近年来,5G技术、物联网、人工智能、大数据、区块链技术等新一代信息技术正蓬勃发展,曾经还处在科幻故事或者预言中的智能设备也变成了现实,同样的,由于技术的发展,智慧教育、智慧城市、智慧医疗等正从专家们的预言逐步走向现实,并日益深刻影响着人们的生产、生活、生命。
与传统医疗模式不同,智慧医疗具有数据密集型等特点,通过简单、友好的交互方式、大数据分析和人工智能,可以辅助医生进行病变检测,提高诊断准确率与效率,在提升医疗服务水平、缓解医疗资源紧张等方面发挥作用。
而现在数字化、网络化、智能化的设施和解决方案与医疗场景加快结合,使智慧医疗已经来到我们身边。
什么是智慧医疗
智慧医疗是生命科学和信息技术融合的产物,是现代医学和通信技术的重要组成部分。
智慧医疗和数字医疗、移动医疗等概念存在相似性,但智慧医疗在系统集成、信息共享和智能处理等方面优势明显,是物联网在医疗卫生领域具体应用的更高阶段。
简单来说,就是利用新一代信息技术、网络技术和物联网技术等,通过打造 健康 档案区域医疗信息平台,实现患者与医务人员、医疗机构、医疗设备之间的互动,最终解决各方存在的信息不对称问题,实现多方共赢。
智慧医疗的核心是数字化,让医疗信息、疾病信息等数据化,用数据来记录、传输。随着科学技术进步,在医疗 健康 领域已经有不少智慧医疗应用成功的案例。手术机器人、VR、智能血糖仪、可穿戴设备、智小马等,都是智慧医疗的有机组成部分。
智慧医疗现状
1、国家政策扶持
随着我国 社会 老龄化趋势的加速, 健康 服务需求不断增长,自2014年开始,中央及地方政府就围绕智慧医疗、医药行业,密集出台了一系列深化改革的政策,为智慧医疗的建设奠定了政策基础。根据中国行业研究报告网发布的《2017-2021年中国智慧医疗行业市场开发及投资趋势研究报告》。在政策的助力下,国内医疗信息化解决方案市场规模达到108.5亿元,2015年至2020年的年复合增长率达到29.6%,未来这一市场规模将超500亿元。
当前,新兴技术赋能医疗业务的程度越来越高。“互联网+医疗”、“5G+医疗”等概念被两会代表频繁提出。
2、互联网企业入局
在智慧医疗广阔前景的吸引下,以BAT为首的互联网企业纷纷对医疗行业展开布局,其中阿里巴巴创立了阿里 健康 和“医疗云”服务;腾讯、丁香园、众安保险三方合作打造的互联网医疗生态链已现雏形;诸多大型企业通过并购,整合医疗资源,布局智慧医疗产业链。《2017-2021年中国 智慧医疗 市场专题研究及未来市场容量评估报告》中数据统计,截止2016年,我国智慧医疗投资规模将近500亿元,预计到2020年,投资规模将扩大到1000亿元。
智慧医疗作用
智慧医疗的作用,概括来说,就是:
1. 为患者提供优质、高效、安全的医疗服务
2. 降低医务工作人员的工作负荷,提升医疗效率
3. 普及医疗 健康 知识,宣贯公共卫生政策
4. 提高国民身体 健康 素质
5. 加强医疗资源共享,降低 社会 医疗成本
6. 更有效地防范和应对公共卫生突发事件
智慧医疗存在的问题
我国的智慧医疗现目前仍处于起步阶段,还需要需在政策、机制和技术创新等方面协同发力。
1. 医疗数据难共享
我国智慧医疗建设发展,总体上呈现稳健上升的态势,但是医疗行业的智能化、信息化水平还不够高,医疗资源的整合和共享,难以得到充分的展现。
由于各地区城市发展不同,每个区域当地的医疗数据化程度也不尽相同,由于数据化程度不一,各医院之间存在着明显的信息不对称现象。这样就易造成得各地区对医疗 健康 数据的采集和整理程度不一致、评判标准不一致等等情况,也就导致“数据孤岛”的产生。
由于医院间相互孤立,病人信息无法同步,病人进医院后,可能同样的检查要重复做,由此带来了巨大的人力物力的浪费,降低了行业的效率,阻碍行业快速发展。
2. 数据安全成问题
数据作为人工智能的重要支撑,却对医疗数据的来源、安全等方面存在很大的欠缺。
例如2019年的谷歌与美国第二大医疗保健系统阿森松公司合作项目“夜莺计划”,在没有通知病人的情况下收集了数百万美国人的 健康 数据。
随着公众对个人数据隐私安全的警惕心越来越强,如何寻求医疗大数据的“开放”与“隐私”的平衡,将成为亟待解决的问题。除此之外,智慧医疗行业本身还面临着真实可靠、有质量的数据量远远不足的问题
3. 智慧医疗水平偏低
虽然现目前我国政策和相关法律法规都在给智慧医疗发展的一定空间和资源倾斜,但现状是很多医疗 健康 相关企业、机构却没有和医院等形成一条完整的链条,对覆盖全生命周期,涵盖预防-诊疗-康养的智慧服务链尚未建立,如在线诊疗与智能监测“断联”,心脏监测、睡眠监测等智能设备尚未与医疗机构连接,影响救治效率。
我们需要尽快建设全民 健康 信息平台,打通区域数据资源通道,提升业务协同能力;实现跨部门的数据流转,构建一体化交互网络。
如何通过机器、人工智能以及互联网的优势来帮助医生解决难题,成为当下智慧医疗的建设难点。
智慧医疗目前问题解决方案
医疗 健康 行业不比其他行业,是关乎人们生命安全的重要支柱性行业,因此无论国家还是 社会 都对这些问题相当重视。
喜马大 健康 作为医疗 健康 行业中的一员,也在积极寻求解决上述存在问题的解决方案,于是将区块链加入到智慧医疗当中,创新性提出医疗 健康 数据上链,保证数据真实性和安全性的同时,打破数据孤岛,促进数据交流,并将数据产生的价值返还给数据产生者本身。
1. 数据上链,保证数据真实、安全
喜马大 健康 智能终端智小马通过可信 健康 数据采集设备,将用户真实、可信的 健康 数据收集起来,上传至个人 健康 数据中心,再通过个人 健康 数据中心将用户数据经过数据脱敏、加密、分布式存储至区块链中,利用区块链安全、不可篡改等特点,保障数据安全。
2. 打破数据孤岛,整合数据资源
医院或者医疗机构可以通过用户已经授权的相关 健康 数据,用作病情诊断、医疗研究等,并且用户可通过授权记录来追溯数据查看情况,以此监控数据的访问情况。既保证数据不被滥用,也有利于医疗数据的共享和使用。
医生通过患者在个人 健康 数据中心中用户提供的共享数据中查看病人既往 健康 数据,方便了医生对用户的病况的了解,加强了就诊的精准程度同时也提高了看病效率,也让患者不用再频繁地上医院,使患者用户避免过多的重复检查,也一定程度上的减轻医疗资源的浪费。
个人 健康 数据中心在保障了用户对数据使用的知情权的同时,运用区块链作为点对点数据共享网络的作用,鼓励用户有选择地、匿名地分享其个人 健康 数据,让数据流动起来,从而打破数据孤岛。并且为了激励用户该行为,喜马大 健康 还会给予相应的数字积分以作奖励。
3. 定制化、精准化 健康 服务
AI智能根据用户个人数据中心上传数据情况进行前瞻性疾病预测,并为其精准匹配 健康 保险、 健康 管理等定制化服务方案,实现用户疾病预测,使其可以有针对性的提前预防,用户将不再是生病了才去进行治疗,而是可以全程监测、预防身体疾病。
4. 普及医疗 健康 知识,病情交流互助
喜马大 健康 平台设立的 健康 社区,包含各种病症交流社区,并且分享各种相关小知识,帮助病友们或者 健康 人群有针对的预防和调理治疗,让大家不仅有朋友圈,更有 健康 生活圈。
结束语
智慧医疗的发展将有力的解决病患看病贵,看病难的问题,以及加强医疗 健康 领域各主体间的协同合作,提高我国医疗现代化,提高医疗服务水平。而喜马大 健康 也将以医疗数据互通互享,有效整合医疗档案,搭建智慧医疗平台实现医疗智能化、信息化,使中国的 健康 事业更上一层楼为目标而努力。
人
工智能(Artificial Intelligence,AI)是利用机器学习和数据分析方法赋予机器模拟、延伸
近年来, 在大数据、算法和计算机能力三大要素的共同驱动下,人工智能进入高速发展阶段。
人工智能市场格局
人工智能赋能实体经济,为生产和生活带来革命性的转变。 人工智能作为新一轮产业变革 的核心力量,将重塑生产、分配、交换和消费等经济活动各环节,催生新业务、新模式和 新产品。从衣食住行到医疗教育,人工智能技术在 社会 经济各个领域深度融合和落地应用。同时,人工智能具有强大的经济辐射效益,为经济发展提供强劲的引擎。据埃森哲预测, 2035 年,人工智能将推动中国劳动生产率提高 27%,经济总增加值提升 7.1 万亿美元。
多角度人工智能产业比较
战略部署:大国角逐,布局各有侧重
全球范围内,中美“双雄并立”构成人工智能第一梯队,日本、英国、以色列和法国等发 达国家乘胜追击,构成第二梯队。同时,在顶层设计上,多数国家强化人工智能战略布局, 并将人工智能上升至国家战略,从政策、资本、需求三大方面为人工智能落地保驾护。后起之秀的中国,局部领域有所突破。中国人工智能起步较晚,发展之路几经沉浮。自 2015 年以来,政府密集出台系列扶植政策,人工智能发展势头迅猛。由于初期我国政策 侧重互联网领域,资金投向偏向终端市场。因此,相比美国产业布局,中国技术层(计算 机视觉和语音识别)和应用层走在世界前端,但基础层核心领域(算法和硬件算力)比较 薄弱,呈“头重脚轻”的态势。当前我国人工智能在国家战略层面上强调系统、综合布局。
美国引领人工智能前沿研究,布局慢热而强势。 美国政府稍显迟缓,2019 年人工智能国 家级战略(《美国人工智能倡议》)才姗姗来迟。但由于美国具有天时(5G 时代)地利(硅 谷)人和(人才)的天然优势,其在人工智能的竞争中已处于全方位领先状态。总体来看, 美国重点领域布局前沿而全面,尤其是在算法和芯片脑科学等领域布局超前。此外,美国聚焦人工智能对国家安全和 社会 稳定的影响和变革,并对数据、网络和系统安全十分重视。
