像这种论文的话,你可以到网上搜索一下相关的范文来参考一下,你可以输入一些关键字关键词来进行查找。
高数学习对许多大一学生生来讲, 有些困难,成绩不理想。教师一直在苦苦思考:虽然教师在授课过程中尽了种种努力, 但还是有许多学生学习不好, 这是什么原因?调查显示:这部分学生或者学习兴趣不高,或者学习不得要领。因而, 高数学习必须充分调动学习者的积极性, 掌握合适的学习方法,才能有所收获。1 学习者要意识到学习高数的重要性, 提高学习兴趣, 变被动学习为主动学习据了解, 许多学生意识不到高数学习的重要性,他们对大学课程里学习高数的重要性不甚清楚,也没有学习的热情,更谈不上积极性了。1 . 1 数学教育具有重要的基础性作用与素质教育作用现代信息、空间技术、核能利用、基因工程、微电子、纳米材料等引领的新技术革命, 以及现代人文科学的定量分析需要以数学为主要基础。数学学科严密的定义方式、缜密的逻辑思维、全面的系统分析是辩证唯物主义思想在数学学科中的集中反映, 在大学生素质教育中起着不可替代的作用。素质表现在数学意识、数学语言、数学技能、数学思维四个方面。素质的提高有助于学生形成良好的思想道德素质,科学文化素质,生理心理素质,从而提高人的素质。这是有例子可以验证的。以北京大学地质系为例,一个系就培养了48 位中科院院士, 而这得益于李四光先生的理念——加强数理基础, 原因就是学生的工科数学基础好、逻辑思维强、头脑清晰。1 . 2 培养对高数的兴趣能激发学习热情“兴趣是最好的老师”。心理学家布鲁纳认为:“学习是主动的过程,对学生学习内因的最好的激发是对所学教材的兴趣。”“有了兴趣就会乐此不疲,好之不倦,就会挤时间学习了。”学生只有对学习感兴趣,能把心理活动指向和集中在学习的对象上,感知活跃,注意力集中,观察敏锐,记忆持久而准确,思维敏锐而丰富,强化学习的内在动力,调动学习的积极性,激发智力和创造力,提高学习效率。1.2.1 提高学习高数的兴趣首先从了解数学史做起我们可以首先了解中国数学史,了解中国数学的萌芽、发展、全盛、衰弱的过程和原因;我们还可以从高数中的微积分发明的历史谈起,通过对历史的了解和感受来体会到数学的博大精深,激发探求欲望。
数学这门古老而又充满生命力同时兼顾理论性和应用性的课程,被誉为“思维的 体操 ”,其中无论是理论(纯数学)还是实践(应用数学),都包含丰富的知识和思维的技巧。下文是我为大家搜集整理的关于数学论文的内容,欢迎大家阅读参考!
浅析小学数学学习特点对教学的影响
小学数学是知识学习的起始点,与人类的学习比起来,小学数学的学习更有具体性。小学生对数量关系和空间形式知识的学习,具有抽象性,需要学生认真思考。要从学生的实际情况出发,分析学生在学习小学数学前在知识、能力、情感态度价值观等方面所达到的水平,使教师根据小学数学学习特点策划教学方案,为教学提供理论依据。本文从学习内容、学习过程以及学习方式三点来论述小学数学学习特点对教学的影响。
一、学习内容的抽象性与形象性
1.抽象性和形象性的特点
教材编写人员将富有抽象的数学知识转变为 儿童 易理解的形象化数学知识,通过转化,它不但没有失去数学学科的抽象性、逻辑性和严密性,而且更加形象生动。大大提高了学生的学习兴趣。教材通过丰富多样的图片和 故事 ,把数学知识以多种方式呈现在学生面前。使学生想学爱学。虽然小学数学学习内容很抽象,但经过多种方式的呈现,使知识更形象生动。这种 方法 解决了数学知识特点与小学生思维之间的矛盾问题。
2.抽象性和形象性特点对小学数学教学的影响
教师在讲解小学数学时要使形象性与抽象性相结合,通过各种教学方式把抽象的数学知识形象化。因此教师需恰当地解决具体与抽象之间的联系,即要解决以下四个问题:第一,怎样将学习内容的形象性与数学的本质结合起来;第二怎样进行抽象概括;第三,怎样对数学知识的理解深入到学生心中;第四,使学生学会用自己的语言来描述数学问题。
二、学习过程的渐进性和系统性
1.渐进性和系统性的特点
教学模式开发和应用的过程,是一个随着 教育 理论和教学实践不断发展的过程。它具有渐进性和系统性。这两种特性遵循了小学生的发展规律,对知识的学习是一个循环渐进的过程。在教学中要充分考虑学生的年龄特点和小学数学学习的特点,在具体活动中引导学生多动手、动脑和动口,调动各种感官参与活动,提高学习效率。渐进性和系统性是学生学习过程中的特点,它主要表现在,数学知识的逻辑性和系统性,数学知识具有扩展性,每个知识点要相互渗透,形成全面系统的知识。学会举一反三。对小学数学循序渐进学习。
2.渐进性和系统性特点对小学数学学习的影响
根据小学数学渐进性和系统性的特点,合理地选择教学方式。在教学过程中遵循学生发展的规律。将小学数学学习的渐进性和系统性恰当的结合起来,从而制定有效的教学方案,使得小学数学的教学有计划、高效的开展。适应这个特点需要满足以下两个方面:第一个方面,按照教科书为学生制定的数学学习顺序进行学习;第二个方面,在学习原理的基础上,使小学数学学习过程具有系统性。
三、学习方式的接受性和探索性
1.接受性和探索性在小学数学学习活动中的体现
小学数学的学习方式分为接受学习和发现学习两种。无论是哪种学习方式,都是学生将已存在的数学知识转化为自己知识的过程,来提高数学水平。转化知识的过程既是学生自己发现探索的过程,也是接受原有知识的过程。通过学生对数学学习方式的探索,小学数学的学习是在接受性和探索性及两者统一的基础上表现出来的。而对数学知识的再发现决定了小学数学学习的探索性,对数学知识的传递决定了其学习的接受性。接受性和探索性是小学数学学习的必要条件。
在教学过程中,教师要正确地认识和承认学生的差异,通过独立思考和小组合作交流,使学生能在不同的基础上得到发展,并能从教师对每一种方法的肯定中获得成功的喜悦。可以让学生选择自己喜欢的计算方法与同学交流,增加本节课学习的兴趣,提高教学效率。
2.接受性和探索性特点对小学数学教学的影响
接受性和探索性特点是通过教与学的方式对小学数学教学产生影响。教师要以学生为主体,在小学数学的教学过程中起引导作用,教师要采用多种教学方式引导学生思考,且根据学生接受的程度和讲授的数学知识恰当地选择教授方法,这样学生既能运用多种方法学习数学,又能掌握知识,小学数学教学过程的进步需要靠多样的学习方式和先进的 教学方法 来完成,使学生能够在玩中学,提高学习兴趣,达到教学目的。在教学过程中需要关注以下三点:第一,以多种多样的学习方式指导学生;第二,在教学过程中,要注重培养学生自己探索发现数学问题及解决数学问题的能力;第三,根据小学数学的学习特点采用多种教学方式提高学生学习的主动性和积极性。
四、结语
小学数学教学过程中必须要关注小学生学习数学的特点,根据其特点采用多种教学方法进行教学。教学内容应生动形象而不缺抽象,教授过程中要把系统性与渐进性相结合,接受性与探索性相结合,遵循小学数学学习的特点,循环渐进地掌握知识,达到期望的教学目标。小学数学学习的特点对教学既有指导性,也有探索性,只要充分理解其特点,才能使小学数学的教学向着有利于学生接受的方向迅速前进,从而提高教学效率,达到教学目标。
浅析新课改下高中数学导数教学的发展
最近几年来,伴随着我国市场经济的飞速发展,社会也在不断的发生着变化,同期我国的科学技术水平也迈上了一个新的台阶。为了能够更好的发展,同期也需要我们的自然学科进行相应的发展,这样可以更好的适应社会发展的需要。众所周知,数学学科是高中素质教育中不可或缺的重要组成部分之一,自从我国教育体制开始形成之时,数学科目就开始存在,所以说数学在素质教育中占据的地位非常重要,而导数作为帮助学生解决函数、数列等难点的工具,同时又能紧密联系其他学科,更是有着十分重要的地位。在实行新课改后,微积分作为教学内容而列入高中数学教材,这对学生的导数知识掌握能力提出了更高的要求。因此本文对新课改实施背景下,如何通过教学方法的改进来提高学生导数掌握能力进行研究。
一.现阶段高中数学导数教学的现状
(1)教学模式单一,对学生 学习方法 引导不够
