我国古代教育心理学家说过:“知之者不如好知者,好知者不如乐知者。”就非常形象、生动地说明了兴趣在学习中的作用,古往今来,许多发明家之所以能取得令人瞩目的成绩,更是与他们浓厚的学习兴趣和强烈的求知欲望有关。 传统的数学课堂把丰富复杂、动态变化的教学过程简约化归为“明算理,重练习”的特殊认识活动,导致数学课堂变得机械、沉闷和程序化,缺乏生机与乐趣,缺乏对智慧的挑战。学生学习起来觉得枯燥、乏味,没有激情。那么怎样才能使课堂气氛活跃,使学生拥有浓厚的学习兴趣呢?我觉得可以从以下几个方面着手: 一、用新颖有趣的教法诱发学习兴趣 苏霍姆林斯基说过:“兴趣并不在于认识一眼就能看见的东西,而在于认识深藏的奥秘”。小学生好奇心强,求知欲强烈,容易被新奇的事物吸引。这就要先在学生面前揭示出一种新的东西,激发起他们的惊奇感。这种情感越能抓住学生的心,他们就越迫切地想要知道、思考和理解。这就需要我们要善于用新颖的教学方法引起他们对于学习内容的好奇感,从而神情专注、兴趣盎然地投入到学习活动中来。例如果在教学“乘法的初步认识”时,我是这样导入的,我说:“今天老师要和小朋友们开展计算比赛,比一比谁算的又对又快,接着我出示了如下题目:3+3+3,7+7+7+7+7,8+8+8+8……+8(100个8)。看了题目以后,小朋友们马上投入到紧张的计算比赛中去,正在兴致勃勃的把数字一个一个的加,我却立即说出了得数。小朋友们一个个你看看我,我看看你觉得很奇怪。这时我说:”其实,老师做加法的本领并不比你们强,只是我掌握了一种新的运算方法,掌握了这种方法以后,算几个相同加数的加法时,速度就会快多了。这种运算叫乘法,你们想学吗?“正是这一举措,展示了乘法这一教学内容的内在魅力和巨大作用,无疑把学生紧紧地吸引住了,从而诱发了学生急切学习乘法的需要和强烈的学习兴趣。 二、用数学本身的内在力量唤起学习兴趣 布鲁纳说过:“最好的学习动机莫过于学生对所学材料本身具有内在的兴趣。”数学知识严密的逻辑性和系统性,各种数学材料之间的有机联系,解决数学问题时思路的开阔和敏捷,数学思维的各种特殊而巧妙的形式……构成了数学这门学科的潜在的吸引力。所以在数学教学中,要努力把数学这种内在力量显示出来,使学生看到一个“快乐的数学王国”,使学生潜移默化的对数学产生深刻的兴趣。如在教学“20以内个数的认识”时,我出了这样一道题:同学们排队做操,小华的前面有5个同学,后面有8个同学,这一队一共有多少同学?让学生解答,结果学生们不假思索的告诉我:5+8=13(个)。看着学生们一个个神气的神态,我并没有急于表态,而是讲了一个故事:兔妈妈带小兔们到草地上去做游戏。天黑了,兔妈妈让小兔们把队伍整理好准备回家。她认认真真的数了数,大吃一惊:“不好,丢了一只小兔”。她又仔仔细细数了一次,小兔却一只都没少。为什么14只兔子变成了13只呢?这时学生们顿有所悟,边笑边喊:“兔妈妈把自己都忘了数了。”也正是此时,学生们马上意识到刚才那道题存在的错误。纷纷表示怎么把小华给忘了。如此妙趣横生的数学内容,当然深深的吸引了学生。此外,还可以组织一题多变,一题多解,一题多问,一题多算,一题多编等活动,显示出数学特有的内在力量,唤起学生对之产生深刻的兴趣。 三、用数学的应用价值调动学习兴趣 数学是一门应用非常广泛的学科。小学数学中的许多知识,也都直接或间接的应用于人们的生活领域和生产实际。因此,在教学中,对教学内容要讲来源,讲用处,通过联系实际,解决学习、生活中的问题,让学生感到生活中处处有数学,这样学起来自然有亲切感、真实感,从而激发学生学习数学的积极动机,产生学习兴趣。如教学“11-20”各数的认识,可设计让学生很快翻书找到指定页码的练习;应用题的练习,要尽量设计解决生活实际中遇到的一些具体问题,又如在教学“认识人民币”时,我设计了这样一个活动:在教室里布置了一家超市,里面摆了好多商品,琳琅满目,选一位小朋友扮演售货员,其他小朋友先仔细观察这些商品的价格,一方面使学生进一步认识了人民币,使课内的数学知识得以巩固。另一方面也让学生真正认识到数学就在我们生活中间。既看得见也摸得着,不再觉得数学是脱离实际的海市蜃楼。而且培养了学生分析问题和解决问题的能力,调动学生学习数学的兴趣。 四、用学习的成功感增添学习兴趣 心理学家盖兹说过:“没有什么东西比成功更能增强满足的感觉;也没有什么东西让每个学生都体验到成功的喜悦,更能激发学生的求知欲望。”学生对于数学的兴趣是在自身的活动中形成和发展的。当学生通过努力获得某种成功时,就会表现出强烈的学习兴趣。教师的责任在于相机鼓励、诱导点拨、帮助学生学习获得成功。当学生想独立的去探索某个新知时,要十分注意情绪鼓舞:“你一定能自己解决这个问题”、“你一定能行!”等。当学生的学习停留于一定的水平时,要注意设“跳板”引渡,使他们成功的到达知识的彼岸。当学生的学习活动遇到困难,特别是后进生泄气自卑时,要特别注意给予及时的点拨诱导,使他们“跳一下也能摘到果子吃”。这样,各种不同水平的学生就会在探究中获得成功的喜悦,满足感油然而生,进一步增添了对数学知识的学习兴趣。 总之,要使课堂气氛活跃焕发生机,就要从培养学生的学习兴趣入手,科学的设计学习活动,使学生不仅爱学、会学,而且学得积极主动,学得活泼,实现从“要我学”到“我要学”的转变,让数学成为孩子们自觉追求的东西。
写的不错,是不错,很好 ,可是有的地方写错了 ,我就不说出来了, 希望我进步 。
写作思路:要直接简化任务语言。在叙述中,我们要把直接叙述变成间接叙述,尽可能简化人物语言。这样,即使情节连贯,又使语句“简练”。
今天,我和爸爸坐地铁来到油坊桥去玩,从中我明白了一个道理。
我们先来到地铁,发现地铁有19站,每一站每一站要2分钟,中间停车的时间是1分30秒,这时爸爸给我出了一个难题:如果从经天路到油坊桥一共需要多少分钟?我想了一会儿:“19减去1等于18,18乘以2等于36,18乘以1分30秒等于1小时12分钟。
1小时12分钟加上36分钟等于1小时48分钟。”爸爸听后笑了笑说:“你的算法不太简便,先把19减去1等于18,这样就知道一共有18个停车时间,然后用2分钟加上1分30秒等于3分30秒,再用3分30秒乘以18个站就等于1小时12分钟了!你说这种方法是不是比你的方法简便?”
