能充电器设计 ·医疗呼叫系统设计 ·基于单片机的饮水机温度控制系统设计 ·基于脉宽调制技术的D类音频放大器 ·双技术玻璃破碎探测器 其中这些有开题报告 1. 用单片机进行温度的控制及LCD显示系统的设计 2. 基于MultiSim 8的高频电路仿真技术 3. 简易数字电压表的设计 4. 虚拟信号发生器设计及远程实现 5. 智能物业管理器的设计 6. 信号高精度测频方法设计 7. 三相电机的保护控制系统的分析与研究 8. 温度监控系统设计 9. 数字式温度计的设计 10. 全自动节水灌溉系统--硬件部分 11. 电子时钟的设计 12. 全自动电压表的设计 13. 脉冲调宽型伺服放大器的设计 14. 基于虚拟仪器技术的数字滤波及频率测试 15. 基于无线传输技术的室温控制系统设计——温度控制器硬件设计 16. 温度箱模拟控制系统 17. 基于无线传输技术的室温控制系统设计——温度控制器软件设计 18. 基于微控制器的电容器储能放电系统设计 19. 基于机器视觉的构件表面缺陷特征提取 20. 基于单片机的语音提示测温系统的研究 21. 基于单片机的步进电机的控制 22. 单片机的数字钟设计 23. 基于单片机的数字电压表的设计 24. 基于单片机的交流调功器设计 25. 基于SPI通信方式的多通道信号采集器设计 26. 基于LabVIEW虚拟频谱分析仪的设计 27. 功率因数校正器的设计 28. 高精度电容电感测量系统设计 29. 电表智能管理装置的设计 30. 基于Labview的虚拟数字钟设计 31. 超声波测距语音提示系统的研究 32. 斩控式交流电子调压器设计 33. 基于单片机的脉象信号采集系统设计 34. 基于单片机的简易智能小车设计 35. 基于FPGA的18路智力竞赛电子抢答器设计 36. 基于EDA技术的智力竞赛抢答器的设计 37. 基于EDA技术的数字电子钟设计 38. 基于EDA的计算器的设计 39. 基于DDS的频率特性测试仪设计 40. 基于CPLD直流电机控制系统的设计 41. 单色显示屏的设计 42. 扩音电话机的设计 43. 基于单片机的低频信号发生器设计 44. 35KV变电所及配电线路的设计 45. 10kV变电所及低压配电系统的设计 46. 6Kv变电所及低压配电系统的设计 47. 多功能充电器的硬件开发 48. 镍镉电池智能充电器的设计 49. 基于MCS-51单片机的变色灯控制系统设计与实现 50. 智能住宅的功能设计与实现原理研究 51. 用IC卡实现门禁管理系统 52. 变电站综合自动化系统研究 53. 单片机步进电机转速控制器的设计 54. 无刷直流电机数字控制系统的研究与设计 55. 液位控制系统研究与设计 56. 智能红外遥控暖风机设计 57. 基于单片机的多点无线温度监控系统 58. 蔬菜公司恒温库微机监控系统 59. 数字触发提升机控制系统 60. 仓储用多点温湿度测量系统 61. 矿井提升机装置的设计 62. 中频电源的设计 63. 数字PWM直流调速系统的设计 64. 基于ARM的嵌入式温度控制系统的设计 65. 锅炉控制系统的研究与设计 66. 动力电池充电系统设计 67. 多电量采集系统的设计与实现 68. PWM及单片机在按摩机中的应用 69. IC卡预付费煤气表的设计 70. 基于单片机的电子音乐门铃的设计 71. 新型出租车计价器控制电路的设计 72. 单片机太阳能热水器测控仪的设计 73. LED点阵显示屏-软件设计 74. 双容液位串级控制系统的设计与研究 75. 三电平Buck直流变换器主电路的研究 76. 基于PROTEUS软件的实验板仿真 77. 基于16位单片机的串口数据采集 78. 电机学课程CAI课件开发 79. 单片机教学实验板——软件设计 80. 63A三极交流接触器设计 81. 总线式智能PID控制仪 82. 自动售报机的设计 83. 断路器的设计 84. 基于MATLAB的水轮发电机调速系统仿真 85. 数控缠绕机树脂含量自控系统的设计 86. 软胶囊的单片机温度控制(硬件设计) 87. 空调温度控制单元的设计 88. 基于人工神经网络对谐波鉴幅 89. 基于单片机的鱼用投饵机自动控制系统的设计 90. 锅炉汽包水位控制系统 91. 基于单片机的玻璃管加热控制系统设计 92. 基于AT89C51单片机的号音自动播放器设计 93. 基于单片机的普通铣床数控化设计 94. 基于AT89C51单片机的电源切换控制器的设计 95. 基于51单片机的液晶显示器设计 96. 超声波测距仪的设计及其在倒车技术上的应用 97. 智能多路数据采集系统设计 98. 公交车报站系统的设计 99. 基于RS485总线的远程双向数据通信系统的设计 100. 宾馆客房环境检测系统 101. 智能充电器的设计与制作 102. 基于单片机的户式中央空调器温度测控系统设计 103. 基于单片机的乳粉包装称重控制系统设计 104. 基于单片机的定量物料自动配比系统 105. 基于单片机的液位检测 106. 基于单片机的水位控制系统设计 107. 基于VDMOS调速实验系统主电路模板的设计与开发 108. 基于IGBT-IPM的调速实验系统驱动模板的设计与开发 109. HEF4752为核心的交流调速系统控制电路模板的设计与开发 110. 基于87C196MC交流调速实验系统软件的设计与开发 111. 87C196MC单片机最小系统单板电路模板的设计与开发 112. 电子密码锁控制电路设计 113. 基于单片机的数字式温度计设计 114. 列车测速报警系统 115. 基于单片机的步进电机控制系统 116. 语音控制小汽车控制系统设计 117. 智能型客车超载检测系统的设计 118. 直流机组电动机设计 119. 单片机控制交通灯设计 120. 中型电弧炉单片机控制系统设计 121. 中频淬火电气控制系统设计 122. 新型洗浴器设计 123. 新型电磁开水炉设计 124. 基于电流型逆变器的中频冶炼电气设计 125. 6KW电磁采暖炉电气设计 126. 基于CD4017电平显示器 127. 多路智力抢答器设计 128. 智能型充电器的电源和显示的设计 129. 基于单片机的温度测量系统的设计 130. 龙门刨床的可逆直流调速系统的设计 131. 音频信号分析仪 132. 基于单片机的机械通风控制器设计 133. 论电气设计中低压交流接触器的使用 134. 论人工智能的现状与发展方向 135. 浅论配电系统的保护与选择 136. 浅论扬州帝一电器的供电系统 137. 浅谈光纤光缆和通信电缆 138. 浅谈数据通信及其应用前景 139. 浅谈塑料光纤传光原理 140. 浅析数字信号的载波传输 141. 浅析通信原理中的增量控制 142. 太阳能热水器水温水位测控仪分析 143. 电气设备的漏电保护及接地 144. 论“人工智能”中的知识获取技术 145. 论PLC应用及使用中应注意的问题 146. 论传感器使用中的抗干扰技术 147. 论电测技术中的抗干扰问题 148. 论高频电路的频谱线性搬移 149. 论高频反馈控制电路 150. 论工厂导线和电缆截面的选择 151. 论工厂供电系统的运行及管理 152. 论供电系统的防雷、接地保护及电气安全 153. 论交流变频调速系统 154. 论人工智能中的知识表示技术 155. 论双闭环无静差调速系统 156. 论特殊应用类型的传感器 157. 论无损探伤的特点 158. 论在线检测 159. 论专家系统 160. 论自动测试系统设计的几个问题 161. 浅析时分复用的基本原理 162. 试论配电系统设计方案的比较 163. 试论特殊条件下交流接触器的选用 164. 自动选台立体声调频收音机 165. 基于立体声调频收音机的研究 166. 基于环绕立体声转接器的设计 167. 基于红外线报警系统的研究 168. 多种变化彩灯 169. 单片机音乐演奏控制器设计 170. 单目视觉车道偏离报警系统 171. 基于单片机的波形发生器设计 172. 智能毫伏表的设计 173. 微机型高压电网继电保护系统的设计 174. 基于单片机mega16L的煤气报警器的设计 175. 串行显示的步进电机单片机控制系统 176. 编码发射与接收报警系统设计:看护机 177. 编码发射接收报警设计:爱情鸟 178. 红外快速检测人体温度装置的设计与研制 179. 用单片机控制的多功能门铃 180. 电气控制线路的设计原则 181. 电气设备的选择与校验 182. 浅论10KV供电系统的继电保护的设计方案 183. 智能编码电控锁设计 184. 自行车里程,速度计的设计 185. 等精度频率计的设计 186. 基于嵌入式系统的原油含水分析仪的硬件与人机界面设计 187. 数字电子钟的设计与制作 188. 温度报警器的电路设计与制作 189. 数字电子钟的电路设计 190. 鸡舍电子智能补光器的设计 191. 电子密码锁的电路设计与制作 192. 单片机控制电梯系统的设计 193. 常用电器维修方法综述 194. 控制式智能计热表的设计 195. 无线射频识别系统发射接收硬件电路的设计 196. 基于单片机PIC16F877的环境监测系统的设计 197. 基于ADE7758的电能监测系统的设计 198. 基于单片机的水温控制系统 199. 基于单片机的鸡雏恒温孵化器的设计 200. 自动存包柜的设计 201. 空调器微电脑控制系统 202. 全自动洗衣机控制器 203. 小功率不间断电源(UPS)中变换器的原理与设计 204. 智能温度巡检仪的研制 205. 保险箱遥控密码锁 206. 基于蓝牙技术的心电动态监护系统的研究 207. 低成本智能住宅监控系统的设计 208. 大型发电厂的继电保护配置 209. 直流操作电源监控系统的研究 210. 悬挂运动控制系统 211. 气体泄漏超声检测系统的设计 212. FC-TCR型无功补偿装置控制器的设计 213. 150MHz频段窄带调频无线接收机 214. 数字显示式电子体温计 215. 基于单片机的病床呼叫控制系统 216. 基于单片微型计算机的多路室内火灾报警器 217. 基于单片微型计算机的语音播出的作息时间控制器 218. 交通信号灯控制电路的设计 219. 单片机控制的全自动洗衣机毕业设计论文 220. 单片机脉搏测量仪 221. 红外报警器设计与实现