伦理价值观引领,欧洲国家抢占规范制定的制高点。 2018 年,欧洲 28 个成员国(含英国) 签署了《人工智能合作宣言》,在人工智能领域形成合力。从国家层面来看,受限于文化和语言差异阻碍大数据集合的形成,欧洲各国在人工智能产业上不具备先发优势,但欧洲 国家在全球 AI 伦理体系建设和规范的制定上抢占了“先机”。欧盟注重探讨人工智能的社 会伦理和标准,在技术监管方面占据全球领先地位。
日本寻求人工智能解决 社会 问题。 日本以人工智能构建“超智能 社会 ”为引领,将 2017 年确定为人工智能元年。由于日本的数据、技术和商业需求较为分散,难以系统地发展人 工智能技术和产业。因此,日本政府在机器人、医疗 健康 和自动驾驶三大具有相对优势的 领域重点布局,并着力解决本国在养老、教育和商业领域的国家难题。
基础层面:技术薄弱,芯片之路任重道远
基础层由于创新难度大、技术和资金壁垒高等特点,底层基础技术和高端产品市场主要被欧美日韩等少数国际巨头垄断。 受限于技术积累与研发投入的不足,国内在基础层领域相 对薄弱。具体而言,在 AI 芯片领域,国际 科技 巨头芯片已基本构建产业生态,而中国尚 未掌握核心技术,芯片布局难以与巨头抗衡;在云计算领域,服务器虚拟化、网络技术 (SDN)、 开发语音等核心技术被掌握在亚马逊、微软等少数国外 科技 巨头手中。虽国内 阿里、华为等 科技 公司也开始大力投入研发,但核心技术积累尚不足以主导产业链发展;在智能传感器领域,欧洲(BOSCH,ABB)、美国(霍尼韦尔)等国家或地区全面布局传 感器多种产品类型,而在中国也涌现了诸如汇顶 科技 的指纹传感器等产品,但整体产业布 局单一,呈现出明显的短板。在数据领域,中国具有的得天独厚的数据体量优势,海量数 据助推算法算力升级和产业落地,但我们也应当意识到,中国在数据公开力度、国际数据 交换、统一标准的数据生态系统构建等方面还有很长的路要走。
“无芯片不 AI”,以 AI 芯片为载体的计算力是人工智能发展水平的重要衡量标准,我们 将对 AI 芯片作详细剖析,以期对中国在人工智能基础层的竞争力更细致、准确的把握。
依据部署位置,AI 芯片可划分为云端(如数据中心等服务器端)和终端(应用场景涵盖手 机、 汽车 、安防摄像头等电子终端产品)芯片;依据承担的功能,AI 芯片可划分为训练和 推断芯片。训练端参数的形成涉及到海量数据和大规模计算,对算法、精度、处理能力要 求非常高,仅适合在云端部署。目前,GPU(通用型)、FPGA(半定制化)、ASIC(全定制化)成为 AI 芯片行业的主流技术路线。不同类型芯片各具优势,在不同领域呈现多 技术路径并行发展态势。我们将从三种技术路线分别剖析中国 AI 芯片在全球的竞争力。
GPU(Graphics Processing Unit)的设计和生产均已成熟,占领 AI 芯片的主要市场份 额。GPU 擅长大规模并行运算,可平行处理海量信息,仍是 AI 芯片的首选。据 IDC 预测, 2019 年 GPU 在云端训练市场占比高达 75%。在全球范围内,英伟达和 AMD 形成双寡头 垄断,尤其是英伟达占 GPU 市场份额的 70%-80%。英伟达在云端训练和云端推理市场推 出的 GPU Tesla V100 和 Tesla T4 产品具有极高性能和强大竞争力,其垄断地位也在不断 强化。目前中国尚未“入局”云端训练市场。由于国外 GPU 巨头具有丰富的芯片设计经 验和技术沉淀,同时又具有强大的资金实力,中国短期内无法撼动 GPU 芯片的市场格局。
FPGA(Field Programmable Gate Array)芯片具有可硬件编程、配置高灵活性和低能耗等优点。FPGA 技术壁垒高,市场呈双寡头垄断:赛灵思(Xilinx)和英特尔(Intel)合计 占市场份额近 90%,其中赛灵思的市场份额超过 50%,始终保持着全球 FPGA 霸主地位。 国内百度、阿里、京微齐力也在部署 FPGA 领域,但尚处于起步阶段,技术差距较大。
ASIC(Application Specific Integrated Circuits)是面向特定用户需求设计的定制芯片, 可满足多种终端运用。尽管 ASIC 需要大量的物理设计、时间、资金及验证,但在量产后, 其性能、能耗、成本和可靠性都优于 GPU 和 FPGA。与 GPU 与 FPGA 形成确定产品不 同,ASIC 仅是一种技术路线或方案,着力解决各应用领域突出问题及管理需求。目前, ASIC 芯片市场竞争格局稳定且分散。我国的 ASIC 技术与世界领先水平差距较小,部分领域处于世界前列。在海外,谷歌 TPU 是主导者;国内初创芯片企业(如寒武纪、比特大陆和地平线),互联网巨头(如百度、华为和阿里)在细分领域也有所建树。
总体来看 ,欧美日韩基本垄断中高端云端芯片,国内布局主要集中在终端 ASIC 芯片,部分领域处于世界前列,但多以初创企业为主,且尚未形成有影响力的“芯片−平台−应用” 的生态,不具备与传统芯片巨头(如英伟达、赛灵思)抗衡的实力;而在 GPU 和 FPGA 领域,中国尚处于追赶状态,高端芯片依赖海外进口。
技术层面:乘胜追击,国内头部企业各领风骚
技术层是基于基础理论和数据之上,面向细分应用开发的技术。 中游技术类企业具有技术 生态圈、资金和人才三重壁垒,是人工智能产业的核心。相比较绝大多数上游和下游企业聚焦某一细分领域、技术层向产业链上下游扩展较为容易。该层面包括算法理论(机器学 习)、开发平台(开源框架)和应用技术(计算机视觉、智能语音、生物特征识别、自然 语言处理)。众多国际 科技 巨头和独角兽均在该层级开展广泛布局。近年来,我国技术层 围绕垂直领域重点研发,在计算机视觉、语音识别等领域技术成熟,国内头部企业脱颖而 出,竞争优势明显。但算法理论和开发平台的核心技术仍有所欠缺。
具体来看,在算法理论和开发平台领域,国内尚缺乏经验,发展较为缓慢。 机器学习算法是人工智能的热点,开源框架成为国际 科技 巨头和独角兽布局的重点。开源深度学习平台 是允许公众使用、复制和修改的源代码,是人工智能应用技术发展的核心推动力。目前, 国际上广泛使用的开源框架包括谷歌的 TensorFlow、脸书的 Torchnet 和微软的 DMTK等, 美国仍是该领域发展水平最高的国家。我国基础理论体系尚不成熟,百度的 PaddlePaddle、 腾讯的 Angle 等国内企业的算法框架尚无法与国际主流产品竞争。
在应用技术的部分领域,中国实力与欧美比肩。 计算机视觉、智能语音、自然语言处理是三大主要技术方向,也是中国市场规模最大的三大商业化技术领域。受益于互联网产业发 达,积累大量用户数据,国内计算机视觉、语音识别领先全球。自然语言处理当前市场竞 争尚未成型,但国内技术积累与国外相比存在一定差距。
作为落地最为成熟的技术之一,计算机视觉应用场景广泛。 计算机视觉是利用计算机模拟 人眼的识别、跟踪和测量功能。其应用场景广泛,涵盖了安防(人脸识别)、医疗(影像诊断)、移动互联网(视频监管)等。计算机视觉是中国人工智能市场最大的组成部分。据艾瑞咨询数据显示,2017 年,计算机视觉行业市场规模分别为 80 亿元,占国内 AI 市 场的 37%。由于政府市场干预、算法模型成熟度、数据可获得性等因素的影响,计算机视觉技术落地情况产生分化。我国计算机视觉技术输出主要在安防、金融和移动互联网领域。而美国计算机视觉下游主要集中在消费、机器人和智能驾驶领域。
计算机视觉技术竞争格局稳定,国内头部企业脱颖而出。 随着终端市场工业检测与测量逐 渐趋于饱和,新的应用场景尚在 探索 ,当前全球技术层市场进入平稳的增长期,市场竞争格局逐步稳定,头部企业技术差距逐渐缩小。中国在该领域技术积累丰富,技术应用和产 品的结合走在国际前列。2018 年,在全球最权威的人脸识别算法测试(FRVT)中,国内 企业和研究院包揽前五名,中国技术世界领先。国内计算机视觉行业集中度高,头部企业 脱颖而出。据 IDC 统计,2017 年,商汤 科技 、依图 科技 、旷视 科技 、云从 科技 四家企业 占国内市场份额的 69.4%,其中商汤市场份额 20.6%排名第一。
应用层面:群雄逐鹿,格局未定
应用场景市场空间广阔,全球市场格局未定。 受益于全球开源社区,应用层进入门槛相对较低。目前,应用层是人工智能产业链中市场规模最大的层级。据中国电子学会统计,2019 年,全球应用层产业规模将达到360.5 亿元,约是技术层的1.67 倍,基础层的2.53 倍。 在全球范围内,人工智能仍处在产业化和市场化的 探索 阶段,落地场景的丰富度、用户需 求和解决方案的市场渗透率均有待提高。目前,国际上尚未出现拥有绝对主导权的垄断企 业,在很多细分领域的市场竞争格局尚未定型。
中国侧重应用层产业布局,市场发展潜力大。 欧洲、美国等发达国家和地区的人工智能产 业商业落地期较早,以谷歌、亚马逊等企业为首的 科技 巨头注重打造于从芯片、操作系统 到应用技术研发再到细分场景运用的垂直生态,市场整体发展相对成熟;而应用层是我国 人工智能市场最为活跃的领域,其市场规模和企业数量也在国内 AI 分布层级占比最大。据艾瑞咨询统计,2019 年,国内77%的人工智能企业分布在应用层。得益于广阔市场空间以及大规模的用户基础,中国市场发展潜力较大,且在产业化应用上已有部分企业居于 世界前列。例如,中国 AI+安防技术、产品和解决方案引领全球产业发展,海康威视和大 华股份分别占据全球智能安防企业的第一名和第四名。