通过这次坐地铁我明白了生活中虽然有着许许多多的数学,但是有些数学题不简便,等着我们去简便的算它,以后我必须认真的学习数学解答更多的数学难题。
五年级数学小论文500字! 今天,我和妈妈在做数学题。妈妈问我:“阳阳,你会算组合图形的面积吗?”我自以为是地说:“当然会了,这么简单!”妈妈拿出8个完全相同小正方体,摆成一个正方形,问我:“总面积怎么算?”我用直尺量了量,一个正方形的一条边大约是3厘米,我说出算式:“一条边3厘米,那么一个正方形的一个面就是3×3=9(平方厘米),一个正方形有6个面,就是9×6=54(平方厘米),8个就是54×8=432(平方厘米)。”妈妈好像很沮丧,说:“你犯了一个致命的错误!既然是组合图形,有些面肯定会重合了!”我恍然大悟:“对哦。”我又重算了一下:重合了1、2、3、4、5……24个面,24×9=216(平方厘米),432-216=216(平方米)。现在对了吧? 过了一会,妈妈又摆出了另一种组合图形,这个图形上下8个,左右都是2个,前后都是4个,问我:“面积怎么算?”我说:“用 12×6=72(平方厘米)就是上面的面积,再用6×3=18(平方厘米)就是左边的面积,再用12×3=36(平方厘米)就是前面的面积,最后用(72+18+36)×2=252(平方厘米)。”妈妈说:“没有发现一些规律吗?”我看了看,真有嘞!“每个正方体它的上面是什么下面就是什么,左边是什么右边就是什么,前后也一样。”我有些感触。妈妈欣慰地笑了,说“我的女儿真聪明!” 哦,原来如此,组合图形的面积算好前面后面就不要算了,算好上面下面就不要算了,算好左边右边就不要算了。太好了,以后算组合图形的面积就很方便了,你们学会了吗
我不服气,8,爸爸报3个数字,又被爸爸抢到6了,爸爸说5,我不服气,赢了你看。难道还有什么规律:“其实我也是知道的?找到规律我信心十足的和老爸再玩了一次,怎样都是我赢?我留心到。看来,谁先报到30谁就赢了,我是必胜无疑的?按照先抢到数字26后的方法!爸爸也不服气。因为如果我先抢到了数字26,巧合哦:“怎么那么巧啊,我报“30”一个数字就赢定了!我们只要要多动脑!”爸爸也笑了!,我和老爸玩了一局,说:“那我们玩个游戏、29!原来游戏里也有那么多数学规律啊,最少是1个!我说7,心中暗暗高兴,又来了几次,说,我报“28、30”三个数字、2;爸爸报1个数字今天一早;当爸爸报2个数字“27,那么。我说3。那么?”老爸嘿嘿一笑。这个游的规则是很简单的?”我笑嘻嘻地说,4,我也能先抢到30了,我报“29、28;爸爸报2个数字、29”的时候,9,爸爸报10:每个人每次最多报3个自然数,6,除了抢到数字26之外呢,这是不是这个游戏中的规律呢,结果我输了,我进行了推算、28”的时候,我就先抢到30了,抢报30、18,报数的时候不能重复也不能跳过、10,先报到数字26绝对是胜利的保证,让我费脑筋.那么,我就报2个数字!知道不告诉我,老爸先说1,你输我看电脑,14,我看爸爸吧2抢了,它们是22:老爸又在打什么鬼主意,12我连忙报13,11!接着,只要我每次先抢到数字26的时候,好吗,又玩了几局。我胜利喽,可我掌握了规律。老爸问,按照游戏的规则,到数字30还有4个数字,who怕who。”接着,我终于抢到10啦。这个狡猾的爸爸,我想看电脑,老爸把规律说了一遍,2?在之前的回合中我还要确定抢到哪些数字才能确保自己胜利呢、14、30”两个数字,这些数字在每一回合中我要牢牢记住、6:“为什么我不能看,我就报1个数字,我就报3个数字,最少报1个自然数,我可是找到规律了呢,你果然很聪明啊:“这可不是偶然?”我心想,可电脑偏偏被老爸给占了!玩就玩,当爸爸报1个数字“27”的时候!我答应了,心里不免有些着急:如果要赢。这个简单,我有输有赢;当爸爸报3个数字“27,每次报的数字最多是3个?管他呢
数学来源于生活而最终服务于生活,尤其是小学数学知识,基本在生活中都能找到原型。关于小学数学的教学,你有什么研究成果呢?本文是我为大家整理的小学数学教学优秀论文,欢迎阅读! 小学数学教学优秀论文篇1:浅谈如何上好小学的数学课 数学这门学科,自古以来就被认为为是理性最强的学科,需要聪明的大脑和天赋才能学好的,其实不然,对于天真浪漫的小学生来讲,他们接受各种 文化 知识的能力是等同的,那么如何才能学好数学呢?我认为关键在于如何调动学生学习数学的兴趣。通过分析,不论学生自身的因素还是学校、家庭环境对学生自身兴趣的影响都与教师有直接关系,就像邓小平曾说的:“一个学校能不能为社会主义建设培养合格人才,培养德、智、体全面发展、有社会主义觉悟的、有文化的劳动者,关键在教师。”同样,能否调动学生学习的兴趣,关键也是在教师,如何调动学生学数学的积极性呢?教师在学生学习中又处于什么地位呢?下面是本人在教学中的几点浅见: 一、先从本身着手,让学生喜欢上你,从而喜欢上你的课。 作为教者本身来讲,要从各方面来完善自己,比如,师德修养,文体方面等等,让学生从内心尊重你,要和学生结交成各方面的朋友,从而使他们喜欢你的同时,也喜欢你所教的学科。现在很多教师在思考如何让学生学好数学时,经常考虑的是如何激发学生的兴趣,却忽视了自身的素质要求,如果自身不修边幅、口无遮拦的,如何让学生喜欢上你,更不用说喜欢上你的课了。学生一开始就抵触你,即使你再如何调动学生的学习兴趣,都只是“剃头担子一头热”。 二、其次先要诱发兴趣,通过游戏性活动,让学生喜欢上你上的数学课。 兴趣是学生最好的老师,也是 智力开发 的原动力,“良好的开端是成功的一半”,诱发学生从新课刚开始时就产生强烈的求知欲是至关重要的。愉快的游戏能唤起学生的愉悦感,引起学生的直接兴趣,并由无意注意引导到有意注意,发展间接兴趣。因此,教师导入新课时,根据教学内容,可选择组织学生做数学游戏的 方法 ,让学生人人参加,能很快地激发学生的学习热情,比如,在学习100以内二位数加减二位数中,我让一部分学生当作售货员,一部分学生当作买东西的顾客,让他们从实际出发,从一买一卖中得到乐趣,更在不知不觉中学到了知识,让学生在玩中学,在学中玩,更让学生们懂得了学习数学的重要性,何乐而不为呢? 三、再次要设计疑点,激发思维火花,“勾引”出学生的学习兴趣。 “学起于思,思起于源”。心理学认为。疑是最容易引起探究反射,思维也就应运而生。例如:我在教学中,经常会问,如果是你,你会怎么样?通过换位思考,改变以前学生被动学习的境况,让学生设身处地的思考问题,让学生产生“疑”。引起思考,是需要学习的开始。疑问使学生萌发出求知的欲望。同学们跃跃欲试,开始了对新知识的探求。 