在文理分科的背景下,导数在高中数学学科中是作为一门选修课程来学的,这造成了文科学生由于对导数的应用了解不深而不能很好地掌握,利用导数求解函数参数问题也就无从谈起。同时由于实行新课改后,数学学科的课时被压缩,很多教师为了在短时间内完成大纲规定的内容,在教学过程中一般来说都是采取的教师讲授或者板书,毫无疑问,在整个教学的过程中学生都是被动听课的方式进行教学的,这种教学方式在一定程度上大大压制了学生思维的活跃性和课堂参与的积极性。这就造成了学生由于导数内容太难而失去学习激情,这更加不利于导数知识的掌握,不利于教学活动的开展。
(2)应试教育观念导致的教学僵化
一直以来,我国的应试教育体制在教育体系中的地位都比较稳固,甚至到现在为止还没有得到完全的消除。即使实行了新课改,很多教师由于教学观念没有转换过来,在教学过程中过于重视考试题型的讲解和练习,而忽视了帮助学生对数学思想和内涵进行正确认识,这导致了学生在导数学习中纯粹以考试为目的,机械式地背诵公式,无法将所学导数知识运用于生活和其他学科的内容学习中,这与新课改提倡的素质教育理念是不相符的。导数教学的难点在于学生对于导数的认识不足,难以理解导数概念,这需要老师利用物理学科或者生活中的场景进行深入了解,而不是用纯粹的理论化的数学概念来对学生进行“填鸭教育”。
二、新课改下提高数学导数教学质量的 措施
(1)帮助不同的学生制定不同的 学习计划
总的来说,学习方法是学生进行有效学习的基础,而且在一定程度上对学生的学习起着举足轻重的作用。正确的学习方法是学生有效掌握所学知识的保证,这就要求数学教师在课堂教学中除了对学生进行课堂内容讲解外,还需要通过一定的测试和沟通来了解学生的导数内容掌握情况,对于掌握不足的学生应该帮助制定相应的学习计划,测试的目的不是为了成绩,而是为了掌握学生的学习情况,同时针对学生的学习情况对教学计划进行适当的调整,如果后续的学习计划制定没有跟上,那么测试也就失去了意义。
(2)借助案例帮助学生加深对导数的理解
导数由于其对于高中学生来说过强的理论性,造成了学生对于导数的理解和应用往往掌握不够,这种情况下纯粹的理论教学只会造成学生进一步的不理解,这十分不利于学生的学习效率和老师的课堂效率,所以在导数的课堂教学中,老师要注意借助导数应用案例来激发学生的学习热情,比如物理运动的速度变化问题、加速度变化问题等,这样不仅能够帮助学生更好地理解导数内涵,而且能够使学生在加强对其他学科知识的理解的同时主动思考导数知识在生活中的应用,大大提高了教学质量和效率。
(3)加强导数技巧性和应用训练
在平时的教学中应该多鼓励学生应用导数内容求解函数等相关问题,这样可以进一步提高学生对导数的理解程度和应用水平。同时老师也可以针对导数的应用多出一些技巧性的题目对学生进行训练,比如利用导数知识来画出二阶、三阶函数的图像等,学生要做出这种题目就需要一定的技巧,随着解答的技巧性题目数量的增多,学生对于导数的应用也就更熟练。同时在导数的初学阶段,由于学生对于导数理解不够,老师可以出一些含有生活案例的题目让学生来解答,比如将学生骑车时速度变化的问题加入到导数题目中,这样可以促使学生主动思考导数知识,加深对导数的理解,为以后的导数深入学习打下基础。
三、结语
综上所述,我们可以知道,高中数学的导数教学具有其一定的独特性,究其原因是因为在一定程度上不但具有数学学科严密的逻辑性,而且同时还具有初中数学不具备的抽象性,所以在教学中需要教师根据高中数学的特点进行相应的教学。高中导数的有效教学不但需要教师采用积极引导的教学,同时还需要学生培养出数学思维进行学习,只有通过教师和学生共同努力,这样才能在新课改的情况下,让高中数学导数教学得到稳定可持续的发展。
浅谈初中生数学问题意识的培养
一、初中生问题意识培养的意义
问题意识即在学科学习过程中能够主动思考、认真探究,从而针对某个方面提出问题的思想准备。在数学课堂上,学生常常不敢或不愿回答课堂提问,不能或不善提出问题,能够经常积极回答问题的只有少数学生,能够在课堂中提出问题的学生更是少之又少。学生缺少问题意识,不能提出问题,不利于学生思维的发展,不利于学习能力的进一步提升。朱永新关于新课程的核心理念之一:教给学生一生有用的东西。而学生自主学习、勤学好问的习惯一定是学生一辈子受益的。心理学研究表明,意识到问题的存在是思维的起点,学生没有问题本身就是大问题.被称为现代科学之父的爱因斯坦曾指出:“提出一个问题往往比解决一个问题更重要。”初中生数学问题意识的培养,是学习习惯和学习能力培养的重要方面,是新课程改革的需要。
二、初中生问题意识培养策略
如何培养学生问题意识呢?我们通过教学实践进行了相关探索,并初步形成了一些策略。
1、改变评价方式,鼓励提问
造成学生问题意识缺失的原因是多方面的。我们的评价导向不利于学生问题意识的培养是原因之一,多数时候我们对回答问题对、考试分数高大加赞赏,对于学习有困难的学生缺少鼓励指导。大批循规蹈矩的学生,不敢也不会去质疑。学生学习中的问题本应该由学生主动提出,而实际教学中常常是学生被老师问。如何改变这一现状?我们可以采用多种方式鼓励学生提问。(1)注意运用表扬或激励性语言,逐步使学生感受到课堂中能提出问题和敢于回答问题一样都是值得肯定和鼓励的。(2)把学生课堂提问是否积极作为对学生评价的一个重要方面。(3)有目的进行一些提问竞赛等活动。
2、夯实学习基础,让学生能问
教学实践中我们体会到学生能否提出问题与学生学习基础有密切关系,学习基础较好的学生更容易提出问题。因此,教师要注重夯实学习基础、培养学生勤学好问的品质,让学生坚实的学习基础成为产生问题的土壤.
3、营造轻松学习氛围,使学生敢问
数学课堂上学生没有提出问题,并不是没有问题,更多时候是因为紧张等原因导致有问题不敢提出。学生只有在宽松、和谐的氛围中,思维潜力才会得到最大限度的开启。为了消除学生在课堂上的紧张和害怕的情绪,教师需要尽可能营造轻松、和谐、民主的学习氛围,可以先让学生在学习小组内交流、质疑,再让学生在全班内提出或解答问题。教师以微笑、平和、宽容、鼓励的心态指导学生,与学生交流探讨,帮助学生树立自信,拉近师生情感距离,使学生做到想问就问。
数学教学应教会学生会思考。让学生经历观察、猜想、操作、实验、合情推理的过程,不仅有利于培养学生的独立性、能动性和创新精神,而且学生在轻松学习氛围中能够 消除紧张 因素,有问题时敢于提出。
4、教师示范引领,诱导学生善问
如果一个人没有问题,就不会有新的发现,就不会有真正的成长。学生没有问题意识就会学得被动低效,教师没有问题意识就会阻碍专业成长。教师要让学生有问题意识,就首先自己具有问题意识。教师强烈的问题意识能起到很好的示范作用,能促进学生的问题意识发展。
案例2.三角形三边关系教学
(1)让生拿出课前准备好的三根长度不一样的塑料吸管。
(2)把这三根吸管“首尾顺次连结”你有何发现?这时学生发现有的能构成三角形,有的却不能。
(3)教师再继续提出三个问题:①你的三根吸管的长度各是多少?②三根吸管的长度具有怎样关系时能“首尾顺次连结”组成三角形?③是否具有任何长度的三条线段都能“首尾顺次连结”构成三角形?
在上述探究过程中,正是教师不断追问诱导,集中学生的思维,引发了学生的不断质疑,思考层层深入,结果不断涌现,惊喜不断。长此以往,学生就会善于提问。
5、利用现代媒体技术,促学生提问
《义务教育课程标准(2011版)》(以下简称《标准》)指出:数学课程的设计与实施应根据实际情况合理地运用现代信息技术,要注意信息技术与课程的整合。把信息技术作为学生学习数学和解决问题的有力工具,有效地改进教和学的方式,使学生乐意投入到现实的、探索性的数学活动中。现代信息技术应用于数学教学能达到其他方式无法比拟的效果,有力于学生在“问题空间”自主探究。教师为学生设置环境,提供他们需要使用的工具与资源,促使学生提出问题并进行探索,激发学生解答问题,实现学生自己建构知识。
现代信息技术为数学活动的开展提供了广阔的天地,只要学生投入到运用媒体软件做数学的活动过程中,必然发现或提出各种问题、引发自主探究。
三、结语
总之,真正的教育应该是以学生的发展为本,老师不仅关注如何教,更应该关心学生如何学.我们要求学生创造出能够提出问题、敢于提出问题、善于提出问题的学习环境,从而培养学生的问题意识和创新精神.
