浅谈计算机基础教材的“二次开发”
论文关键词:学习现状 自主化 研究性 二次开发
论文摘要: 为了更好地适应具体的教育教学情景和学生的学习需求,并结合本校的实际情况,提出对计算机基础教材进行“二次开发”,为实现学校的培养目标服务。 计算机基础这门学科在学生不同的阶段是必学的一门课程,根据各地的教育水平和教学水平的不同,学生对计算机基础知识的掌握程度也有很大的区别,特别在中高职院校中,不管是哪一专业,计算机基础是一门必修课程,我们有必要对这门教材进行“二次开发”,来满足现在课程设置的需求。 教材的“二次开发”主要是指教师依据课程标准对既定的教材内容进行适度增删、调整和加工,合理选用和开发其他教学材料,从而使之更好地适应具体的教育教学情景和学生的学习需求。任何教材到了学校,到了教师手中,都有一个再创造的校本化实施问题。我们要对现有的教材进行研究,抓住现有教材的一些不足进行加工改造;根据学生人格成长的特点和学校实际订制出的个性化培养目标,抓住难点,突出重点,对教材进行“二次开发”,为实现学校的培养目标服务。结合我校的具体情况,我对计算机基础教材进行了“二次开发”。 1 根据学生的学习现状,实现教材内容的再确立 现在所有的中职学生要求在毕业前要取得国家计算机等级考试一级证书,非计算机专业的同学只要考取计算机一级B证书就可以了,一级B大纲中不要求学生掌握PowerPoint内容,在对教材开发时就可以对PowerPoint的内容进行简单介绍,让学生在走上社会以后会用就行,Excel中的嵌套函数对学生来说掌握难度较大,一级B大纲中也不要求学生掌握,我们就可以把这部分省略掉,防止学生在学习函数时产生畏惧心理。在上课前,教师要认真备课,在备课中既要备教材又要备学生。所谓备学生,究其实质,有时只是对学生原有知识、经验、能力等所作的理想化假设。而真正对于学生的了解与认识,只有在教学过程中才能得以实现,才知道学生的接受能力和理解能力。这就使我们的计算机教学面临一个新问题:理想的假设与课堂中现实的反馈并不一致,那么我们在课堂教学中就应该作出即时的反应,要适应学生的现有学习现实。例如在讲Excel电子表格软件中讲函数使用时,制作“学生成绩分析表”的案例,介绍了公式的使用及单元格的引用(相对、绝对和混合)、各种常见函数(Sum、Average、Count、Max、Min、Rank等)的使用时,由于一些中职的学生连这几个基本的英文单词意思不知道,原定的教学内容显然无法匹配学生现有的教学现实,于是我及时对教学内容进行调整,让学生在工具栏中找用中文标识的几个函数“求和、平均值、计数、最大值、最小值”,一些没有中文表示的,让他们在课堂上强记这些英文单词,进行小组交流,找出规律,学生的学习积极性和主动性得到了最大限度的调动,解决实际问题的能力也在学习过程中得到了充分地发挥。 2 根据学生的学习需要,实现教材进度再把握 学生在计算机基础学习过程中表现出来的内在需要是计算机基础教学赖以推进的重要尺度。教学过程中,教师应尊重学生计算机基础学习的实际,并以此为依据灵活而创造性地把握好教材实施的进度。其具体做法是:教师首先根据学生的具体情况设计好相关知识章节的进度,在上课时按照进度进行,然后教师再根据学生掌握的情况,通过一些案例具体讲解相关知识背景。 例如:在开发网络基础这一章节内容时,一级B大纲中要求学生会用IE浏览器和Outlook发送电子邮件即可,为了方便学生以后的学习、生活和工作,我们要把一些TCP/IP协议、IP地址、搜索引擎及Internet的接入方式等一些相关的知识加入到时教学内容中,如果学生感兴趣还可以介绍MAC地址、URL地址及网络拓扑结构等。 3 为了促进学生自主化学习,将教材项目化 将教材的每一章节设置成一个个项目,把每个知识点融合在项目中,项目要最好中生活中的实例,通过生活实例激发学生的好奇心、求知欲、探索欲,从而激发学生的兴趣,没有兴趣就没有学习,要使学生充满活力与激情,教师就必须选取或设计适合学生身心发展的'特点,符合学生认知结构的活动,来充分调动学生的积极性,激发学生内在的潜能。例如,讲计算机组成中的硬件系统时,可以把这一节知识做成组装一台完计算机的项目,要求学生自自己配置一台适合自己使用的电脑,先激发学生的兴趣,然后再讲讲主机里有哪些硬件,让学生自己去到卖电脑的公司去配置电脑,下节课上课时上交电脑配置单,就会发现学生对电脑硬件的了解比在课堂上学到的知识要多的多,哪些硬件及型号是主流产品有的同学能说的很清楚。学生只要自己参与到学习中来,多进行动手实验,学生对学科知识的学习不是通过教师的讲解获得的,而是通过设计一系列的学生活动,让学生在活动中进行思考、对比、演绎、归纳生成所教知识。所以教材的项目化将有利于将学生所学知识生成学生活动菜单,让学生在不知不觉中获得情感体验、建构知识体系,这将会使我们的教学获得事半功倍的效果。 4 可以组织学生进行研究性学习,实现对教材的“二次开发” 让学生参与到教材的编写中来,在教材的二次开发中,教师和学生应该是平等的,他们拥有不同的知识背景和生活阅历,可以让学生在交流和对话中发表自己的观点。教师和学生是融合的,教法和学法是融合的,教案和学案是融合的,课堂和生活是融合的,教材和实践是融合的,效果和能力是融合的。教师即学生,学生即老师。要关注学生的生活实际,现在很多场所都有学生可以操作的电脑,如在家里、手机自动充值网点等,学生对电脑知识的学习不仅仅在学校,教材的“二次开发”只有在学生的参与下,才显得有实际意义和教学价值,“二次开发”才能为学生搭建有效学习的认知平台。教学时,教师也应努力创设现实情境,让教材内容与学生的生活实际紧密相连。 总之,教材的“二次开发”要适合学生使用,坚持新课程理念,从更深层次上来认识和理解教材,并认真处理好课程标准和教材的关系,只有依据课程标准在一定的幅度和范围内进行,才能确保教学的质量。 参考文献: [1] 刘光蓉.基于任务驱动的计算机文化基础实验教学[C].大学计算机基础课程报告论坛论文集,北京高等教育出版社,2006. [2] 二次开发:让教材走向生本[N].中国教师报,2010-9-1.