四、通过让学生进行“争吵”,在争论中提出问题,开拓思维能力升华兴趣。 学习数学是一项艰苦而又细致的劳动。学习的直接兴趣不是与生俱有的,而是学生在刻苦学习,认真钻研的学习活动中得到发展升华的。一个懒于学习,不愿思考的学生,是很难对数学产生兴趣的。因此,在教学中教师首先要创设条件,让学生有充分施展才能的机会,鼓励学生质疑问难,大胆发表与教师不同的看法;培养学生善于独立思考的习惯,要求学生遇事要勤于思考,善于思考,丰富想象,开拓思维。这样,对升华学生学习数学的兴趣,能起到一定的促进作用。其次,课堂上组织学生讨论是开拓学生思维能力,升华兴趣的一个好办法。因此,教师可采用同桌、小组、全班等讨论形式,组织学生对某一个问题进行开放式的讨论,让学生思维的火花互相触发,交流各自对问题的不同看法,最后由教师进行 总结 概括。利用这个方法的目的是引起更深入地钻研某些问题的更高兴趣。 五、最后通过表扬、鼓励,让学生体验喜悦,延长学习的兴趣。 学生有了兴趣,还要想方设法使兴趣持久。因为小学生的兴趣既不稳定,又不长久。一位心理学家曾说过:“一个人只要体验一次成功的意念和胜利的欣慰,便会激发追求无休止成功的意念和力量。”这种无休止成功的意念和力量也就是学生兴趣的源泉。对学生来说,老师的一点点鼓励,一次的肯定,一次表扬,都是他成功的标志,他都能从中体验成功的喜悦,这时学生的兴趣就如同永不枯竭的源泉,就会浓厚、持久。综上所述,是我在教学中的点滴体会。 总之,在数学教学过程中,只要我们认真钻研教材,把握学生的学习心态,运用灵活多样的 教学方法 ,精心设计每一个教学环节,就能激发和增强学生的学习兴趣。 小学数学教学优秀论文篇2:浅谈小学数学教学生活化 摘要:数学即生活,只有将学生引到生活中去,切实地感受数学的价值,才能使学生真正地理解数学,从而使他们从小更加热爱生活、热爱数学。 关键词:数学教学 新课标 生活情趣 孔子曰:知之者不如好之者,好之者不如乐之者。随着教学改革的深入,我们的数学课堂教学开始变得更自由、更灵活,学生也始终在愉快的状态下积极地学习数学,这的确是我们数学教学改革的一个可喜变化。著名数学家华罗庚曾说:“就数学本身来说,是壮丽多彩、千姿百态、引人入胜的……”入迷才能叩开思维的大门,智力和能力才能得到发展。新的《数学课程标准》更多地强调学生用数学的眼光从生活中捕捉数学问题、探索数学规律,以及主动运用数学知识分析生活现象、解决生活中的实际问题。在教学中,教师应注重从学生的生活中抽象数学问题,从学生已有的生活 经验 出发,挖掘学生感兴趣的生活素材,以丰富多彩的形式展现给学生。 具体可以从以下几个方面做起: 一、数学语言运用生活化,从生活经验入手,调动课堂气氛。 数学 教育 家斯拖利亚尔曾说过,数学教学也就是数学语言的教学。同一堂课,不同的教师教出来的学生,接受程度也不一样,这主要取决于教师的语言水平。尤其是数学课堂教学,要学生接受和理解枯燥、抽象的数学知识,没有高素质语言艺术的教师是不能胜任的。鉴于此,结合学生的认知特点、 兴趣 爱好 、心理特征等个性心理倾向,将数学语言生活化是引导学生理解数学、学习数学的重要手段。如在“利息”一课的教学中,教师说:“我家里有10000元钱暂时不用,可是现金放在家里不安全,请同学们帮老师想个办法,如何更好地处理这些钱?”学生回答的办法很多,这时再趁机引导学生:“选择储蓄比较安全。在储蓄之前,我还想了解一下关于储蓄的知识,哪位同学能够介绍一下吗?”学生们竞相发言。在充分感知了“储蓄”的益处之后,学生们又主动介绍了“储蓄的相关事项”,在不知不觉中学到了知识,体会到了生活与数学休戚相关。 二、创设课堂教学生活化情境 心理学研究表明:当学习的内容与 儿童 的生活经验越接近时,学生自觉接受知识的程度也就越高。在课堂教学中,教师应从学生熟悉的生活情境和感兴趣的事情出发设计数学活动,使学生身临其境,激发学生去发现、探索和应用,学生们就会发现原来熟视无睹的事物竟包含着这么丰富的数学知识。例如老师可以把学生春游中的情境拿到教学中来,“同学们去春游,争着要去划船,公园里有7条小船,每船乘6个人,结果还有18个人在岸上等候。”在课上,让学生根据情境自己编题,自己列式解题。这样,不但把教材中缺少生活气息的题材变成了来自生活的、生动的数学问题,还促使学生能够主动投入、积极探究。 三、数学问题生活化,感受数学价值 数学教材呈现给学生的大多是抽象化、理性化、标准化的数学模型,教师如果能将这些抽象的知识和生活情景联系起来,引导学生体验数学知识产生的生活背景,学生就会感到许多数学问题其实就是生活中经常遇到的问题。这样,不仅把抽象的问题具体化,激发了学生解决问题的热情,还使他们切实地感受到数学在生活中的原型,让学生真正理解了数学,感受到现实生活是一个充满数学的世界,从而更加热爱生活、热爱数学。 例如教学《植树问题》一课,教师可以为学生展示马路边植树、小朋友排队、路灯等一些生活中的现象,让学生体会间隔的含义。这样,不仅增强了学生的探究欲,而且使他们体会到只要用数学眼光留心观察广阔的生活情境,就能发现在平常事件中蕴含着的数学规律。教学时,让学生为自己的校园设计植树方案,可以进一步帮助学生体会在现实生活中许多事情都有与植树问题相同的数量关系,感悟数学建模的重要意 四、将数学知识应用于生活 数学来源于生活而最终服务于生活,尤其是小学数学知识,基本在生活中都能找到原型。教师要教会学生把所学的知识应用到生活中,使他们能用数学的眼光去观察生活,去解决生活中的实际问题。如学过了“长方体、正方体体积”的有关知识后,让学生去计算教室的空间大小、学校喷水池的容积、为家庭的装潢设计一个购物计划;又如学过“人民币”后,可指导学生到超市购物等。 总之,数学即生活,只有将学生引到生活中去,切实地感受数学的价值,才能使他们真正地理解数学,从而更加热爱生活、热爱数学。 小学数学教学优秀论文篇3:如何提高课堂的有效性思维 有效的课堂教学是通过课堂教学活动,让学生在认知和情感上均有所发展。从事小学数学教学的过程中,对于其有效性有以下几点思考: 一、重视情境创设充分调动学生有效的学习情感 构建良好的师生关系,调动有效的学习情感,对于维持学生的学习兴趣和注意力至关重要。调动有效的学习情感,既能培养学生的学习信心,调动其学习的主动性,又能切实提高课堂教学的有效性。 在情境创设中,应注意以下几点: 1、情境创设应目的明确 每一节课都有一定的教学任务。情境的创设,要有利于学生数学学习,有利于促进学生认知技能、数学思考、情感态度、价值观等方面的发展。所以,教学中既要紧紧围绕教学目标创设情境,又要充分发挥情境的作用,及时引导学生从情境中运用数学语言提炼出数学问题。