整体来看 ,国内人工智能完整产业链已初步形成,但仍存在结构性问题。从产业生态来看, 我国偏重于技术层和应用层,尤其是终端产品落地应用丰富,技术商业化程度比肩欧美。 但与美国等发达国家相比,我国在基础层缺乏突破性、标志性的研究成果,底层技术和基 础理论方面尚显薄弱。初期国内政策偏重互联网领域,行业发展追求速度,资金投向追捧 易于变现的终端应用。人工智能产业发展较为“浮躁”,导致研发周期长、资金投入大、 见效慢的基础层创新被市场忽略。“头重脚轻”的发展态势导致我国依赖国外开发工具、 基础器件等问题,不利于我国人工智能生态的布局和产业的长期发展。短期来看,应用终 端领域投资产出明显,但其难以成为引导未来经济变革的核心驱动力。中长期来看,人工智能发展根源于基础层(算法、芯片等)研究有所突破。
透析人工智能发展潜力
基于人工智能产业发展现状,我们将从智能产业基础、学术生态和创新环境三个维度,对 中国、美国和欧洲 28 国人工智能发展潜力进行评估,并使用熵值法确定各指标相应权重 后,利用理想值法(TOPSIS 法)构建了一个代表人工智能发展潜力整体情况的综合指标。
从智能产业基础的角度
产业化程度:增长强劲,产业规模仅次美国
中国人工智能尚在产业化初期,但市场发展潜力较大。 产业化程度是判断人工智能发展活 力的综合指标,从市场规模角度,据 IDC 数据,2019 年,美国、西欧和中国的人工智能 市场规模分别是 213、71.25 和 45 亿美元,占全球市场份额依次为 57%、19%和 12%。中国与美国的市场规模存在较大差异,但近年来国内 AI 技术的快速发展带动市场规模高速增长,2019 年增速高达 64%,远高于美国(26%)和西欧(41%)。从企业数量角度, 据清华大学 科技 政策研究中心,截至 2018 年 6 月,中国(1011 家)和美国(2028 家) 人工智能企业数全球遥遥领先,第三位英国(392 家)不及中国企业数的 40%。从企业布局角度,据腾讯研究院,中国 46%和 22%的人工智能企业分布在语音识别和计算机视觉 领域。横向来看,美国在基础层和技术层企业数量领先中国,尤其是在自然语言处理、机器学习和技术平台领域。而在应用层面(智能机器人、智能无人机),中美差距略小。展 望未来,在政策扶持、资本热捧和数据规模先天优势下,中国人工智能产业将保持强劲的 增长态势,发展潜力较大。
技术创新能力:专利多而不优,海外布局仍有欠缺
专利申请量是衡量人工智能技术创新能力和发展潜质的核心要素。在全球范围内,人工智 能专利申请主要来源于中国、美国和日本。2000 年至 2018 年间,中美日三国 AI 专利申 请量占全球总申请量的 73.95%。中国虽在 AI 领域起步较晚,但自 2010 年起,专利产出 量首超美国,并长期雄踞申请量首位。
从专利申请领域来看, 深度学习、语音识别、人脸识别和机器人等热门领域均成为各国重 点布局领域。其中,美国几乎全领域领跑,而中国在语音识别(中文语音识别正确率世界 第一)、文本挖掘、云计算领域优势明显。具体来看,多数国内专利于 AI 科技 热潮兴起后 申请,并集中在应用端(如智能搜索、智能推荐),而 AI 芯片、基础算法等关键领域和前 沿领域专利技术主要仍被美国掌握。由此反映出中国 AI 发展存在基础不牢,存在表面繁 荣的结构性不均衡问题。
中国 AI 专利质量参差不齐,海外市场布局仍有欠缺。 尽管中国专利申请量远超美国,但技术“多而不强,专而不优”问题亟待调整。其一,中国 AI 专利国内为主,高质量 PCT 数量较少。PCT(Patent Cooperation Treaty)是由 WIPO 进行管理,在全球范围内保护 专利发明者的条约。PCT 通常被为是具有较高的技术价值。据中国专利保护协会统计,美国 PCT 申请量占全球的 41%,国际应用广泛。而中国 PCT 数量(2568 件)相对较少, 仅为美国 PCT 申请量的 1/4。目前,我国 AI 技术尚未形成规模性技术输出,国际市场布 局欠缺;其二,中国实用新型专利占比高,专利废弃比例大。我国专利类别包括发明、实 用新型专利和外观设计三类,技术难度依次降低。中国拥有 AI 专利中较多为门槛低的实 用新型专利,如 2017 年,发明专利仅占申请总量的 23%。此外,据剑桥大学报告显示, 受高昂专利维护费用影响,我国 61%的 AI 实用新型和 95%的外观设计将于 5 年后失效, 而美国 85.6%的专利仍能得到有效保留。
人才储备:供需失衡,顶尖人才缺口大
人才的数量与质量直接决定了人工智能的发展水平和潜力。目前,全球人工智能人才分布 不均且短缺。据清华大学统计,截至 2017 年,人才储备排名前 10 的国家占全球总量的 61.8%。欧洲 28 国拥有 43064 名人工智能人才,位居全球第一,占全球总量的 21.1%。美国和中国分别以 28536、18232 列席第二、第三位。其中,中国基础人才储备尤显薄弱。根据腾讯研究院,美国 AI 技术层人才是中国 2.26 倍,基础层人才数是中国的 13.8 倍。
我国人工智能人才供需严重失衡,杰出人才缺口大。 据 BOSS 直聘测算,2017 年国内人 工智能人才仅能满足企业 60%的需求,保守估计人才缺口已超过 100 万。而在部分核心领域(语音识别、图像识别等), AI 人才供给甚至不足市场需求的 40%,且这种趋势随 AI 企业的增加而愈发严重。在人工智能技术和应用的摸索阶段,杰出人才对产业发展起着 至关重要的作用,甚至影响技术路线的发展。美国(5158 人)、欧盟(5787 人)依托雄 厚的科研创新能力和发展机会聚集了大量精英,其杰出人才数在全球遥遥领先,而中国杰 出人才(977 人)比例仍明显偏低,不足欧美的 1/5。
人才流入率和流出率可以衡量一国生态体系对外来人才吸引和留住本国人才的能力。 根据 Element AI 企业的划分标准,中国、美国等国家属于 AI 人才流入与流出率均较低的锚定 国(Anchored Countries),尤其是美国的人工智能人才总量保持相对稳定。具体来看, 国内人工智能培育仍以本土为主,海外人才回流中国的 AI 人才数量仅占国内人才总量的 9%,其中,美国是国内 AI人才回流的第一大来源大国,占所有回流中国人才比重的 43.9%。 可见国内政策、技术、环境的发展对海外人才的吸引力仍有待加强。
从学术生态的角度
技术创新能力:科研产出表现强劲,产学融合尚待加强
科研能力是人工智能产业发展的驱动力。从论文产出数量来看,1998-2018 年,欧盟、中国、美国位列前三,合计发文量全球占比 69.64%。近些年,中国积极开展前瞻性 科技 布 局, AI发展势头强劲,从1998年占全球人工智能论文比例的8.9%增长至2018年的28.2%, CAGR17.94%。2018 年,中国以 24929 篇 AI 论文居世界首位。中国研究活动的活跃从 侧面体现在人工智能发展潜力较大。
我国论文影响力仍待提高,但与欧美差距逐年缩小。 FWCI(Field-Weighted Citation Impact, 加权引用影响力)指标是目前国际公认的定量评价科研论文质量的最优方法,我们利用 FWCI 表征标准化1后的论文影响力。当 FWCI≥1 时,代表被考论文质量达到或超过了世 界平均水平。近 20 年,美国的 AI 论文加权引用影响力“独领风骚”,2018 年,FWCI 高 于全球平均水平的 36.78%;欧洲保持相对平稳,与全球平均水平相当;中国 AI 领域论文 影响力增幅明显,2018 年,中国 FWCI 为 0.80,较 2010 年增长 44.23%,但论文影响力仍低于世界平均水平的 20%。从高被引前 1%论文数量来看,美国和中国高质量论文产出 为于全球第一、第二位,超出第三位英国论文产出量近 4 倍。综合来看,中国顶尖高质量 论文产出与美国不分伯仲,但整体来看,AI 论文影响力与美国、欧美仍有差距。
从发文主体来看,科研机构和高校是目前中国人工智能知识生产的绝对力量,反映出科研成 果转化的短板。 而美国、欧盟和日本则呈现企业、政府机构和高校联合参与的态势。据Scopus 数据显示,2018 年,美国企业署名 AI 论文比例是中国的 7.36 倍,欧盟的 1.92 倍。2012 年 至 2018 年,美国企业署名 AI 论文比例增长 43pct,同期中国企业署名 AI 论文仅增长 18pct。 此外,人工智能与市场应用关联密切,校企合作论文普遍存在。而我国校-企合作论文比例仅为 2.45%,与以色列(10.06%)、美国(9.53%)、日本(6.47%)差别较大。从产学结合的角度, 中国人工智能研究以学术界为驱动,企业在科研中参与程度较低,或难以实现以市场为导向。
中国人工智能高校数量实位于第二梯队,实力比肩美国。高校是人工智能人才供给和论文 产出的核心载体。 据腾讯研究院统计,全球共 367 所高校设置人工智能相关学科,其中, 美国(168 所)独占鳌头,占据全球的 45.7%。中国拥有 20 所高校与英国并列第三,数 量上稍显逊色。此外,中国高校实力普遍上升,表现强劲。据麻省理工学院 2019 年发布的AI 高校实力 Top20 榜单中,中国清华大学、北京大学包揽前两名,较 2018 年分别上 升 1 个和 3 个名次。
从创新环境的角度
研发投入:中美研发投入差距收窄
中国研发高投入高强度,在全球研发表现中占据重要地位。 从研发投入的角度,美国、中国、日本和德国始终是全球研发投入的主力军。据 IDC 统计显示,2018 年四国的研发投 入总和占全球总量的比例已达 60.77%。其中,美国凭借其强大的研发实力连续多年位居 全球研发投入的榜首。近年来,中国研发投入呈现一路猛增的强进势头,据 Statista 统计, 国内 2019 年研发投入额为 5192 亿美元,仅次于美国。且趋势上与美国差距不断缩小, 2000 年至 2019 年,CAGR 高达 14.43%,同期美国 CAGR 仅 2.99%。由于经济疲软等 诸多原因,欧盟与日本则呈现较为缓慢的上升趋势。据研发投入与强度增长的趋势推测, 中国或在 1-2 年内取代美国的全球研发领先地位。从研发强度的角度,中国研发强度总体 上呈逐步攀升的趋势,且涨幅较大。但对创新活动投入强度的重视程度仍与美国和日本存 在差距。2018 年中国研发强度 1.97%,低于日本和美国 1.53、0.87 个百分点。