摘要:对Pro/Engineer的CAD二次开发技术进行探讨,深入研究Pro/Engineer的几种二次开发工具,并通过对Pro/TOOLKIT二次开发工具包的研究和分析,提出了基于三维模型的用户自定义参数设计,最后利用Pro/TOOLKIT开发模块和Visual C++完成建立齿轮参数化设计。关键词:二次开发 Pro/TOOLKIT开发工具 参数化设计一、引言在CAD技术日益普及的今天,传统的二维CAD软件正逐渐被三维CAD软件所替代。在众多软件中,PTC公司的Pro/Engineer是具有代表性的优秀软件之一。自从面世以来,它以尺寸驱动、基于特征、单一全关联的数据库等优点深受用户好评。企业根据产品对象的不同,在使用CAD软件时也各有侧重。企业要想最大效率的发挥出软件的功效,必须根据企业的产品特征和企业状况对软件进行二次开发。本文列举了在软件Pro/Engineer中常用的二次开发工具与方法,并着重介绍了用Pro/TOOLKIT对Pro/Engineer进行开发时的步骤。最后通过“齿轮快速设计系统”的开发实例进一步说明开发时的技巧。二、开发工具Pro/Engineer为用户提供了丰富的二次开发工具。常用的有Pro/Program、簇表(Family Table)、用户自定义特征(UDF)、J-Link和Pro/Toolkit等。为了防止混淆,以下特别对这几种开发工具进行比较和说明。1.Pro/ProgramPro/Engineer对每个零件或组件模型都有一个主要的设计步骤和参数列表,那就是Pro/Program。它是零件与组件自动化设计的一种有效工具。设计人员可使用类似BASIC的高级语言,根据需要来编写该模型的Program。包括:控制特征的出现与否、尺寸的大小、零件与组件的出现与否、零件与组件的个数等。然而,Pro/Engineer就可以通过运行该程序来读取此零件或组件,并通过人机交互的方法得到不同的几何形状,以满足产品设计的需要。2.簇表(Family Table)簇表可用于管理具有相同或相近结构的零件,特别适用于标准零件的管理。它是通过建立基础零件为父零件,然后在簇表中定义各个控制参数来控制模型的形状及大小。这样,就可通过改变各个参数的值来控制派生的各种子零件。3.用户自定义特征(UDF)设计人员在使用Pro/Engineer进行零件设计时,经常会遇到一些重复出现的特征。例如,螺钉的座孔等,因此设计人员就要花费许多时间进行这种重复性的操作。用户自定义特征则能将同一特征用于不同的零件上,或将若干个系统特征融合为一个自定义特征,使用时作为一个全局出现。这样,设计人员就可以建立自己的用户自定义特征库,根据产品特征快速生成几何模型,从而极大地提高了设计人员的工作效率。4.Pro/TOOLKITPro/TOOLKIT是PTC为Pro/Engineer制定的开发工具包,它提供了应用程序接口(API),使客户或第三方厂商具有扩展Pro/Engineer功能的能力。Pro/TOOLKIT使用面向对象风格C编程,且提供一个庞大、用于底层资源调用的C语言函数和头文件,外部应用程序可借此访问Pro/Engineer的数据库和应用程序。三、Pro/TOOLKIT的运作方式Pro/TOOLKIT应用程序代码集成进入Pro/Engineer的标准方法是通过“动态链接库”(Dynamical Linked Libraries, DLLs)完成的。当编译Pro/TOOLKIT应用程序的C代码,并将其链接至Pro/TOOLKIT库文件时,就创建了一个可链接至Pro/Engineer可执行文件的对象库文件,这个可执行文件将在Pro/Engineer启动时被执行。这种方法称为“DLL模式”。此外,Pro/TOOLKIT还支持第二种方法的集成,即“多进程”(Multiprocess),或称为“衍生模式”(Spawned Mode)。在这种模式下,Pro/TOOLKIT应用程序将被编译和链接,从而形成一个独立的执行文件。这个可执行文件将是Pro/Engineer的衍生,并作为Pro/Engineer工作任务的一个子程序来运行。在DLL模式中,Pro/TOOLKIT应用程序与Pro/Engineer之间的信息交换,是通过直接函数调用完成的。而在多进程模式下,内部进程信息系统会传递必要的信息,以确定两进程间的函数及其所需参数来模拟直接函数调用,以实现和DLL模式中相同的效果。四、创建齿轮参数设计应用程序的基本方法1.利用VC向导创建齿轮参数设计应用程序程序设计的主要工作在三个方面:1)编写下拉菜单的(. txt)文件和对话框的(.res)资源文件;2)按Pro/TOOLKIT应用程序Pro/Engineer环境运行的要求设计接口与程序运行结束时的终止程序;3)根据功能需求设计Pro/TOOLKIT应用程序主体部分。其程序部分的主体结构如下:int user_initialize( nt argc, char * argv[ ] ) //其功能相当于C语言中的main( )函数{ //调用函数 ……(该部分是用来初始化Pro/TOOLKIT应用程序且创建图形窗口,这部分包括了应用程序的所有初始化进程)return(0)} void user_terminate( ){ ……(该部分是用来结束Pro/TOOLKIT应用程序)return;}func( )(该部分是主要添加要完成预定功能的一个或多个的C语言代码)编辑完源代码后要用Visual C++ 6.0进行编译,首先要设置好编译环境:一是设置好包含头文件的路径;二是设置好连接所需库文件的路径。pro/engineer二次开发关键技术研究 来自: 免费论文网 编译连接成功生成可执行程序中,要把Pro/TOOLKIT应用程序集成到Pro/Engineer系统中,必须进行应用程序的注册,才能运行和生成一个注册文件(* .dat),其中包含的应Pro/Engineer用程序的位置,菜单资源及对话框资源文件的位置,以及该Pro/TOOLKIT的版本信息[2][3]。2.以开发直齿圆柱齿轮为例来具体论述设计过程(1)编写齿轮设计的下拉菜单在已有的菜单条中要增加一列“齿轮参数化设计”及下拉菜单。具体有两步:第一步定义按钮命令;第二步是菜单栏中添加该按钮。在程序中加入以下命令:ProMenubarMenuADD(“UserMenu”,“齿轮参数化设计”,“Utilities”,PRO_B_FALSE,UserMg)ProMenubarmenuPushbuttonADD(“UserMenu”,“直齿圆柱齿轮帮助”,NULL,PRO_B_TRUE,cmd_id1,UserMsg)(2)编写人机交换对话框。利用Pro/TOOLKIT提供的(User Interface Dialog Boxes)对话框技术。其中UI对话框的设计涉及两个方面:一是按界面的布局编写资源文件;二是针对UI对话框的功能编写相应的控制程序。要在C语言程序中进行以下过程:(a)程序读取对话框资源文件,以便将对话框调入内存;(b) 为对话框各控件指定行为函数,修改对话框及控件属性;(c) 显示对话框,接受用户交往;(d)关闭对话框,释放对话框所占的内存。其中主要用到以下函数:对话框调入内存函数ProUIDialogCreat( ),对话框各控件指定行为函数ProUIPushbuttonActivateActionset( ),激活对话框函数ProUIDialogActivate( ),关闭对话框函数ProUIDialogDestroy( )。(3)在零件模式下建立直齿圆柱齿轮的模型,并将各尺寸间的关联输入到Program中的INPUT-END与RELATIONS-ENDRELATIONS之间,这其中找各尺寸的关系很重要,即不要繁琐,也不能过于简单而不能驱动模型。从直齿圆柱齿轮的几何尺寸计算公式中找到了可以驱动该模型的四个参数:齿轮、模数、压力角与齿宽。在Pro/Engineer的Programe中输入: INPUT(4)最好在对话框输入参数后就可以生成。五、结论本文列举了Pro/Engineer软件常用的二次开发方法和适用场合,并着重介绍了利用Pro/TOOLKIT进行二次开发时的一般步骤。通过“齿轮快速设计系统”的开发实例进一步阐述了在开发过程中应注意的事项。Pro/Engineer是功能强大/体系完备的CAD/CAM软件,通过对其二次开发可以将Pro/Engineer的通用性和专一性完美的结合起来。企业应根据其自身的产品对象、人员素质和开发要求来确定开发工具与开发深度。参考文献[1] 林龙震.Pro/TOOLKIT WILDFIRE 2.0插件设计[M].电子工业出版社.2005.1.[2] 李世国,何建军.基于Pro/E零件模型的参数化设计技术研究[J].机械设计与研究.2002.12.
(1)ANSYS的二次开发并不难,VB这个软件上手也很简单,从文献上看,至少有十年的历史,可以参考的文献资料书籍都很多。将其设为硕士论文课题肯定是可行的,现在还有很多人把这个作为课题的一部分。(2)但是,这个二次开发应该只是辅助作用的,篇幅最好不要超过整个论文的一半,应该还需要有比较核心的东西才能作为硕士论文。如先对某种特殊的结构进行分析对比然后再二次开发、或者某些结构比较常用单个分析工作量大而批量化计算可以大大提高效率等等,这样才能凸显出二次开发的意义,否则就是一个软件了,不具有硕士课题的研究性。(3)硕士论文讲究前后的连贯性,需要有前因后果。如果能说出二次开发的意义就可以把二次开发作为论文的一部分。具体的行文思路,建议查找本专业相关的硕士或博士论文,看看他们的行文思路,对你确定你的课题会有很大帮助的!