毕业论文数字温度计的设计

AT89C51单片机那可以的要求的撒

温度传感器要是用18b20的话,我就可以考虑做

基于DS18B20温度传感器的数字温度计设计字数:9092,页数:26 论文编号:JD457 价格:120元基于DS18B20温度传感器的数字温度计设计摘要:本文介绍了一种基于DS18B20的数字温度计设计方案。方案利用AT89S52单片机控制DS18B20进行数据采集并由HS1602液晶显示模块显示结果,另外,采集结果可由RS-232-C接口送入计算机显示并存储。按键控制实现过界报警温度设定和实时监控,利用AT24C08芯片进行存储,实现温度测量存储与再现。关键字:温度采集,存储再现,过界报警,串行通信目 录摘要.....................................................................1关键字...................................................................11 引言...................................................................22 总体设计.................................................................22.1 方案论证..............................................................22.2 总体设计...............................................................33 硬件设计.................................................................33.1 单片机系统 .............................................................33.2 温度传感器模块...........................................................43.3 存储模块................................................................73.4 液晶显示模块 ............................................................93.5 串口通信模块............................................................113.6 电源模块 ...............................................................124 软件设计..................................................................134.1 主程序流程..............................................................134.2 DS18B20模块程序设计......................................................134.3 HS1602驱动程序设计.......................................................164.4 AT24C08存储模块程序设计...................................................184.5 RS-232-C串口通信模块程序设计..............................................195 测试及结果分析 .............................................................226 附录 ......................................................................237 参考资料...................................................................24以上回答来自:

这是一个仿真实例,可以参考一下试试。

高精度数字体温计的设计毕业论文

AT89C51单片机那可以的要求的撒

#include #define uchar unsigned char#define uint unsigned intsbit DS=P2^2; //define interfaceuint temp; // variable of temperatureuchar flag1; // sign of the result positive or negativesbit dula=P2^6;sbit wela=P2^7;unsigned char code table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d, 0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71};unsigned char code table1[]={0xbf,0x86,0xdb,0xcf,0xe6,0xed,0xfd, 0x87,0xff,0xef};void delay(uint count) //delay{ uint i; while(count) { i=200; while(i>0) i--; count--; }}void dsreset(void) //send reset and initialization command{ uint i; DS=0; i=103; while(i>0)i--; DS=1; i=4; while(i>0)i--;}bit tmpreadbit(void) //read a bit{ uint i; bit dat; DS=0;i++; //i++ for delay DS=1;i++;i++; dat=DS; i=8;while(i>0)i--; return (dat);}uchar tmpread(void) //read a byte date{ uchar i,j,dat; dat=0; for(i=1;i<=8;i++) { j=tmpreadbit(); dat=(j<<7)|(dat>>1); //读出的数据最低位在最前面,这样刚好一个字节在DAT里 } return(dat);}void tmpwritebyte(uchar dat) //write a byte to ds18b20{ uint i; uchar j; bit testb; for(j=1;j<=8;j++) { testb=dat&0x01; dat=dat>>1; if(testb) //write 1 { DS=0; i++;i++; DS=1; i=8;while(i>0)i--; } else { DS=0; //write 0 i=8;while(i>0)i--; DS=1; i++;i++; } }}void tmpchange(void) //DS18B20 begin change{ dsreset(); delay(1); tmpwritebyte(0xcc); // address all drivers on bus tmpwritebyte(0x44); // initiates a single temperature conversion}uint tmp() //get the temperature{ float tt; uchar a,b; dsreset(); delay(1); tmpwritebyte(0xcc); tmpwritebyte(0xbe); a=tmpread(); b=tmpread(); temp=b; temp<<=8; //two byte compose a int variable temp=temp|a; tt=temp*0.0625; temp=tt*10+0.5; return temp;}void display(uint temp) //显示程序{ uchar A1,A2,A2t,A3; A1=temp/100; A2t=temp%100; A2=A2t/10; A3=A2t%10; dula=0; P0=table[A1]; //显示百位 dula=1; dula=0; wela=0; P0=0x7e; wela=1; wela=0; delay(1); dula=0; P0=table1[A2]; //显示十位 dula=1; dula=0; wela=0; P0=0x7d; wela=1; wela=0; delay(1); P0=table[A3]; //显示个位 dula=1; dula=0; P0=0x7b; wela=1; wela=0; delay(1);}void main(){ uchar a; do { tmpchange(); for(a=10;a>0;a--) { display(tmp()); } } while(1);}