如果是问题情境, 提出的问题则要具体、明确,有新意和启发性,不能笼统地提出诸如“你发现了什么”等问题。? 2.教学情境应具有一定的时代气息 作为教师,应该用动态的、发展的眼光来看待学生。在当今的信息社会里,学生可以通过多种 渠道 获得大量信息,教师创设的情境也应具有一种时代气息,让他们学会关心社会,关心国家发展。如教学《百分数的应用》, 创设了中国北京申奥成功的情境:出示第二轮得票统计图(北京56票,多伦多22票,巴黎18票,伊斯坦布尔9票)请学生根据统计图用学的百分数知识来提出问题,解决问题。? 3.情境的内容和形式应根据学生的生活经验与年龄特征进行设计? 教学情境的形式有很多,如问题情境、 故事 情境、活动情境、实验情境、竞争情境等。情境的创设要遵循不同年龄儿童的心理特征和认知规律,要根据学生的实际生活经验而设计。对低、中高年级的儿童,可以通过讲故事、做游戏、直观演示等形式创设情境,而对于高年级的学生,则要创设有助于学生自主学习、合作交流的问题情境,用数本身的魅力去吸引学生。? 二、深钻教材,确保知识的有效性。 知识的有效性是保证课堂教学有效的一个十分重要的条件。对学生而言,教学知识的有效是指新观点、新材料,他们不知不懂的,学后奏效的内容。教学内容是否有效和知识的属性以及学生的状态有关。第一,学生的知识增长取决于有效知识量。教学中学生知识的增长是教学成败的关键。第二,学生的智慧发展取决于有效知识量。发展是教学的主要任务,知识不是智慧,知识的迁移才是智慧。在个体的知识总量中并不是所有的知识都具有同样的迁移性,而是其中内化的、熟练的知识才是可以随时提取,灵活运用,这一部分知识称为个体知识总量中的有效知识,是智慧的象征。第三,学生的思想提高取决于有效知识量。这种知识是指教学中学生获得的、融会贯通深思熟虑的、实在有益的内容,即有效知识。第四,教学的心理效应取决于有效知识量。通过对知识的获取产生愉悦的心理效应,才能成为活动的原动力和催化剂。 三、探究有效的学习过程。 课堂教学的核心是调动全体学生主动参与学习全过程,使学生自主地学习、和谐地发展。学习过程是否有效,是课堂教学是否有效的关键。学生是学习的主体,但我们也不得不承认,处于成长发展中的小学生,是不成熟的学习主体。由于受年龄、经验、知识、能力的限制,他们提出问题、分析问题的能力毕竟是有限的。因此,只有发挥教师作为组织者、引导者、点拔者的作用,才能发挥学生的主体性、主动性,让学生学会学习。尤其在学生疑难处、意见分歧处,或在知识、方法归纳概括时,更要及时加以点拔指导。有效的学习过程还可以通过游戏实施。小学生注意的特点是无意占优势,尤其是低年级往往表现出学前儿童所具有的那种对游戏的兴趣和足劲要求,他们能一连几小时地玩,却不能长时间地一动不动地坐在一个地方。新课程要求“面向每一个学生,特别是有差异的学生”。因此针对差异性,可以实施分层教学策略,最大限度地利用学生的潜能实施教学过程分层,放手让学生独立思考,展示学生个性,从而使每一个学生都得到发展。使数学课堂教学真实有效。 四、联系生活实际,创设有效的生活情境 创设有效的生活情境是提高课堂教学有效性的重要条件。《数学课程标准》指出:“力求从学生熟悉的生活情景与童话世界出发,选择学生身边的、感兴趣的数学问题,以激发学生学习的兴趣与动机,使学生初步感受数学与日常生活的密切联系。”数学教学中,教师要不失时机创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的学习情景,使学生从中感悟到数学的乐趣,产生学习的需要,激发探索新知识的积极性,主动有效地参与学习。在创设生活教学情境时,一要选取现实的生活情境。教师可直接选取教材中提供的学生熟悉的日常生活情境进行加工或自己创设学生感兴趣的现实生活素材作为课堂情境。二要构建开放的生活情境。教师要对课内知识进行延伸与拓展,将抽象知识学习过程转变为实践性、开放性的学习过程,引导学生发现问题,大胆提出猜想,不断形成、积累、拓展新的数学生活经验。要创设多元的生活情境。 可以通过对学生生活及兴趣的了解,对教学内容进行二次加工和整合,再次创设生活情境。真正实现课的导入“生活化”——教学的导入仿佛是优美乐章的“序曲”;例题教学“生活化”——例题教学是优美乐章的主旋律;知识运用“生活化”——综合运用知识的能力仿佛是动听的“交响乐”。 生产和生活实际是数学的渊源和归宿,其间大量的素材可以成为数学课堂中学生应用的材料。 要做有心人,不断为学生提供生活素材,让生活走进课堂。真正让文本的“静态”数学变成生活的“动态”数学。要让学生觉得数学不是白学的,学了即可用得上,是实实在在的。这样的课堂教学才是有效的。 五、注重教学 反思 ,促进课堂教学质量 记得有人说过“教无定法,教学是一门遗憾的艺术”。因为我们的教师不是圣人,一堂课不会十全十美。所以我们自己每上一节课,都要进行深入的剖析、反思,对每一个教学环节预设与实际吻合、学生学习状况、 调控状况、课堂生成状况等方面认真进行总结,找出有规律的东西,在不断“反思”中学习。我们反思的主要内容有:思考过程、解题思路、分析过程、运算过程、语言的表述、教学的思想方法进行反思等。以促进课堂教学质量,教学效果也一定会更好。 教学作为一种有明确目的性的认知活动,其有效性是广大教师所共同追求的。无论课程改革到哪一步,“有效的课堂”是我们
小学数学教学论文--在小学数学教学中培养学生的思维能力 培养学生的思维能力是现代学校教学的一项基本任务。我们要培养社会主义现代化建设所需要的人才,其基本条件之一就是要具有独立思考的能力,勇于创新的精神。小学数学教学从一年级起就担负着培养学生思维能力的重要任务。下面就如何培养学生思维能力谈几点看法。 一 培养学生的逻辑思维能力是小学数学教学中一项重要任务 思维具有很广泛的内容。根据心理学的研究,有各种各样的思维。在小学数学教学中应该培养什么样的思维能力呢?《小学数学教学大纲》中明确规定,要“使学生具有初步的逻辑思维能力。”这一条规定是很正确的。下面试从两方面进行一些分析。首先从数学的特点看。数学本身是由许多判断组成的确定的体系,这些判断是用数学术语和逻辑术语以及相应的符号所表示的数学语句来表达的。并且借助逻辑推理由一些判断形成一些新的判断。而这些判断的总和就组成了数学这门科学。小学数学虽然内容简单,没有严格的推理论证,但却离不开判断推理,这就为培养学生的逻辑思维能力提供了十分有利的条件。再从小学生的思维特点来看。他们正处在从具体形象思维向抽象逻辑思维过渡的阶段。这里所说的抽象逻辑思维,主要是指形式逻辑思维。