大家上午好!我是第XX号学生XX。我的毕业论文的题目是《人教版高中地理“地球上的大气”教材二次开发研究》,指导老师是XX老师。我之所以选择这一课题,是基于以下几个方面的因素考虑:其一,自去年9月份至今我一直在XX中学的高一年级担任地理教师,为了更好的教学,必须对人教版必修1进行研究。其二,湖北自20xx年开始全面推广新课程改革实验,新课改理念在新地理课程标准中得到充分体现,如培养现代公民必备的地理素养;满足学生不同的地理学习需求;重视对地理问题的探究等。在具体的地理教学中怎么落实这些理念目前还处于探索阶段。我的论文选取人教版必修1第二章作为研究切入点进行教材二次开发研究,旨在为教学活动提供理论认识和实践操作指导。
在初中教材中,对二次函数作了较详细的研究,由于初中学生基础薄弱,又受其接受能力的限制,这部份内容的学习多是机械的,很难从本质上加以理解。进入高中以后,尤其是高三复习阶段,要对他们的基本概念和基本性质(图象以及单调性、奇偶性、有界性)灵活应用,对二次函数还需再深入学习。一、进一步深入理解函数概念初中阶段已经讲述了函数的定义,进入高中后在学习集合的基础上又学习了映射,接着重新学习函数概念,主要是用映射观点来阐明函数,这时就可以用学生已经有一定了解的函数,特别是二次函数为例来加以更深认识函数的概念。二次函数是从一个集合A(定义域)到集合B(值域)上的映射�0�6:A→B,使得集合B中的元素y=ax2+bx+c(a≠0)与集合A的元素X对应,记为�0�6(x)= ax2+ bx+c(a≠0)这里ax2+bx+c表示对应法则,又表示定义域中的元素X在值域中的象,从而使学生对函数的概念有一个较明确的认识,在学生掌握函数值的记号后,可以让学生进一步处理如下问题:类型I:已知�0�6(x)= 2x2+x+2,求�0�6(x+1)这里不能把�0�6(x+1)理解为x=x+1时的函数值,只能理解为自变量为x+1的函数值。类型Ⅱ:设�0�6(x+1)=x2-4x+1,求�0�6(x)这个问题理解为,已知对应法则�0�6下,定义域中的元素x+1的象是x2-4x+1,求定义域中元素X的象,其本质是求对应法则。一般有两种方法:(1)把所给表达式表示成x+1的多项式。�0�6(x+1)=x2-4x+1=(x+1)2-6(x+1)+6,再用x代x+1得�0�6(x)=x2-6x+6(2) 变量代换:它的适应性强,对一般函数都可适用。 令t=x+1,则x=t-1 ∴(t)=(t-1)2-4(t-1)+1=t2-6t+6从而�0�6(x)= x2-6x+6二、二次函数的单调性,最值与图象。在高中阶阶段学习单调性时,必须让学生对二次函数y=ax2+bx+c在区间(-∞,-]及[-,+∞) 上的单调性的结论用定义进行严格的论证,使它建立在严密理论的基础上,与此同时,进一步充分利用函数图象的直观性,给学生配以适当的练习,使学生逐步自觉地利用图象学习二次函数有关的一些函数单调性。类型Ⅲ:画出下列函数的图象,并通过图象研究其单调性。(1)y=x2+2|x-1|-1 (2)y=|x2-1| (3)= x2+2|x|-1这里要使学生注意这些函数与二次函数的差异和联系。掌握把含有绝对值记号的函数用分段函数去表示,然后画出其图象。类型Ⅳ设�0�6(x)=x2-2x-1在区间[t,t+1]上的最小值是g(t)。求:g(t)并画出 y=g(t)的图象解:�0�6(x)=x2-2x-1=(x-1)2-2,在x=1时取最小值-2当1∈[t,t+1]即0≤t≤1,g(t)=-2当t>1时,g(t)=�0�6(t)=t2-2t-1当t<0时,g(t)=�0�6(t+1)=t2-2 t2-2, (t<0) g(t)= -2,(0≤t≤1) t2-2t-1, (t>1)首先要使学生弄清楚题意,一般地,一个二次函数在实数集合R上或是只有最小值或是只有最大值,但当定义域发生变化时,取最大或最小值的情况也随之变化,为了巩固和熟悉这方面知识,可以再给学生补充一些练习。如:y=3x2-5x+6(-3≤x≤-1),求该函数的值域。三、二次函数的知识,可以准确反映学生的数学思维:类型Ⅴ:设二次函数�0�6(x)=ax2+bx+c(a>0)方程�0�6(x)-x=0的两个根x1,x2满足0
1、知识与技能:掌握二次函数的图象与性质,能够借助于具体的二次函数应用所学知识解决简单的函数问题,理解和掌握从不同的角度研究函数的性质与图象的方法。2、过程与方法:通过老师的引导、点拨,让学生在分组合作、积极探索的氛围中,通过回顾归纳,类比分析的方法掌握从函数图象出发研究函数性质和从函数解析式性质去研究函数图象这两种从不同角度研究函数的数学方法,加深对函数概念的理解和研究函数的方法的认识。3、情感、态度、价值观:让学生在数学活动中感受数学思想方法之美、体会数学思想方法之重要;同时通过本节课的学习,使学生获得研究函数的规律和方法;培养学生主动学习、合作交流的意识。重点使学生掌握二次函数的概念、图象和性质;熟悉从不同的角度研究函数的性质与图象的方法。难点借助于二次函数的解析式通过配方对函数性质的研究来分析推断二次函数的图象。
摘要: 在历届高考试题解析与应注意的问题中,一元二次函数占有重要的地位,不管在代数中,解析几何中,利用此函数的机会特别多,同时各种数学思想如函数的 ...www.wsdxs.cn/html/shuxue/20090314/53641.html
二次是指电气电路中的二次回路和二次设备 二次回路——在电力系统中对一次设备进行监测、控制、调节和保护的电气回路称为二次回路。 二次设备——指对一次设备的工作进行控制、保护、监察和测量的设备。如测量仪表、继电器、操作开关、按钮、自动控制设备、计算机、信号设备、控制电缆以及提供这些设备能源的一些供电装置(如蓄电池、硅整流器等)。 相关知识:一次设备是指发、输、配电和电动机的主系统上所使用的设备。如发电机、变压器、断路器、隔离开关、母线、电力电缆、输电线路和大型电动机等。 保护指的是继电保护 继电保护——是二次设备,当电力系统中的电力元件(如发电机、线路等)或电力系统本身发生了故障危及电力系统安全运行时,能够向运行值班人员及时发出警告信号,或者直接向所控制的断路器发出跳闸命令以终止这些事件发展的一种自动化措施和设备,一般通称为继电保护装置。
研究极值问题方面、解决多项式的根和在物理方面的应用等有重要意义。二次型的系统研究是从18世纪开始的,它起源于对二次曲线和二次曲面的分类问题的讨论,将二次曲线和二次曲面的方程变形,选有主轴方向的轴作为坐标轴以简化方程的形状,这个问题是在18世纪引进的。
二次型化简的进一步研究涉及二次型或行列式的特征方程的概念。特征方程的概念隐含地出现在欧拉的著作中,拉格朗日在其关于线性微分方程组的著作中首先明确地给出了这个概念。
扩展资料
柯西在其著作中给出结论:当方程是标准型时,二次曲面用二次型的符号来进行分类。然而,那时并不太清楚,在化简成标准型时,为何总是得到同样数目的正项和负项。西尔维斯特回答了这个问题,他给出了n个变数的二次型的惯性定律,但没有证明。这个定律后被雅克比重新发现和证明。1801年,高斯在《算术研究》中引进了二次型的正定、负定、半正定和半负定等术语。
西尔维斯特在研究二次曲线和二次曲面的切触和相交时需要考虑这种二次曲线和二次曲面束的分类。在他的分类方法中他引进了初等因子和不变因子的概念,但他没有证明“不变因子组成两个二次型的不变量的完全集”这一结论。
参考资料来源:百度百科—正定二次型