这是一个仿真实例,可以参考一下试试。

数字式温度计毕业论文

毕业设计(论文)报告 系 别: 电子与电气工程学院 专 业: 电子信息工程 班 号: 电子 0 8 5 学 生 姓 名: 傅浩 学 生 学 号: 080012212 计 论 ) 目 设 ( 文 题 : 基于AT89C51 的数字温度计的设计 指 导 教 师: 傅浩 设 计 地 点: 起 迄 日 期: 2010.5.4-2010.7.3 常州信息职业技术学院电子与电气工程学院 毕业设计论文 毕业设计(论文)任务书 专业 电子信息工程 班级 电子 085 姓名 傅浩一、课题名称:基于 AT89C51 的数字温度计的设计二、主要技术指标: 1、测温范围-50℃-110℃ 2、精度误差小于 0.5℃ 3、LED 数码直读显示 4、可通过人机接口任意设定温度报警阀值三、工作内容和要求:(1)、要求数字温度计能对环境的温度进行实时监测。(2)、数字温度计要能够实时显示环境的温度信息,使用户及时了解到环境温度情况。(3)、数字温度计能够在程序跑飞的情况下自动重启,对环境温度进行正确的测量。 四、主要参考:1.李勋.刘源单片机实用教程M.北京航空航天大学出版社,20002.李朝青.单片机原理及接口技术(简明修订版)M.杭州:北京航空航天大学出版社,19983.李广弟.单片机基础M.北京:北京航空航天大学出版社,19944.阎石.数字电子技术基础(第三版)M.北京:高等教育出版社,19895.廖常初.现场总线概述J.电工技术,19996.王津.单片机原理与应用M.重庆大学出版社,2000 学 生(签名) 年 月 日 指 导 教师(签名) 年 月 日常州信息职业技术学院电子与电气工程学院 毕业设计论文 教研室主任(签名) 年 月 日 系 主 任(签名) 年 月 日 常州信息职业技术学院电子与电气工程学院 毕业设计论文 毕业设计(论文)开题报告设计(论文)题目 基于 AT89C51 的数字温度计的设计一、选题的背景和意义: 随着时代的进步和发展,单片机技术已经普及到我们生活、工作、科研等各个领域,已经成为一种比较成熟的技术,本文将介绍一种基于单片机控制的数字温度计,它给人带来的方便也是不可否定的。要为现代人生活提供更好、更方便的设施就需要从数单片机技术入手,一切向着数字化控制,智能化控制方向发展。 本文将要设计的数字温度计具有性能稳定、灵敏度高、抗干扰能力强、使用方便等优点,广泛应用于冰箱、空调器、粮仓等日常生活中温度的测量和控制中,为人们生活水平的提高做出了巨大的贡献。二、课题研究的主要内容: 1.本文是以单片机 AT89C51 为核心进行设计。 2.通过 DALLAS 公司的单总线数字温度传感器 DS18B20 来实现环境温度的采集和 A/D转换。 3.其输出温度采用数字显示,用 3 位共阳极 LED 数码管以串口传送数据,实现温度显示,能准确达到以上要求。 4.此温度计属于多功能温度计可以用来测量环境温度,还可以设置上下报警温度,当温度不在设置范围内时,可以报警。 常州信息职业技术学院电子与电气工程学院 毕业设计论文三、主要研究(设计)方法论述: 1. 通过查阅书籍了解数字温度计的基本概念等信息,结合以前所学的电子专业知识认真研究课题。 2. 借助强大的网络功能,借鉴前人的研究成果更好的帮助自己更好地理解所需掌握的内容。 3. 通过与老师与同学的讨论研究,及时地发现问题反复地检查修改最终完成。 四、设计(论文)进度安排:时间(迄止日期) 工 作 内 容2010.05.04 ~ 查找资料,确定论文题目2010.05.052010.05.06 ~ 根据选题方向查资料,确定基本框架和设计方法2010.05.072010.05.08 ~ 完成开题报告2010.05.102010.05.11 ~ 完成初稿并交指导老师审阅2010.05.312010.06.01 ~ 根据指导老师意见修改论文2010.06.262010.06.26 ~ 根据模板将论文排版2010.06.292010.06.30 ~ 仔细阅读论文并作细节完善后上交2010.07.03 常州信息职业技术学院电子与电气工程学院 毕业设计论文五、指导教师意见: 指导教师签名: 年 月 日六、系部意见: 系主任签名: 年 月 日 常州信息职业技术学院电子与电气工程学院 毕业设计论文 目录摘要Abstract第 1 章 前言 ...................................................... 1第 2 章 数字温度计总体设计方案 .................................... 2 2.1 数字温度计设计方案.......................................... 2 2.2 总体设计框图................................................ 2第 3 章 数字温度计的硬件设计 ...................................... 3 3.1 主控制器 AT89C51 ............................................ 3 3.1.1 AT89C51 的特点及特征 .................................... 3 3.1.2 管脚功能说明............................................ 3 3.1.3 片内振荡器.............................................. 5 3.1.4 芯片擦除................................................ 5 3.2 单片机的主板电路............................................ 6 3.3 温度采集部分的设计.......................................... 6 3.3.1 温度传感器 DS18B20 ...................................... 6 3.3.2 DS18B20 温度传感器与单片机的接口电路 ................... 10 3.4 显示部分设计............................................... 10 3.4.1 74LS164 引脚功能及特征 ................................. 10 3.4.2 温度显示电路........................................... 11 3.5 报警系统电路............................................... 12第 4 章 数字温度计的软件设计 ..................................... 13 4.1 系统软件设计流程图......................................... 13 4.2 数字温度计部分程序清单..................................... 15第 5 章 结束语 ................................................... 20答谢辞参考文献 常州信息职业技术学院电子与电气工程学院 毕业设计论文 摘 要 随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数字温度计就是一个典型的例子。 本设计所介绍的数字温度计与传统的温度计相比,具有读数方便,测温范围广,测温准确,其输出温度采用数字显示。该设计控制器使用单片机 AT89C51,测温传感器使用 DS18B20,用 3 位共阳极 LED 数码管以串口传送数据,实现温度显示。本温度计属于多功能温度计,可以设置上下报警温度,当温度不在设置范围内时,可以报警。 此外本文还介绍了数字温度计的硬件设计和软件设计,硬件设计主要包括主控制器、单片机的主板电路、温度采集部分电路、显示电路以及报警系统电路。 软件设计包括系统软件的流程图和数字温度计的部分程序清单。关键词:AT89C51 单片机,数字控制,测温传感器,多功能温度计 常州信息职业技术学院电子与电气工程学院 毕业设计论文 Abstract As peoples living standard rising SCM is undoubtedly one of theobjectives pursued by the people the convenience it brings is equallynegative and one digital thermometer is a typical example. The design presented in the traditional thermometer digitalthermometer and compared with a reading convenience a wide range oftemperature measurement temperature measurement accuracy the output ofthe temperature digital display. The design of the controller usingmicrocontroller AT89C51 temperature sensor uses DS18B20 with threecommon anode LED digital tube to serial transmission of data to achievetemperature display. The thermometer is multi-functional thermometeryou can set the upper and lower alarm temperature range when thetemperature is not set you can alarm. Besides the paper also describes the digital thermometer in hardwaredesign and software design hardware design includes the main controllermicrocontroller circuit board the temperature acquisition part of thecircuit display circuit and the alarm system circuit. Software designincluding system software flow chart and the digital thermometer in thepart of the program list.Key words: AT89C51 microcontroller digital control temperature sensormulti-function thermometer 常州信息职业技术学院电子与电气工程学院 毕业设计论文第1章 前言 随着时代的进步和发展,单片机技术已经普及到我们生活,工作,科研,各个领域,已经成为一种比较成熟的技术,本文将介绍一种基于单片机控制的数字温度计,本温度计属于多功能温度计,可以设置上下报警温度,当温度不在设置范围内时,可以报警。 现代信息技术的飞速发展和传统工业改造的逐步实现。 能够独立工作的温度检测和显示系统应用于诸多领域。传统的温度检测以热敏电阻为温度敏感元件。热敏电阻的成本低,但需后续信号处理电路,而且可靠性相对较差,测温准确度低,检测系统也有一定的误差,所以传统的温度计有反应速度慢、读数麻烦、测量精度不高、误差大等缺点。 本文是以单片机 AT89C51 为核心,通过 DALLAS 公司的单总线数字温度传感器 DS18B20 来实现环境温度的采集和 A/D 转换,用来测量环境温度,温度分辨率为 0.0625℃,并能数码显示。因此本文设计的数字温度计具有读数方便,测温范围广,测温精确,数字显示,适用范围宽其电路简单,软硬件结构模块化,易于实现等特点。 数字式温度计的设计将给人们的生活带来很大的方便, 为人们生活水平的提高做出了贡献。数字温度计在以后将应用于我们生产和生活的各个方面,数字式温度计的众多优点告诉我们:数字温度计将在我们的未来生活中应用于各个领域,它将会是传统温度计的理想的替代产品。 -1- 常州信息职业技术学院电子与电气工程学院 毕业设计论文第2章 数字温度计总体设计方案2.1 数字温度计设计方案方案 一: 采用热敏电阻器件,利用其感温效应,再将随被测温度变化的电压或电流采集过来,进行 A/D 转换后,利用单片机进行数据的处理,然后在显示电路上,将被测温度显示出来。 方案 二: 利用温度传感器,在单片机电路设计中,大多都是使用传感器,所以这是非常容易想到的,所以可以采用一只温度传感器 DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换就可以满足设计要求。 分析上述两种方案可以看出方案一是使用热敏电阻之类的器件利用其感温效应,进行 A/D 转换后,利用单片机进行数据的处理,在显示电路上被测温度显示出来,这种设计需要用到 A/D 转换电路,感温电路比较麻烦。方案二是利用温度传感器直接读取被测温度,读数方便,测温范围广,测温精确,适用范围宽而且电路简单易于实现。 综合方案一和方案二的优缺点,我们选择方案二。2.2 总体设计框图 温度计电路设计总体设计方框图如图 2-1 所示, 控制器采用单片机 AT89C51,温度传感器采用 DS18B20,用 4 位 LED 数码管以串口传送数据实现温度显示。 L 单片机复位 E D 主 显 控 示 报警点按键调整 制 器 温 度 时钟振荡 传 感 器 图 2-1 总体设计方框图 -2- 常州信息职业技术学院电子与电气工程学院 毕业设计论文第3章 数字温度计硬件设计3.1 主控制器 AT89C513.1.1 AT89C51 的特点及特性: 40 个引脚,4K Bytes FLASH 片内程序存储器,128 Bytes 的随机存取数据存储器(RAM) ,32 个外部双向输入/输出(I/O)口,5 个中断优先级 2 层中断嵌套中断,2 个 16 位可编程定时计数器,2 个全双工串行通信口,看门狗(WDT)电路,片内时钟振荡器。 此外,AT89C51 在空闲模式下,CPU 暂停工作,而 RAM 定时计数器,串行口,外中断系统可继续工作,掉电模式冻结振荡器而保存 RAM 的数据,停止芯片其它功能直至外中断激活或硬件复位。同时该芯片还具有 PDIP、TQFP 和 PLCC 等三种封装形式,以适应不同产品的需求。 主要功能特性: 兼容 MCS-51 指令系统 4k 可反复擦写gt1000 次)ISP FLASH ROM 32 个双向 I/O 口 4.5-5.5V 工作电压 2 个 16 位可编程定时/计数器 时钟频率 0-33MHZ 全双工 UART 串行中断口线 128X8 BIT 内部 RAM 2 个外部中断源 低功耗空闲和省电模式 中断唤醒省电模式 3 级加密位 看门狗(WDT)电路 软件设置空闲和省电功能 灵活的 ISP 字节和分页编程 双数据寄存器指针3.1.2 管脚功能说明: AT89C51 管脚如图 3-1 所示: -3- 常州信息职业技术学院电子与电气工程学院 毕业设计论文 图 3-1 AT89C51 管脚图 (1)VCC:供电电压。 (2)GND:接地。 P0 P0 (3) 口: 口为一个 8 位漏级开路双向 I/O 口, 每脚可吸收 8TTL 门电流。当 P1 口的管脚第一次写 1 时,被定义为高阻输入。P0 能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在 FIASH 编程时,P0 口作为原码输入口,当 FIASH 进行校验时,P0 输出原码,此时 P0 外部必须被拉高。 (4)P1 口:P1 口是一个内部提供上拉电阻的 8 位双向 I/O 口,P1 口缓冲器能接收输出 4TTL 门电流。P1 口管脚写入 1 后,被内部上拉为高,可用作输入,P1 口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在 FLASH编程和校验时,P1 口作为第八位地址接收。 (5)P2 口:P2 口为一个内部上拉电阻的 8 位双向 I/O 口,P2 口缓冲器可接收,输出 4 个 TTL 门电流,当 P2 口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2 口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2 口当用于外部程序存储器或 16 位地址外部数据存储器进行存取时,P2 口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2 口输出其特殊功能寄存器的内容。P2 口在 FLASH 编程和校验时接收高八位地址信号和控制信号。 (6)P3 口:P3 口管脚是 8 个带内部上拉电阻的双向 I/O 口,可接收输出 4个 TTL 门电流。当 P3 口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3 口将输出电流(ILL)这是由于上拉的缘故。P3 口也可作为 AT89C51 的一些特殊功能口,如下所示: P3.0 RXD(串行输入口) P3.1 TXD(串行输出口) P3.2 /INT0(外部中断 0) P3.3 /INT1(外部中断 1) P3.4 T0(记时器 0 外部输入) P3.5 T1(记时器 1 外部输入) P3.6 /WR(外部数据存储器写选通) P3.7 /RD(外部数据存储器读选通) -4- 常州信息职业技术学院电子与电气工程学院 毕业设计论文 P3 口同时为闪烁编程和编程校验接收一些控制信号。 (7)RST:复位输入。当振荡器复位器件时,要保持 RST 脚两个机器周期的高电平时间。 (8)ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。在 FLASH 编程期间,此引脚用于输入编程脉冲。在平时,ALE 端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的 1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部数据存储器时,将跳过一个 ALE 脉冲。如想禁止 ALE 的输出可在 SFR8EH 地址上置 0。此时,ALE 只有在执行 MOVX,MOVC 指令是 ALE 才起作用。另外,该引脚被略微拉高。如果微处理器在外部执行状态 ALE 禁止,置位无效。 (9)/PSEN:外部程序存储器的选通信号。在由外部程序存储器取指期间,每个机器周期两次/PSEN 有效。 但在访问外部数据存储器时, 这两次有效的/PSEN信号将不出现。 ( 10 ) /EA/VPP : 当 /EA 保 持 低 电 平 时 , 则 在 此 期 间 外 部 程 序 存 储 器(0000H-FFFFH),不管是否有内部程序存储器。注意加密方式 1 时,/EA 将内部锁定为 RESET;当/EA 端保持高电平时,此间内部程序存储器。在 FLASH 编程期间,此引脚也用于施加 12V 编程电源(VPP)。 (11)XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。 (12)XTAL2:来自反向振荡器的输出。3.1.3 片内振荡器: 该反向放大器可以配置为片内振荡器,如图 3-2 所示。 图 3-2 片内振荡器3.1.4 芯片擦除: -5- 常州信息职业技术学院电子与电气工程学院 毕业设计论文 整个 PEROM 阵列和三个锁定位的电擦除可通过正确的控制信号组合, 并保持ALE 管脚处于低电平 10ms 来完成。在芯片擦操作中,代码阵列全被写“1”且在任何非空存储字节被重复编程以前,该操作必须被执行。 此外,AT89C51 设有稳态逻辑,可以在低到零频率的条件下静态逻辑,支持两种软件可选的掉电模式。在闲置模式下,CPU 停止工作。但 RAM、定时器、计数器、串口和中断系统仍在工作。在掉电模式下,保存 RAM 的内容并且冻结振荡器,禁止所用其他芯片功能,直到下一个硬件复位为止。单片机 AT89C51 具有低电压供电和体积小等特点,四个端口只需要两个口就能满足电路系统的设计需要,很适合便携手持式产品的设计使用系统可用二节电池供电。 单片机 AT89C51 具有低电压供电和体积小等特点,四个端口只需要两个口就能满足电路系统的设计需要, 很适合便携手持式产品的设计使用系统可用二节电池供电。3.2 单片机主板电路 单片机 AT89C51 是数字温度计的核心元件,单片机的主板电路如图 3-3 所示,包括单片机芯片、报警系统电路、晶振电路、上拉电阻以及与单片机相连的其他电路。 图 3-3 单片机的主板电路3.3 温度采集部分的设计3.3.1 温度传感器 DS18B20 DS18B20 温度传感器是美国 DALLAS 半导体公司最新推出的一种改进型智能温度传感器,与传统的热敏电阻等测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现 9~12 位的数字值读数方式。 -6- 常州信息职业技术学院电子与电气工程学院 毕业设计论文 TO-92 封装的 DS18B20 的引脚排列见图 3-4,其引脚功能描述见表 .