因此可以说,在小学特别是中、高年级,正是发展学生抽象逻辑思维的有利时期。由此可以看出,《小学数学教学大纲》中把培养初步的逻辑思维能力作为一项数学教学目的,既符合数学的学科特点,又符合小学生的思维特点。 值得注意的是,《大纲》中的规定还没有得到应有的和足够的重视。一个时期内,大家谈创造思维很多,而谈逻辑思维很少。殊不知在一定意义上说,逻辑思维是创造思维的基础,创造思维往往是逻辑思维的简缩。就多数学生说,如果没有良好的逻辑思维训练,很难发展创造思维。因此如何贯彻《小学数学教学大纲》的目的要求,在教学中有计划有步骤地培养学生逻辑思维能力,还是值得重视和认真研究的问题。 《大纲》中强调培养初步的逻辑思维能力,只是表明以它为主,并不意味着排斥其他思维能力的发展。例如,学生虽然在小学阶段正在向抽象逻辑思维过渡,但是形象思维并不因此而消失。在小学高年级,有些数学内容如质数、合数等概念的教学,通过实际操作或教具演示,学生更易于理解和掌握;与此同时学生的形象思维也会继续得到发展。又例如,创造思维能力的培养,虽然不能作为小学数学教学的主要任务,但是在教学与旧知识有密切联系的新知识时,在解一些富有思考性的习题时,如果采用适当的教学方法,可以对激发学生思维的创造性起到促进作用。教学时应该有意识地加以重视。至于辩证思维,从思维科学的理论上说,它属于抽象逻辑思维的高级阶段;从个体的思维发展过程来说,它迟于形式逻辑思维的发展。据初步研究,小学生在10岁左右开始萌发辨证思维。因此在小学不宜过早地把发展辩证思维作为一项教学目的,但是可以结合某些数学内容的教学渗透一些辩证观点的因素,为发展辩证思维积累一些感性材料。例如,通用教材第一册出现,可以使学生初步地直观地知道第二个加数变化了,得数也随着变化了。到中年级课本中还出现一些表格,让学生说一说被乘数(或被除数)变化,积(或商)是怎样跟着变化的。这就为以后认识事物是相互联系、变化的思想积累一些感性材料。 二 培养学生思维能力要贯穿在小学数学教学的全过程 现代教学论认为,教学过程不是单纯的传授和学习知识的过程,而是促进学生全面发展(包括思维能力的发展)的过程。从小学数学教学过程来说,数学知识和技能的掌握与思维能力的发展也是密不可分的。一方面,学生在理解和掌握数学知识的过程中,不断地运用着各种思维方法和形式,如比较、分析、综合、抽象、概括、判断、推理;另一方面,在学习数学知识时,为运用思维方法和形式提供了具体的内容和材料。这样说,绝不能认为教学数学知识、技能的同时,会自然而然地培养了学生的思维能力。数学知识和技能的教学只是为培养学生思维能力提供有利的条件,还需要在教学时有意识地充分利用这些条件,并且根据学生年龄特点有计划地加以培养,才能达到预期的目的。如果不注意这一点,教材没有有意识地加以编排,教法违背激发学生思考的原则,不仅不能促进学生思维能力的发展,相反地还有可能逐步养成学生死记硬背的不良习惯。 怎样体现培养学生思维能力贯穿在小学数学教学的全过程?是否可以从以下几方面加以考虑。 (一)培养学生思维能力要贯穿在小学阶段各个年级的数学教学中。要明确各年级都担负着培养学生思维能力的任务。从一年级一开始就要注意有意识地加以培养。例如,开始认识大小、长短、多少,就有初步培养学生比较能力的问题。开始教学10以内的数和加、减计算,就有初步培养学生抽象、概括能力的问题。开始教学数的组成就有初步培养学生分析、综合能力的问题。这就需要教师引导学生通过实际操作、观察,逐步进行比较、分析、综合、抽象、概括,形成10以内数的概念,理解加、减法的含义,学会10以内加、减法的计算方法。如果不注意引导学生去思考,从一开始就有可能不自觉地把学生引向死记数的组成,机械地背诵加、减法得数的道路上去。而在一年级养成了死记硬背的习惯,以后就很难纠正。 (二)培养学生思维能力要贯穿在每一节课的各个环节中。不论是开始的复习,教学新知识,组织学生练习,都要注意结合具体的内容有意识地进行培养。例如复习20以内的进位加法时,有经验的教师给出式题以后,不仅让学生说出得数,还要说一说是怎样想的,特别是当学生出现计算错误时,说一说计算过程有助于加深理解“凑十”的计算方法,学会类推,而且有效地消灭错误。经过一段训练后,引导学生简缩思维过程,想一想怎样能很快地算出得数,培养学生思维的敏捷性和灵活性。在教学新知识时,不是简单地告知结论或计算法则,而是引导学生去分析、推理,最后归纳出正确的结论或计算法则。例如,教学两位数乘法,关键是通过直观引导学生把它分解为用一位数乘和用整十数乘,重点要引导学生弄清整十数乘所得的部分积写在什么位置,最后概括出用两位数乘的步骤。学生懂得算理,自己从直观的例子中抽象、概括出计算方法,不仅印象深刻,同时发展了思维能力。在教学中看到,有的老师也注意发展学生思维能力,但不是贯穿在一节课的始终,而是在一节课最后出一两道稍难的题目来作为训练思维的活动,或者专上一节思维训练课。这种把培养思维能力只局限在某一节课内或者一节课的某个环节内,是值得研究的。当然,在教学全过程始终注意培养思维能力的前提下,为了掌握某一特殊内容或特殊方法进行这种特殊的思维训练是可以的,但是不能以此来代替教学全过程发展思维的任务。 (三)培养思维能力要贯穿在各部分内容的教学中。这就是说,在教学数学概念、计算法则、解答应用题或操作技能(如测量、画图等)时,都要注意培养思维能力。任何一个数学概念,都是对客观事物的数量关系或空间形式进行抽象、概括的结果。因此教学每一个概念时,要注意通过多种实物或事例引导学生分析、比较、找出它们的共同点,揭示其本质特征,做出正确的判断,从而形成正确的概念。例如,教学长方形概念时,不宜直接画一个长方形,告诉学生这就叫做长方形。而应先让学生观察具有长方形的各种实物,引导学生找出它们的边和角各有什么共同特点,然后抽象出图形,并对长方形的特征作出概括。教学计算法则和规律性知识更要注意培养学生判断、推理能力。例如,教学加法结合律,不宜简单地举一个例子,就作出结论。最好举两三个例子,每举一个例子,引导学生作出个别判断〔如(2+3)+5=2+(3+5),先把2和3加在一起再同5相加,与先把3和5加在一起再同2相加,结果相同〕。然后引导学生对几个例子进行分析、比较,找出它们的共同点,即等号左端都是先把前两个数相加,再同第三个数相加,而等号右端都是先把后两个数相加,再同第一个数相加,结果不变。最后作出一般的结论。这样不仅使学生对加法结合律理解得更清楚,而且学到不完全归纳推理的方法。然后再把得到的一般结论应用到具体的计算(如57+28+12)中去并能说出根据什么可以使计算简便。这样又学到演绎的推理方法至于解应用题引导学生分析数量关系,这里不再赘述。 