1、知识与技能:掌握二次函数的图象与性质,能够借助于具体的二次函数应用所学知识解决简单的函数问题,理解和掌握从不同的角度研究函数的性质与图象的方法。2、过程与方法:通过老师的引导、点拨,让学生在分组合作、积极探索的氛围中,通过回顾归纳,类比分析的方法掌握从函数图象出发研究函数性质和从函数解析式性质去研究函数图象这两种从不同角度研究函数的数学方法,加深对函数概念的理解和研究函数的方法的认识。3、情感、态度、价值观:让学生在数学活动中感受数学思想方法之美、体会数学思想方法之重要;同时通过本节课的学习,使学生获得研究函数的规律和方法;培养学生主动学习、合作交流的意识。重点使学生掌握二次函数的概念、图象和性质;熟悉从不同的角度研究函数的性质与图象的方法。难点借助于二次函数的解析式通过配方对函数性质的研究来分析推断二次函数的图象。
本文从以下几方面探讨如何学好二次函数 . 一、理解二次函数的内涵及本质 . 二次函数 y=ax2 + bx + c ( a ≠ 0 , a 、 b 、 c 是常数)中含有两个变量 x 、 y ,我们只要先确定其中一个变量,就可利用解析式求出另一个变量,即得到一组解;而一组解就是一个点的坐标,实际上二次函数的图象就是由无数个这样的点构成的图形 . 二、熟悉几个特殊型二次函数的图象及性质 . 1 、通过描点,观察 y=ax2 、 y=ax2 + k 、 y=a ( x + h ) 2 图象的形状及位置,熟悉各自图象的基本特征,反之根据抛物线的特征能迅速确定它是哪一种解析式 . 2 、理解图象的平移口诀“加上减下,加左减右” . y=ax2 → y=a ( x + h ) 2 + k “加上减下”是针对 k 而言的,“加左减右”是针对 h 而言的 . 总之,如果两个二次函数的二次项系数相同,则它们的抛物线形状相同,由于顶点坐标不同,所以位置不同,而抛物线的平移实质上是顶点的平移,如果抛物线是一般形式,应先化为顶点式再平移 . 3 、通过描点画图、图象平移,理解并明确解析式的特征与图象的特征是完全相对应的,我们在解题时要做到胸中有图,看到函数就能在头脑中反映出它的图象的基本特征; 4 、在熟悉函数图象的基础上,通过观察、分析抛物线的特征,来理解二次函数的增减性、极值等性质;利用图象来判别二次函数的系数 a 、 b 、 c 、△以及由系数组成的代数式的符号等问题 . 三、要充分利用抛物线“顶点”的作用 . 1 、要能准确灵活地求出“顶点” . 形如 y=a ( x + h ) 2 + K →顶点(- h,k ),对于其它形式的二次函数,我们可化为顶点式而求出顶点 . 2 、理解顶点、对称轴、函数最值三者的关系 . 若顶点为(- h , k ),则对称轴为 x= - h , y 最大(小) =k ;反之,若对称轴为 x=m , y 最值 =n ,则顶点为( m , n );理解它们之间的关系,在分析、解决问题时,可达到举一反三的效果 . 3 、利用顶点画草图 . 在大多数情况下,我们只需要画出草图能帮助我们分析、解决问题就行了,这时可根据抛物线顶点,结合开口方向,画出抛物线的大致图象 . 四、理解掌握抛物线与坐标轴交点的求法 . 一般地,点的坐标由横坐标和纵坐标组成,我们在求抛物线与坐标轴的交点时,可优先确定其中一个坐标,再利用解析式求出另一个坐标 . 如果方程无实数根,则说明抛物线与 x 轴无交点 . 从以上求交点的过程可以看出,求交点的实质就是解方程,而且与方程的根的判别式联系起来,利用根的判别式判定抛物线与 x 轴的交点个数 . 五、灵活应用待定系数法求二次函数的解析式 . 用待定系数法求二次函数的解析式是我们求解析式时最常规有效的方法,求解析式时往往可选择多种方法,如能综合利用二次函数的图象与性质,灵活应用数形结合的思想,不仅可以简化计算,而且对进一步理解二次函数的本质及数与形的关系大有裨益 .〖教学目标〗 ◆1,经历一元二次方程概念的发生过程. ◆2,理解一元二次方程的概念. ◆3,了解一元二次方程的一般形式,会辨别一元二次方程的二次项系数,一次项系数及常数项. 〖教学重点与难点〗 ◆教学重点:一元二次方程的概念,包括一般形式. ◆教学难点:例1第4题计算容易产生差错,是本节教学的难点. 〖教学过程〗 合作学习 列出下列问题中关于未知数x的方程 ①正方形的面积为80,边长为x,则可列出方程 . ②某村的粮食年产量,在两年内从60万千克增长到72万千克,问平均每年增长的百分率是多少 设年平均增长率为x,则可列出方程 . 引入新课 观察方程x2=80 和 两边都是整式,只含有一个未知数,并且未知数的最高次数是2次,我们把这样的方程叫做一元二次方程,能使一元二次方程两边相等的未知数的值叫一元二次方程的解(或根) 练一练:1,判断下列方程是否为一元二次方程:① 2(3x+2)=x2 ② +x+3=0 ③ ④ ⑤ 2,判断未知数的值,,是否是方程的根. 一般地,任何一个关于x 的一元二次方程都可以化为的形式,我们把形如(,,为常数,)称为一元二次方程的一般形式,其中,,分别称为二次项,一次项和常数项.,分别称为二次项系数和一次项系数. 思考:为什么,,可以为零吗 三,范例讲解: 例1:把下列方程化成一元二次方程的一般形式,并写出它的二次项系数,一次项系数和常数项. ① ② ③ ④ 解:① 移项,整理,得 这个二次项系数为,一次项系数为,常数项为. ② 移项,整理,得 这个二次项系数为,一次项系数为,常数项为. ③ 移项,整理,得 这个二次项系数为,一次项系数为,常数项为. ④ 移项,整理,得 这个二次项系数为,一次项系数为,常数项为. 我们在写一元二次方程的一般形式时,通常按未知数的系数从高到低排列,先写二次项,再写一次项,最后是常数项. 四,练习巩固: 1,方程 ① ② ③ ④ 中是一元二次方程的为 (填序号). 2,关于的一元二次方程的一个解是,则 3,判断下列各方程后面的两个数是不是它的解. ① ( ) ② ( ) ③ (3 , 1) ( ) ④ () ( ) 五,小结: 记住一元二次方程的一般形式,并会判断方程是否为一元二次方程; 化成一元二次方程的一般形式后,能说出二次项系数,一次项系数和常数项; 能判断的值是不是方程的解. 作业:见作业本 2.1一元二次方程(2) 【教学目标】 ◆1.掌握因式分解法解一元二次方程的基本步骤. ◆2.会用因式分解法解一元二次方程. 【教学重点与难点】 ◆教学重点:用因式分解法解一元二次方程. ◆教学难点:例3方程中含有无理系数,需将常数项2看成,才能分解因式,是本节教学的难点. 【教学过程】 复习引入 1,将下列各式分解因式: 教师指出:把一个多项式化成几个整式的积的形式叫做因式分解. 2,你能利用因式分解解下列方程吗 请中等程度的学生上来板演,其余学生写在练习本上,教师巡视. 之后教师指出:像上面这种利用因式分解解一元二次方程的方法叫做因式分解法.(板书课题) 新课学习 归纳因式分解法解一元二次方程的步骤: 教师首先指出:当方程的一边为0,另一边容易分解成两个一次因式的积时,用因式分解法求解方程比较方便.然后归纳步骤:(板书) 若方程的右边不是零,则先移项,使方程的右边为零; 将方程的左边分解因式; 根据若M·N=0,则M=0或N=0,将解一元二次方程转化为解两个一元一次方程. 2,讲解例2. (1)解下列一元二次方程: 教师在讲解中不仅要突出整体的思想:把x-2及3x-4和4x-3看成整体,还要突出化归的思想:通过因式分解把一元二次方程转化为一元一次方程来求解.并且教师要认真板演,示范表述格式,强调两个一元一次方程之间的连结词要用"或",而不能用且. (2)想一想:将第(1),(2),(3)题的解分别代人原方程的左,右两边,等式成立吗 (3)归纳用因式分解法解的一元二次方程的基本类型: ①先变形成一般形式,再因式分解: ②移项后直接因式分解. 在选择方法时通常可先考虑移项后能否直接分解因式,然后再考虑化简后能否分解因式. 讲解例3. 解方程 在本例中出现无理系数,要注意引导学生将将常数项2看成,另外对于方程中出现两个相等的根,教师要做好板书示范. 3,补充例4 若一个数的平方等于这个数本身,你能求出这个数吗 首先让学生设出未知数,列出方程(),再让学生求解.根据学生的求解情况强调:对于此类方程不能两边同时约去x,因为这里的x可以是0. 