资本投入:资金多而项目缺,资本投向侧重终端市场
中美是全球人工智能“融资高地”。 人工智能开发成本高,资本投入成为推动技术开发的主力。在全球范围内,美国是人工智能新增企投融资领先者,据 CAPIQ 数据显示,2010 年至 2019 年 10 月,美国 AI 企业累计融资 773 亿美元,领先中国 320 亿美元,占全球总 融资额的 50.7%。尤其是特朗普政府以来,人工智能投资力度逐步加码。中国作为全球第 二大融资体,融资总额占全球 35.5%。考虑到已有格局和近期变化,其他国家和地区难以 从规模上撼动中美两国。从人工智能新增企业数量来看,美国仍处于全球领先地位。2010 至 2018 年,美国累计新增企业数量 7022 家,较约是中国的 8 倍(870 家)。中国每年新 增人工智能企业在 2016 年达到 179 家高点后逐渐下降,近两年分别是 179 家( 2017 年), 151 家(2018 年),表明中国资本市场对 AI 投资也日趋成熟和理性。整体来看,中国人 工智能新增企业增势缓慢,但融资总额涨幅迅猛。这一“资金多而项目缺”的态势或是行 业泡沫即将出现的预警。
相比较美国,中国资本投向侧重易落地的终端市场。 从融资层面来看,中国各领域发展较 为均衡,应用层是突出领域,如自动驾驶、计算机学习与图像、语音识别和无人机技术领 域的新增融资额均超过美国。而美国市场注重底层技术的发展。据腾讯研究院数据显示, 芯片和处理器是美国融资最多的领域,占总融资额的 31%。当前中国对人工智能芯片市场 高度重视,但受限于技术壁垒和投资门槛高,国内芯片融资处于弱势。
基于信息熵的 TOPSIS 法:综合指标评估
数据结果显示,美国综合指标及三大项目指标评分绝对领先,中国第二,欧洲 28 国暂且落后。 具体来看,美国在人工智能人才储备、创新产出、融资规模方面优势明显。中国作为后起之秀,尽管有所赶超,但总体水平与美国相比仍有差距,尤其是杰出人才资源、高 质量专利申请上存在明显的缺陷和短板。但在论文数量和影响力、研发投入等指标上,中国正快速发展,与美国差距收窄。从各指标具体分析来看,我国人工智能研究主要分布在 高校和科研机构,企业参与度较低,产出成果较多呈现条块化、碎片化现象,缺乏与市场 的系统性融合,这将不利于中国人工智能技术的发展和产业优势的发挥。此外,我国科研 产出、企业数量和融资领域集中于产业链中下游,上游核心技术仍受制于国外企业。未来, 若国内底层技术领域仍未能实现突破,势必导致人工智能产业发展面临瓶颈。
展望
转自丨 信息化协同创新专委会
前瞻产业研究院《中国人工智能行业市场前瞻与投资战略规划分析报告》
——综述篇——
第1章: 人工智能行业综述及数据来源说明
1.1 人工智能行业界定
1.1.1 人工智能的界定
1.1.2 人工智能相似概念辨析
1.1.3 《国民经济行业分类与代码》中人工智能行业归属
1.2 人工智能行业分类
1.3 人工智能行业监管规范体系
1.3.1 人工智能专业术语说明
1.3.2 人工智能行业监管体系介绍
1、 中国人工智能行业主管部门
2、 中国人工智能行业自律组织
1.3.3 人工智能行业标准体系建设现状(国家/地方/行业/团体/企业标准)
1、 中国人工智能标准体系建设
2、 中国人工智能现行标准汇总
3、 中国人工智能即将实施标准
4、 中国人工智能重点标准解读
1.4 本报告研究范围界定说明
1.5 本报告数据来源及统计标准说明
1.5.1 本报告权威数据来源
1.5.2 本报告研究方法及统计标准说明
——现状篇——
第2章: 全球人工智能行业市场发展现状及趋势
2.1 全球人工智能行业发展现状分析
2.1.1 全球人工智能发展所处阶段
2.1.2 全球人工智能行业发展概况
2.1.3 全球人工智能企业增长情况
2.1.4 全球人工智能行业布局分析
1、 企业布局情况
2、 AI领域高层次人才分布情况
2.1.5 全球人工智能行业竞争分析
1、 区域竞争情况
2、 企业竞争
2.2 全球人工智能行业投资现状分析
2.2.1 全球人工智能整体投资规模分析
2.2.2 全球人工智能融资轮次情况分析
2.2.3 全球人工智能企业融资情况分析
2.3 欧洲人工智能行业发展现状分析
2.3.1 欧洲人工智能市场发展现状
2.3.2 欧洲人工智能市场投资现状
2.3.3 欧洲人工智能市场应用领域
2.3.4 欧盟人脑工程项目(HBP)
1、 项目概况
2、 项目内容
3、 经验和启示
2.4 美国人工智能行业发展现状分析
2.4.1 美国人工智能市场发展现状
2.4.2 美国人工智能市场投资现状
2.4.3 美国人工智能企业数量分析
2.4.4 美国人工智能市场应用领域
2.4.5 美国大脑研究计划(BRAIN)
2.5 日本人工智能行业发展现状分析
2.5.1 日本人工智能市场发展现状
2.5.2 日本人工智能市场投资现状
2.5.3 日本人工智能市场企业数量分析
2.5.4 日本人工智能市场应用领域
2.5.5 日本大脑研究计划(MINDS)
2.6 全球人工智能行业发展趋势分析
2.6.1 全球人工智能行业整体发展趋势
2.6.2 全球人工智能行业技术发展趋势
第3章: 中国人工智能行业市场发展现状分析
3.1 中国人工智能行业所处发展阶段分析
3.2 中国人工智能行业发展现状分析
3.2.1 中国人工智能行业市场规模
3.2.2 中国人工智能企业层次和技术分析
3.2.3 人工智能热点细分领域分析
3.2.4 人工智能行业人才培养体系分析
1、 人工智能人才供需情况
2、 人工智能人才培养情况
3.3 4.3 中国人工智能行业生态格局分析
3.3.1 人工智能行业生态格局基本架构
3.3.2 人工智能行业基础资源支持层
1、 运算平台
2、 数据工厂
3.3.3 人工智能行业技术实现路径层
3.3.4 人工智能行业应用实现路径层
3.3.5 人工智能行业未来生态格局展望
1、 基础资源支持层实现路径
2、 AI技术层的实现路径
第4章: 中国人工智能行业市场竞争状况及融资并购分析
4.1 中国人工智能行业市场竞争布局状况
4.1.1 中国人工智能行业竞争者入场进程
4.1.2 中国人工智能行业竞争者省市分布热力图
4.1.3 中国人工智能行业竞争者战略布局状况
4.2 中国人工智能行业市场竞争格局分析
4.2.1 中国人工智能行业企业竞争集群分布
4.2.2 中国人工智能行业企业竞争格局分析
4.3 中国人工智能行业市场集中度分析
4.4 中国人工智能行业波特五力模型分析
4.4.1 中国人工智能行业供应商的议价能力
4.4.2 中国人工智能行业消费者的议价能力
4.4.3 中国人工智能行业新进入者威胁
4.4.4 中国人工智能行业替代品威胁
4.4.5 中国人工智能行业现有企业竞争
4.4.6 中国人工智能行业竞争状态总结
第5章: 中国人工智能行业投资现状及趋势分析
5.1 中国人工智能投融资规模分析
5.1.1 中国人工智能投融资规模
5.1.2 中国人工智能投融资轮次分布
5.2 中国人工智能投资企业分析
5.2.1 人工智能领先企业投资情况
5.2.2 人工智能行业独角兽企业
5.3 中国人工智能细分领域现状
5.3.1 人工智能细分领域投资结构
5.3.2 计算机视觉领域投资分析
5.3.3 语音识别领域投资分析
5.3.4 自然语言处理领域投资分析
5.3.5 机器学习领域投资分析
5.4 中国人工智能投资区域分布
5.5 中国人工智能行业投资趋势分析
第6章: 中国人工智能产业链全景梳理及配套产业发展分析
6.1 中国人工智能产业结构属性(产业链)分析
6.1.1 中国人工智能产业链结构梳理
6.1.2 中国人工智能产业链生态图谱
6.2 人工智能基础层分析
6.2.1 人工智能基础层功能分析
6.2.2 AI芯片市场分析
1、 AI芯片定义及分类
2、 AI芯片发展阶段
3、 AI芯片市场规模
4、 AI芯片竞争格局
6.2.3 云计算市场分析
1、 云计算行业发展历程
2、 云计算行业市场规模
3、 云计算行业竞争格局
6.3 中国人工智能技术层分析
6.3.1 人工智能技术层功能分析
6.3.2 人工智能技术层代表企业
6.4 中国人工智能应用层分析
第7章: 中国人工智能行业细分市场发展状况
7.1 中国人工智能行业细分市场结构
7.2 中国人工智能市场分析:机器学习
7.2.1 机器学习市场概述
7.2.2 机器学习市场发展现状
7.2.3 机器学习发展趋势前景
7.3 中国人工智能市场分析:机器视觉
7.3.1 机器视觉市场概述
7.3.2 机器视觉市场发展现状
7.3.3 机器视觉发展趋势前景
7.4 中国人工智能市场分析:语音识别
7.4.1 语音识别市场概述
7.4.2 语音识别市场发展现状
7.4.3 语音识别发展趋势前景
7.5 中国人工智能市场分析:自然语言处理
7.5.1 自然语言处理市场概述
7.5.2 自然语言处理市场发展现状
7.5.3 自然语言处理发展趋势前景
7.6 中国人工智能行业细分市场战略地位分析
第8章: 中国人工智能行业细分应用市场需求状况
8.1 中国人工智能行业下游应用场景/行业领域分布
8.1.1 中国人工智能应用场景分布(有什么用?能解决哪些问题?)
1、 应用场景一
2、 应用场景二
3、 应用场景三
8.1.2 中国人工智能应用行业领域分布及应用概况(主要应用于哪些行业?)