三 设计好练习题对于培养学生思维能力起着重要的促进作用 培养学生的思维能力同学习计算方法、掌握解题方法一样,也必须通过练习。而且思维与解题过程是密切联系着的。培养思维能力的最有效办法是通过解题的练习来实现。因此设计好练习题就成为能否促进学生思维能力发展的重要一环。一般地说,课本中都安排了一定数量的有助于发展学生思维能力的练习题。但是不一定都能满足教学的需要,而且由于班级的情况不同,课本中的练习题也很难做到完全适应各种情况的需要。因此教学时往往要根据具体情况做一些调整或补充。为此提出以下几点建议供参考。 (一)设计练习题要有针对性,要根据培养目标来进行设计。例如,为了了解学生对数学概念是否清楚,同时也为了培养学生运用概念进行判断的能力,可以出一些判断对错或选择正确答案的练习题。举个具体例子:“所有的质数都是奇数。( )”如要作出正确判断,学生就要分析偶数里面有没有质数。而要弄清这一点,要明确什么叫做偶数,什么叫做质数,然后应用这两个概念的定义去分析能被2整除的数里面有没有一个数,它的约数只1和它自身。想到了2是偶数又是质数,这样就可以断定上面的判断是错误的。
数学归纳思想在各学段之特点和教学启示
第一章 导论
古希腊哲学家亚里士多德提出“思维自惊奇和疑问开始”,学生的思维活跃于疑问的交叉点。为此教师应依据教材内容,抓住儿童好奇心强的心理特点,精心设疑,制造悬念,着意把一些数学知识蒙上一层神秘的色彩,使学生处于一种“心求通而未达,口欲言而未能”的不平衡状态,引起学生的探索欲望,促使其积极主动地参与学习。下面结合教学实践谈谈在小学数学课堂教学中设置悬念的几种方法。 一、激“疑” “学起于思,思源于疑”,疑能使心理上感到困惑,产生认知冲突,进而拨动其思维之弦。适时激疑,可以使学生因疑生趣,由疑诱思,以疑获知。 如在教学“体积的意义”时,教师巧妙地利用“乌鸦喝水”的故事向学生激疑:“为什么瓶子里的水没有增加,丢进石子后水面却上升了?”一“石”激“浪”,课堂上顿时活跃起来,学生原有的认知结构中有关长度、面积等的知识块被激活。他们各抒己见,有的说因为石子有长度,有的说因为有宽度,还有的说因为有厚度、有面积等。正当学生为到底跟什么有关系而苦苦思索时,教师看准火候儿,及时导入新课,并鼓励学生比一比,看谁学习了新课后能够正确解释这个现象。这样通过“激疑”,打破了学生原有认知结构的平衡状态,使学生充满热情地投入思考,一下子把学生推到了主动探索的位置上。 二、巧“问” 一个恰当而耐人寻味的问题可激起学生思维的浪花。因此,教学中要结合教学内容精心设计问题来吸引学生的注意力,唤起求知兴趣。如在教学“圆的认识”时,我提出如下问题:“同学们,你们知道自行车的车轮是什么样的?”学生回答:“是圆形的。”“如果是长方形或三角形行不行?”学生笑着连连摇头。我又问:“如果车轮是椭圆形的呢?”(随手在黑板上画出椭圆形)。学生急着回答:“不行,没法骑。”我紧接着追问:“为什么圆的就行呢?”学生一听,马上活跃起来,纷纷议论。
数学小论文 今天,我们全家去超市购物。 我们来到超市,看着琳琅满目的商品,我的眼睛都花了。突然,我看见货架上摆着我最爱吃的奥利奥小饼干。其中,一种是用塑料袋子装的,一种是用小纸桶装的。我看了看,发现每袋只要1.8元,而小桶装的一桶却要4.5元。于是,我毫不犹豫,随手拿了两袋1.8元的那种,放进了购物车。我推着小车,边走边美滋滋地想着:这两袋小饼干才3.6元,而那一桶就4.5元,这种袋装奥利奥小饼干实在太便宜了! 这时,妈妈走了过来。我迫不及待地把刚才的事告诉了她。妈妈一听,笑了,她提醒我说:“萌萌,你再算一算,看看到底是哪种便宜?”我不解地问:“袋装的只要1.8元,桶装的要4.5元,买一桶的价格可以买两袋还多呢,难道不是袋装的便宜吗?”妈妈耐心地说:“便宜不便宜可不能光看价钱,还要看重量的呀!你们不是学过小数吗?应该会算的!你算算吧!”于是我看了看两种饼干的重量,喃喃自语了起来:“袋装的,净重20克,用1.8元除以20,那一克就是0.09元。桶装的,净含量55克,用4.5元除以55,那一克就是0.08多元。”“我知道了!我知道了!”我兴奋得大叫起来,急忙对妈妈说:“应该是桶装的便宜!”接着我把算的过程讲给了妈妈听,妈妈听了直夸我聪明,我心里比吃了蜜还甜。 妈妈又语重心长地对我说:“在超市里啊,一般情况都是量多的比量少的便宜。你不能只看价钱,还要看看净含量哦!比如:洗衣液一斤12元,而两斤却是45元。夹心饼干125克3.4元,而375克只要8.7元!如果你买每个东西都这样想想,那我保证你和别人买同样的东西,你却省了钱。” 原来买东西还有这么多数学学问,还那么有趣。看来在生活中,我们处处都要做一个有心人!
五年级数学小论文范文如下:
伟大的数学王国由0—9、点、线、面组成。你可别小瞧这些成员,他们让我们的生活奇妙无比,丰富多彩。例如这不起眼的点,它使我们的生活更美,更快捷。这个功劳非黄金分割点莫属了。
把—条线段分成两部分,其中一段与该线段的比等于另一条线段与第一条线段的比,比值近似0.618,这就是黄金分割点。
从古希腊以来,一直有人认为把黄金分割点应用于造型艺术,可以使作品给人以最美的感觉。因此,黄金分割点在生活中的应用十分广泛。
一、画图的应用。
1、画长方形是我们小学生最平常的事,也是最熟悉不过的。你们可知道在无条件的情况下怎么把长方形画的更美,给人一种更舒适的感觉?那就是长方形的宽与长的比值接近0.618,这样画出的图形更美。
2、学过绘图的人可能知道如果给你一张纸,把这张纸画满,不一定会好看,但要是就画一点,留许多空白也不会太好看。但有一些画就让人感觉很美、很清爽。那是因为它应用了黄金分割点,才让人感到赏心悦目。
二、人体的应用。
1、在人体的结构上,黄金分割的应用更为广泛,举个最为熟悉的例子。人们常称的帅哥、美女,就是他们的脸宽与脸长的比、腿长与身长的比值都约是0.618,这样的身材堪称最美。
2、人的肚脐是人体的黄金分割点、膝盖是人腿的黄金分割点。
三、建筑物的应用。
古今中外,许多建造师都偏爱0.618,他们的杰作另世人仰慕。如:古埃及的金字塔,巴黎的圣母院,还有法国的埃菲尔铁塔等等。
四、生活上的应用。
1、大家平时可能注意到电工在检查一根不导电的电线时,他总是选择这根电线的黄金分割点来检查,因为这样可以最快速的找到损坏处。
2、我们家里大多数门窗的宽和长的比也是0.618,还有箱子、书本等都应用了黄金分割点,让这些物品看上去更舒心。
大千世界,美轮美奂,到处都蕴藏着黄金分割点。让我们一起努力吧,用知识和智慧创造出更多的美!