数学是知识的工具,亦是 其它 知识工具的泉源。所有研究顺序和度量的科学均和数学有关。下文是我为大家搜集整理的关于数学小论文3000字的内容,欢迎大家阅读参考! 数学小论文3000字篇1 浅析小学数学中创设有效情境教学 新课程标准中明确规定了情境教学法在小学数学中的地位,倡导教师通过创建情境,引导学生展开学习。情境教学法的优势在于能够将抽象、难懂的数学知识更加直观地展现出来,符合小学阶段学生的学习特点以及因材施教的原则,针对小学数学教学中情境教学法的应用进行几点研究。 生活情境小学数学 高效课堂 情境教学法是倾向于学生的 教学 方法 ,而不是单纯地追求教学效果,为何要创建生活情境?它是以小学生实际能力为基础,在它们所能理解消化知识的最大范围内,运用更加便于学生理解的方式,来进行教学,从这一点可以看出生活情境完全符合因材施教,以生为本的原则,是非常值得在小学数学教学中应用和推广的。 一、小学数学课堂中情境教学法的优势 数学学科的特点是逻辑性强,要求学生具有一定的推理能力、分析能力以及理论联系实际的能力。小学阶段的数学,虽然在难度上有所控制,但是数学学科原本的性质并没有改变,它依旧具有抽象性、逻辑性以及实用性的特点,小学课本中一些图形、定义,教师如果单抽说教,学生很难理解和掌握。为了达到教有所成的目的,教师需要借助一定的教学方法,来简化这些数学知识,使学生能够更加轻松、快速地理解和掌握,情境教学法恰恰能够满足小学数学的有需求,借助情境教学法,能够将抽象知识点直观化的呈现出来,激发学生的学习欲望。教师通过构建一个个生动的情境,为学生营造更加生动、活泼的学习气氛,鼓励学生参与教学活动、学生的学习兴趣和热情被调动起来,教师的教学效率必然会得到提升。举例说明,进行“中心对称图形”这部分知识的讲解,采用传统的教学工具以及单一的口头讲述,学生很难理解其中的内涵和意义,而采用创建情境教学法,将学生带入到一个直观化的思维空间中,并通过多媒体技术将概念、关键知识点制作成动态的课件,学生很快就会投入学习状态,学习成效显著,教学效率得以提升。 二、合理创设情境,提升小学数学课堂教学效率 1.结合学生能力特点,创建教学情境 小学阶段,学生的学习能力不完善,学生第一次系统化的接触数学知识,学习起来难免会有些吃力,教师在教学情境创建的时候,应该尽量使用简单易懂、富有趣味性的语言,确保学生能够了解教师说什么,这是开展教学的第一步,在这个基础之上构建情境,才能够真正发挥情境教学的优势和作用。 比如,进行“分数的基本性质”这个知识点教学的时候,教师可以创建这样的情境:白兔子妈妈将一个苹果分成4块,准备分给白兔3兄弟吃,她将1块苹果分给了大哥,而二哥却嚷着要吃2块,妈妈没有办法就切了第2个苹果,分成了8块,给了二哥2块,可是这个时候,三弟又不开心了,他想吃3块,猴妈妈就把第3个苹果平均分成12块,给了三弟3块。那么问题来了,白兔三兄弟,谁分到的苹果最多呢?这个情境不仅富有趣味性,容易理解,同时也蕴含了把“单位1”平均分成几份,取出不同的分数,但是却表示相同的大小这个含义。 2.从学生兴趣出发,创建教学情境 首先教师要明确兴趣对于学习的重要性。激趣是学生主动学习数学的关键,激趣过程中运用运用学生熟悉并且感兴趣的话题创建情境,满足学生对于学习的各种需求,这样才能够达到提升教学效率与质量的目的,同时也培养了学生主动学习的习惯,激发了他们的学习欲望。 比如,在进行“用乘法口诀进行表内乘除法的口算”这个知识点的时候,教师可以将学生最喜欢的动画形象“熊大、熊儿”编成 故事 :有20个桃子,5个小动物,这个时候熊大和熊儿可为难了,它们要怎么分,才能够让每个小动物都获得一样多的桃子呢?这个时候学生的兴趣高涨,都会纷纷举手回答,这个导入成功的激发了学生的学习欲望和好奇心,也活跃了课堂气氛,在这样环境下,学生的学习效果会更好。教师在创建教学情境的时候,不能拘泥于一个方法,或者一种形式,根据不同的教学内容和目标,故事可以随时进行改编,即便是在课堂上,教师也可以灵活改变情境的设计,目的就是更好的带动学生学习,帮助学生更加轻松的领会数学知识和魅力。 3.结合学生心理特点,创建教学情境 创建教学情境,要注意结合小学生的心理发育特点。这个阶段游戏和动画是最能够吸引学生的手段,教师利用这一点进行情境创建,既能够寓教于乐,又做到了因材施教。在情境教学基础上,鼓励学会独立思考,强化学生数学应用意识,提升 逻辑思维 能力。 比如,“克与千克”知识点的讲解,教师可以采用小组合作做游戏的方式,游戏的规则是“比比谁最快、比比谁最准”。教师先将学会分成若干小组,每个小组都发一包黄豆,一瓶矿泉水,一本新华字典。然后先让这些小组自行估算这些物品的重量,然后将其填入表格中。然后教师再带领大家用称来测量,看看哪个小组估算最准确,并给予这个小组的成员一定的奖励,通过这样的游戏方法,锻炼学生的观察、估算以及验证意识。 三、结束语 教师应该基于教材基础,结合学生的自身的学习特点、兴趣等各方面因素,合理创建教学情境,丰富课堂教学内容,增加课堂教学趣味性。通过大量的实践教学分析发现,在小学数学教学中引入情境教学法,不仅有效提升了学生学习数学的兴趣,也培养了学生独立思维的能力,提升了小学数学课堂教学效率。 数学小论文3000字篇2 浅析中学数学的兴趣教学 中学数学在难度上和内容上都比小学阶段的数学要深广,因此学生在学习的时候经常出现畏难情绪,一开始产生学习困难而没有得到正确的解决,因此便一步步丧失对自己的信心。例如不少学生觉得自己学不好数学就是因为自己不够聪明,从而丧失学习的兴趣,上课心不在焉,很难集中注意力,这都需要教师给予高度的重视。如何有效解决这些负面现象的影响是教师应该着手的方面之一,我认为,要想真正使学生主动喜欢学习数学就必须要有兴趣的支撑,中学阶段学生自我的意识和约束力相对较弱,学习目的性不强,因此更加需要兴趣的辅助作用,有了兴趣之后,学生就会积极主动参与到学习活动中来,认真学习课本内容甚至还会对于一些拓展思考题有兴趣,自己进行研究探求。以下我结合自身的教学 经验 针对中学数学的兴趣教学谈几点看法。 一、建立和谐的师生关系 帮助学生培养兴趣,教师必须关注师生关系的建构。在中学阶段教师和学生相处的时间较长,因此教师自身对于学生的态度会对学生产生较大影响。尤其是中学时期,学生的个性和 兴趣 爱好 、人格、情感、意志等都在发展的过程中,教师的行为和语言都会对学生产生持久的影响,教师可以充分利用这一点,通过自身对学生的数学学习兴趣产生有效的引导作用。 第一,数学教师无论是否担任班主任都应该对学生十分用心。关注学生整体的发展,不仅仅是要求学生一定要把数学学好,占有学生课下的时间,实践证明数学教师如果要求过分苛刻会令学生产生逆反心理。例如,在每个阶段性考试进行完之后,询问学生整体的学习情况,并且及时给出建设性意见。学生都希望能够得到老师的关注和鼓励,这对于学生兴趣的建立有莫大的好处,良好的师生关系能够推动学生兴趣的培养进度。 第二,教师要关注学生非智力因素的发展。作为数学教师仍然有义务帮助学生建立积极乐观的价值观,教师应该以正确的价值引导,使学生对数学形成正确的认识,在心理上真正接受这门学科。例如,教师在课上讲到一些数学定理的时候,教师可以引导学生对数学家进行学习了解,继承和发扬数学家的精神。这需要教师明确自身的教学任务和作为 教育 者的责任,全面推动学生品质和能力的发展,当学生感到教师的用心和关注之后自然会产生亲切感,这无疑会对课堂教学效果和师生和谐关系的构建起到推动作用。 总之,师生关系的建立需要教师充分调动一切积极因素,帮助学生建立对教师的正确态度和认识,促进他们对数学学科的关注和学习,这是兴趣建立的重要步骤。 二、注重学生在教学中的主体性 主体性是建立兴趣的重要支撑,有了主体性,学生就会自觉产生对数学学习的认识,并且积极进行知识的学习,甚至会主动发现问题、解决问题,进行预习和主动复习等。中学阶段的数学教学内容多且课时紧,教师在课堂上都是紧赶慢赶,一节课下来以自己为中心,灌输式的学习方式严重压抑学生此阶段继续发展的主体性,导致学生无法获得相应的自由空间来发展自己,从而致使兴趣的失落。