三,巩固练习: 课本第32页课内练习. 四,体会和分享 能说出你这节课的收获和体验让大家与你分享吗 先由学生自由发言,教师再投影演示: 1.能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积; 2.用分解因式法解一元二次方程的一般步骤: (1)将方程的右边化为零; (2)将方程的左边分解为两个一次因式的乘积; (3)令每一个因式为零,得到两个一元一次方程; (4)解这两个一元一次方程,它们的解就是原方程的解. 3. 用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0. 4,用分解因式法解一元二次方程的注意点:1.必须将方程的右边化为零;2.方程两边不能同时除以含有未知数的代数式. 5,数学思想:整体思想和化归思想. 五.课后作业 1.书本作业题 2.作业本 【板书设计】 屏幕 2.1一元二次方程(二) ——因式分解法解一元二次方程 1. 用分解因式法解一元二次方程的一般步骤: (1)将方程的右边化为零; (2)将方程的左边分解为两个一次因式的乘积; (3)令每一个因式为零,得到两个一元一次方程; (4)解这两个一元一次方程,它们的解就是原方程的解. 2. 数学思想:整体思想和化归思想. 2.2一元二次方程的解法(1) 【教学目标】 ◆1. 理解开平方法解一元二次方程的依据是平方根的意义. ◆2. 会用开平方法解一元二次方程. ◆3. 理解配方法. ◆4. 会用配方法解二次项系数为1的一元二次方程. 【教学重点与难点】 ◆教学重点:开平方法. ◆教学难点:配方法有一个比较复杂的过程,无论从理解和运用上,对学生来说都有一定的难度. 【教学手段】 用多媒体powerpoint和黑板的形式. 【教学过程】 (一)引入新课 问题1: 在修建甬(宁波)金(金华)高速公路时,遇到高山,需要开掘隧道,为了预计这座山隧道的长度,工程人员测量了山的高度约AB=3千米,坡面的长度约AC=5千米.请你估算开掘这座山的隧道约有多少千米 从甬金高速公路入手引出 型的一元二次方程,体现方程与几何图形性质的应用,对一元二次方程概念的理解,方程根的检验等起着复习巩固的作用. (二)由问题1可得 即 再利用因式分解法得出方程的根. 如果把 变形为 ,进而可以理解为x是16的平方根,引出求这种方程的根可以用两边直接开方的方法进行,再得出开平方法的概念. 通过让学生观察体会得出开平方法的两个特征:1,它适合于什么样的方程 (左边是一个关于x的完全平方,右边为一个非负常数即 ).2:用什么样的方法来解 (方程的两边直接开平方的方法) 然后通过一系列,连续的例题来巩固用开平方法解一元二次方程,既突出本节课的重点,又比较自然的过渡到用配方法解一元二次方程. 例1, (1 ) (2) (3) (4) 通过第4个例题的讲解学生已经了解到,如果左边不是一个直接的完全平方,那么通过观察,变形,把它配成完全平方,就可以用开平方法来解一元二次方程. (三),问题2: 把方程变形:左边是一个含有x的式子的完全平方,而右边是一个非负数. 1:先移项:含有未知数的项移到左边,含有常数的项移到右边. 2:方程两边同加上一个合适的数. 3:左边是一个完全平方,右边是一个非负常数. 4:最后用开平方法来解 即可引出配方法的概念.像这样,把一元二次方程的左边配成一个完全平方式,右边为一个非负常数,然后用开平方法求解,这种解一元二次方程的方法叫做配方法. 然后让学生回答:用配方法解一元二次方程关键在哪里 (就是如何在方程左,右两边同加上一个合适的数使左边配成一个完全平方.) 为了弄清楚在方程的左右两边究竟应加上一个什么样的合适的数,可以通过专门的3个练习来得出.即突破本节课的难点. (1) (2) (3) 最后让学生得出结论:1:加上一次项系数一半的平方; 2:前提条件:二次项系数为1 例2, (1) (2) 再次总结:形如 (二次项系数为1时),可以用配方法来解一元二次方程. 具体的步骤有: 第一:移项. 第二:等式两边同加上一次项系数一半的平方. 第三:再用开平方法来解方程. (四)提出挑战题:当二次项系数不是1时,怎么办 为下节课的教学打下了基础. 例3, 课堂小结 让学生回答1:用开平方法,配方法解一元二次方程的概念.2:用这两种方法解方程时,方程的特点.3:用这两种方法解方程时的步骤.4:让学生回答在解方程过程中应注意的事项. 六,布置作业. 2.2一元二次方程和解法(2) 【教学目标】 ◆1. 巩固用配方法解一元二次方程的基本步骤. ◆2. 会用配方法解二次项系数的绝对值不为1的一元二次方程. 【教学重点与难点】 ◆教学重点:用配方法解二次项的系数的绝对值不是1的一元二次方程. ◆教学难点:当二次项系数为小数或分数时,用配方法解一元二次方程. 【教学过程】 一.复习旧知 用适当的方法解下列方程: 1,(x-2)2=3 2, x2+3x+1=0 请学生上来板演,老师点评归纳. 二.新课讲授 1.出示引例:用配方法解方程5x2=10x+1 提出问题:当一元二次方程的二次项系数的绝对值不是1时,怎样用配方法来解 经学生讨论后,指定一名学生(中等程度)回答. 教师总结:对于二次项系数的绝对值不是1的一元二次方程,只要将方程的两边都除以二次项系数,就转化为我们已经能解决的问题.即用配方法解二次项系数是1的一元二次方程. 2.讲解例题 例3:用配方法解下列一元二次方程 (1)2x2+4x-3=0 (2) 3x2-8x-3=0 评注(1)本例讲解可由上一课时的复习来引入,先给出方程x2+2x-1=0,让学生解答,并板书过程,同时解答方程3x2+6x-3=0,让学生作比较,学生容易发现,两个方程同解.再把6x改成4x,并提出问题:方程3x2+4x-3=0又应该如何解 从而把问题化归. (2)本例中两个小题的解法是相通的,在讲解时,需要让学生明确配上去的值到底应该是多少,即解决的一半是多少这一问题,常用的解决方法是把该数乘以. 教师总结:1:用配方法解系数为1的一元二次方程x2+px+q=0时,一般步骤为: (1)x2+px=-q(移); (2)x2+px+() 2=-q+() 2(配); (3)(x+)2= (化); (4)解得x=- (解) 2,当二次项系数不为1时,则在 "移"之前先要有个"除",即两边同除以二次项系数,使二次项系数为1. 练习:用配方法解下列方程 1.2x2-7x+5=0 2.-3n=1 3.x2-x-=0 练习: 一个长方形牧场的面积为8100平方米,长比宽多19米.这个牧场的周长是多少米 三:小结 本课时的重点用配方法解答各种一元二次方程. 本课时的难点是对二次项系数的处理. 四:布置作业 课本""作业本"及习题精选中对应的练习. 2.2一元二次方程的解法(3) 【教学目标】 ◆知识教学点:理解一元二次方程求根公式的推导,会运用公式法解一元二次方程. ◆能力训练点:1.通过求根公式的推导,培养学生数学推理的严密性及严谨性. 2.培养学生快速而准确的计算能力. ◆德育渗透点:1.通过公式的引入,培养学生寻求简便方法的探索精神及创新意识. 2.让学生体验到所有一元二次方程都能运用公式法去解,形成全面解决问题的积极情感,感受公式的对称美,简洁美,产生热爱数学的情感. 【教学重点与难点】 ◆教学重点:求根公式的推导及用公式法解一元二次方程. ◆教学难点:对求根公式推导过程中依据的理论的深刻理解. 【教学过程】 (一)复习引入 1.用配方法解下列方程. (1)x2-7x+11=0,(2)9x2=12x+14. (通过两题练习,使学生复习用配方法解一元二次方程的思路和步骤,为本节课求根公式的推导做第一次铺垫.) 2.用配方法解关于x的方程 x2+2px+q=0. 解:移项,得x2+2px=-q 配方,得x2+2px+p2=-q+p2 即(x+p)2=p2-q. (教师板书,学生回答,此题为求根公式的推导做第二次铺垫.)3.