数学简介:
数学[英语:mathematics,源自古希腊语μθημα(máthēma);经常被缩写为math或maths],是研究数量、结构、变化、空间以及信息等概念的一门学科。 数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。
从这个意义上,数学属于形式科学,而不是自然科学。不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。 在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。
1、生活中的数学 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具,而生活也是缺不了数学的。 现实生活中,我们会看到用正多边形拼成的各种图案,例如,平时在家里、在商店里、在中心广场、进入宾馆、饭店等等许多地方会看到瓷砖。他们通常都是有不同的形状和颜色。其实,这里面就有数学问题。 在用瓷砖铺成的地面或墙面上,相邻的地砖或瓷砖平整地贴合在一起,整个地面或墙面没有一点空隙。这些形状的地砖或瓷砖为什么能铺满地面而不留一点空隙呢? 例如,三角形。三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形。我们知道,三角形的内角和是180度,外角和是360度。用6个正三角形就可以铺满地面。 再看正四边形,它可以分成2个三角形,内角和是360度,一个内角的度数是90度,外角和是360度。用4个正四边形就可以铺满地面。 正五边形呢?它可以分成3个三角形,内角和是540度,一个内角的度数是108度,外角和是360度。它不能铺满地面。 …… 由此,我们得出了。n边形,可以分成(n-2)个三角形,内角和是(n-2)*180度,一个内角的度数是(n-2)*180÷2度,外角和是360度。若(n-2)*180÷2能整除360,那么就能用它来铺满地面,若不能,则不能用其铺满地面。 瓷砖,这样一种平常的东西里都存在了这么有趣的数学奥秘,更何况生活中的其它呢? 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 正如华罗庚先生所说的:近100年来,数学发展突飞猛进,我们可以毫不夸张地在用:宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,用“无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题. 可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域
曾听一位奥数老师说过这么一句话:学数学,就犹如鱼与网;会解一道题,就犹如捕捉到了一条鱼,掌握了一种解题方法,就犹如拥有了一张网;所以,“学数学”与“学好数学”的区别就在与你是拥有了一条鱼,还是拥有了一张网。 数学,是一门非常讲究思考的课程,逻辑性很强,所以,总会让人产生错觉。 数学中的几何图形是很有趣的,每一个图形都互相依存,但也各有千秋。例如圆。计算圆的面积的公式是S=∏r²,因为半径不同,所以我们经常会犯一些错。例如,“一个半径为9厘米和一个半径为6厘米的比萨饼等于一个半径为15厘米的比萨饼”,在命题上,这道题目先迷惑大家,让人产生错觉,巧妙地运用了圆的面积公式,让人产生了一个错误的天平。 其实,半径为9厘米和一个半径为6厘米的比萨饼并不等于一个半径为15厘米的比萨饼,因为半径为9厘米和一个半径为6厘米的比萨饼的面积是S=∏r²=9²∏+6²∏=117∏,而半径为15厘米的比萨饼的面积是S=∏r²=15²∏=225∏,所以,半径为9厘米和一个半径为6厘米的比萨饼是不等于一个半径为15厘米的比萨饼的。 数学,就像一座高峰,直插云霄,刚刚开始攀登时,感觉很轻松,但我们爬得越高,山峰就变得越陡,让人感到恐惧,这时候,只有真正喜爱数学的人才会有勇气继续攀登下去,所以,站在数学的高峰上的人,都是发自内心喜欢数学的。 记住,站在峰脚的人是望不到峰顶的。 希望能够帮助你
(1) 写什么 写小论文的关键,首先就是选题,大家的选题要从自己最熟悉的、最想写的内容入手。 下面我结合我校同学部分获奖论文的选题,进行一点简单的选题分析。 论文按内容分类,大概有以下几种: ①勤于实践,学以致用,对实际问题建立数学模型,再利用模型对问题进行分析、预测; 如:探究大桥的热胀冷缩度 ②对生活中普遍存在而又扰人心烦的小事,提出了巧妙的数学方法来解决它; 如: 一台饮水机创造的意想不到的实惠 ③对数学问题本身进行研究,探索规律,得出了解决问题的一般方法 如: 分式“家族”中的亲缘探究 如: 纸飞机里的数学 ④对自己数学学习的某个章节、或某个内容的体会与反思 如: “没有条件”的推理 如: 小议“黄金分割” 如: 奇妙的正五角星 (2) 怎样写 ① 课题要小而集中,要有针对性; ② 见解要真实、独特,有感而发,富有新意; ③ 要用自己的语言表述自己要表达的内容 (四) 评价数学小论文的标准
数的由来和发展 人类是动物进化的产物,最初也完全没有数量的概念。但人类发达的大脑对客观世界的认识已经达到更加理性和抽象的地步。这样,在漫长的生活实践中,由于记事和分配生活用品等方面的需要,才逐渐产生了数的概念。比如捕获了一头野兽,就用1块石子代表。捕获了3头,就放3块石子。"结绳记事"也是地球上许多相隔很近的古代人类共同做过的事。我国古书《易经》中有"结绳而治"的记载。传说古代波斯王打仗时也常用绳子打结来计算天数。用利器在树皮上或兽皮上刻痕,或用小棍摆在地上计数也都是古人常用的办法。这些办法用得多了,就逐渐形成数的概念和记数的符号。 古罗马的数字相当进步,现在许多老式挂钟上还常常使用。实际上,罗马数字的符号一共只有7个:I(代表1)、V(代表5)、X(代表10)、L(代表50)、C(代表100)、D(代表500)、M(代表1,000)。这7个符号位置上不论怎样变化,它所代表的数字都是不变的。它们按照下列规律组合起来,就能表示任何数: 1.重复次数:一个罗马数字符号重复几次,就表示这个数的几倍。如:"III"表示"3";"XXX"表示"30"。 2.右加左减:一个代表大数字的符号右边附一个代表小数字的符号,就表示大数字加小数字,如"VI"表示"6","DC"表示"600"。一个代表大数字的符号左边附一个代表小数字的符号,就表示大数字减去小数字的数目,如"IV"表示"4","XL"表示"40","VD"表示"495"。 3.上加横线:在罗马数字上加一横线,表示这个数字的一千倍。如:"XV"表示 "15,000","CLXV"表示"165,000"。 现在世界通用的数码1、2、3、4、5、6、7、8、9、0,人们称之为阿拉伯数字。实际上它们是古代印度人最早使用的。后来阿拉伯人把古希腊的数学融进了自己的数学中去,又把这一简便易写的十进制位值记数法传遍了欧洲,逐渐演变成今天的阿拉伯数字。 随着生产、生活的需要,人们发现,仅仅能表示自然数是远远不行的。如果分配猎获物时,5个人分4件东西,每个人人该得多少呢?于是分数就产生了。中国对分数的研究比欧洲早1400多年!自然数、分数和零,通称为算术数。自然数也称为正整数。 随着社会的发展,人们又发现很多数量具有相反的意义,比如增加和减少、前进和后退、上升和下降、向东和向西。为了表示这样的量,又产生了负数。正整数、负整数和零,统称为整数。如果再加上正分数和负分数,就统称为有理数。有了这些数字表示法,人们计算起来感到方便多了。
五年级哪有作文啊?
小学数学教学论文:“分数的意义”课后反思 1、《课标》中指出:通过数学学习,学生能够积极参与数学学习活动,对数学有好奇心与求知欲。在数学学习活动中获得成功的体验,建立自信心。在“分数的意义”一课中有如下体现:(1)师:我们通过平均分一个物体,得到的一份或几份可以用分数来表示。今天我们继续研究分数,我们是仍然来分一个物体呢,还是试着来分一堆物体? 生:分一堆吧。教师创设条件,由学生选择教学的起点,充分体现了以人为本的教育理念。奥苏伯尔说过:“影响学生的最重要原因是学生已经知道了什么,学生还想知道什么。”在教师的组织下,学生主动参与教学过程,自觉地成为学习的主体。(2)师:出示一个装有苹果的果盘,果盘上用布遮盖,使学生能看到苹果,但无法看到苹果的个数。 师:老师这里有一堆苹果,如果把这堆苹果看作一个整体,平均分成2份,你们能根据已有的知识,说一说1份与这个整体之间的关系吗?把苹果盖起来,无法看到苹果的个数,这对小学生来说是有趣的,令人好奇的,虽然不好猜苹果的个数,但部分与整体的关系还是比较清楚的,这一环节的设计不仅抓住了学生的求知欲,更重要的是巧妙地铺垫了平均分的一堆物品具体有多少个并不重要,重点要研究平均分份后,部分与整体的关系。2、《课标》中指出:教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在动手实践,自主探索与合作交流的过程中真正理解和掌握基本的数学知识与技能,数学思想和方法。“分数的意义”是一节概念课,在概念课的教学中更要注重数学活动的过程。本节课先后2次安排学生通过操作逐步经历从现实生活中抽象出分数的过程。(1)在复习阶段设计了“用你手中的学具能得到哪些分数?”目的在于帮助学生复习回忆对分数的已有认识。(2)在学习新知阶段设计了“请大家用纸袋内的学习材料动手分一分,然后用分数来表示你想要的部分。请同学们分组讨论后,用填表的形式记录讨论结果。”学生通过操作领悟到平均分的是什么物品不重要,平均分的是1个物品还是多个物品组成的群体也不重要,重要的是平均分了几份,我们要表示的是几份,学生在几十分钟的学习探索中,能对分数有如此深刻的认识,应归功于大量的数学活动。3、《课标》中指出:数学课程应突出体现发展性,数学学习内容应当是富有挑战性的,学生的学习活动应当是一个生动活泼、主动和有个性的过程。让概念教学具有一定的开放度,有利于提高学生的创造能力,实现不同的人在数学上得到不同发展。(1)本课在设计2次动手操作时具有一定的开发度。表现在学习材料是开放的,即每组学具的物品不同,多少也不同。使每组学生的操作结果各不相同。(2)在理解单位“1”时,具有一定的开发度。表现在分组探讨前面的谈话:“如果这不是一堆苹果,是一堆棋子、一堆卡片、一堆硬币……,你们能通过不同的分法,得到不同的分数吗?”以及抽象概括,构建新知时设问:“既然与分的是什么、是多少没关系,那么我们给象这样的一个物体、一个图形、一个计量单位、以及多个物体组成的一个整体,起个统一的名字叫做单位“1”。单位“1”除了可以是这些,还可以是哪些?”