因此,教师应该充分尊重学生的主体性,在教学的过程中帮助学生建构主体性特征和能力,从而推动兴趣的发展。那么如何在教学形式和内容方面全方位建构学生的主体性呢?我认为从以下几点出发效果明显。 第一,在课堂教学中,教师应该减小功利性,不要总是告诉学生什么考什么不考,要让学生真正对于数学形成自己的认知感受,而不是为了应付考试才学数学。那么,教师就应该加大拓展思考题的训练和学习,打开学生的思维,形成开放性思维模式和创造性思维能力,这是建立主体性的主要内容之一。 第二,教师要采取启发式的教学方法,在课堂授课的过程中,很多教师发现虽然让学生主动预习,但是由于中学阶段学业压力较大,学生没有养成习惯进行预习,也没有时间和精力去提前预习准备,而这一过程实际上是很重要的,尤其对于学生主体性的发展很关键。因此,教师应该提前为每个阶段的学生设置合适的预习目标,并且给学生充分的时间进行预习讲解,学生之间相互检查和学习可以增强他们自我表现的意识,在自己预习的过程中,逐步养成积极主动的学习习惯,继而对今后的发展奠定良好的基础。 总之,主体性的建立是培养学生学习兴趣的必要过程,教师应该结合该阶段学生的发展特征进行主体性的建构和教学过程中的设置,充分尊重学生的发展需求和方向,满足其自我表达和个性发展的欲求,从而产生良好的教学影响。 三、加强合作 合作是开展兴趣教学的推动力和组成部分之一。合作教学和合作学习本身作为一种教学方法就是中学数学教育的重要内容,但是合作又可以作为兴趣教学的重要组成部分而开展,提高学生之间的互帮互助,有效帮助学困生的提升和困难克服,同时帮助学生在自由轻松的学习氛围中感受数学学习的乐趣,从而建立持久的兴趣。 第一,合作是学生之间的合作,教师要对学生进行有效的分组,并不是随机进行分组,小组的构成合理可以提高学生的参与兴趣。例如,有的小组构成差距过大,学困生产生自卑心理,几乎很少参与到合作中来,只会产生负面作用,因此教师要根据学生的性格发展和学习水平进行合理划分。 第二,合作不仅仅是学生之间的合作,也需要教师的参与,学生自由合作讨论可能会降低效率,学生自控力差,很难高效完成学习任务,因此教师要充分发挥引导和监督的作用,帮助学生快速完成任务,从而建立自信,在自豪感的形成过程中,学生逐步产生对数学的喜爱之情。 第三,教师也要充分利用多媒体来激发学生的兴趣,多媒体是符合时代发展的教学手段,学生对于电脑和高科技充满好奇和兴趣,教师应该及时学习最新教学技术,应用到数学课堂教学中来,作为激发因素帮助学生建立学习兴趣。总之,开展兴趣教学形式多样,需要广大教师群体不断进行探索和完善。 通过以上论述,我发现中学阶段数学的兴趣教学必须以学生的发展特征和需求为立足点,充分发挥教师的能动作用,围绕建立主体性为中心,关注学生全方面的发展情况和趋势,从而实现兴趣的有效建立。 猜你喜欢: 1. 数学文化论文3000字 2. 初中数学论文3000字 3. 数学论文范文3000字 4. 数学文化的论文范文参考 5. 物理学术论文3000字
黄金分割 对于“黄金分割”大家应该都不陌生吧!由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。 公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。 公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。 中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。 到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。也许,0.618在科学艺术上的表现我们已了解了很多,但是,你有没有听说过,0.618还与炮火连天、硝烟弥漫、血肉横飞的惨烈、残酷的战场也有着不解之缘,在军事上也显示出它巨大而神秘的力量?一代枭雄的的拿破仑大帝可能怎么也不会想到,他的命运会与0.618紧紧地联系在一起。1812年6月,正是莫斯科一年中气候最为凉爽宜人的夏季,在未能消灭俄军有生力量的博罗金诺战役后,拿破仑于此时率领着他的大军进入了莫斯科。这时的他可是踌躇满志、不可一世。他并未意识到,天才和运气此时也正从他身上一点点地消失,他一生事业的顶峰和转折点正在同时到来。后来,法军便在大雪纷扬、寒风呼啸中灰溜溜地撤离了莫斯科。三个月的胜利进军加上两个月的盛极而衰,从时间轴上看,法兰西皇帝透过熊熊烈焰俯瞰莫斯科城时,脚下正好就踩着黄金分割线。古希腊帕提侬神庙是举世闻名的完美建筑,它的高和宽的比是0.618。建筑师们发现,按这样的比例来设计殿堂,殿堂更加雄伟、美丽;去设计别墅,别墅将更加舒适、漂亮.连一扇门窗若设计为黄金矩形都会显得更加协调和令人赏心悦目.有趣的是,这个数字在自然界和人们生活中到处可见:人们的肚脐是人体总长的黄金分割点,人的膝盖是肚脐到脚跟的黄金分割点。大多数门窗的宽长之比也是0.618…;有些植茎上,两张相邻叶柄的夹角是137度28',这恰好是把圆周分成1:0.618……的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。黄金分割与人的关系相当密切。地球表面的纬度范围是0——90°,对其进行黄金分割,则34.38°——55.62°正是地球的黄金地带。无论从平均气温、年日照时数、年降水量、相对湿度等方面都是具备适于人类生活的最佳地区。说来也巧,这一地区几乎囊括了世界上所有的发达国家。多去观察生活,你就会发现生活中奇妙的数学!数字中国有一个成语——“顾名思义”。很多事物都能顾名思义,但是也有例外。比如,阿拉伯数字。很多人一听到阿拉伯数字,就会认为是阿拉伯人发明的。但事实证明,不是。 阿拉伯数字1、2、3、4、5、6、7、8、9。0是国际上通用的数码。这种数字的创制并非阿拉伯人,但也不能抹掉阿拉伯人的功劳。其实,阿拉伯数字最初出自印度人之手,是他们的祖先在生产实践中逐步创造出来的。 公元前3000年,印度河流域居民的数字就已经比较进步,并采用了十进位制的计算法。到吠陀时代(公元前1400-公元前543年),雅利安人已意识到数码在生产活动和日常生活中的作用,创造了一些简单的、不完全的数字。公元前3世纪,印度出现了整套的数字,但各地的写法不一,其中典型的是婆罗门式,它的独到之处就是从1~9每个数都有专用符号,现代数字就是从它们中脱胎而来的。当时,“0”还没有出现。到了笈多时代(300-500年)才有了“0”,叫“舜若”(shunya),表示方式是一个黑点“●”,后来衍变成“0”。这样,一套完整的数字便产生了。这就是古代印度人民对世界文化的巨大贡献。 印度数字首先传到斯里兰卡、缅甸、柬埔寨等国。7-8世纪,随着地跨亚、非、欧三洲的阿拉伯帝国的崛起,阿拉伯人如饥似渴地吸取古希腊、罗马、印度等国的先进文化,大量翻译其科学著作。771年,印度天文学家、旅行家毛卡访问阿拉伯帝国阿拨斯王朝(750-1258年)的首都巴格达,将随身携带的一部印度天文学著作《西德罕塔》献给了当时的哈里发曼苏尔(757-775),曼苏尔令翻译成阿拉伯文,取名为《信德欣德》。此书中有大量的数字,因此称“印度数字”,原意即为“从印度来的”。 阿拉伯数学家花拉子密(约780-850)和海伯什等首先接受了印度数字,并在天文表中运用。他们放弃了自己的28个字母,在实践中加以修改完善,并毫无保留地把它介绍给西方。9世纪初,花拉子密发表《印度计数算法》,阐述了印度数字及应用方法。 印度数字取代了冗长笨拙的罗马数字,在欧洲传播,遭到一些基督教徒的反对,但实践证明优于罗马数字。1202年意大利雷俄那多所发行的《计算之书》,标志着欧洲使用印度数字的开始。该书共15章,开章说:“印度九个数字是:‘9、8、7、6、5、4、3、2、1’,用这九个数字及阿拉伯人称作sifr(零)的记号‘0’,任何数都可以表示出来。” 14世纪时中国的印刷术传到欧洲,更加速了印度数字在欧洲的推广应用,逐渐为欧洲人所采用。 