用配方法推导出一元二次方程ax2+bx+c=0(a≠0)的根. 解:因为a≠0,所以方程的两边同除以a, ∵ a≠0, ∴4a2>0 当b2-4ac≥0时. 从上面的结论可以发现: (1)一元二次方程a2+bx+c=0(a≠0)的根是由一元二次方程的系数a,b,c确定的. (2)在解一元二次方程时,可先把方程化为一般形式,然后在b2-4ac≥0的前提下,把a,b,c的值代入上式中,可求得方程的两个根. 的求根公式,用此公式解一元二次方程的方法叫做公式法. (二)师生互动,应用新知 互动1 师:一元二次方程ax2+bx+c=0(a≠0)的求根公式中,要求b2-4ac ≥0 , 那么b2-4ac<0时会怎样呢 生:当b2-4ac<0时,没有意义,此时一元二次方程ax2+bx+c=0(a≠0)无实数解. 明确: b2-4ac≥0是公式的一个重要组成部分,是求根公式成立的前提条件,这一点是解一元二次方程的一个隐藏条件.当b2-4ac0, ∴ x1=2,x2=1. 在教师的引导下,学生回答,教师板书,提醒学生一定要先"代"后"算".不要边代边算.引导学生总结步骤 1.确定a,b,c的值.2.算出b2-4ac的值.3.代入求根公式求出方程的根. 例2不是一般形式,所以在利用公式法之前应先化成一般形式,另外注意例2中的b2-4ac=0,方程有两个相同的实数根,应写成x1= 例3用公式法解一元二次方程: (1)X(x-1)=(X-2)2; (2) x2+x+1=0 其中第一题要先化简成一般形式,如系数是分数或小数,可以直接代公式,也可以先把系数化成整系数后再代公式,视实际清况而定.第二题b2-4ac<0,方程无实数根. 明确:运用公式法解一元二次方程的步骤:( 1) 把方程化为一般形式, 确定a,b,c的值;(2)求出b2-4ac的值;(3)若b2-4ac≥0,把a,b,c及b2-4ac的值代入一元二次方程的求根公式,求出方程的根;若b2-4ac<0,此时方程无解. 练习:P.35课内练习1.熟悉公式法的步骤,训练快速准确的计算能力. 互动3 请同学们根据学习体会,小结一下解一元二次方程的几种方法,通常你是如何选择的 请同学们交流,教师鼓励发言. 明确: 解一元二次方程一般有以下四种方法:直接开平方法,因式分解法,配方法,求根公式法.(1)当方程形如(x-a)2=b(b≥0)时,可用直接开平方法;(2) 当方程左边可以直接简单因式分解时,可选用因式分解法;(3) 配方法是一种重要的解法,尤其要熟悉配方法的整个过程,但解一般方程不选用这种解法;(4) 公式法是一元二次方程最重要的,最常用的解法,任何一元二次方程都可以选用这种解法,我们有时也称它为万能公式. 练习:P.35课内练习2.合理选择解法. (三)达标反馈,深化新知 (1)用公式法解方程4x2+12x+3=0,得到 (A) A.x= B.x= C.x= D.x= (2)关于x的一元二次方程x2-2x+2+K=0有两个实数根,则k的取值范围是 (3)不解方程,你能说出下列方程解的个数吗: x2-2x-2=0 4x2-4x+1=0 2x2-x+2=0, (四)总结及布置作业 引导学生从以下几个方面总结: ≥0). (2)利用公式法求一元二次方程的解的步骤:①化方程为一般式.②确定a,b,c的值.③算出b2-4ac的值.④代入求根公式求根.公式法与配方法都是通法,前者较之后者简单. 2.求根公式是指在b2-4ac≥0对方程的解,如果b2-4ac<0时,则在实数范围内无实数解.渗透一种分类的思想. 2.3一元二次方程的应用(2) 【教学目标】 ◆1. 继续探索一元二次方程的实际应用,进一步体验列一元二次方程解应用题的应用价值. ◆2. 进一步掌握列一元二次方程解应用题的方法和技能. 【教学重点与难点】 ◆教学重点:本节教学的重点是继续探索一元二次方程的应用. ◆教学难点:"合作学习"的问题教为复杂,计算量大,是本节的难点. 【教学过程】 1.复习提问, (1)列方程解应用题的基本步骤 答: ①审题; ②找出题中的量,分清有哪些已知量,哪些未知量,哪些是要求的未知量; ③找出所涉及的基本数量关系; ④列方程; ⑤解方程; ⑥检验. 2.新课讲解, 列一元儿次方程解应用题在初中阶段主要有三类问题:(1)变化率问题;(2)市场营销中单价,销量,销售额以及利润之间的相互关系问题;(3)根据图形中的线段长度,面积之间的相互关系建立方程的问题.而我们今天要解决的就是根据图形中的线段长度,面积之间的相互关系建立方程的问题. 如图2-4,有一张长40cm,宽25cm的长方形硬纸片,裁去角上四个小正方形之后,折成如图2-5那样的无盖纸盒.若纸盒的底面积是450cm,那么纸盒的高是多少 分析 设纸盒的高为x (cm),那么裁去的四个小正方形的边长也是x(cm),这样就可以用关于x的代数式表示纸盒底面长方形的长和宽,根据纸盒的底面积是450cm,就可以列出方程. 解 设纸盒的高为x(cm),则纸盒底面长方形的长和宽分别为(40-2x)cm,(25-2x)cm.由题意,得 化简,整理,得 解这个方程,得 (不合题意,舍去) 答:纸盒的高为5cm. 接下来,同学们来做一下课内练习题1. 围绕长方形公园的栅栏长280m.已知该公园的面积为4800㎡,求这个公园的长与宽. 解: 设公园的一边长为x(m),则另一边长为(140-x)m,由题意,得 化简,整理,得 解这个方程,得 答:略. 合作学习: 一轮船一30km/h的速度由西向东航行(如图2-6),在途中接到台风警报,台风中心正以20km/h的速度由南向北移动.已知距台风中心200km的区域(包括边界)都属于受台风影响区.当轮船接到台风警报时,测得BC=500km,BA=300km. 如果轮船不改变航向,轮船会不会进入台风影响区 你采用什么方法来判断 如果你认为轮船会进入台风影响区,那么从接到报警开始,经过多少时间就进入台风影响区 建议: ①假设经过t时后,轮船和台风中心分别在cb位置; ②运用数形结合的方法寻找相等关系,并列出方程; ③通过相互交流,检查列方程,计算等过程是否正确; ④讨论:如果把航速改为10km/h,结果该怎样 提示:①几何画版给出演示; ②若从接到台风警报开始,经过t时,轮船到达C'点,台风中心到达B'点,那么船是否受到台风影响与什么有关 ③当B'C'符合什么条件时船受到台风影响 ④你能用关于t的代数式表示B',C'两点之间的距离吗 ⑤你能用一元二次方程表示船开始受台风影响的条件吗 解答(略) 练习 练习:P40——课内练习2 补充练习:P40---作业题5 课堂小结: 体会如何根据图形中的线段长度,面积之间的相互关系建立方程的问题.从中学到了什么