1、 人工智能应用行业领域分布
2、 人工智能各应用领域市场渗透概况
8.2 中国智慧安防领域人工智能需求潜力分析
8.2.1 中国智慧安防发展状况
1、 智慧安防发展现状
2、 智慧安防趋势前景
8.2.2 中国智慧安防领域人工智能需求特征及产品类型
8.2.3 中国智慧安防领域人工智能需求现状分析
8.2.4 中国智慧安防领域人工智能需求趋势前景
8.3 中国智慧金融领域人工智能需求潜力分析
8.3.1 中国智慧金融发展状况
1、 智慧金融发展现状
2、 智慧金融趋势前景
8.3.2 中国智慧金融领域人工智能需求特征及产品类型
8.3.3 中国智慧金融领域人工智能需求现状分析
8.3.4 中国智慧金融领域人工智能需求趋势前景
8.4 中国智慧医疗领域人工智能需求潜力分析
8.4.1 中国智慧医疗发展状况
1、 智慧医疗发展现状
2、 智慧医疗趋势前景
8.4.2 中国智慧医疗领域人工智能需求特征及产品类型
8.4.3 中国智慧医疗领域人工智能需求现状分析
8.4.4 中国智慧医疗领域人工智能需求趋势前景
8.5 中国智能机器人领域人工智能需求潜力分析
8.5.1 中国智能机器人发展状况
1、 智能机器人发展现状
2、 智能机器人趋势前景
8.5.2 中国智能机器人领域人工智能需求特征及产品类型
8.5.3 中国智能机器人领域人工智能需求现状分析
8.5.4 中国智能机器人领域人工智能需求趋势前景
8.6 中国智能家居领域人工智能需求潜力分析
8.6.1 中国智能家居发展状况
1、 智能家居发展现状
2、 智能家居趋势前景
8.6.2 中国智能家居领域人工智能需求特征及产品类型
8.6.3 中国智能家居领域人工智能需求现状分析
8.6.4 中国智能家居领域人工智能需求趋势前景
8.7 中国人工智能行业细分应用市场战略地位分析
第9章: 全球及中国人工智能行业代表性企业布局案例研究
9.1 全球及中国人工智能代表性企业布局梳理及对比
9.2 全球人工智能代表性企业布局案例分析(可定制)
9.2.1 Google(谷歌)
1、 人工智能发展战略
2、 企业运营状况
3、 企业人工智能业务布局状况
4、 企业人工智能业务销售网络布局
5、 企业人工智能业务市场地位及在华布局
9.2.2 Microsoft(微软)
1、 人工智能发展战略
2、 企业运营状况
3、 企业人工智能业务布局状况
4、 企业人工智能业务销售网络布局
5、 企业人工智能业务市场地位及在华布局
9.3 中国人工智能代表性企业布局案例分析(可定制)
9.3.1 百度
1、 人工智能发展战略
2、 人工智能市场布局
3、 人工智能代表产品分析
4、 人工智能市场地位
5、 人工智能研发水平
6、 企业智能融资历程
7、 人工智能应用案例分析
9.3.2 华为
1、 人工智能发展战略
2、 人工智能市场布局
3、 人工智能代表产品分析
4、 人工智能市场地位
5、 人工智能研发水平
6、 企业智能融资历程
7、 人工智能应用案例分析
9.3.3 阿里巴巴
1、 人工智能发展战略
2、 人工智能市场布局
3、 人工智能代表产品分析
4、 人工智能市场地位
5、 人工智能研发水平
6、 企业智能融资历程
7、 人工智能应用案例分析
9.3.4 科大讯飞
1、 人工智能发展战略
2、 人工智能市场布局
3、 人工智能代表产品分析
4、 人工智能市场地位
5、 人工智能研发水平
6、 企业智能融资历程
7、 人工智能应用案例分析
9.3.5 寒武纪
1、 人工智能发展战略
2、 人工智能市场布局
3、 人工智能代表产品分析
4、 人工智能市场地位
5、 人工智能研发水平
6、 企业智能融资历程
7、 人工智能应用案例分析
9.3.6 格灵深瞳
1、 人工智能发展战略
2、 人工智能市场布局
3、 人工智能代表产品分析
4、 人工智能市场地位
5、 人工智能研发水平
6、 企业智能融资历程
7、 人工智能应用案例分析
9.3.7 旷视科技
1、 人工智能发展战略
2、 人工智能市场布局
3、 人工智能代表产品分析
4、 人工智能市场地位
5、 人工智能研发水平
6、 企业智能融资历程
7、 人工智能应用案例分析
9.3.8 优必选
1、 人工智能发展战略
2、 人工智能市场布局
3、 人工智能代表产品分析
4、 人工智能市场地位
5、 人工智能研发水平
6、 企业智能融资历程
7、 人工智能应用案例分析
9.3.9 思必驰
1、 人工智能发展战略
2、 人工智能市场布局
3、 人工智能代表产品分析
4、 人工智能市场地位
5、 人工智能研发水平
6、 企业智能融资历程
7、 人工智能应用案例分析
9.3.10 博联智能
1、 人工智能发展战略
2、 人工智能市场布局
3、 人工智能代表产品分析
4、 人工智能市场地位
5、 人工智能研发水平
6、 企业智能融资历程
7、 人工智能应用案例分析
——展望篇——
第10章: 中国人工智能行业发展环境洞察
10.1 中国人工智能行业经济(Economy)环境分析
10.1.1 中国宏观经济发展现状
10.1.2 中国宏观经济发展展望
10.1.3 中国人工智能行业发展与宏观经济相关性分析
10.2 中国人工智能行业社会(Society)环境分析
10.2.1 中国人工智能行业社会环境分析
10.2.2 社会环境对人工智能行业发展的影响总结
10.3 中国人工智能行业政策(Policy)环境分析
10.3.1 国家层面人工智能行业政策规划汇总及解读(指导类/支持类/限制类)
1、 国家层面人工智能行业政策汇总及解读
2、 国家层面人工智能行业规划汇总及解读
10.3.2 重点省/市人工智能行业政策规划汇总及解读(指导类/支持类/限制类)
1、 重点省/市人工智能行业政策规划汇总
2、 重点省/市人工智能行业发展目标解读
10.3.3 国家重点规划/政策对人工智能行业发展的影响
10.3.4 政策环境对人工智能行业发展的影响总结
10.4 人工智能行业技术环境分析
10.4.1 人工智能技术发展现状
1、 人工智能重点技术发展状态
2、 人工智能重大技术成果
10.4.2 人工智能相关专利情况分析
10.4.3 技术环境对行业发展的影响分析
10.5 中国人工智能行业SWOT分析(优势/劣势/机会/威胁)
第11章: 中国人工智能行业市场前景预测及发展趋势预判
11.1 中国人工智能行业发展潜力评估
11.2 中国人工智能行业未来关键增长点分析
11.3 中国人工智能行业发展前景预测(未来5年数据预测)
11.4 中国人工智能行业发展趋势预判(疫情影响等)
第12章: 中国人工智能行业投资战略规划策略及建议
12.1 中国人工智能行业进入与退出壁垒
12.1.1 人工智能行业进入壁垒分析
12.1.2 人工智能行业退出壁垒分析
12.2 中国人工智能行业投资风险预警
12.3 中国人工智能行业投资机会分析
12.3.1 人工智能行业产业链薄弱环节投资机会
12.3.2 人工智能行业细分领域投资机会
12.3.3 人工智能行业区域市场投资机会
12.3.4 人工智能产业空白点投资机会
12.4 中国人工智能行业投资价值评估
12.5 中国人工智能行业投资策略与建议
12.6 中国人工智能行业可持续发展建议
图表目录
图表1:人工智能的界定
图表2:人工智能相关概念辨析
图表3:《国民经济行业分类与代码》中人工智能行业归属
图表4:人工智能的分类
图表5:人工智能专业术语说明
图表6:中国人工智能行业监管体系
图表7:中国人工智能行业主管部门
图表8:中国人工智能行业自律组织
图表9:中国人工智能标准体系建设
图表10:中国人工智能现行标准汇总
图表11:中国人工智能即将实施标准
图表12:中国人工智能重点标准解读
图表13:本报告研究范围界定
图表14:本报告权威数据资料来源汇总
图表15:本报告的主要研究方法及统计标准说明
图表16:人工智能行业发展历程
图表17:2019-2021年全球人工智能市场规模(单位:亿美元)
图表18:2019-2021年全球人工智能独角兽数量情况(单位:家)
图表19:全球科技巨头人工智能布局情况
图表20:截至2022年全球人工智能领域高层次学者数量前十国家(单位:人次)
图表21:2019-2021年全球人工智能独角兽企业数量前三国家(单位:家)
图表22:2030年全球各地区人工智能产值占GDP比重预测分析(单位:%)
图表23:2022年全球人工智能企业TOP20(单位:家)
图表24:全球人工智能细分领域企业竞争格局分析
图表25:2013-2022年全球人工智能投融资情况(单位:亿元,起)
图表26:2022年全球人工智能融资轮次分布情况(按事件数)(单位:起,%)
图表27:2022年全球人工智能企业融资事件汇总
图表28:截止到2022年11月欧洲人工智能重点政策汇总
图表29:2014-2022年欧洲人工智能市场投资情况(单位:亿元,起)
图表30:截至2022年11月欧洲人工智能部分投融资情况
图表31:人脑计划阶段分析
图表32:人脑计划搭建的6个信息平台介绍
图表33:欧盟人脑计划启示
图表34:截止2022年11月美国人工智能重点政策汇总
图表35:2014-2022年美国人工智能市场投资情况(单位:亿元,起)
图表36:截至2022年11月美国人工智能部分投融资情况
图表37:2022年全球人工智能企业数量分布情况(单位:%)
图表38:美国最成功的10个人工智能应用案例
图表39:2014-2025年美国大脑研究计划投资预算(单位:百万美元)
图表40:日本人工智能工程表内容
图表41:截至2022年日本人工智能部分投融资情况
图表42:日本十大AI初创公司
图表43:日本人工智能应用情况
图表44:日本Brain/MINDS计划研究机构与内容
图表45:全球人工智能行业整体发展趋势
图表46:全球人工智能行业技术发展趋势
图表47:中国人工智能发展阶段
图表48:2018-2022年中国人工智能产业规模情况(单位:亿元)
图表49:2022年中国人工智能企业层次分布(单位:%)
图表50:2022年中国人工智能企业核心技术分布(单位:%)
图表51:2011-2022年十大A1热点
图表52:人工智能各技术方向岗位人才供需比
图表53:人工智能各职能岗位人才供需比
图表54:全国首批建设“人工智能”(080717T)本科新专业高校名单
图表55:2018-2022年中国新增开设“人工智能”本科专业学校数量(单位:所)
图表56:中国龙头企业与高校合作或共建人工智能学院汇总
图表57:人工智能产业生态格局的三层基本架构