西方人接受了经阿拉伯人传来的印度数字,但忘却了其创始祖,称之为阿拉伯数字。数学很有用学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。 我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。 从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。 我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。 数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域.关于“0”0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 已解决问题收藏 转载到QQ空间 有关数学文化方面的论文,3000字左右200[ 标签:文化 论文,数学,论文 ] 语言性论文,可以是数学的历史,发展,以及数学与其他领域方面的关系和影响 匿名 回答:3 人气:11 解决时间:2008-11-17 19:53 满意答案数学的文化价值 一、数学是哲学思考的重要基础 数学在科学、文化中的地位,也使得它成为哲学思考的重要基础。历史上哲学领域内许多重要论争,常常牵涉到有关对数学的一些根本问题的认识。我们思考这些问题,有助于正确认识数学,正确理解哲学中有关的争论。 (一)数学——-根源于实践 数学的外在表现,或多或少人的智力活动相联系。因此在数学和实践的关系上,历来有人主张数学是“人的精神的自由创造”,否定数学来源于实践其实,数学的一切发展都不同程度地归结为实际的需要。从我国殷代的甲骨文中,就可以看到那时我们的祖先已经会使用十进制计数方法他们为适应农业的需要,将“十干”和“十二支”配成六十甲子,用以记年、月、日,几千年的历史说明这种日历的计算方法是有效的。同样,由于商业和债务的计算,古代的巴比伦人己经有了乘法表、倒数表,并积累了许多属于初等代数范畴的资料。在埃及,由于尼罗河泛滥后重新测量土地的需要,积累了大量计算面积的几何知识。后来随着社会生产的发展,特别是为适应农业耕种与航海需要而产生的天文测量,逐渐形成了初等数学,包括当今我们在中学里学习到的大部分数学知识。再后来由于蒸汽机等机械的发明而引起的工业革命,需要对运动特别是变速运动作更精细的研究,以及大量力学问题出现,促使微积分在长期的酝酿后应运而生。20世纪以来近代科学技术的飞速发展,使数学进入一个空前繁荣时期。在这个时期数学出现了许多新的分支:计算数学,信息论,控制论,分形几何等等。总之,实践的需要是数学发展的最根本的推动力。 数学的抽象性往往被人所误解。有些人认为数学的公理、公设、定理仅仅是数学家头脑思维的产物。数学家靠一张纸、一支笔工作,和实际没有什么联系。 其实,即使就最早以公理化体系面世的欧的几里德几何而言,实际事物的几何直观和实践中人们发展的现象,尽管不合乎数学家公理化体系的各式,却仍然包含着数学理论的核心。当数学家把建立几何的公理体系当作自己的目标时,他伯头脑中也一定联系到几何作图和直观现象。一个人,即使是很有天赋的数学家,能在数学的研究中获得具有科学价值的成果,除了他接受严格的数学思维训练以外,他在数学理论研究的过程中,必定会在问题的提出、方法的选择、结论的提示等诸多方面自觉或不自觉地受到实践的指引。可以这么说,脱离了实践,数学就会成为无源之水,无本之木。 其实,即使就最早以公理化体系面世的欧几里德几何而言,实际事物的几何直观和实践中人们发现的现象,尽管不合乎数学家公理化体系的程式,却仍然包含着数学理论的核心。当数学家把建立几何的公理体系当作自己的目标时,他的头脑中也一定联系到几何作图和直观现象。一个人,即使是很有天赋的数学家,能在数学的研究中获得具有科学价值的成果,除了他接受过严格的数学思维训练以外,他在数学理论研究的过程中,必定会在问题的提出、方法的选择、结论的提示等诸多方面自觉或不自觉地受到实践的指引。可以这么说,脱离了实践,数学就会变成无源之水,无本之木。 但是,数学理性思维的特点,使它不会满足于仅研究现实的数量关系和空间形式,它还努力探索一切可能的数量关系和空间形式。在古希腊时期,数学家就超越了在现实有限尺度精度内度量线段的方法,觉察到了无公度量线段的存在,即无理数的存在。这其实是数学中最困难的概念之一—连续性、无限性的问题。直到两千年以后,同样的问题导致极限理论的深入研究,大大地推动了数学的发展。试想今天如果还没有实数的概念,我们将面临怎样的处境。这时人们无法度量正方形对角线的长度,也不会解一元二次方程:至于极限理论与微积分学更不可能建立即使人们可以像牛顿那样应用微积分,但是在判断结论的真实性时会感到无所适从。在这种状况下,科学技术还能走多远呢?又如在欧几里德几何产生时,人们就对其中一个公设的独立性产生怀疑。到19世纪上半叶,数学家改变这个公设,得到了另一种可能的几何一一非欧几里德几何。这种几何的创立者表现了极大的勇气,因为这种几何得出的结论从“常理”来说是非常“荒唐”的。例如“三角形的面积不会超过某一个正数”。现实世界似乎没有这种几何的容身之地。但是过了近一百年,在物理学家爱因斯坦发现的相对论中,非欧几里德几何却是最合适的几何。再如,20世纪30年代哥德尔得到了数学结论不可判别性的结果,其中的某些概念非常抽象,近几十年却在算法语言的分析中找到了应用。实际上,许多数学在一些领域或一些问题中的应用,一旦实践推动了数学,数学本身就会不可避免地获得了一种动力,使之有可能超出直接应用的界限。而数学的这种发展,最终也会回到实践中去。 总之,我们应该大力提倡研究和当前实际应用有直接联系的数学课题,特别是现实经济建设中的数学问题。但是我们也应该在纯粹科学和应用科学之间建立有机的联系,建立抽象的共性和丰富多彩的个性之间的平衡,以此来推动整个科学协调地发展。 (二)数学—充满了辩证法由于数学严密性的特点,很少有人怀疑数学结论的正确性。相反,数学的结论往往成为真理的一种典范。例如人们常常用“像一加一等于二那么确定”来表示结论不容置疑。在我们的中小学的教学中,数学更是只准模仿、演练、背诵。数学真的是万古不变的绝对真理吗? 事实上,数学结论的真理性是相对的即使像1+1=2这样简单的公式,也有它不成立的地方。例如在布尔代数中,1+1=0!而布尔代数在电子线路中有广泛的应用。欧几里德几何在我们的日常生活中总是正确的,但在研究天体某些问题或速度很快的粒子运动时非欧几何却是适宜的。数学其实是非常多样化的,它的研究范围也随着新问题的出现而不断扩大。如同一切科学一样,数学家们如果死守着前辈的思想、方法、结论不放,数学科学就不会进步。把数学的严密性和公理化体系看作一种“教条”是错误的,更不能像封建时代的文人对待孔夫子说的话:“真理”已经包含在圣人说过的话里,后人只能对其作诠释。数学发展的历史可以证明,正是数学家特别是年轻数学家的创新精神,敢于向守旧的思想挑战,数学的面貌才得以不断地更新,数学才成长为今天这样一门蓬勃发展、富有朝气的学科。 数学的公理化体系从来也不是不容怀疑、不容变化的“绝对真理”欧几里德的几何体系是最早出现的数学公理化体系,但从一开始就有人怀疑其中的第五公设不是独立的,即该公设可以从公理体系的其他部分推出。两千多年来人们一直在寻找答案,终于在19世纪由此发现了非欧几何。虽然人们长时期受到欧几里德几何的束缚,但是最终人们还是接受了不同的几何公理体系。如果历史上某些数学家多一点敢于向旧体系挑战的革新精神,非欧几何也许还可能早几百年出现 数学公理化体系反映了内部逻辑严密性的要求。在一个学科领域内,当有关的知识积累到一定程度后,理论就会要求把一堆看来散乱的结果以某种体系的形式表现出来。这就需要对己有的事实再认识、再审视、再思索,创造新概念、新方法,尽可能地使理论能包括最一般、最新发现的规律。这实在是一个艰苦的理论创新过程。数学公理化也一样,它表示数学理论已经发展到了一个成熟的阶段,但并不是认识一劳永逸的终结。