在初中教材中,对二次函数作了较详细的研究,由于初中学生基础薄弱,又受其接受能力的限制,这部份内容的学习多是机械的,很难从本质上加以理解。进入高中以后,尤其是高三复习阶段,要对他们的基本概念和基本性质(图象以及单调性、奇偶性、有界性)灵活应用,对二次函数还需再深入学习。一、进一步深入理解函数概念初中阶段已经讲述了函数的定义,进入高中后在学习集合的基础上又学习了映射,接着重新学习函数概念,主要是用映射观点来阐明函数,这时就可以用学生已经有一定了解的函数,特别是二次函数为例来加以更深认识函数的概念。二次函数是从一个集合A(定义域)到集合B(值域)上的映射�0�6:A→B,使得集合B中的元素y=ax2+bx+c(a≠0)与集合A的元素X对应,记为�0�6(x)= ax2+ bx+c(a≠0)这里ax2+bx+c表示对应法则,又表示定义域中的元素X在值域中的象,从而使学生对函数的概念有一个较明确的认识,在学生掌握函数值的记号后,可以让学生进一步处理如下问题:类型I:已知�0�6(x)= 2x2+x+2,求�0�6(x+1)这里不能把�0�6(x+1)理解为x=x+1时的函数值,只能理解为自变量为x+1的函数值。类型Ⅱ:设�0�6(x+1)=x2-4x+1,求�0�6(x)这个问题理解为,已知对应法则�0�6下,定义域中的元素x+1的象是x2-4x+1,求定义域中元素X的象,其本质是求对应法则。一般有两种方法:(1)把所给表达式表示成x+1的多项式。�0�6(x+1)=x2-4x+1=(x+1)2-6(x+1)+6,再用x代x+1得�0�6(x)=x2-6x+6(2) 变量代换:它的适应性强,对一般函数都可适用。 令t=x+1,则x=t-1 ∴(t)=(t-1)2-4(t-1)+1=t2-6t+6从而�0�6(x)= x2-6x+6二、二次函数的单调性,最值与图象。在高中阶阶段学习单调性时,必须让学生对二次函数y=ax2+bx+c在区间(-∞,-]及[-,+∞) 上的单调性的结论用定义进行严格的论证,使它建立在严密理论的基础上,与此同时,进一步充分利用函数图象的直观性,给学生配以适当的练习,使学生逐步自觉地利用图象学习二次函数有关的一些函数单调性。类型Ⅲ:画出下列函数的图象,并通过图象研究其单调性。(1)y=x2+2|x-1|-1 (2)y=|x2-1| (3)= x2+2|x|-1这里要使学生注意这些函数与二次函数的差异和联系。掌握把含有绝对值记号的函数用分段函数去表示,然后画出其图象。类型Ⅳ设�0�6(x)=x2-2x-1在区间[t,t+1]上的最小值是g(t)。求:g(t)并画出 y=g(t)的图象解:�0�6(x)=x2-2x-1=(x-1)2-2,在x=1时取最小值-2当1∈[t,t+1]即0≤t≤1,g(t)=-2当t>1时,g(t)=�0�6(t)=t2-2t-1当t<0时,g(t)=�0�6(t+1)=t2-2 t2-2, (t<0) g(t)= -2,(0≤t≤1) t2-2t-1, (t>1)首先要使学生弄清楚题意,一般地,一个二次函数在实数集合R上或是只有最小值或是只有最大值,但当定义域发生变化时,取最大或最小值的情况也随之变化,为了巩固和熟悉这方面知识,可以再给学生补充一些练习。如:y=3x2-5x+6(-3≤x≤-1),求该函数的值域。三、二次函数的知识,可以准确反映学生的数学思维:类型Ⅴ:设二次函数�0�6(x)=ax2+bx+c(a>0)方程�0�6(x)-x=0的两个根x1,x2满足0
在初中教材中,对二次函数作了较详细的研究,由于初中学生基础薄弱,又受其接受能力的限制,这部份内容的学习多是机械的,很难从本质上加以理解。进入高中以后,尤其是高三复习阶段,要对他们的基本概念和基本性质(图象以及单调性、奇偶性、有界性)灵活应用,对二次函数还需再深入学习。一、进一步深入理解函数概念初中阶段已经讲述了函数的定义,进入高中后在学习集合的基础上又学习了映射,接着重新学习函数概念,主要是用映射观点来阐明函数,这时就可以用学生已经有一定了解的函数,特别是二次函数为例来加以更深认识函数的概念。二次函数是从一个集合A(定义域)到集合B(值域)上的映射�0�6:A→B,使得集合B中的元素y=ax2+bx+c(a≠0)与集合A的元素X对应,记为�0�6(x)= ax2+ bx+c(a≠0)这里ax2+bx+c表示对应法则,又表示定义域中的元素X在值域中的象,从而使学生对函数的概念有一个较明确的认识,在学生掌握函数值的记号后,可以让学生进一步处理如下问题:类型I:已知�0�6(x)= 2x2+x+2,求�0�6(x+1)这里不能把�0�6(x+1)理解为x=x+1时的函数值,只能理解为自变量为x+1的函数值。类型Ⅱ:设�0�6(x+1)=x2-4x+1,求�0�6(x)这个问题理解为,已知对应法则�0�6下,定义域中的元素x+1的象是x2-4x+1,求定义域中元素X的象,其本质是求对应法则。一般有两种方法:(1)把所给表达式表示成x+1的多项式。�0�6(x+1)=x2-4x+1=(x+1)2-6(x+1)+6,再用x代x+1得�0�6(x)=x2-6x+6(2) 变量代换:它的适应性强,对一般函数都可适用。 令t=x+1,则x=t-1 ∴(t)=(t-1)2-4(t-1)+1=t2-6t+6从而�0�6(x)= x2-6x+6二、二次函数的单调性,最值与图象。在高中阶阶段学习单调性时,必须让学生对二次函数y=ax2+bx+c在区间(-∞,-]及[-,+∞) 上的单调性的结论用定义进行严格的论证,使它建立在严密理论的基础上,与此同时,进一步充分利用函数图象的直观性,给学生配以适当的练习,使学生逐步自觉地利用图象学习二次函数有关的一些函数单调性。类型Ⅲ:画出下列函数的图象,并通过图象研究其单调性。(1)y=x2+2|x-1|-1 (2)y=|x2-1| (3)= x2+2|x|-1这里要使学生注意这些函数与二次函数的差异和联系。掌握把含有绝对值记号的函数用分段函数去表示,然后画出其图象。类型Ⅳ设�0�6(x)=x2-2x-1在区间[t,t+1]上的最小值是g(t)。求:g(t)并画出 y=g(t)的图象解:�0�6(x)=x2-2x-1=(x-1)2-2,在x=1时取最小值-2当1∈[t,t+1]即0≤t≤1,g(t)=-2当t>1时,g(t)=�0�6(t)=t2-2t-1当t<0时,g(t)=�0�6(t+1)=t2-2 t2-2, (t<0) g(t)= -2,(0≤t≤1) t2-2t-1, (t>1)首先要使学生弄清楚题意,一般地,一个二次函数在实数集合R上或是只有最小值或是只有最大值,但当定义域发生变化时,取最大或最小值的情况也随之变化,为了巩固和熟悉这方面知识,可以再给学生补充一些练习。如:y=3x2-5x+6(-3≤x≤-1),求该函数的值域。三、二次函数的知识,可以准确反映学生的数学思维:类型Ⅴ:设二次函数�0�6(x)=ax2+bx+c(a>0)方程�0�6(x)-x=0的两个根x1,x2满足0
摘要: 在历届高考试题解析与应注意的问题中,一元二次函数占有重要的地位,不管在代数中,解析几何中,利用此函数的机会特别多,同时各种数学思想如函数的 ...www.wsdxs.cn/html/shuxue/20090314/53641.html
数学作为一门工具性的学科,是高中数学最基础的课程。相应的,数学课程的教学也是教育界一直在关注的重点内容。下文是我为大家搜集整理的关于数学毕业论文参考范文下载的内容,欢迎大家阅读参考! 数学毕业论文参考范文下载篇1 浅析高中数学二次函数的教学方法 摘要:二次函数的学习是高中数学学习的重点,也是难点。师生要一起研究学习二次函数的基本方法,掌握其学习思路和规律,这样才能学好二次函数。 关键词:高中数学;二次函数;教学方法 在高中数学教学过程中,二次函数是非常重要的教学内容。随着教学改革的不断推进,初中阶段的二次函数因为是理解内容,没有纳入到考试内容中去,使高中学生在学习二次函数时有难度。因此,教师在教学这部分内容时,必须注重巩固和复习初中二次函数的内容和知识点,同时采取有效的方法合理地进行二次函数教学,确保获得较高的效率和质量,达到提高高中生数学成绩的目的。 一、加强对二次函数定义的认识和理解 高中数学的二次函数教学主要建立在初中二次函数的知识和定义基础上。在定义和解释二次函数的内容和知识过程中,教师主要利用集合之间相互对应的关系来解释二次函数的定义。因此,高中数学的二次函数教学与初中二次函数教学之间存在本质区别,这就造成了在二次函数教学过程中,学生很难适应和接受二次函数的定义。在高中数学的二次函数教学过程中,教师要根据初中二次函数的内容和定义,引导学生全面透彻地理解二次函数的定义和相关知识,这样才能确保学生学习和掌握更多的函数知识。在二次函数教学的过程中,教师要注重引导学生复习和回顾初中阶段掌握的二次函数知识点以及相关定义,并且与高中数学的二次函数内容相比较,这样学生就能对二次函数的定义、定义域、对应关系以及值域等有更深入的认识和理解。