图表58:人工智能技术层的运行机制
图表59:人工智能应用实现路径层案例分析
图表60:中国人工智能行业竞争者入场进程
图表61:中国人工智能行业竞争者区域分布热力图
图表62:中国人工智能行业竞争者发展战略布局状况
图表63:中国人工智能行业企业战略集群状况
图表64:中国人工智能行业企业竞争格局分析
图表65:中国人工智能行业国产替代布局状况
图表66:中国人工智能行业市场集中度分析
图表67:中国人工智能行业供应商的议价能力
图表68:中国人工智能行业消费者的议价能力
图表69:中国人工智能行业新进入者威胁
图表70:中国人工智能行业替代品威胁
图表71:中国人工智能行业现有企业竞争
图表72:中国人工智能行业竞争状态总结
图表73:2013-2022年中国人工智能行业投融资情况(单位:亿元,起)
图表74:2022年中国人工智能融资轮次分布情况(按事件数)(单位:起,%)
图表75:人工智能领先企业投资情况
图表76:2022年中国人工智能行业独角兽排行榜(单位:亿元)
图表77:中国人工智能行业主要投资细分领域情况
图表78:2016-2022年中国计算机视觉领域投融资情况(单位:亿元,起)
图表79:截至2022年11月中国计算机视觉领域部分投融资情况
图表80:2016-2022年中国语音识别领域投融资情况(单位:亿元,起)
图表81:截至2022年11月中国语音识别领域部分投融资情况
图表82:2016-2022年中国自然语言处理领域投融资情况(单位:亿元,起)
图表83:截至2022年11月中国自然语言处理领域部分投融资情况
图表84:2016-2022年中国机器学习领域投融资情况(单位:亿元,起)
图表85:截至2022年11月中国机器学习领域部分投融资情况
图表86:2022年中国人工智能行业投融资事件数量地区分布情况(单位:%)
图表87:中国人工智能产业链结构
图表88:中国人工智能产业链生态图谱
图表89:人工智能芯片分类
图表90:我国人工智能芯片行业所处周期
图表91:2018-2023年中国人工智能芯片行业规模(亿元)
图表92:全球人工智能芯片厂商竞争层次情况
图表93:全球主要AI芯片类型及企业
图表94:2022年中国人工智能芯片企业TOP10
图表95:中国云计算发展阶段
图表96:2016-2022年中国云计算市场规模增长情况(单位:亿元,%)
图表97:中国云计算市场竞争梯队
图表98:2022年中国云计算企业百强名单
图表99:人工智能行业技术层概况
图表100:中国人工智能行业产业链技术层代表性企业
图表101:中国人工智能行业细分市场结构
图表102:中国机器学习市场发展现状
图表103:中国机器学习发展趋势前景
图表104:中国机器视觉市场发展现状
图表105:中国机器视觉发展趋势前景
图表106:中国语音识别市场发展现状
图表107:中国语音识别发展趋势前景
图表108:中国自然语言处理市场发展现状
图表109:中国自然语言处理发展趋势前景
图表110:中国人工智能行业细分市场战略地位分析
图表111:中国人工智能应用场景分布
图表112:中国人工智能应用行业领域分布及应用概况
图表113:中国智慧安防发展现状
图表114:中国智慧安防趋势前景
图表115:中国智慧安防领域人工智能需求特征及产品类型
图表116:中国智慧安防领域人工智能需求现状分析
图表117:中国智慧安防领域人工智能需求趋势前景
图表118:中国智慧金融发展现状
图表119:中国智慧金融趋势前景
图表120:中国智慧金融领域人工智能需求特征及产品类型
略......完整报告请咨询客服
随着物联网、大数据的发展使智慧医疗更信息化。智慧医疗使现在科学和文化进步的产物,智慧医疗解决了传统的医疗的难处,比如说看病难 看病贵 排队叫号的时间长,通过智慧医疗的信息化发展趋势,现在是手机 、微信公众号各种方式直接线上挂号,或者互联网医生看病等便利一大批患者的问题。
林晨晨。学位论文大学生对高校图书馆智慧服务使用意愿影响因素研究的作者为林晨晨,学位为硕士,学位授予单位为扬州大学,导师是程结晶,王前。主要讲述了随着智能时代的到来,越来越多的智慧服务走入人们的生活,智能技术在高校图书馆领域的应用也大放异彩,各式各样新型的智慧服务吸引着越来越多的大学生用户。
智能化图书馆建设和管理问题及对策论文
在学习和工作的日常里,大家总免不了要接触或使用论文吧,论文是我们对某个问题进行深入研究的文章。怎么写论文才能避免踩雷呢?下面是我为大家收集的智能化图书馆建设和管理问题及对策论文,欢迎大家借鉴与参考,希望对大家有所帮助。
摘要: 我国经济和科技水平的不断提升,使高科技融入到各个行业,为行业的发展和进步带来了显着的效果。针对智能化图书馆的具体建设和管理进行分析,优化图书馆管理工作,为图书馆用户利用科技手段快速地进行查阅提供帮助,以此为社会整体发展水平的提升做出贡献。
关键词: 智能化;图书馆;建设;管理;
引言: 在社会发展速度正处于不断加快阶段,科学技术的进步使素质教育得到普及,在这样的背景下,人们对于知识的需求在不断的提高,图书馆对于人们知识的获取,以及自身修养的提升有着非常重要的作用。所以需要大力开展读书活动,使读书成为我国社会发展的良好风气,改进图书馆的精神面貌,这样才能够真正发挥出图书馆的作用。笔者提出智能化图书馆具体的建设与管理工作开展形式,希望能够为我国图书馆未来的发展提供新的思路。
1、智能化图书馆建设和管理的意义
在大数据时代背景下,智能化图书馆的应用正在不断的发展、普及和强化,这种新的管理模式,属于智能化管理范围之内,主要是通过网络,实现人们在使用图书过程中的借与还等相关工作。同时,也可以利用互联网,根据想查阅的书籍关键词进行图书的查找,这能够保证整个图书馆在实际管理工作中变得更加的智能化,同时也能够提高工作效率,在一定程度上节省读者所花费的时间。在整个智能化的过程中,人们通过大数据背景下智能化图书馆的使用,就可以有效避免图书馆内部存在的不规范的管理情况,从而达到资源的共享。所以,对图书馆进行智能化的管理,不仅能够提高工作人员的工作效率,也能够保证图书馆的管理摆脱传统的方式,整体管理水平得到优化。
2、智能化图书馆建设和管理过程中存在的问题
2.1传统的管理模式影响智能化的管理
当前,我国部分图书馆所使用的书籍管理设备比较落后,对图书馆电子信息资源的融入和使用造成了一定的影响。因此,为了能够对图书馆建设工作起到加强性的效果,相关人员也提出了一系列建议,但是,这些建议在实施过程中,由于传统管理模式与智能化的管理方式形成了反差,智能化方法很难顺利融入其中,甚至传统的图书馆管理方法,还制约着智能化的发展。面对传统管理方法,管理人员需要积极的对待,不能全盘否定,也不能全部接受,取其精华,弃其糟粕。因为传统管理工作开展中,相关的模式也具有一定的优势,这一点对于图书馆的发展,也有着非常重要的促进作用。
其所具有的优点是在管理的'过程中,管理人员能够清楚地了解到图书馆一天之内书籍借出的数量,也能够针对所借出的图书,进行人工的分类、记录,了解书籍借出后的质量问题等。在智能化图书馆建设过程中,也需要保证对智能化图书馆进行管理,还需要突出智能管理工作的优势。
2.2管理员的综合素质影响智能化的管理
当前,在我国图书馆相关工作开展过程中,很多传统的图书馆都有相应的管理人员,这些管理人员在图书馆工作的时间较长,习惯性使用传统方法对借出和归还的书籍内容进行管理。因为长久使用这种管理方法,所以相关人员认为传统的管理方法依然适用于当前的图书馆,甚至有很多工作人员抵制智能化的管理方法,这也导致智能化图书馆的建设受到影响。再加上传统的图书管理工作人员中有部分人综合素质不高,很多工作人员并不具备利用高科技的能力,如果强行要求这些人员进行知识的学习,不仅无法提高智能化图书馆管理的效果,也会导致人员出现抵触的心理状态。所以,图书馆内部管理员的综合素质,直接影响到智能化建设工作的开展,还需要相关人员给与足够的重视,并选择适合现代社会发展的工作人员,才能够提高图书馆建设的效果。
3、智能化图书馆的建设与管理
3.1管理系统分析
在图书馆向着智能化方向发展的过程中,想要真正提高建设和管理工作的效果,一方面是需要对其中的资源性内容进行管理。因为智能化图书馆内部资源的管理,需要使用RFID系统,该系统由读写器、电子标签、管理系统等各个重要的内容所构成,可以为每一个光盘和文献都附上相应的识别码,这样不仅能够在图书的借阅过程中进行检索,也能够把典藏的书籍清楚地排列其中,让借阅人员利用这一程序,了解到图书当前的状况,也能够体现图书馆内部多样化的管理形式,利用这套系统就能实现图书馆内部的智能化;另一方面是综合性的管理工作。当前数字化发展是图书馆的大势所趋,图书馆逐渐向无纸化方向转变,还需要经历一系列的变革,这也是目前最难达到的超高技术要求。由于图书馆正在向着全智能的方向转变,所以业务是多样性的,需要经过计算机进行加工和处理,这也能够为智能化图书馆发展提供便捷,使图书馆向着智能化和现代化方向推进。
3.2管理队伍建设
图书馆内部智能化的建设工作,不仅要依靠先进的科学技术内容,还需要拥有高素质的管理人员,所以在当前我国智能化图书馆建设阶段,就需要加强整个管理队伍的建设,组建一支优秀的图书馆管理人员队伍,才能够实现图书馆向着智能化方向发展。其中,管理人员的选择,要遵循相应的要求,适应和熟悉当前管理工作整体的系统,以及图书馆内部的具体结构,对于其中存在的异常问题,采取有针对性的解决措施,给予彻底解决。对相关的管理人员进行专业化的培训,以此保证人员整体的业务水平和综合素质得以提升。同时,不仅要求图书馆内的管理人员要熟悉与智能化图书馆有关的知识内容,还要具备一定的外语水平,这样才能够提高整个图书馆内部的专业化程度以及外在的形象。图书馆内部高层管理人员要具有足够的远见,这样才能够对图书馆未来的发展建立起良好的预见性,管理层的决策直接影响到图书馆未来的发展。
4、结语
纵观我国目前的发展形势能够了解到,随着科学技术的迅猛发展,智能化已快速地被应用到各个领域之中,很多办公的场馆都向着智能化方向发展。图书馆是信息高度集中的场馆,智能化发展也势在必行。
5、参考文献
[1]贾江虹.现代化公共图书馆发展管理的智能化路径探讨[J].传媒论坛,2019,2(21):140+142.
[2]王以婧.大数据在高校图书馆信息资源建设中的应用探究[J].河南图书馆学刊,2019,39(10):70-71.
[3]林志军.大中型公共图书馆智能化系统建设述略-以厦门市图书馆集美新馆智能化系统建设为例[J].新媒体研究,2019,5(17):26-28.