现有的认识可能被今后更深刻的认识所代替,现有的公理也可能被今后更一般化、包含更多事实的公理体系所代替。数学就在不断地更新过程中得到发展。 有种看法以为,应用数学就是把熟诵的数学结论套到实际问题上去,以为中小学的教学就是教给学生这些万古不变的教条。其实数学的应用极充满挑战性,一方面不但需要深切地认识实际问题本身,另一方面要求掌握相关数学知识的真谛,更重要的是要求能创造性地把两者结合起来。 就数学的内容来说,数学充满了辩证法。在初等数学发展时期,占统治地位的是形而上学。在该时期的数学家或其他科学家看来,世界由僵硬的、不变的东西组成。与此相适应,那时数学研究的对象是常量,即不变的量。笛卡尔的变数是数学中的转折点,他把初等数学中完全不同的两个领域一一几何和代数结合起来,建立了解析几何这个框架具备了表现运动和变化的特性,辩证法因此进入了数学。在此后不久产生的微积分抛弃了把初等数学的结论作为永恒真理的观点,常常做出相反的判断,提出一些在初等数学的代表人物看来完全不可理解的命题。数学走到了这样一个领域,在那里即使很简单的关系,都采取了完全辩证的形式,迫使数学家们不自觉又不自愿地转变为辩证数学家。在数学研究的对象中,充满了矛盾的对立面:曲线和直线,无限和有限,微分和积分,偶然和必然,无穷大和无穷小,多项式和无穷级数,正因为如此,马克思主义经典作家在有关辩证法的论述中经常提到数学。我们学一点数学,一定会对体会辩证法有所帮助。
生活中的数学 有一个谜语:有一样东西,看不见、摸不着,但它却无处不在,请问它是什么?谜底是:空气。而数学,也像空气一样,看不见,摸不着,但它却时时刻刻存在于我们身边。 奇妙的“黄金数” 取一条线段,在线段上找到一个点,使这个点将线段分成一长一短两部分,而长段与短段的比恰好等于整段与长段的比,这个点就是这条线段的黄金分割点。这个比值为:1:0.618…而0.618…这个数就被叫作“黄金数”。 有趣的事,这个数在生活中随处可见:人的肚脐是人体总长的黄金分割点;有些植物茎上相邻的两片叶子的夹角恰好是把圆周分成1:0.618…的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。 建筑师们对数0.618…特别偏爱,无论是古埃及的金字塔,还是巴黎圣母院,或是近代的埃菲尔铁塔,都少不了0.618…这个数。人们还发现,一些名画,雕塑,摄影的主体大都在画面的0.618…处。音乐家们则认为将琴马放在琴弦的0.618…处会使琴声更柔和甜美。 数0.618…还使优选法成为可能。优选法是一种求最优化问题的方法。如在炼钢时需要加入某种化学元素来增加钢材的强度,假设已知在每吨钢中需加某化学元素的量在1000—2000克之间。为了求得最恰当的加入量,通常是取区间的中点进行试验,然后将实验结果分别与1000克与2000克时的实验结果作比较,从中选取强度较高的两点作为新的区间,再取新区间的中点做实验,直到得到最理想的效果为止。但这种方法效率不高,如果将试验点取在区间的0.618处,效率将大大提高,这种方法被称作“0.618法”,实践证明,对于一个因素的问题,用“0.618法”做16次试验,就可以达到前一种方法做2500次试验的效果! “黄金数”在生活中竟有如此多的实例和运用。或许,在它的身上,还有更多的奥秘,等待我们去探寻,使它能更好地为我们服务,为我们解决更多问题。 美妙的轴对称 如果在一个图形上能找到一条直线,将这个图形沿着条直线对这可以使两边完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴。 如果仔细观察,可以发现飞机是一个标准的轴对称物体,俯视看,它的机翼、机身、机尾都呈左右对称。轴对称使它飞行起来更平稳,如果飞机没有轴对称,那飞行起来就会东倒西歪,那时,还有谁愿意乘飞机呢? 再仔细观察,不难发现有许多艺术品也成轴对称。举个最简单的例子:桥。它算是生活中最常见的艺术品了(应该算艺术品吧),就拿金华的桥来说:通济桥、金虹桥、双龙大桥、河磐桥。个个都呈轴对称。中国的古代建筑就更明显了,古代宫殿,基本上都呈轴对称。再说个有名的:北京城的布局。这可是最典型的轴对称布局了。它以故宫、天安门、人民英雄纪念碑、前门为中轴线成左右对称。将轴对称用在艺术上,能使艺术品看上去更优美。 轴对称还是一种生物现象:人的耳、眼、四肢、都是对称生长的。耳的轴对称,使我们听到的声音具有强烈的立体感,还可以确定声源的位置;而眼的对称,可以使我们看物体更准确。可见我们的生活离不开轴对称。 数学离我们很近,它体现在生活中的方方面面,我们离不开数学,数学,无处不在,上面只是两个极普通的例子,这样的例子根本举不完。我认为,生活中的数学能给人带来更多地发现。
数学是知识的工具,亦是 其它 知识工具的泉源。所有研究顺序和度量的科学均和数学有关。下文是我为大家搜集整理的关于数学小论文3000字的内容,欢迎大家阅读参考! 数学小论文3000字篇1 浅析小学数学中创设有效情境教学 新课程标准中明确规定了情境教学法在小学数学中的地位,倡导教师通过创建情境,引导学生展开学习。情境教学法的优势在于能够将抽象、难懂的数学知识更加直观地展现出来,符合小学阶段学生的学习特点以及因材施教的原则,针对小学数学教学中情境教学法的应用进行几点研究。 生活情境小学数学 高效课堂 情境教学法是倾向于学生的 教学 方法 ,而不是单纯地追求教学效果,为何要创建生活情境?它是以小学生实际能力为基础,在它们所能理解消化知识的最大范围内,运用更加便于学生理解的方式,来进行教学,从这一点可以看出生活情境完全符合因材施教,以生为本的原则,是非常值得在小学数学教学中应用和推广的。 一、小学数学课堂中情境教学法的优势 数学学科的特点是逻辑性强,要求学生具有一定的推理能力、分析能力以及理论联系实际的能力。小学阶段的数学,虽然在难度上有所控制,但是数学学科原本的性质并没有改变,它依旧具有抽象性、逻辑性以及实用性的特点,小学课本中一些图形、定义,教师如果单抽说教,学生很难理解和掌握。为了达到教有所成的目的,教师需要借助一定的教学方法,来简化这些数学知识,使学生能够更加轻松、快速地理解和掌握,情境教学法恰恰能够满足小学数学的有需求,借助情境教学法,能够将抽象知识点直观化的呈现出来,激发学生的学习欲望。教师通过构建一个个生动的情境,为学生营造更加生动、活泼的学习气氛,鼓励学生参与教学活动、学生的学习兴趣和热情被调动起来,教师的教学效率必然会得到提升。举例说明,进行“中心对称图形”这部分知识的讲解,采用传统的教学工具以及单一的口头讲述,学生很难理解其中的内涵和意义,而采用创建情境教学法,将学生带入到一个直观化的思维空间中,并通过多媒体技术将概念、关键知识点制作成动态的课件,学生很快就会投入学习状态,学习成效显著,教学效率得以提升。 二、合理创设情境,提升小学数学课堂教学效率 1.结合学生能力特点,创建教学情境 小学阶段,学生的学习能力不完善,学生第一次系统化的接触数学知识,学习起来难免会有些吃力,教师在教学情境创建的时候,应该尽量使用简单易懂、富有趣味性的语言,确保学生能够了解教师说什么,这是开展教学的第一步,在这个基础之上构建情境,才能够真正发挥情境教学的优势和作用。 比如,进行“分数的基本性质”这个知识点教学的时候,教师可以创建这样的情境:白兔子妈妈将一个苹果分成4块,准备分给白兔3兄弟吃,她将1块苹果分给了大哥,而二哥却嚷着要吃2块,妈妈没有办法就切了第2个苹果,分成了8块,给了二哥2块,可是这个时候,三弟又不开心了,他想吃3块,猴妈妈就把第3个苹果平均分成12块,给了三弟3块。那么问题来了,白兔三兄弟,谁分到的苹果最多呢?这个情境不仅富有趣味性,容易理解,同时也蕴含了把“单位1”平均分成几份,取出不同的分数,但是却表示相同的大小这个含义。 2.从学生兴趣出发,创建教学情境 首先教师要明确兴趣对于学习的重要性。激趣是学生主动学习数学的关键,激趣过程中运用运用学生熟悉并且感兴趣的话题创建情境,满足学生对于学习的各种需求,这样才能够达到提升教学效率与质量的目的,同时也培养了学生主动学习的习惯,激发了他们的学习欲望。 