例如,在讲解例题:f(x)=x2+1,求解f(2)、f(a)、f(x+1)的过程中,若学生对于二次函数的定义以及概念有比较清晰的认识和理解,学生就可以看出该题是一个比较简单的代换问题,学生只需要将自变量进行替换,就能求解出问题的答案。但是,在解答这类问题的过程中,教师需要正确引导学生对二次函数的定义和概念加以认识和理解,如在f(x+1)=x2+2x+2中,学生需要认识到该函数值的自变量是x+1,而不是x=x+1。 二、采用数形结合的方式进行二次函数教学 在高中数学的二次函数教学过程中,一种常见的教学方法就是数形结合教学法。在二次函数教学过程中,采用数形结合的教学方法,不仅能够帮助学生更好地理解和掌握二次函数的性质以及图象,同时还有利于解决各种各样的二次函数问题,从而达到培养学生的思维能力以及提高二次函数教学效率的目的。采用数形结合的方式进行二次函数教学,所运用到的图像既能将二次函数的性质变化、奇偶性、对称性、最值问题以及变化趋势很好地反映出来,同时也是学习二次函数解题方法以及有效开展教学的重要载体。所以,教师在二次函数的教学过程中,需采用由浅至深的方式进行教学,合理把握和控制教学的难易程度,在学生了解和熟悉二次函数图像的前提下,帮助学生总结和认识其性质变化,从而达到顺利开展二次函数教学的目的。例如,教师在引导学生绘制二次函数图像的过程中,可以采用循序渐进的方式,通过绘制简单的二次函数图像,帮助学生学习和理解图像性质。如采用描点法绘制二次函数图像f(x)=-x2、f(x)=x2、f(x)=x2+2x+1等。在学习绘制函数图像的过程中,教师还可以设置一些例题,如“假设函数f(x)=x2-2x-1,在区间[a,+∞]中,呈单调递增的变化,求解实数a的取值范围”,或者“已知函数f(x)=2x2-4x+1,且-2 三、采用开发式的教学方式,培养学生的思维能力 在高中数学的二次函数教学过程中,涉及的内容范围广,所占的比例也相对较大。因此,教师在开展二次函数教学的过程中,其涉及的教学方法以及教学思路也非常多,教师需要合理选用教学思路和方法,这样才能有效培养和提升学生的数学能力以及思维能力。例如,在二次函数教学过程中,教师可以通过引导学生求解下列例题,让学生进一步理解和掌握二次函数的定义以及外延,并思考和总结出求解二次函数的思路和方法,以培养和提升学生的数学思维能力。如已知函数y=mx2+nx+c,其中a>0,且f(x)-x=0的两个根,x1与x2满足0 参考文献: [1]高红霞.高中数学二次函数教学方法的探讨[J].数理化解题研究,2015(11). [2]郗红梅.例析求二次函数解析式的方法[J].甘肃教育,2015(19). 数学毕业论文参考范文下载篇2 浅谈高中数学教学对信息技术的应用 摘要:为了提高高中数学的教学质量与丰富数学教学内容,将原有的知识点进行整合,使得学生更容易接受相关知识,文章提出了信息技术在高中数学教学中的应用策略:以信息技术为基础,丰富课堂教学内容;以信息技术为支点,优化教学过程;利用信息技术,让学生养成探索的习惯。 关键词:信息技术;高中数学;教学 信息技术在当下社会的发展给教学带来了许多改变,不仅使得教学变得更为高效,同时还令教学的内容变得丰富多彩。因此,随着信息技术在教学中的应用越来越广泛,教师就要对于这种教学模式进行探究,让教材与信息技术可以在进行授课的时候有效结合。只要是做好了以上的内容,就可以将高中数学与信息技术有机地结合到一起,以此推动数学教学的全面发展。从另一方面来说,信息技术也从另一个角度丰富了课堂内容,让学生可以从更多的方面来接触并了解数学中相关的知识与内容。从而使得学生可以养成多方面思考的习惯,让创新精神在他们的心底萌芽。 一、以信息技术为基础,丰富课堂教学内容 学习是一件非常枯燥的事情,驱使学生进行学习的动力是对于未知事物探索的兴趣。高中数学尤为如此,因为数学是一门理论性的学科,因此在学习的过程中,肯定会涉及到一些比较抽象的知识。对于这些抽象的知识,学生在学习起来多少都会有点困难,并且会影响学生的学习积极性。那么面对高中数学的学习,教师如何缓解并改变这一现状呢?目前比较好的办法就是将数学教学与信息技术进行结合,利用信息技术的多样化以及对丰富内容的获取能力,来为学生提供更多、更好的信息内容,供学生理解与学习。多媒体可以将声音、图片、甚至是视频都集中整合起来,立体直观地将数学中的抽象知识展现给学生。并且以此来激发学生的学习兴趣,除此之外,教师利用信息技术可以让课程变得更有层次感,让学生在学习的过程中减少疲劳的感觉。比如,教师在讲解各种函数曲线及其特性的时候,就可以利用多媒体动画的方式,向学生展现相关的函数知识。通过直观的表现,学生可以轻松地理解各种函数对应的图像以及相关的变化,在今后的学习过程中,会更为熟练地运用这些知识。 二、以信息技术为支点,优化教学过程 数学是一门自然科学,它的理论都是源自我们身边的生活。因此,在教学的过程中,教师要根据知识不断地引入实例,让学生可以更好地了解所学的知识。在高中的教材中,对于知识来说,理论知识已经非常丰富,但是对于实例的列举就显得不足。那么学生在学习的时候,理解起这些枯燥的定理与公式就显得非常吃力。这就是因为教材忽略学生的学习能力,编写得太过于理论化,因此就需要教师利用多媒体的优势,来为学生搜集一些关于实际应用数学知识的例子,来让学生了解并掌握其中的规律。这样有利于培养学生的思维与抽象能力,有助于他们今后解决问题时具有明确的思路。比如,在学习概率这一部分的知识时,学生很难联想到生活中相关的事情,教师可以搜集一些类似于老虎机、彩票甚至是其他的一些生活中博彩类性质的事情让学生进行了解。然后带领学生根据其规则进行计算,让学生了解到概率知识在生活中的运用,使学生认识到赌博的坏处。 三、利用信息技术,让学生养成探索的习惯 学习对于学生来说,不是教师的任务,而是每个人自己的事情。学生作为学习的主人,应当对学习具有一定的主导性。在日常的学习中,由于枯燥的内容以及过于逻辑性的思考,会使得学生丧失对于学习的乐趣与动力。正确的教学应当是教师进行适当的引导,让学生可以在他们的好奇心以及兴趣的驱使下自由地进行学习,充分地满足他们的爱好。只有这样,才能最大程度地发挥他们的主观能动性。而将信息技术应用于高中数学,正是给学生搭建了一个这样的平台,让学生可以更好地接触到大量的数学知识以及数学理念。同时,在网络上,各种优质的教学录像比比皆是,学生如果对于某个知识点有疑问,可以随时在网络上进行查看。这对于知识的探索与掌握有着很大的帮助。此外,利用信息技术与网络的优势,还可以让学生在进行资料与问题查询的过程中,养成良好的动手与动脑习惯,不再单单地依靠教师来进行解答,而是学会尝试用自己的方式来找到答案,这对学生的自主探究能力产生了一种提升作用。同时,由于结论是学生自己得到的,那么印象自然非常深刻。总之,信息技术在高中数学教学中的应用,是一件一举多得的事情,不仅可以改变高中数学枯燥的教学环境,而且能充分调动学生的学习积极性,让学生在学习的同时还能了解到更为广泛的信息与其他知识,并且可以激励学生对于疑难问题进行自主探索,提高了他们动手动脑的能力,并且也提高了教学质量。 参考文献: [1]唐冬梅,陈志伟.信息技术在高中数学学科教学中的应用研究文献综述[J].电脑知识与技术,2016(18):106-108. [2]傅焕霞,张鑫.浅议信息技术与高中数学教学有效整合的必要性[J].科技创新导报,2011(35):163. [3]王继春.跨越时空整合资源:信息技术与高中数学教学的有效整合[J].中国教育技术装备,2011(31):135-136. [4]崔志.浅析新课程标准的背景下信息技术在高中数学教学中的应用[J].中国校外教育,2014(10):93. 猜你喜欢: 1. 关于数学的论文范文免费下载 2. 数学系毕业论文范文 3. 数学本科毕业论文范文 4. 数学文化的论文免费下载 5. 大学数学毕业论文范文