你好,我有你需要的设计!需要的联系回答者 目 录 一、引言 4 二、设计内容及性能指标 5 三、系统方案论证与比较 5 (一)、方案一 5 (二)、方案二 6 四、系统器件选择 7 (一)、 单片机的选择 7 1、 89S51 引脚功能介绍 8 (二)、温度传感器的选择 10 1、 DS18B20 简单介绍: 10 2、 DS18B20 使用中的注意事项 12 3、 DS18B20 内部结构 12 4、DS18B20测温原理 16 5、提高DS1820测温精度的途径 17 (三)、显示及报警模块器件选择 18 五、硬件设计电路 18 (一)、主控制器 19 (二)、显示电路 19 (三)、 温度检测电路 20 (四)、温度报警电路 25 六、 软件设计 26 (一)、 概述 26 (二)、主程序模块 26 (三)、各模块流程设计 27 1、 温度检测流程 28 2、报警模块流程 28 3、 中断设定流程 29 七、总结和体会 31 八、致谢 31 参考文献32

江苏省联合职业技术学院常州旅游商贸分院专科毕业论文 基于51单片机及DS18B20温度传感器的数字温度计设计 姓 名:(××××××××3号黑体)学 号:(××××××××3号黑体)班 级:(联院班级号×××3号黑体)专 业:(××××××××3号黑体)指导教师:(××××××××3号黑体)系 部:创意信息系××××3号黑体)二〇二0年××月××日摘 要本设计采用的主控芯片是ATMEL公司的AT89S52单片机,数字温度传感器是DALLAS公司的DS18B20。本设计用数字传感器DS18B20测量温度,测量精度高,传感器体积小,使用方便。所以本次设计的数字温度计在工业、农业、日常生活中都有广泛的应用。单片机技术已经广泛应用社会生活的各个领域,已经成为一种非常实用的技术。51单片机是最常用的一种单片机,而且在高校中都以51单片机教材为蓝本,这使得51单片机成为初学单片机技术人员的首选。本次设计采用的AT89S52是一种flash型单片机,可以直接在线编程,向单片机中写程序变得更加容易。本次设计的数字温度计采用的是DS18B20数字温度传感器,DS18B20是一种可组网的高精度数字式温度传感器,由于其具有单总线的独特优点,可以使用户轻松地组建起传感器网络,并可使多点温度测量电路变得简单、可靠。本设计根据设计要求,首先设计了硬件电路,然后绘制软件流程图及编写程序。本设计属于一种多功能温度计,温度测量范围是-55℃到125℃。温度值的分辨率可以被用户设定为9-12位,可以设置上下限报警温度,当温度不在设定的范围内时,就会启动报警程序报警。本设计的显示模块是用四位一体的数码管动态扫描显示实现的。在显示实时测量温度的模式下还可以通过查询按键查看设定的上下限报警温度。 关键词:单片机、数字温度计、DS18B20、AT89S52目 录 1 引言 12 系统总体方案及硬件设计 22.1 系统总体方案 22.1.1系统总体设计框图 22.1.2各模块简介 22.2 系统硬件设计 62.2.1 单片机电路设计 62.2.2 DS18B20温度传感器电路设计 62.2.3 显示电路设计 72.2.4 按键电路设计 72.2.5 报警电路设计 83 软件设计 93.1 DS18B20程序设计 93.1.1 DS18B20传感器操作流程 93.1.2 DS18B20传感器的指令表 93.1.3 DS18B20传感器的初始化时序 103.1.4 DS18B20传感器的读写时序 103.1.5 DS18B20获取温度程序流程图 113.2 显示程序设计 133.3 按键程序设计 134实物制作及调试 145电子综合设计体会 15参考文献 161 引言本系统所设计的数字温度计采用的是DS18B20数字温度传感器测温,DS18B20直接输出的就是数字信号,与传统的温度计相比,具有读数方便,测温范围广,测温准确,上下限报警功能。其输出温度采用LED数码管显示,主要用于对测温比较准确的场所。该设计控制器使用的是51单片机AT89S52,AT89S52单片机在工控、测量、仪器仪表中应用还是比较广泛的。测温传感器使用的是DS18B20,DS18B20是一种可组网的高精度数字式温度传感器,由于其具有单总线的独特优点,可以使用户轻松地组建起传感器网络,并可使多点温度测量电路变得简单、可靠。显示是用4位共阴极LED数码管实现温度显示,LED数码管的优点是显示数字比较大,查看方便。蜂鸣器用来实现当测量温度超过设定的上下限时的报警功能。2 系统总体方案及硬件设计2.1 系统总体方案2.1.1系统总体设计框图由于DS18B20数字温度传感器具有单总线的独特优点,可以使用户轻松地组建起传感器网络,并可使多点温度测量电路变得简单、可靠,所以在该设计中采用DS18B20数字温度传感器测量温度。 温度计电路设计总体设计框图如图2-1所示,控制器采用单片机AT89S52,温度传感器采用DS18B20,显示采用4位LED数码管,报警采用蜂鸣器、LED灯实现,键盘用来设定报警上下限温度。 图2-1 温度计电路总体设计框图2.1.2各模块简介1.控制模块AT89S52单片机是美国ATMEL公司生产的低功耗,高性能CMOS 8位单片机,片内含有8kb的可系统编程的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准8051指令系统及引脚。在单芯片上,拥有灵巧的8 位CPU 和在系统可编程的Flash,使得AT89S52为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。AT89S52具有以下标准功能:8k字节Flash,256字节RAM,32 位I/O 口线,看门狗定时器,2 个数据指针,三个16 位定时器/计数器,一个6向量2级中断结构,全双工串行口,片内晶振及时钟电路。另外,AT89S52 可降至0Hz 静态逻辑操作,支持2种软件可选择节电模式。空闲模式下,CPU停止工作,允许RAM、定时器/计数器、串口、中断继续工作。掉电保护方式下,RAM内容被保存,振荡器被冻结,单片机一切工作停止,直到下一个中断或硬件复位为止。2.显示模块显示电路采用4位共阴LED数码管,从P0口输出段码,P2口的高四位为位选端。用动态扫描的方式进行显示,这样能有效节省I/O口。3.温度传感器模块DS18B20温度传感器是美国DALLAS半导体公司最新推出的一种改进型智能温度传感器,与传统的热敏电阻等测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。DS18B20的性能特点如下:独特的单线接口仅需要一个端口引脚进行通信;多个DS18B20可以并联在惟一的三线上,实现多点组网功能;无须外部器件;可通过数据线供电,电压范围为3.0~5.5v;零待机功耗;温度以9或12位二进制数字表示;用户可定义报警设置;报警搜索命令识别并标志超过程序限定温度(温度报警条件)的器件;负电压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作;DS18B20采用3脚TO-92封装或8脚SO或µSOP封装,其其封装形式如图2-2所示。图2-2 DS18B20的封装形式DS18B20的64位ROM的结构开始8位是产品类型的编号,接着是每个器件的惟一的序号,共有48位,最后8位是前面56位的CRC检验码,这也是多个DS18B20可以采用一线进行通信的原因。温度报警触发器TH和TL,可通过软件写入户报警上下限。DS18B20温度传感器的内部存储器还包括一个高速暂存RAM和一个非易失性的可电擦除的EEPRAM。高速暂存RAM的结构为8字节的存储器,结构如图2-3所示。图2-3 DS18B20的高速暂存RAM的结构头2个字节包含测得的温度信息,第3和第4字节TH和TL的拷贝是易失的,每次上电复位时被刷新。第5个字节,为配置寄存器,它的内容用于确定温度值的数字转换分辨率,DS18B20工作时寄存器中的分辨率转换为相应精度的温度数值,该字节各位的定义如表2-1所示。表2-1:配置寄存器D7 D6 D5 D4 D3 D2 D1 D0TM R1 R0 1 1 1 1 1配置寄存器的低5位一直为1,TM是工作模式位,用于设置DS18B20在工作模式还是在测试模式,DS18B20出厂时该位被设置为0,用户要去改动,R1和R0决定温度转换的精度位数,来设置分辨率,“R1R0”为“00”是9位,“01”是10位,“10”是11位,“11”是12位。当DS18B20分辨率越高时,所需要的温度数据转换时间越长。因此,在实际应用中要将分辨率和转换时间权衡考虑。高速暂存RAM的第6、7、8字节保留未用,表现为全逻辑1。第9字节读出前面所有8字节的CRC码,可用来检验数据,从而保证通信数据的正确性。当DS18B20接收到温度转换命令后,开始启动转换。转换完成后的温度值就以16位带符号扩展的二进制补码形式存储在高速暂存存储器的第1、2字节。单片机可以通过单线接口读出该数据,读数据时低位在先,高位在后,数据格式以0.0625℃/LSB形式表示。当符号位s=0时,表示测得的温度值为正值,可以直接将二进制位转换为十进制;当符号位s=1时,表示测得的温度值为负值,要先将补码变成原码,再计算十进制数值。输出的二进制数的高5位是符号位,最后4位是温度小数点位,中间7位是温度整数位。表2-2是一部分温度值对应的二进制温度数据。表2-2 DS18B20输出的温度值温度值 二进制输出 十六进制输出+125℃ 0000 07D0h+85℃ 0000 0550h+25.0625℃ 0001 0191h+10.125℃ 0010 00A2h+0.5℃ 1000 0008h0℃ 0000 0000h-0.5℃ 1000 FFF8h-10.125℃ 1110 FF5Eh-25.0625℃ 1111 FF6Fh-55℃ 0000 FC90hDS18B20完成温度转换后,就把测得的温度值与RAM中的TH、TL字节内容作比较。若T>TH或T<TL,则将该器件内的报警标志位置位,并对主机发出的报警搜索命令作出响应。因此,可用多只DS18B20同时测量温度并进行报警搜索。在64位ROM的最高有效字节中存储有循环冗余检验码(CRC)。主机ROM的前56位来计算CRC值,并和存入DS18B20的CRC值作比较,以判断主机收到的ROM数据是否正确。4.调节模块介绍调节模块是由四个按键接地后直接接单片机的I/O口完成的。当按键没有按下时单片机管脚相当于悬空,默认下为高电平,当按键按下时相当于把单片机的管脚直接接地,此时为低电平。程序设计为低电平触发。5.报警模块介绍报警模块是由一个PNP型的三极管9012驱动的5V蜂鸣器,和一个加一限流电阻的发光二极管组成的。