比如,在进行“用乘法口诀进行表内乘除法的口算”这个知识点的时候,教师可以将学生最喜欢的动画形象“熊大、熊儿”编成 故事 :有20个桃子,5个小动物,这个时候熊大和熊儿可为难了,它们要怎么分,才能够让每个小动物都获得一样多的桃子呢?这个时候学生的兴趣高涨,都会纷纷举手回答,这个导入成功的激发了学生的学习欲望和好奇心,也活跃了课堂气氛,在这样环境下,学生的学习效果会更好。教师在创建教学情境的时候,不能拘泥于一个方法,或者一种形式,根据不同的教学内容和目标,故事可以随时进行改编,即便是在课堂上,教师也可以灵活改变情境的设计,目的就是更好的带动学生学习,帮助学生更加轻松的领会数学知识和魅力。 3.结合学生心理特点,创建教学情境 创建教学情境,要注意结合小学生的心理发育特点。这个阶段游戏和动画是最能够吸引学生的手段,教师利用这一点进行情境创建,既能够寓教于乐,又做到了因材施教。在情境教学基础上,鼓励学会独立思考,强化学生数学应用意识,提升 逻辑思维 能力。 比如,“克与千克”知识点的讲解,教师可以采用小组合作做游戏的方式,游戏的规则是“比比谁最快、比比谁最准”。教师先将学会分成若干小组,每个小组都发一包黄豆,一瓶矿泉水,一本新华字典。然后先让这些小组自行估算这些物品的重量,然后将其填入表格中。然后教师再带领大家用称来测量,看看哪个小组估算最准确,并给予这个小组的成员一定的奖励,通过这样的游戏方法,锻炼学生的观察、估算以及验证意识。 三、结束语 教师应该基于教材基础,结合学生的自身的学习特点、兴趣等各方面因素,合理创建教学情境,丰富课堂教学内容,增加课堂教学趣味性。通过大量的实践教学分析发现,在小学数学教学中引入情境教学法,不仅有效提升了学生学习数学的兴趣,也培养了学生独立思维的能力,提升了小学数学课堂教学效率。 数学小论文3000字篇2 浅析中学数学的兴趣教学 中学数学在难度上和内容上都比小学阶段的数学要深广,因此学生在学习的时候经常出现畏难情绪,一开始产生学习困难而没有得到正确的解决,因此便一步步丧失对自己的信心。例如不少学生觉得自己学不好数学就是因为自己不够聪明,从而丧失学习的兴趣,上课心不在焉,很难集中注意力,这都需要教师给予高度的重视。如何有效解决这些负面现象的影响是教师应该着手的方面之一,我认为,要想真正使学生主动喜欢学习数学就必须要有兴趣的支撑,中学阶段学生自我的意识和约束力相对较弱,学习目的性不强,因此更加需要兴趣的辅助作用,有了兴趣之后,学生就会积极主动参与到学习活动中来,认真学习课本内容甚至还会对于一些拓展思考题有兴趣,自己进行研究探求。以下我结合自身的教学 经验 针对中学数学的兴趣教学谈几点看法。 一、建立和谐的师生关系 帮助学生培养兴趣,教师必须关注师生关系的建构。在中学阶段教师和学生相处的时间较长,因此教师自身对于学生的态度会对学生产生较大影响。尤其是中学时期,学生的个性和 兴趣 爱好 、人格、情感、意志等都在发展的过程中,教师的行为和语言都会对学生产生持久的影响,教师可以充分利用这一点,通过自身对学生的数学学习兴趣产生有效的引导作用。 第一,数学教师无论是否担任班主任都应该对学生十分用心。关注学生整体的发展,不仅仅是要求学生一定要把数学学好,占有学生课下的时间,实践证明数学教师如果要求过分苛刻会令学生产生逆反心理。例如,在每个阶段性考试进行完之后,询问学生整体的学习情况,并且及时给出建设性意见。学生都希望能够得到老师的关注和鼓励,这对于学生兴趣的建立有莫大的好处,良好的师生关系能够推动学生兴趣的培养进度。 第二,教师要关注学生非智力因素的发展。作为数学教师仍然有义务帮助学生建立积极乐观的价值观,教师应该以正确的价值引导,使学生对数学形成正确的认识,在心理上真正接受这门学科。例如,教师在课上讲到一些数学定理的时候,教师可以引导学生对数学家进行学习了解,继承和发扬数学家的精神。这需要教师明确自身的教学任务和作为 教育 者的责任,全面推动学生品质和能力的发展,当学生感到教师的用心和关注之后自然会产生亲切感,这无疑会对课堂教学效果和师生和谐关系的构建起到推动作用。 总之,师生关系的建立需要教师充分调动一切积极因素,帮助学生建立对教师的正确态度和认识,促进他们对数学学科的关注和学习,这是兴趣建立的重要步骤。 二、注重学生在教学中的主体性 主体性是建立兴趣的重要支撑,有了主体性,学生就会自觉产生对数学学习的认识,并且积极进行知识的学习,甚至会主动发现问题、解决问题,进行预习和主动复习等。中学阶段的数学教学内容多且课时紧,教师在课堂上都是紧赶慢赶,一节课下来以自己为中心,灌输式的学习方式严重压抑学生此阶段继续发展的主体性,导致学生无法获得相应的自由空间来发展自己,从而致使兴趣的失落。因此,教师应该充分尊重学生的主体性,在教学的过程中帮助学生建构主体性特征和能力,从而推动兴趣的发展。那么如何在教学形式和内容方面全方位建构学生的主体性呢?我认为从以下几点出发效果明显。 第一,在课堂教学中,教师应该减小功利性,不要总是告诉学生什么考什么不考,要让学生真正对于数学形成自己的认知感受,而不是为了应付考试才学数学。那么,教师就应该加大拓展思考题的训练和学习,打开学生的思维,形成开放性思维模式和创造性思维能力,这是建立主体性的主要内容之一。 第二,教师要采取启发式的教学方法,在课堂授课的过程中,很多教师发现虽然让学生主动预习,但是由于中学阶段学业压力较大,学生没有养成习惯进行预习,也没有时间和精力去提前预习准备,而这一过程实际上是很重要的,尤其对于学生主体性的发展很关键。因此,教师应该提前为每个阶段的学生设置合适的预习目标,并且给学生充分的时间进行预习讲解,学生之间相互检查和学习可以增强他们自我表现的意识,在自己预习的过程中,逐步养成积极主动的学习习惯,继而对今后的发展奠定良好的基础。 总之,主体性的建立是培养学生学习兴趣的必要过程,教师应该结合该阶段学生的发展特征进行主体性的建构和教学过程中的设置,充分尊重学生的发展需求和方向,满足其自我表达和个性发展的欲求,从而产生良好的教学影响。 三、加强合作 合作是开展兴趣教学的推动力和组成部分之一。合作教学和合作学习本身作为一种教学方法就是中学数学教育的重要内容,但是合作又可以作为兴趣教学的重要组成部分而开展,提高学生之间的互帮互助,有效帮助学困生的提升和困难克服,同时帮助学生在自由轻松的学习氛围中感受数学学习的乐趣,从而建立持久的兴趣。 第一,合作是学生之间的合作,教师要对学生进行有效的分组,并不是随机进行分组,小组的构成合理可以提高学生的参与兴趣。例如,有的小组构成差距过大,学困生产生自卑心理,几乎很少参与到合作中来,只会产生负面作用,因此教师要根据学生的性格发展和学习水平进行合理划分。 第二,合作不仅仅是学生之间的合作,也需要教师的参与,学生自由合作讨论可能会降低效率,学生自控力差,很难高效完成学习任务,因此教师要充分发挥引导和监督的作用,帮助学生快速完成任务,从而建立自信,在自豪感的形成过程中,学生逐步产生对数学的喜爱之情。 第三,教师也要充分利用多媒体来激发学生的兴趣,多媒体是符合时代发展的教学手段,学生对于电脑和高科技充满好奇和兴趣,教师应该及时学习最新教学技术,应用到数学课堂教学中来,作为激发因素帮助学生建立学习兴趣。总之,开展兴趣教学形式多样,需要广大教师群体不断进行探索和完善。 通过以上论述,我发现中学阶段数学的兴趣教学必须以学生的发展特征和需求为立足点,充分发挥教师的能动作用,围绕建立主体性为中心,关注学生全方面的发展情况和趋势,从而实现兴趣的有效建立。 猜你喜欢: 1. 数学文化论文3000字 2. 初中数学论文3000字 3. 数学论文范文3000字 4. 数学文化的论文范文参考 5. 物理学术论文3000字
青岛理工的别都用这篇啊
职业道德是人们在一定的职业生活中自觉形成,并随着人类社会的前进而不断发展完善,职业道德是社会主义条件下的劳动者在一定的职业生活中应该遵守的行为规范的总和。下面是我给大家推荐的职业道德论文,希望大家喜欢!