伴随着网购额的激增,中国快递量也出现了狂飙式增长,2015年高达207亿件,预计2020年将达到500亿件。面对如此庞大的购物额和快递量,传统物流显得力不从心,物流行业对自动化智能化的需求与日俱增。智能物流市场规模逐年扩大,据前瞻产业研究院发布的《智能物流行业市场需求预测与投资战略规划分析报告》数据显示,2014年中国智能物流市场规模超过1800亿元,同比增长26%,2008-2014年复合增长率为19.83%,增长率逐年上升,因此预计未来2-3年将有30%左右的增速。2015年国内物流自动化市场规模为583亿元,2017年有望成长为一个超千亿元市场容量的大市场。预计至2020年,国内自动化物流系统市场规模将超过1386亿元。其中,智能物流市场规模未来几年行业复合增长率有望保持15%以上,潜在市场空间将达千亿。智能物流的快速崛起,有望解决我国物流成本长期居高不下的问题。
题目定好的话我可以帮你写开题。。。在论文工作布置后,每个人都应遵循选题的基本原则,在较短的时间内把选题的方向确定下来。从论文题目的性质来看,基本上可以分为两大类:一类是社会主义现代化建设实践中提出的理论和实际问题;另一类是专业学科本身发展中存在的基本范畴和基本理论问题。(一)智能获取技术使物流从被动走向主动,实现物流过程中的主动获取信息,主动监控车辆与货物,主动分析信息,使商品从源头开始被实施跟踪与管理,实现信息流快于实物流。(二) 智能传递技术应用于企业内部,外部的数据传递功能。(三) 智能处理技术应用于企业内部决策,通过对大量数据的分析,对客户的需求,商品库存,智能仿真等做出决策。(四) 智能利用技术在物流管理的优化,预测,决策支持,建模和仿真,全球化管理等方面应用,使企业的决策更加准确性和科学性。社会发展推动智能物流进步智能新技术在物流领域的创新应用模式不断涌现,成为未来智能物流大发展的基础,不仅推动了电子商务平台的发展,还极大地推动行业发展。智能物流的理念开阔了物流行业的视野,将快速发展的现代信息技术和管理方式引入行业中,它的发展推动着中国物流业的变革。作为中国物流行业先行者的智能物流,站在行业的前沿,以敏锐的嗅觉,把握物流业的发展方向,通过物流信息平台的搭建,率先实现物流行业信息化,为物流行业领航掌舵,全面迎接智能物流时代的到来。2010年,国家发改委委托中国工程院做了一个物联网发展战略规划的课题,课题列举了物联网在十个重点领域的应用。物流是其中热门的应用领域之一,“智能物流”成为物流领域的应用目标。随后,物联网迅速在物流业界热起来了。然而,现阶段对智能物流的诠释比较多的还是在技术层面,例如信息技术或传感器在物流中的应用等,呈现出技术推动的特色。而任何一种技术在产业界大面积的推广,一定要有双驱动——除了技术驱动外,还应该有产业驱动。在物流领域来看,物联网只是技术手段,目标是物流的智能化。谈到“智能”二字,我们对智能的认识是一个逐渐深化的过程。早期认为自动化等同于智能。而后随着科技的发展,出现了一些新的智能产品,如傻瓜相机、智能洗衣机等,它们能够从现场获取信息,并代替人作出判断和选择,而不仅仅是流程的自动化,此时的智能是“自动化+信息化”。然而发展到今天,互联网的出现,或者说进入物联网时代,智能的涵义又更进了一步。仅仅通过自动采集信息来作出判断和选择已经不够了,还要与网络相连,随时把采集的信息通过网络传输到数据中心,或者是指挥的本部,由指挥中心作出判断,进行实时的调整,这种动态管控和动态地自动选择,才是这个时代的智能。也就是说,智能应该具有三个特征,即自动化、信息化和网络化。而智能物流的出现,标志着信息化在整合网络和管控流程中进入到一个新的阶段,即进入到一个动态的、实时进行选择和控制的管理水平。这个水平一定是大家马上都需要的,所以一定要根据自身的实际水平和客户需求来确定信息化的定位,但这肯定是未来的发展方向。
智能物流是利用集成智能化技术,使物流系统能模仿人的智能,具有思维,感知,学习,推理判断和自行解决物流中某些问题的能力。智能物流的未来发展将会体现出四个特点:智能化,一体化和层次化,柔性化与社会化。在物流作业过程中的大量运筹与决策的智能化;以物流管理为核心,实现物流过程中运输,存储,包装,装卸等环节的一体化和智能物流系统的层次化;智能物流的发展会更加突出“以顾客为中心”的理念,根据消费者需求变化来灵活调节生产工艺;智能物流的发展将会促进区域经济的发展和世界资源优化配置,实现社会化。通过智能物流系统的四个智能机理,即信息的智能获取技术,智能传递技术,智能处理技术,智能利用技术来分析智能物流的应用前景。1) 智能获取技术使物流从被动走向主动,实现物流过程中的主动获取信息,主动监控车辆与货物,主动分析信息,使商品从源头开始被实施跟踪与管理,实现信息流快于实物流。2) 智能传递技术应用于企业内部,外部的数据传递功能。智能物流的发展趋势是实现整个供应链管理的只能化,因此需要实现数据间的交换与传递。3) 智能处理技术应用于企业内部决策,通过对大量数据的分析,对客户的需求,,商品库存,智能仿真等做出决策。4) 智能利用技术在物流管理的优化,预测,决策支持,建模和仿真,全球化管理等方面应用,使企业的决策更加准确性和科学性。同系的同学,这仅供参考!不知对不对哦。
2018年8月10日,黑龙江省孙吴县智慧医疗惠民项目正式启动。该项目将建设1个县医院远程会诊中心、12个乡镇远程分会诊点和94个村分诊点,并与全国30多家三甲医院建立远程会诊关系,惠及全县10万多名群众。
2021年初,邮储银行黔东南州分行与时俱进、开拓创新,与丹寨县人民医院携手启动建设“智慧医疗”项目。该项目通过打造“金融+智慧医疗”服务模式,可实现自助签约、自助建档、自助挂号、自助办理入院、自助缴住院预交金、住院日清单凭证查询和打印等智能化功能,使金融科技与医院的医疗场景跨界融合,助推医疗改革。该项目正式投入使用,标志着邮储银行贵州省分行首个“智慧医疗”项目正式落地。 [6]
呼和浩特市积极推进以电子病历为核心的医院信息化建设,创新发展智慧医疗,改善医疗服务。呼和浩特市第一医院建成远程医疗会诊服务平台,覆盖医疗机构33家。为进一步提升基层卫生信息化能力,呼和浩特市为乡镇卫生院配齐数字化医疗设备,建设基层医疗机构一体化“云医疗”系统及影像、彩超、心电远程诊断中心。依托全民健康信息平台,全市9家自治区级医院、6家市属医院、10家旗县区级综合医院及基层医疗卫生机构实现互联互通,做到数据共享与业务协同,区域信息平台已集中整合居民健康档案、全员人口信息和医疗机构诊疗信息约9亿条。 [7]
上海市:以复旦大学附属华山医院为中心,由上海电信5G赋能,协同构建5G医疗示范网,以神经外科疾病的治疗为导向,面向神经外科疾病建立AR可视化手术导航平台。2022年8月10日,5G架构下超便携混合现实颅脑手术导航系统建设入选“2022年5G十大应用案例”。该项目在5G+远程治疗领域提供良好的借鉴,培育可复制、可推广的5G智慧医疗健康新业态
格式类似:1.王**. 基于马尔夫随机程文字识别[D]. 合肥:科技术, 2012. 125-251要确认引用硕士论文或者博士论文通答辩按照面格式写
2015年两会期间,国务院总理李克强在《政府工作报告》中首次提出“互联网+”战略,旨在充分利用信息与互联网平台,对传统产业进行优化升级转型,使得互联网与传统产业实现深度融合,从而创造新的经济发展生态。此基础上,国务院办公厅印发的《全国医疗卫生服务体系规划纲要(2015-2020年)》指出,要积极推动移动互联网、远程医疗服务等发展;开展健康中国云服务计划,积极应用移动互联网、物联网、云计算、可穿戴设备等新技术,推动惠及全民的健康信息服务和智慧医疗服务,推动健康大数据的应用。2016年,国务院办公厅发布了《关于促进和规范健康医疗大数据应用发展的指导意见》,进一步明确了医疗健康大数据是我国重要的基础性战略资源,并且对“互联网+医疗健康”服务的提供与管理提出了规范性要求。2018年,《国务院办公厅关于促进“互联网+医疗健康”发展的意见》对“互联网+医疗健康”全生态的发展提供了政策指导,该文件鼓励互联网+与医院医疗服务、公共卫生服务、家庭医生签约服务、药品供应保障服务和医学教育和科普服务等深度融合。相较于之前的相关意见与政策,该文件强调,不仅要健全“互联网+医疗健康”服务体系,同时更要完善“互联网+医疗健康”支撑体系,着重强调了在互联网+时代医疗质量监管的重要性、紧迫性以及大数据时代的信息安全。
目前,我国“互联网+医疗健康”主要以五大服务模式展开,分别是移动医疗、基于区域卫生信息平台的互联网医疗、应用“互联网+”技术的远程医疗、物联网医疗和医疗大数据。移动医疗在我国医疗服务中的应用主要体现在医院利用微信公众号、小程序或APP进行预约挂号、取号、智能导诊、缴费、查看检验结果等。不同地区和医院可以通过互联网+实现数据交换与医疗资源共享,为患者进行远程问诊甚至远程指导手术操作。“云诊室”、“空中诊室”的成立极大地便利了患者对医疗健康服务的获取。物联网的应用则体现在可穿戴设备的飞速发展上,为监测患者的健康状态和慢性病情况提供便利。医疗大数据在医药研究与开发和个性化诊疗中发挥了重要作用,为每一位患者提供“精准医疗”。与传统医疗服务类似,互联网+医疗健康提供的线上服务可以覆盖患者就诊的全流程,包括线上健康咨询与问诊、网上预约挂号、第三方医疗检测、电子病历与电子处方、线上药品销售(如阿里大药房)、线上医疗结算系统等。
智慧医疗给我们平时的看病治病带来了许多的便利,智慧医疗主要是以“方便病人看病为核心”,减少病人的挂号、候诊、诊疗、化验、交费等排队时间,为病人提供更全面更方便的护理服务。智慧医疗”主要是方便病人的挂号 、付费等问题。个人健康档案卡、个人支付卡与医保卡“三卡”合一,方便病方便医疗机构,同样也方便医保管理机构的管理。
智能建筑中的智能化系统是新科技的代表,是顺应时代的产物。智能建筑成为一个整体出现时,智能化系统会有序的、科学的分布在建筑的应用中,发挥它应有的功能和作用。以下是我整理的人工智能的论文的相关 文章 ,欢迎阅读!