报警时蜂鸣器间歇性报警,发光二极管闪烁。 2.2 系统硬件设计2.2.1 单片机电路设计 图2-4 单片机最小系统原理图单片机最小系统是由晶振电路,上电复位、按键复位电路,ISP下载接口和电源指示灯组成。原理图如图2-4所示。2.2.2 DS18B20温度传感器电路设计DS18B20温度传感器是单总线器件与单片机的接口电路采用电源供电方。电源供电方式如图2-7,此时DS18B20的1脚接地,2脚作为信号线,3脚接电源。 图2-7 DS18B20电源供电方式当DS18B20处于写存储器操作和温度A/D转换操作时,总线上必须有强的上拉,上拉开启时间最大为10us。采用寄生电源供电方式时VDD端接地。由于单线制只有一根线,因此发送接口必须是三态的。2.2.3 显示电路设计显示电路是由四位一体的共阴数码管进行显示的,数码管由三极管9013驱动。四位一体的共阴数码管的管脚分布图如图2-5所示。 图2-5 四位一体的共阴数码管管脚分布图显示电路的总体设计如图2-6所示。 图2-6 显示电路2.2.4 按键电路设计按键电路是用来实现调节设定报警温度的上下限和查看上下报警温度的功能。电路原理图如图2-10所示。 图2-10 按键电路原理图 2.2.5 报警电路设计报警电路是在测量温度大于上限或小于下限时提供报警功能的电路。该电路是由一个蜂鸣器和一个红色的发光二极管组成,具体的电路如图2-9所示。 图2-9 报警电路原理图3 软件设计3.1 DS18B20程序设计3.1.1 DS18B20传感器操作流程根据DS18B20的通讯协议,主机(单片机)控制DS18B20完成温度转换必须经过三个步骤:• 每一次读写之前都要对DS18B20进行复位操作• 复位成功后发送一条ROM指令• 最后发送RAM指令这样才能对DS18B20进行预定的操作。复位要求主CPU将数据线下拉500μs,然后释放,当DS18B20收到信号后等待16~60μs左右,后发出60~240μs的存在低脉冲,主CPU收到此信号表示复位成功。DS18B20的操作流程如图3-1所示。 如图3-1 DS18B20的操作流程3.1.2 DS18B20传感器的指令表DS18B20传感器的操作指令如表3-1所示。传感器复位后向传感器写相应的命令才能实现相应的功能。表3-1 DS18B20的指令表指 令 指令代码 功 能读ROM 0x33 读DS1820温度传感器ROM中的编码(即64位地址)符合 ROM 0x55 发出此命令之后,接着发出 64 位 ROM 编码,访问单总线上与该编码相对应的 DS1820 使之作出响应,为下一步对该 DS1820 的读写作准备。搜索 ROM 0xF0 用于确定挂接在同一总线上 DS1820 的个数和识别 64 位 ROM 地址。为操作各器件作好准备。跳过 ROM 0xCC 忽略 64 位 ROM 地址,直接向 DS1820 发温度变换命令。适用于单片工作。告警搜索命令 0xEC 执行后只有温度超过设定值上限或下限的片子才做出响应。温度变换 0x44 启动DS1820进行温度转换,12位转换时最长为750ms(9位为93.75ms)。结果存入内部9字节RAM中。读暂存器 0xBE 读内部RAM中9字节的内容写暂存器 0x4E 发出向内部RAM的3、4字节写上、下限温度数据命令,紧跟该命令之后,是传送两字节的数据。复制暂存器 0x48 将RAM中第3 、4字节的内容复制到EEPROM中。重调 EEPROM 0xB8 将EEPROM中内容恢复到RAM中的第3 、4字节。读供电方式 0xB4 读DS1820的供电模式。寄生供电时DS1820发送“ 0 ”,外接电源供电 DS1820发送“ 1 ”。3.1.3 DS18B20传感器的初始化时序DS18B20传感器为单总线结构器件,在读写操作之前,传感器芯片应先进性复位操作也就是初始化操作。DS18B20的初始化时序如图3-2所示。首先控制器拉高数据总线,接着控制器给数据总线一低电平,延时480μs,控制器拉高数据总线,等待传感器给数据线一个60-240μs的低电平,接着上拉电阻将数据线拉高,这样才初始化完成。 图3-2 DS18B20初始化时序3.1.4 DS18B20传感器的读写时序 1.写时序DS18B20传感器的读写操作是在传感器初始化后进行的。每次操作只能读写一位。当主机把数据线从高电平拉至低电平,产生写时序。有两种类型的写时序:写“0”时序,写“1”时序。所有的时序必须有最短60μs的持续期,在各个写周期之间必须有最短1μs的恢复期。在数据总线由高电平变为低电平之后,DS18B20在15μs至60μs的时间间隙对总线采样,如果为“1”则向DS18B20写“1”, 如果为“0”则向DS18B20写“0”。如图3-2的上半部分。对于主机产生写“1”时序时,数据线必须先被拉至低电平,然后被释放,使数据线在写时序开始之后15μs内拉至高电平。对于主机产生写“1”时序时,数据线必须先被拉至低电平,且至少保持低电平60μs。2.读时序在数据总线由高电平变为低电平之后,数据线至少应保持低电平1μs,来自DS18B20的输出的数据在下降沿15μs后有效,所以在数据线保持低电平1μs之后,主机将数据线拉高,等待来自DS18B20的数据变化,在下降沿15μs之后便可开始读取DS18B20的输出数据。整个读时序必须有最短60μs的持续期。如图3-2的下半部分。读时序结束后数据线由上拉电阻拉至高电平。 图3-3 DS18B20传感器的读写时序3.1.5 DS18B20获取温度程序流程图DS18B20的读字节,写字节,获取温度的程序流程图如图3-3所示。图3-4 DS18B20程序流程图3.2 显示程序设计显示电路是由四位一体的数码管来实现的。由于单片机的I/O口有限,所以数码管采用动态扫描的方式来进行显示。程序流程图如图3-4所示。图3-5 显示程序流程图3.3 按键程序设计按键是用来设定上下限报警温度的。具体的程序流程图如图3-5所示。图3-6 按键程序流程图4实物制作及调试制作好的实物如图4-1所示。 图4-1 数字温度计实物正面图在做实物时出现了不少问题。比如本来是采用NPN型9013驱动蜂鸣器,但是在实际调试中蜂鸣器驱动不了,经多次试验,在三极管的基极电阻与单片机的接口处接一个1、2kΩ的上拉电阻就能驱动了。但考虑到单片机的I/O口默认状态时为高电平,这样一上电蜂鸣器就会响,所以将NPN型9013换成了PNP型的9012三极管,效果还不错。5电子综合设计体会经过将近一个月的设计、焊接、编程、调试,我们终于完成了数字温度计的设计,基本能够达到设计要求,而且还设计了一些其他功能,比可以开启或消除按键音功能,开机动画功能,查看报警上下限温度功能。此次的设计使我从中学到了一些很重要的东西,那就是如何从理论到实践的转化,怎样将我们所学到的知识运用到实践中去。在大学课堂的学习只是给我们灌输专业知识,而我们应把所学的知识应用到我们现实的生活中去。这次的设计不仅使我们将课堂上学到的理论知识与实际应用结合了起来,而且使我们对电子电路、电子元器件、印制电路板等方面的知识有了更进一步的认识,同时在软件编程、焊板调试、相关调试仪器的使用等方面得到较全面的锻炼和提高,为今后能够独立进行某些单片机应用系统的开发设计工作打下一定的基础。此次单片机设计也为我们以后进行更复杂的单片机系统设计提供了宝贵的经验。在本次设计的过程中,我们遇到不少的问题,刚开始焊好的板子下不进去程序,经过一再仔细的检查,才发现是在下载口处出了问题,由于焊盘口比较小,排针插不进去,最后使了很大力气才插进去,插进去后才发现坏了,结果在去排针的时候把焊盘给去下来了,最后只能在旁边将下载口引了出来。还有就是文章中提到的蜂鸣器驱动问题等等。经过此次的硬件制作与调试,锻炼了我们的动手实践能了。本次设计的另一个重点就是软件程序的设计,其中需要有很巧妙的程序算法,虽然以前写过几次程序,但我觉的写好一个程序并不是一件简单的事,有好多的东西,只有我们去试着做了,才能真正的掌握,只学习理论,有些东西是很难理解的,更谈不上掌握。通过此次的综合设计,我们初步掌握了单片机系统设计的基本原理。充分认识到理论学习与实践相结合的重要性,对于书本上的很多知识,不但要学会,更重要的是会运用到实践中去。在以后的学习中,我们会更加注重实践方面的锻炼,多提高自己的动手实践能力。参考文献[1] 谭浩强.C程序设计(第三版).北京:清华大学出版社,2005.7 .[2] 余发山,王福忠.单片机原理与应用技术.徐州:中国矿业大学出版社,2008.6 .[3] 求是科技.单片机典型模块设计实例导航.北京:人民邮电出版社,2005.5 .[4] 求是科技.8051系列单片机C程序设计完全手册.北京:人民邮电出版社,2006.4 .[5] 于永,戴佳,刘波.51单片机C语言常用模块与综合系统设计实例精讲(第2版).北京:电子工业出版社,2008.10 .[6]刘腾远.基于单片机的温度控制系统设计[J].科技经济导刊,2018(01):77-78.[7]苏康友.基于51单片机的无线温度控制系统设计[J].电子技术与软件工程,2017(10):250-251.[8]刘丰年.基于AT89C51的简易智能化加湿器设计[J].三门峡职业技术学院学报,2016,15(04):139-142.[9]杨伟才.基于DS18B20的多点温度测量系统研究[J].山东工业技术,2016(24):266.[10]严敏.基于单片机的智能温控系统的设计与实现[J].无锡职业技术学院学报,2016,15(03):61-64.[11]吴嘉颖. 基于单片机的地铁低压设备触点温度监测系统的设计与实现[D].西南交通大学,2017.[12]孙晓倩.基于51单片机的温度监测报警系统设计研究[J].赤峰学院学报(自然科学版),2015,31(24):24-26.[13]仲霞.基于DS18B20的多点温度测量系统探讨[J].山东工业技术,2015(22):156.[14]吕晓磊.基于单片机智能控温的仿真与设计[J].安徽电子信息职业技术学院学报,2015,14(03):34-37.[15]贺争汉.基于51单片机的温度控制系统[J].黑龙江科技信息,2015(16):145.[16]谭虹.智能型滑雪保温鞋温控系统的设计与实现[J].体育世界(学术版),2014(11):19-20.[17]王云飞.DS18B20温度传感器的应用设计[J].电子世界,2014(12):355.[18]刘金魁.基于DS18B20的数字测温系统[J].焦作大学学报,2014,28(02):99-100.[19]杨丹丹,杨风,马慧卿.基于单片机的温度采集系统设计[J].山西电子技术,2014(03):19-21.[20]曹美霞.单片机与数字温度传感器DS18B20的接口设计[J].电子制作,2014(11):9-10.