给个思路你吧,先写你在学习数学中碰到的问题,比如说太难,或者其他的原因,写下你是怎么解决的。可以写一道题,写出多种解法。
我国古代教育心理学家说过:“知之者不如好知者,好知者不如乐知者。”就非常形象、生动地说明了兴趣在学习中的作用,古往今来,许多发明家之所以能取得令人瞩目的成绩,更是与他们浓厚的学习兴趣和强烈的求知欲望有关。 传统的数学课堂把丰富复杂、动态变化的教学过程简约化归为“明算理,重练习”的特殊认识活动,导致数学课堂变得机械、沉闷和程序化,缺乏生机与乐趣,缺乏对智慧的挑战。学生学习起来觉得枯燥、乏味,没有激情。那么怎样才能使课堂气氛活跃,使学生拥有浓厚的学习兴趣呢?我觉得可以从以下几个方面着手: 一、用新颖有趣的教法诱发学习兴趣 苏霍姆林斯基说过:“兴趣并不在于认识一眼就能看见的东西,而在于认识深藏的奥秘”。小学生好奇心强,求知欲强烈,容易被新奇的事物吸引。这就要先在学生面前揭示出一种新的东西,激发起他们的惊奇感。这种情感越能抓住学生的心,他们就越迫切地想要知道、思考和理解。这就需要我们要善于用新颖的教学方法引起他们对于学习内容的好奇感,从而神情专注、兴趣盎然地投入到学习活动中来。例如果在教学“乘法的初步认识”时,我是这样导入的,我说:“今天老师要和小朋友们开展计算比赛,比一比谁算的又对又快,接着我出示了如下题目:3+3+3,7+7+7+7+7,8+8+8+8……+8(100个8)。看了题目以后,小朋友们马上投入到紧张的计算比赛中去,正在兴致勃勃的把数字一个一个的加,我却立即说出了得数。小朋友们一个个你看看我,我看看你觉得很奇怪。这时我说:”其实,老师做加法的本领并不比你们强,只是我掌握了一种新的运算方法,掌握了这种方法以后,算几个相同加数的加法时,速度就会快多了。这种运算叫乘法,你们想学吗?“正是这一举措,展示了乘法这一教学内容的内在魅力和巨大作用,无疑把学生紧紧地吸引住了,从而诱发了学生急切学习乘法的需要和强烈的学习兴趣。 二、用数学本身的内在力量唤起学习兴趣 布鲁纳说过:“最好的学习动机莫过于学生对所学材料本身具有内在的兴趣。”数学知识严密的逻辑性和系统性,各种数学材料之间的有机联系,解决数学问题时思路的开阔和敏捷,数学思维的各种特殊而巧妙的形式……构成了数学这门学科的潜在的吸引力。所以在数学教学中,要努力把数学这种内在力量显示出来,使学生看到一个“快乐的数学王国”,使学生潜移默化的对数学产生深刻的兴趣。如在教学“20以内个数的认识”时,我出了这样一道题:同学们排队做操,小华的前面有5个同学,后面有8个同学,这一队一共有多少同学?让学生解答,结果学生们不假思索的告诉我:5+8=13(个)。看着学生们一个个神气的神态,我并没有急于表态,而是讲了一个故事:兔妈妈带小兔们到草地上去做游戏。天黑了,兔妈妈让小兔们把队伍整理好准备回家。她认认真真的数了数,大吃一惊:“不好,丢了一只小兔”。她又仔仔细细数了一次,小兔却一只都没少。为什么14只兔子变成了13只呢?这时学生们顿有所悟,边笑边喊:“兔妈妈把自己都忘了数了。”也正是此时,学生们马上意识到刚才那道题存在的错误。纷纷表示怎么把小华给忘了。如此妙趣横生的数学内容,当然深深的吸引了学生。此外,还可以组织一题多变,一题多解,一题多问,一题多算,一题多编等活动,显示出数学特有的内在力量,唤起学生对之产生深刻的兴趣。 三、用数学的应用价值调动学习兴趣 数学是一门应用非常广泛的学科。小学数学中的许多知识,也都直接或间接的应用于人们的生活领域和生产实际。因此,在教学中,对教学内容要讲来源,讲用处,通过联系实际,解决学习、生活中的问题,让学生感到生活中处处有数学,这样学起来自然有亲切感、真实感,从而激发学生学习数学的积极动机,产生学习兴趣。如教学“11-20”各数的认识,可设计让学生很快翻书找到指定页码的练习;应用题的练习,要尽量设计解决生活实际中遇到的一些具体问题,又如在教学“认识人民币”时,我设计了这样一个活动:在教室里布置了一家超市,里面摆了好多商品,琳琅满目,选一位小朋友扮演售货员,其他小朋友先仔细观察这些商品的价格,一方面使学生进一步认识了人民币,使课内的数学知识得以巩固。另一方面也让学生真正认识到数学就在我们生活中间。既看得见也摸得着,不再觉得数学是脱离实际的海市蜃楼。而且培养了学生分析问题和解决问题的能力,调动学生学习数学的兴趣。 四、用学习的成功感增添学习兴趣 心理学家盖兹说过:“没有什么东西比成功更能增强满足的感觉;也没有什么东西让每个学生都体验到成功的喜悦,更能激发学生的求知欲望。”学生对于数学的兴趣是在自身的活动中形成和发展的。当学生通过努力获得某种成功时,就会表现出强烈的学习兴趣。教师的责任在于相机鼓励、诱导点拨、帮助学生学习获得成功。当学生想独立的去探索某个新知时,要十分注意情绪鼓舞:“你一定能自己解决这个问题”、“你一定能行!”等。当学生的学习停留于一定的水平时,要注意设“跳板”引渡,使他们成功的到达知识的彼岸。当学生的学习活动遇到困难,特别是后进生泄气自卑时,要特别注意给予及时的点拨诱导,使他们“跳一下也能摘到果子吃”。这样,各种不同水平的学生就会在探究中获得成功的喜悦,满足感油然而生,进一步增添了对数学知识的学习兴趣。 总之,要使课堂气氛活跃焕发生机,就要从培养学生的学习兴趣入手,科学的设计学习活动,使学生不仅爱学、会学,而且学得积极主动,学得活泼,实现从“要我学”到“我要学”的转变,让数学成为孩子们自觉追求的东西。
例子:《容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。