建筑智能化设计的相关探讨
【摘要】智能建筑中的智能化系统是新科技的代表,是顺应时代的产物。智能建筑成为一个整体出现时,智能化系统会有序的、科学的分布在建筑的应用中,发挥它应有的功能和作用。智能化系统在智能建筑中起着重要的作用,在管理过程中,要科学管理、综合考究、有效安排、合理利用。以求达到最佳效果,确保建筑项目安全施工。本文将综合阐述有关智能建筑中智能化系统的设计概念、以及在设计和施工的过程中应该注意的相关问题。
【关键词】智能建筑;智能化系统;设计
一、建筑智能化系统的设计原则
(一)先进性。智能建筑的智能化系统是随着信息电子科学技术的发展而不断发展的,因此,在系统设计时应当分析智能化系统的发展状况,吸收开放的先进设计理念,以完善智能建筑功能的发挥。
(二)可靠性。在智能化系统设计时应当采用模块化设计理念,将智能化系统的各个子系统相互隔离,以确保在部分子系统发生故障的过程中不会影响其他子系统或链路的正常运行,由此提高系统运行的可靠性。
(三)标准化。随着智能化系统的快速发展,相关的系统设计标准也相继制定。在系统设计中应当严格按照系统标准进行设计,以方便系统的施工与维护。
(四)实用性。智能化系统的设计应当能够充分实现接收有线电视、图像、监控设备、多媒体通信、安全防范、语音、数据等功能,确保其在完善用户的信息沟通与娱乐的同时能够提高用户环境的安全性。
(五)经济性。智能化系统内部包含着多个子系统,其子系统又包含多种构件和设备,因此在系统设计过程中应当在考虑质量保证的同时尽量节省投资成本。
(六)扩展性。在电子信息技术的迅速发展状况下,当前的智能化系统设计内容会出现一定程度的约束与局限。所以,在进行智能化系统设计时应当考虑设计内容的可扩展性,确保智能建筑能够在未来的技术发展下得到更新扩展。
二、建筑智能化系统的设计
(一)供电系统设计
智能化系统的子系统通常需要进行单独供电,因此需要重视供电系统的设计。一般计算机网络系统会采用UPS 进行集中供电,在不间断电源机房其供电出线也需要进行集中供电,而供电进线则满足一定的容量要求即可;对于未使用不间断电源供电的的工作站,也应当采用单独回路进行供电,以避免电路混用危害系统运行,如安全防范系统应当使用单独回路进行集中供电,以保证其与消防联动系统在应对紧急情况时能够正常工作。
(二)接地系统设计
智能建筑的接地将直接影响到设备与工作人员安全、系统工作的可靠性与稳定性、信息传输的质量等。在建筑接地系统设计时应当根据建筑的功用与智能化系统工作要求进行设计,保证能够为其在应用部位提供响应接地端。其需要安装的有静电接地系统、辅助等电位铜排、防雷接地系统、安全保护接地系统、工作接地系统、直流接地系统等部分。其包括两种接地方式:
1、联合接地方式,其在应用中需注意:由于计算机等设备的抗雷击性能不高,且其系统包含超大规模的集成电路容易造成抗高频干扰差,很可能会受到其他系统的干扰,所以应当对计算的直流电源采用单独接地的方式;在使用联合接地方式时其接地电阻有可能会大于1Ω,所以对有特殊要求的智能化子系统均要采用单独接地。
2、单独接地方式,在使用统一接地时主要利用自然接地体,若不再使用人工接地体其应当满足以下条件:接地电阻应当在1Ω以下,即小于规定值;建筑基础内部的钢筋应当互相连接形成电气通路及闭合环,且闭合环英应当与地面保持0.7m以上的距离;建筑基础表面未设置绝缘防水层。由于单独接地方式具有施工简单方便、接地可靠、节省成本等优点,因此在智能建筑接地系统设计中得到了较广泛的应用。
(三)智能化管理间与智能化竖井
通常计算机网络系统对于数据通信线路有必要的长度与性能要求,在智能建筑智能化系统设计中,一般使用铜质双绞线作为计算机系统的水平线路,而铜质双绞线会影响到网络传输的带宽,所以根据布线标准与规范,应当保证网络交换机与计算机之间使用的铜质双绞线长度在100m的范围以内;根据管路的弯度与竖直条件,智能化管理间到建筑物的边缘距离应当在60m的范围内;在网络管理间应当安置相应的网络机柜,其周围要留设合理的安装与维护空间,其平面面积应当在5~10m2之间。
(四)综合布线系统设计
在综合布线系统设计中,一般的语音电缆或水平子系统数据电缆应当采用支持带宽100M的D级别系统和5e类的UTP电缆,以满足大量用户的扩展要求;其水平线缆的总长度应当在100m范围以内,其中水平布线电缆的最佳长度为90m,电信间配线架上的跳线与接线软线长度应当不小于5m,对于情况不明确的公共空间其电缆应当按照以下公式进行计算:
C=(102-H)/1.2 W=C-5
其中H表示水平电缆的长度;C表示设备电缆、工作区电缆与电信间跳线的长度总和;W表示工作区电缆的最大长度,其值应当在22m以下;D表示设备电缆与电信间跳线的总长度。
三、目前智能建筑存在的问题
(一)国产化系统集成产品
现在占据国内智能建筑市场的产品仍然属于国外的几家公司,如美国的江森自控、IBM、朗讯科技和Honeywell等。国产系统集成产品没有主动权,这就很难使智能建筑完全真正地适应中国国情。
(二)技术障碍
在整个智能建筑领域仍然存在着一些技术上的缺陷,比如网络频宽的限制:数据传输量迅速增加和多媒体的使用,要求有宽阔的通讯空间;使用天线局域网络也要重新分配宝贵的音波频律。在新网络科技如ATM、Frame-relay等问世后,通讯空间的问题可获部分解决,但缺乏全面而完整的数据模型,各个建筑物自动化和应用系统之间仍然无法有效地交换数据。另外数据安全性和无缝话音与数据通讯之间还存在着矛盾,很多机构非常关注其内部资讯系统的安全性,以及保护其电脑和话音系统免被非法接达的问题,但如果把某建筑物隔离起来提供保护的话,就会导致无法使用更先进的通讯工具。
(三)人才缺乏
从事智能建筑的人才包括设计专门管理人才、安防产品技术支持工程师、布线、安防产品开发高级工程师、销售工程师(负责安防、综合布线产品的区域市场销售工作)、防盗报警、监控产品、大屏幕开发高级工程师、软件开发工程师(主要负责楼宇自控系统软件开发),而最为紧缺的是智能建筑系统设计管理人才。它需要懂得电子、通讯和建筑三方面专业知识的复合型人才。就智能建筑项目来说,工程的设计和施工是两个方面。而既懂工程设计,又懂施工方案的人,却是少而又少。设计与施工如何衔接和连贯好,关系到工程的进度与质量。
智能建筑是高科技的产物,智能建筑学科是多学科的交叉和融汇,人才培养应该是多层次、多方位的,只有强调理论与实践紧密结合,设计与技术紧密结合,施工与产品紧密结合,才能培养出新一代的智能建筑人才。
四、结束语
智能建筑设计中的智能化系统是一项科技水平高施工难度大的高科技建筑,无论是对智能化系统的规划还是对其进行管理,都要进行优化控制,以达到智能建筑的最优化设计。智能化系统施工设计质量好坏将直接关系着智能建筑整体质量和使用寿命。因此,相关研究和设计人员应当加强智能化系统的综合分析与管理, 总结 智能化系统施工中的 经验 与问题,以不断提高智能化系统施工设计水平和质量。
参考文献:
[1] 翟伟盛,浅谈智能化系统管理及维护,消费导刊,2009年10期
[2] 金红峰,浅谈智能化系统管理及维护的一点心得,艺术科技,2007年03期
[3] 邵胜华,智能化建筑智能化安装工程管理探究[J] 理论研究,2010(7)
下一页分享更优秀的>>>人工智能的论文
人工智能产业链分为基础层、技术层和应用层。基础层是人工智能产业链的基础,为人工智能提供算力支撑和数据输入,中国在此领域发展时间较短,基础层发展较为薄弱。目前,中国的人工智能企业主要集中在北京、广东、上海和浙江,北京的人工智能发展已经步入快车道。
人工智能产业链全景梳理:基础层发展薄弱
基础层主要提供算力和数据支持,主要涉及数据的来源与采集,包括AI芯片、传感器、大数据、云计算、开源框架以及数据处理服务等。技术层处理数据的挖掘、学习与智能处理,是连接基础层与具体应用层的桥梁,主要包括机器学习、深度学习、计算机视觉、自然语言处理、语音识别等。应用层针对不同的场景,将人工智能技术进行应用,进行商业化落地,主要应用领域有驾驶、安防、医疗、金融、教育等。
近年来,人工智能在技术与应用方面取得了巨大的进展,在国际上具备了一定的竞争力,但是基础层的薄弱仍然是限制中国人工智能发展的关键因素。中国在在基础层发展时间较短,较落后于国际先进水平。 长期以来,中国的芯片大部份依赖进口,计算力方面的基础薄弱,且开源框架受制于国外AI巨头。
基础层的人工智能算力发挥着越来越重要的作用, AI芯片作为人工智能产业发展的核心,将迎来巨大的发展机遇。目前,中国人工智能芯片优秀企业有寒武纪、华为海思、中星微、西井科技、地平线、富瀚微、四维图新、瑞芯微、深鉴科技等。
人工智能产业链区域热力图:北京AI发展步入快车道
根据公开资料整理人工智能优秀企业区域分布热力地图如下,可见,我国人工智能产业链重点企业集中于北京、广东、上海、浙江等地区。
北京作为中国集聚人工智能企业最多的区域,其人工智能产业的链条已经比较完善,覆盖了整个产业链环节,且在产业链的重点细分领域均出现了行业龙头企业。其中,基础层中传感器的行业龙头京东方科技,AI芯片的行业龙头中星微电子、寒武纪、地平线、四维图新等,云计算的百度云、金山云、世纪互联等,数据服务的百度数据众包、京东众智、数据堂等;技术层的机器学习龙头百度IDL、京东DNN等,计算机视觉的商汤科技、旷视科技等,自然语言处理的百度、搜狗、紫平方等,语音识别的出门问问、智齿科技等;应用层的人工智能重点企业也涉及了各个领域。北京正在逐步形成具有全球影响力的人工智能产业生态体系。
—— 更多数据及分析请参考前瞻产业研究院《中国人工智能行业市场前瞻与投资战略规划分析报告》。
经过多年的持续积累,我国在人工智能领域取得重要进展,国际科技论文发表量和发明专利授权量已居世界第二,部分领域核心关键技术实现重要突破。
语音识别、视觉识别技术世界领先,自适应自主学习、直觉感知、综合推理、混合智能和群体智能等初步具备跨越发展的能力,中文信息处理、智能监控、生物特征识别、工业机器人、服务机器人、无人驾驶逐步进入实际应用,人工智能创新创业日益活跃,一批龙头骨干企业加速成长,在国际上获得广泛关注和认可。
加速积累的技术能力与海量的数据资源、巨大的应用需求、开放的市场环境有机结合,形成了我国人工智能发展的独特优势。
与此同时,我国人工智能整体发展水平与发达国家相比仍存在差距,缺少重大原创成果,在基础理论、核心算法以及关键设备、高端芯片、重大产品与系统、基础材料、元器件、软件与接口等方面差距较大。
科研机构和企业尚未形成具有国际影响力的生态圈和产业链,缺乏系统的超前研发布局;人工智能尖端人才远远不能满足需求;适应人工智能发展的基础设施、政策法规、标准体系亟待完善。
人工智能领域技术能力全面提升为人机协同奠定基础
随着大数据、云计算、互联网、物联网等信息技术的发展,以深度神经网络为代表的人工智能技术飞速发展,人工智能领域科学与应用的鸿沟正在被突破。
图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术能力快速提升,技术的产业化进程得以开启,人工智能迎来爆发式增长的新高潮。机器在人工智能技术的应用下,在“视觉”“听觉”“触觉”等人体感官的感知能力不断增强。
例如计算机视觉领域中深受关注的Image Net图像识别挑战赛获奖结果表明,2015年,计算机对于图像的识别能力已经超过人类水平,这意味着计算机能够在多种场景下一定程度上替代人类视觉的工作,更高效地完成任务。
同时得益于深度学习算法能力的提升,语音识别、自然语言处理等人工智能算法的不断革新助推计算机视觉产业持续向前。
人工智能技术能力的不断成熟使得机器能够实现越来越人性化的操作。人工智能技术能力的全面提升为人机系统的能力实现奠定了坚实的基础。
工智能(Artificial Intelligence)是研究、开发用于模拟、延伸和扩展人智能的理论、方法、技术及应用系统的一门新技术科学。人工智能领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,可以产出一种新的可以和人类智能相似的方式做出反应的智能机器,该领域的研究主要有机器人、语言识别、图像识别、自然语言处理和专家系统等。自从人工智能诞生以来,理论和技术越来越成熟,应用领域在不断的扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以把人的意识、思维的信息过程的模拟。虽然人工智能不是人的智能,但可以像人那样思考、最终可能超过人的智能。优点:1、在生产方面,效率更高且成本低廉的机器及人工智能实体代替了人的各种能力,人类的劳动力将大大被解放。2、人类环境问题将会得到一定的改善,较少的资源可以满足更大的需求。3、人工智能可以提高人类认识世界、适应世界的能力。缺点:1、人工智能代替了人类做各种各样的事情,人类失业率会明显的增高,人类就会处于无依靠可生存的状态。2、人工智能如果不能合理利用,可能被坏人利用在犯罪上,那么人类将会陷入恐慌。3、如果我们无法很好控制和利用人工智能,我们反而会被人工智能所控制与利用,那么人类将走向灭亡,世界也将变得慌乱。