已把我毕业论文的一部分发给你了,应该是你想要的。还需要其它的说一声

数字温度计毕业论文摘要

数字温度传感器测温显示系统毕业设计开题报告

(报告内容包括课题的意义、国内外发展状况、本课题的研究内容、研究方法、研究手段、研究步骤以及参考文献资料等。)

1)课题的研究意义

随着现代信息技术的飞速发展和传统工业改造的逐步实现,能够独立工作的温度检测和显示系统应用于诸多领域,使得温度控制在生产生活领域有着广泛的应用。

温度是日常生活、工业、医学、环境保护、化工、石油等领域最常用到的一个物理量。测量温度的基本方法是使用温度计直接读取温度。最常见到的测量温度的工具是各种各样的温度计,例如:水银 玻 璃温度计,酒精温度计。它们常常以刻度的形式表示温度的高低,人们必须通过读取刻度值的多少来测量温度。利用单片机和温度传感器构成的电子式智能温度计就可以直接测量温度,得到温度的数字值,既简单方便,有直观准确。本设计所介绍的数字温度计与传统的温度计相比,具有读数方便,测温范围广,测温准确,其输出温度采用数字显示,主要用于对测温比较准确的场所,或科研实验室使用,该设计控制器使用单片机AT89S51,测温传感器使用DS18B20,采用LCD1602液晶显示能准确达到以上要求。

2)国内外发展状况

目前温度计的发展很快,从原始的 玻 璃温度计管温度计发展到了现在的热电阻温度计、热电偶温度计、数字温度计、电子温度计等等。主要温度仪表,如热电偶、热电阻及辐射温度计等在技术上已经成熟,但是它们只能在传统的场合应用,尚不能满足简单、快速、准确测温的要求,尤其是高科技领域。因此,各国专家都在有针对性地竞相开发各种新型温度传感器及特殊与实用测温技术,如采用光纤、激光及遥感或存储等技术的新型温度计已经实用化。

2008年起中国数字温度计及恒温器市场发展迅速,产品产出持续扩张,国家产业政策鼓励电子温度计及恒温器产业向高技术产品方向发展,国内企业新增投资项目投资逐渐增多。投资者对电子温度计及恒温器行业的关注越来越密切,这使得电子温度计及恒温器行业的发展需求增大。本文研究一种基于单片机温度控制系统,以克服传统方法的不足。

3)研究内容和方法

采用数字式温度传感器为检测器件,进行单点温度检测。用LCD1602液晶直接显示温度值,单片机系统作为电子温度计的控制、显示系统。

本系统从以下三个方面来考虑:

(1)检测的温度范围:0℃~100℃,检测分辨率 0.5℃。

(2)用LCD1602来显示温度值。

(3)超过警戒值(自己定义)要报警提示。

主要采用DS18B20温度传感功能,检测当前的温度值,通过液晶将当前温度值显示出来,当检测的温度值超过所设定的温度范围时,报警提醒,达到精确检测的目的。

本系统主要由四部分组成:

1)传感器数据采集部分即温度检测模块,如果采用热敏电阻,可满足40摄氏度至90摄氏度的测量范围,但是热敏电阻精度、重复性,可靠性差,对于检测1摄氏度的信号是不适用,可以采用智能集成数字温度传感器DS18B20。DS18B20是DALLAS公司生产的一线式数字温度传感器,具有3引脚TO-92小体积封装形式;温度测量范围为-55℃~+125℃,可编程为9位~12位A/D转换精度,测温分辨率可达0.0625℃,被测温度用符号扩展的16位数字量方式串行输出;其工作电源既可在远端引入,也可采用寄生电源方式产生;多个DS18B20可以接在一根线上,CPU只需一根端口线就能与诸多 DS18B20通信,占用微处理器的端口较少,可节省大量的引线和逻辑电路。

2)温度显示部分可选用LED数码管显示,也可选用LCD液晶显示。此模块选用LCD1602。

3)上下限报警调整模块通过按键设置报警温度,采用蜂鸣器报警。

4)单片机主板部分智能模块主要指单片机部分,它主要完成传感器信号的接收以及处理工作,本模块的设计首先要做好单片机的选型,考虑到性能以及成本选用AT89S52。

整个系统是以AT89S52控制下工作的。其工作过程是:首先温度按键设定上下极限温度范围,然后温度传感器DS18B20采集当前温度信号,单片机接收此信号,通过处理在液晶LCD1602显示当前温度值。若测得温度超过所设定的范围时,蜂鸣器发出报警信号。

鉴于此,本毕业设计所要完成的任务目标是:

(1)设计电子温度计的信号检测部分

(2)设计电子温度计的信号处理部分

(3)设计电子温度计的主控制器部分

(4)设计电子温度计的显示部分及报警部分

(5)编写调试相关软件设计

(6)实验平台的搭建

(7)整机调试

4)全球传感器未来发展趋势及4大重要领域(转)

近年来,传感器技术新原理、新材料和新技术的研究更加深入、广泛,新品种、新结构、新应用不断涌现。其中,“五化”成为其发展的.重要趋势。

一是智能化,两种发展轨迹齐头并进。一个方向是多种传感功能与数据处理、存储、双向通信等的集成,可全部或部分实现信号探测、变换处理、逻辑判断、功能计算、双向通讯,以及内部自检、自校、自补偿、自诊断等功能,具有低成本、高精度的信息采集、可数据存储和通信、编程自动化和功能多样化等特点。如美国凌力尔特(LinearTechnology)公司的智能传感器安装了ARM架构的32位处理器。另一个方向是软传感技术,即智能传感器与人工智能相结合,目前已出现各种基于模糊推理、人工神经网络、专家系统等人工智能技术的高度智能传感器,并已经在智能家居等方面得到利用。如NEC开发出了对大量的传感器监控实施简化的新方法“不变量分析技术”,并已于今年面向基础设施系统投入使用。

二是可移动化,无线传感网技术应用加快。无线传感网技术的关键是克服节点资源限制(能源供应、计算及通信能力、存储空间等),并满足传感器网络扩展性、容错性等要求。该技术被美国麻省理工学院(MIT)的《技术评论》杂志评为对人类未来生活产生深远影响的十大新兴技术之首。目前研发重点主要在路由协议的设计、定位技术、时间同步技术、数据融合技术、嵌入式操作系统技术、网络安全技术、能量采集技术等方面。迄今,一些发达国家及城市在智能家居、精准农业、林业监测、军事、智能建筑、智能交通等领域对技术进行了应用。如,从 MIT独立出来的VoltreePowerLLC公司受美国农业部的委托,在加利福尼亚州的山林等处设置温度传感器,构建了传感器网络,旨在检测森林火情,减少火灾损失。

三是微型化,MEMS传感器研发异军突起。随着集成微电子机械加工技术的日趋成熟,MEMS传感器将半导体加工工艺(如氧化、光刻、扩散、沉积和蚀刻等)引入传感器的生产制造,实现了规模化生产,并为传感器微型化发展提供了重要的技术支撑。近年来,日本、美国、欧盟等在半导体器件、微系统及微观结构、速度测量、微系统加工方法/设备、麦克风/扬声器、水平/测距/陀螺仪、光刻制版工艺和材料性质的测定/分析等技术领域取得了重要进展。目前,MEMS传感器技术研发主要在以下几个方向:(1)微型化的同时降低功耗;(2)提高精度;(3)实现 MEMS传感器的集成化及智慧化;(4)开发与光学、生物学等技术领域交叉融合的新型传感器,如MOMES传感器(与微光学结合)、生物化学传感器(与生物技术、电化学结合)以及纳米传感器(与纳米技术结合)。

四是集成化,多功能一体化传感器受到广泛关注。传感器集成化包括两类:一种是同类型多个传感器的集成,即同一功能的多个传感元件用集成工艺在同一平面上排列,组成线性传感器(如CCD图像传感器)。另一种是多功能一体化,如几种不同的敏感元器件制作在同一硅片上,制成集成化多功能传感器,集成度高、体积小,容易实现补偿和校正,是当前传感器集成化发展的主要方向。如意法半导体提出把组合了多个传感器的模块作为传感器中枢来提高产品功能;东芝公司已开发出晶圆级别的组合传感器,并于今年3月发布能够同时检测脉搏、心电、体温及身体活动等4种生命体征信息,并将数据无线发送至智能手机或平板电脑等的传感器模块“Silmee”。

五是多样化,新材料技术的突破加快了多种新型传感器的涌现。新型敏感材料是传感器的技术基础,材料技术研发是提升性能、降低成本和技术升级的重要手段。除了传统的半导体材料、光导纤维等,有机敏感材料、陶瓷材料、超导、纳米和生物材料等成为研发热点,生物传感器、光纤传感器、气敏传感器、数字传感器等新型传感器加快涌现。如光纤传感器是利用光纤本身的敏感功能或利用光纤传输光波的传感器,有灵敏度高、抗电磁干扰能力强、耐腐蚀、绝缘性好、体积小、耗电少等特点,目前已应用的光纤传感器可测量的物理量达70多种,发展前景广阔;气敏传感器能将被测气体浓度转换为与其成一定关系的电量输出,具有稳定性好、重复性好、动态特性好、响应迅速、使用维护方便等特点,应用领域非常广泛。另据BCCResearch公司指出,生物传感器和化学传感器有望成为增长最快的传感器细分领域,预计2014至2019年的年均复合增长率可达9.7%。

未来值得关注的四大领域

随着材料科学、纳米技术、微电子等领域前沿技术的突破以及经济社会发展的需求,四大领域可能成为传感器技术未来发展的重点。

一是可穿戴式应用。据美国ABI调查公司预测,2017年可穿戴式传感器的数量将会达到1.6亿。以谷歌眼镜为代表的可穿戴设备是最受关注的硬件创新。谷歌眼镜内置多达10余种的传感器,包括陀螺仪传感器、加速度传感器、磁力传感器、线性加速传感器等,实现了一些传统终端无法实现的功能,如使用者仅需眨一眨眼睛就可完成拍照。当前,可穿戴设备的应用领域正从外置的手表、眼镜、鞋子等向更广阔的领域扩展,如电子肌肤等。日前,东京大学已开发出一种可以贴在肌肤上的柔性可穿戴式传感器。该传感器为薄膜状,单位面积重量只有3g/m2,是普通纸张的1/27左右,厚度也只有2微米。

二是无人驾驶。美国 IHS公司指出,推进无人驾驶发展的传感器技术应用正在加快突破。在该领域,谷歌公司的无人驾驶车辆项目开发取得了重要成果,通过车内安装的照相机、雷达传感器和激光测距仪,以每秒20次的间隔,生成汽车周边区域的实时路况信息,并利用人工智能软件进行分析,预测相关路况未来动向,同时结合谷歌地图来进行道路导航。谷歌无人驾驶汽车已经在内华达、佛罗里达和加利福尼亚州获得上路行使权。奥迪、奔驰、宝马和福特等全球汽车巨头均已展开无人驾驶技术研发,有的车型已接近量产。

三是医护和健康监测。国内外众多医疗研究机构,包括国际著名的医疗行业巨头在传感器技术应用于医疗领域方面已取得重要进展。如罗姆公司目前正在开发一种使用近红外光(NIR)的图像传感器,其原理是照射近红外光LED后,使用专用摄像元件拍摄反射光,通过改变近红外光的波长获取图像,然后通过图像处理使血管等更加鲜明地呈现出来。一些研究机构在能够嵌入或吞入体内的材料制造传感器方面已取得进展。如美国佐治亚理工学院正在开发具备压力传感器和无线通信电路等的体内嵌入式传感器,该器件由导电金属和绝缘薄膜构成,能够根据构成的共振电路的频率变化检测出压力的变化,发挥完作用之后就会溶解于体液中。

四是工业控制。2012年,GE公司在《工业互联网:突破智慧与机器的界限》报告中提出,通过智能传感器将人机连接,并结合软件和大数据分析,可以突破物理和材料科学的限制,并将改变世界的运行方式。报告同时指出,美国通过部署工业互联网,各行业可实现1%的效率提升,15年内能源行业将节省1%的燃料(约660亿美元)。2013年1月,GE在纽约一家电池生产企业共安装了1万多个传感器,用于监测生产时的温度、能源消耗和气压等数据,而工厂的管理人员可以通过iPad获取这些数据,从而对生产进行监督。

此外,荷兰壳牌、富士电机等跨国公司也都在该领域采取了行动。

传感器产业化发展的重要趋势

近年来,随着技术研发的持续深入,成本的下降,性能和可靠性的提升,在物联网、移动互联网和高端装备制造快速发展的推动下,传感器的典型应用市场发展迅速。据BCCResearch公司分析指出,2014年全球传感器市场规模预计达到795亿美元,2019年则有望达到1161亿美元,复合年增长率可达 7.9%。

亚太地区将成为最有潜力的市场。目前,美国、日本、欧洲各国的传感器技术先进、上下游产业配套成熟,是中高端传感器产品的主要生产者和最大的应用市场。同时,亚太地区成为最有潜力的未来市场。英泰诺咨询公司指出,未来几年亚太地区市场份额将持续增长,预计2016年将提高至38.1%,北美和西欧市场份额将略有下降。

交通、信息通信成为市场增长最快的领域。据英泰诺咨询公司预测,2016年全球汽车传感器规模可达419.7亿欧元,占全球市场的22.8%;信息通信行业至2016年也可达421.6亿欧元,占全球市场的22.9%,且有可能成为最大的单一应用市场。而医疗、环境监测、油气管道、智能电网等领域的创新应用将成为新热点,有望在未来创造更多的市场需求。

企业并购日趋活跃。美国、德国和日本等国的传感器大型企业技术研发基础雄厚,各企业均形成了各自的技术优势,整体市场的竞争格局已初步确立(附表)。需要指出的是,大公司通过兼并重组,掌控技术标准和专利,在 “高、精、尖”传感器和新型传感器市场上逐步形成垄断地位。在大企业的竞争压力下,中小企业则向“小(中)而精、小而专”的方向发展,开发专有技术,产品定位特定细分市场。据统计,2010年7月至2011年9月,传感器行业中大规模并购交易多达20多次。如美国私募股权公司 VeritasCapitalIII以5亿美元现金收购珀金埃尔默公司的照明和检测解决方案(IDS)业务;英国思百吉公司以4.75亿美元收购美国欧米茄工程公司的温度、测量设备制造业务。目前,越来越多的并购交易在新兴市场国家出现。

5)参考文献

[1]胡烨, 姚鹏翼. Protel 99 SE 电路设计与仿真教程.北京:机械工业出版社, 2005

[2]强锡富.传感器[M].北京:机械工业出版社,2004

[3]康华光.电子技术基础模拟部分.北京:高等教育出版社,1998

[4]康华光.电子技术基础数字部分.北京:高等教育出版社,1998

[5]刘守义.单片机应用技术[M].西安:西安电子科技大学出版社,2002.

[6]李广弟.单片机基础.北京航空航天大学出版社,1994年

[7]孙焕铭. 51单片机C语言程序应用实例详解.北京:北京航空航天大学出版社,2011

设计题目

摘要:(内容为宋体四号字)

随着现代信息技术的飞速发展和传统工业改造的逐步实现,温度自动检测和显示系统在很多领域得到广泛应用。人们在温度检测的准确度、便捷、快速等方面有着越来越高的要求。而传统的温度传感器已经不能满足人们的需求,其渐渐被新型的温度传感器所代替。

本文设计并制作了一个简易温度计。本设计采用了单片机AT89S52和温度传感器DS18B20组成了温度自动测控系统,可根据实际需要任意设定温度值,并进行自动控制。在此设计中利用了AT89S52单片机作为主控制器件,DS18B20作为测温传感器通过LCD数码管串口传送数据,实现温度显示。通过DS18B20直接读取被测温度值,进行数据转换,能够设置温度上下限来设置报警温度。并且在到达报警温度后,系统会自动报警。

本文设计是从测温电路、主控电路、报警电路等几个方面来分析说明的。该器件可直接向单片机传输数字信号,便于单片机处理及控制。另外,该温度计还能直接采用测温器件测量温度。从而简化数据传输与处理过程。此设计的优点主要体现在可操作性强,结构基础简单,拥有很大的扩展空间等。

关键词:单片机;温度传感器;温度计;报警

温度传感器原理及应用论文参考文献

温度传感器原理及应用论文参考文献,温度传感器是温度测量仪表的核心部分,是指能感受温度并转换成可用输出信号的传感器,品种繁多,也是用处比较广的工具。以下分享温度传感器原理及应用论文参考文献。

一、温度传感器工作原理–恒温器

恒温器是一种接触式温度传感器,由两种不同金属(如铝、铜、镍或钨)组成的双金属条组成。

两种金属的线性膨胀系数的差异导致它们在受热时产生机械弯曲运动。

一、温度传感器工作原理–双金属恒温器

恒温器由两种热度不同的金属背靠背粘在一起组成。当天气寒冷时,触点闭合,电流通过恒温器。当它变热时,一种金属比另一种金属膨胀得更多,粘合的双金属条向上(或向下)弯曲,打开触点,防止电流流动。

有两种主要类型的双金属条,主要基于它们在受到温度变化时的运动。有在设定温度点对电触点产生瞬时“开/关”或“关/开”类型动作的“速动”类型,以及逐渐改变其位置的较慢“蠕变”类型随着温度的变化。

速动型恒温器通常用于我们家中,用于控制烤箱、熨斗、浸入式热水箱的温度设定点,也可以在墙上找到它们来控制家庭供暖系统。

爬行器类型通常由双金属线圈或螺旋组成,随着温度的变化缓慢展开或盘绕。一般来说,爬行型双金属条对温度变化比标准的按扣开/关类型更敏感,因为条更长更薄,非常适合用于温度计和表盘等。

二、温度传感器工作原理–热敏电阻

热敏电阻通常由陶瓷材料制成,例如镀在玻璃中的镍、锰或钴的氧化物,这使得它们很容易损坏。与速动类型相比,它们的主要优势在于它们对温度、准确性和可重复性的任何变化的响应速度。

大多数热敏电阻具有负温度系数(NTC),这意味着它们的电阻随着温度的升高而降低。但是,有一些热敏电阻具有正温度系数 (PTC),并且它们的电阻随着温度的升高而增加。

热敏电阻的额定值取决于它们在室温下的电阻值(通常为 25 o C)、它们的时间常数(对温度变化作出反应的时间)以及它们相对于流过它们的电流的额定功率。与电阻一样,热敏电阻在室温下的电阻值从 10 兆欧到几欧姆不等,但出于传感目的,通常使用以千欧为单位的那些类型。

温度传感器类毕业论文文献有哪些?

1、[期刊论文]一种高稳定性双端出纤型光纤光栅温度传感器

期刊:《声学与电子工程》 | 2021 年第 002 期

摘要:针对双端出纤型光纤光栅温度传感器线性度较差、温度测量精度低的问题,文章首先对传感器内部结构进行了优化,使光纤光栅在整个温度测量区间内不受结构件热胀冷缩的应力影响,从而提升传感器的稳定性、实验验证,采用新工艺封装的.光纤光栅温度传感器在5~65°C的范围内温度精度达到0、1°C,且重复性良好,适用于自然环境下的温度传感、

关键词:光纤光栅;温度传感器;应力;测温精度

链接:、zhangqiaokeyan、com/academic-journal-cn_acoustics-electronics-engineering_thesis/0201290086379、html

2、[期刊论文]某型温度传感器防护套弯折疲劳试验的寿命研究

期刊:《环境技术》 | 2021 年第 001 期

摘要:由于动车组轴端温度传感器的大多数已达到三级修、四级修的修程,检修的数量和成本逐年增加,检修发现出现防护套破损的情况较多,需要大量更换,本文通过对温度传感器的防护套进行弯折疲劳试验,对数据结果进行统计分析,确认导致防护套弯折老化的主要原因、

关键词:防护套;破损;弯折疲劳

链接:、zhangqiaokeyan、com/academic-journal-cn_environmental-technology_thesis/0201288850019、html

3、[期刊论文]进气压力温度传感器锡晶须的分析

期刊:《机械制造》 | 2021 年第 004 期

摘要:对进气压力温度传感器的结构进行了介绍,对进气压力温度传感器产生锡晶须问题进行了分析,并在分析锡晶须生长机理的基础上提出了抑制方法、

关键词:传感器;锡晶须;分析

链接:、zhangqiaokeyan、com/academic-journal-cn_machinery_thesis/0201288850874、html

4、[期刊论文]一种具有±0、5℃精度的CMOS数字温度传感器

期刊:《电子设计工程》 | 2021 年第 001 期

摘要:该文设计了一种基于0、35μm CMOS工艺的采用双极型晶体管作为感温元件的数字温度传感器、该温度传感器主要由正温度系数电流产生电路、负温度系数电流产生电路、一阶连续时间Σ-Δ调制器、计数器和I2C总线接口等模块组成、为提高温度传感器的测量精度

该文深入分析了在不采用校准技术的情况下工艺漂移对温度传感器精度的影响,并在此基础上提出了简单的校准电路设计、根据电路仿真结果,在加入校准电路之后,温度传感器在-40~120℃温度范围内的精度可以达到±0、5℃、

关键词:数字温度传感器;CMOS工艺;双极型晶体管;校准

链接:、zhangqiaokeyan、com/academic-journal-cn_electronic-design-engineering_thesis/0201286451032、html

5、[期刊论文]柴油机冷却水温度传感器断裂故障分析

期刊:《内燃机与配件》 | 2021 年第 004 期

摘要:针对柴油机冷却水温度传感器断裂的问题,通过对该测点管路流腔进行CFD仿真计算,分析了流腔内部速度和压力场的变化情况,确定了传感器的断裂原因。计算结果表明:传感器位置处流速较大,导致传感器下部受振荡力,且发生了空蚀,使传感器失效。

本文针对此次传感器断裂故障提出了解决措施:对传感器的位置进行了优化布置;对传感器的结构形式进行了改进。通过改进,传感器随整机验证时间超过1500h,未再发生同类断裂故障,保证了柴油机的安全运行,为以后类似故障的分析和解决提供参考。

关键词:柴油机;温度传感器;流速;受力

链接:、zhangqiaokeyan、com/academic-journal-cn_internal-combustion-engine-parts_thesis/0201288594662、html

常见温度传感器

温度是与人类生活息息相关的物理量,在工业生产自动化流程中,温度测量点要占全部测量点的一半左右。它不仅和我们的生活环境密切相关,在科研及生产过程中,温度的变化对实验及生产的结果至关重要,所以温度传感器应用相当广泛。

温度传感器对温度敏感具有可重复性和规律性,是利用一些金属、半导体等材料与温度相关的特性制成的。现在来介绍一些温度传感器的工作原理。

铂容易提纯,其物理、化学性能在高温和氧化介质中非常稳定。铂电阻的输入-输出特性接近线性,且测量精度高,所以它能用作工业测温元件,还能作为温度计作基准器。

铂电阻在常用的热电阻中准确度最高,国际温标ITS-90中还规定,将具有特殊构造的铂电阻作为13.5033℃~961.780℃标准温度计来使用。铂电阻广泛用于-200℃~850℃范围内的温度测量,工业中通常在600℃以下。

PN结温度传感器是利用PN结的结电压随温度成近似线性变化这一特性实现对温度的检测、控制和补偿等功能。实验表明,在一定的电流模式下,PN结的正向电压与温度之间具有很好的线性关系。

根据PN结理论,对于理想二极管,只要正向电压UF大于几个kbT/e(kb为波尔兹曼常数,e为电子电荷)。其正向电流IF与正向电压UF和温度T之间的关系可表示为

由半导体理论可知,对于实际二极管,只要它们工作的PN结空间电荷区中的复合电流和表面漏电流可以忽略,而又未发生大注入效应的电压和温度范围内,其特性与上述理想二极管是相符合的[6]。实验表明,对于砷化镓、

锗和硅二极管,在一个相当宽的温度范围内,其正向电压与温度之间的关系与式(1-3)是一致的,如图1-1所示。

实验发现晶体管发射结上的正向电压随温度的上升而近似线性下降,这种特性与二极管十分相似,但晶体管表现出比二极管更好的线性和互换性。

二极管的温度特性只对扩散电流成立,但实际二极管的正向电流除扩散电流成分外,还包括空间电荷区中的复合电流和表面漏电流成分。这两种电流与温度的关系不同于扩散电流与温度的关系,因此,实际二极管的电压—温度特性是偏离理想情况的。

由于三极管在发射结正向偏置条件下,虽然发射结也包括上述三种电流成分,但是只有其中的扩散电流成分能够到达集电极形成集电极电流,而另外两种电流成分则作为基极电流漏掉,并不到达集电极。因此,晶体管的

所以表现出更好的电压-温ICUBE关系比管的IFUF关系更符合理想情况,

度线性关系。根据晶体管的有关理论可以证明,NPN晶体管的基极—发射极电压UBE与温度T和集电极电流Ic的函数关系式与二极管的UF与T和IF函数关系式(1-3)相同。因此,在集电极电流Ic恒定条件下,晶体管的基极—发射极电压UBE与温度T呈线性关系。但严格地说,这种线性关系是不完全的,因为关系式中存在非线性项。

集成温度传感器是将温敏晶体管及其辅助电路集成在同一芯片的集成化温度传感器。这种传感器的优点是直接给出正比于绝对温度的理想的线性输出[7]。目前,集成温度传感器已广泛用于-50℃~+150℃温度范围内的温度检测、控制和补偿等。集成温度传感器按输出形式可分为电压型和电流型两种。

进气温度传感器工作原理是什么?

进气温度传感器的工作原理是:进气温度传感器在工作状态下,内部安装了一个具有负温度电阻系数的热敏电阻,通过这个负温度热敏电阻感知温度变化,进而调节电阻的大小改变电路电压。

以下是关于进气温度传感器的详细介绍:

1、原理:进气温度传感器就是一个负温度系数的热敏电阻,当温度升高的时候电阻阻值会变小,当温度降低的时候电阻值会增大,汽车的电压会随着汽车电路中电阻的变化而变化,从而产生不一样的电压信号,可以完成汽车控制系统的自动操作。

2、作用:汽车的进气温度传感器就是检测汽车发动机的进气温度,将进气温度转变为电压信号输入为ecu作为喷油修正的信号使用。

相关百科

热门百科

首页
发表服务