《浅论职业道德培养》
【关键词】职业道德;培养内容
【摘要】社会主义职业道德建设对社会主义市场经济发展具有十分重要的意义。职业道德建设应该从职业道德知识、职业道德意志、职业道德情感、职业道德信念、职业道德习惯等方面进行培养,达到提高职业道德素质的目的。
职业道德是人们在一定的职业生活中自觉形成.并随着人类社会的前进而不断发展完善。社会主义职业道德是社会主义条件下的劳动者在一定的职业生活中应该遵守的行为规范的总和,与现存最先进的社会主义制度相联系。社会主义职业道筵在新的历史条件下形成了新的内容和特点,并在社会发展、个人价值的体现等诸多方面起到了决定性作用。职业道德是所有从业人员在职业活动中应该遵循的行为准则,涵盖了从业人员与服务对象、职业与职工、职业与职业之间的关系。随着现代社会分工的发展和专业程度的增强.市场竞争El趋激烈.整个社会对从业人员职业观念、职业态度、职业技能、职业纪律和职业作风的要求越来越高。在新的历史条件下,加强职业道德建设,全面提高职工道德素质,对形成“追求高尚,激励先进”的良好社会风气,保证社会主义市场经济的健康发展,促进整个民族素质的不断提高具有十分重要的意义。
首先,加强职业道德建设.有利于提高劳动者整体素质。放眼当今世界,国际竞争日趋激烈,我们面临着严峻的挑战。一个国家和民族的发展,不仅取决于经济的发展水平,而且取决于人的基本素质。随着社会主义市场经济体制的完善,对人的素质提出了新的更高的要求.人的素质是多方面.而职业道德素质作为道德的一个基本方面和重要组成部分,它的高低直接影响着道德素质的高低.从而影响着人的整体素质的高低职业活动是一个人一生中主要的生活内容,人生价值、人的创造力以及对社会的贡献是通过职业活动实现的。职业是个人与社会交往的交汇点.职业行为是个人与社会进行交往联系的基本方式。所以人在职业行为中的道德表现、道德品质就成为一个人道德生活的主要组成部分。人的品德、精神境界、价值观念也主要通过职业活动体现出来,并充分展示一个人的精神风貌和道德情操。只有适应时代要求,不断提高职业道德素质才能提高人的整体道德素质,从而全面促进人的素质的不断提高,推动建设有中国特色社会主义事业不断前进。
其次,加强职业道德建设,有利于规范市场经济秩序。在市场经济条件下,起主导作用的最大利益经济法则能够不断增强人们的竞争意识和效益意识.但同时也不可避免的带来很多不利于社会主义市场经济发展的负面影响。在这种情况下就要依靠法律和道德来规范人们的行为。社会主义市场经济的发展离不开法律的保障,但道德的调节方式也必不可少。法律规定告诉人们必须做什么和不能做什么,道德行为的执行完全靠人们内心的道德情感和道德意识的支配,它调节的范围非常广泛,作用也更持久。职业道德作为道德的一个重要组成部分,可以很好地约束各行各业的行为。提高行业从业人员的职业道德素质.促进社会主义市场经济的健康发展。大量事实表明,职业道德在社会中所起的作用是巨大的。引导和 教育 得力,职业道德水平高,就能对整个社会发展起到良好的推动作用。
良好的职业道德品质是不会自然形成的,只有通过不断的教育、引导和培养.不断克服旧的、腐朽的思想和观念,才能真正树立起全新的社会主义职业道德。职业道德培养是通过具体的训练、学习等途径来促进职业道德品质的形成和发展.因此职业道德培养是一个过程。
职业道德知识的培养职业道德知识的培养是职业道德品质形成的理论基础。自身具备了扎实的职业道德知识,才能不断提高对社会主义职业道德原则、规范等理论的认识,进而提高职业道德行为选择的能力,提高对职业道德价值的认识。从业人员的职业道德培养.应当首先从明确认识开始,这是培养职业道德情感、意志、信念等问题的基础。随着现代化建设的深入,在社会中也出现了一些人生观、价值观方面的困惑,如追求经济效益与拜金主义的关系、追求人生价值的实现与眼前利益的关系等问题。随着社会日益多元化的发展.职业道德建设也出现了一些新的问题,这就需要我们不断加强职业道德理论的学习,在重要的道德原则问题上辩明是非.自觉抵制错误思想.把握好人生的航向。
职业道德情感的培养所谓职业道德情感.就是指人们在处理自己和职业的关系及评价职业行为过程中形成的荣辱好恶等情绪和态度。主要包括对所从事职业荣誉情感、责任感,对服务对象的“亲如一家”情感,热爱本职工作,敬业乐业等。职业道德情感一经形成,就会成为一种稳定而强大的力量.积极影响人们职业道德行为的形成和发展。职业道德情感的培养就是为了让人们发自内心地崇尚高尚的职业道德品质,鄙夷不道德的行为,树立起正确的道德理想,产生强烈的见贤思齐的情感和愿望,从而模范地遵守社会主义职业道德规范的要求。
职业道德意志的培养所谓“意志”是指人确定目的并用选择手段以克服困难,达到预定目的的心理过程。其外部表现是语言和行动。职业道德意志就是指人们在履行职业义务的过程中所表现出来的自觉地克服一切困难和障碍,做出抉择的力量和坚持精神。它是道德认识转化为道德行为。形成道德品质不可缺少的重要精神力量。有没有这种坚毅果敢的职业道德意志,是衡量每个从业人员道德素质高低的重要标志。
职业道德信念所谓“信念”是指人对未来美好事物的向往和追求。也是对于自己生活所应遵循的原则和理想的信仰。信念通常跟情感和意志融合在一起.表现为人的生活立场.支配着人的行动。职业道德信念是指人们不仅对某种人生观、道德理想和行为原则有深刻的笃信.而且也对相应的职业道德原则的正确性有深刻的笃信,同时也包含了由此形成的强烈的职业责任感。只有对自己职业的社会价值有了深刻的了解.对所从事的职业有了深厚的感情,并对该职业道德的正义性深信不疑.为履行自己的职业责任和道德义务而勇于排除一切困难、阻力的时候,才真正具有了坚定的职业信念。
职业道德习惯的培养职业道德习惯的培养是指个人的某种职业行为成为反复持久的、习以为常的惯例。职业道德习惯是进行职业道德评价的事实依据。考察一个人的职业道德品质,不仅要看职业道德认识是否正确,更重要的是要看其职业行为是否高尚,是否对人民有利。只有把职业道德原则和职业道德规范转化为实际伍动,并把它逐渐变成职业道德习惯,才能形成良好的职业道德素质。
《职业道德与职业教育》
摘要:职业教育培养的是职业人,职业技能和职业道德是职业行为过程中相互关联、不可缺少的两个方面。客观上要求从业人员必须具备良好的职业道德素质和职业技能能力,而在现实中对职业教育的“能力本位”的教育理念没有共识,甚至被片面地理解为单纯的“职业技能教育”,这种“重实践,轻职业道德”导致一系列的职业道德风险问题出现。本文提出在职业教育改革与发展中,将职业道德教育放在与职业技能教育同等重要的战略地位上,是完善职业教育的必然选择,也是职业教育内涵的客观要求。
关键词:职业道德;职业教育;关系
一、职业教育
教育的本质是人的培养,职业教育是我国高等教育的一种形式,是培养社会经济发展需要的技能型、应用型人才的教育,其教育的职业化特征与实践性特色决定了职业教育培养的人是一个职业人。任何一种职业客观上都要求从业者必须具备良好的职业素质,即职业道德和职业技能。职业道德和职业技能是职业素质中相互关联的、不可或缺的、贯穿于职业活动始终的、同一职业行为中的两个方面,具有很强的连续性、实践性、交叉性与可操作性。职业教育客观上担负着对受教育者――高职学生,职业道德和职业技能培养的重任。然而现实中,由于我国目前对于“职业能力”没有共同的理解,不同的“能力观”导致人们对职业教育的培养目标、课程、教学和评价等有不同的理解。在许多职业院校,“能力本位”的教育理念被片面地理解为“职业技能教育”,而忽视了职业行为中的另一个重要因素――职业道德素质,导致高职学生在职业行为中,由于职业道德的缺失而造成一系列的职业道德风险问题,这些问题的出现越来越成为社会关注的焦点,职业教育的公信度也由此受到质疑。在职业教育改革与发展中,将职业道德教育放在与职业技能教育同等重要的战略地位上,是完善职业教育的必然选择,也是职业教育内涵的客观要求。
二、职业道德
职业道德产生于职业分工,不同的职业有不同的职业道德要求。职业道德不仅要求从业人员在职业行为中“不应该”做什么,而且倡导从业人员“应该”做什么,是从业人员在一定的职业范围内应遵守的与其职业活动相适应的行为规范的总和,是职业人在职业行为过程中必须遵守的职业道德操守、 岗位职责 、岗位规范,也是评判职业人职业行为的价值标准。从业人员必须遵守行业或职业的规定,这是从业者工作的基本要求。在具体的生产经营活动中,最主要的就是要做到文明礼貌、 爱岗敬业 、诚实守信、办事公道、勤劳节俭、遵纪守法、团结互助、开拓创新。从业人员在工作中都要与他人、社会和自然发生一定的关系,当自身的利益与他人、社会和自然发生矛盾时,就必然要做出职业道德选择。当职业道德选择出现偏差时往往会产生职业道德风险问题。职业道德风险是指从业人员在其从事职业活动的过程中,由于个人偏离了职业道德规范,而造成各种有形或无形损失的潜在因素。具体表现在不道德的经营风气,假冒伪劣充斥市场,买卖不讲信用,合同难于履行,债务随意拖欠,不爱岗敬业,不诚信,弄虚作假,无创新精神,不遵纪守法,不忠于职守,缺乏质量意识、协作精神等。任何一种职业对于从业者来说,在工作中都不可能摆脱职业道德的约束。可见,职业岗位对职业道德的要求是客观存在的,是不以人的意志为转移的。
三、职业教育与职业道德的关系
职业教育是培养生产、管理、工程、服务第一线的技能型、应用型人才的教育,是为社会主义经济建设培养合格职业劳动者的教育,而培养具备良好职业道德和职业技能的职业工作者则是职业教育的根本任务。其课程的本质是“学习的内容是工作,通过工作实现学习”。教育形式的特殊性,有机地将工作和学习紧密地联系在一起,使职业教育的教育属性带有显著的职业特点;客观上决定了职业教育不仅要教会学生“做事”,更重要的是要教会学生“做人”,“做事”就是要掌握一定的职业技能;“做人”就是在工作中要具有良好的职业道德。且“做人先于做事”,“学校教育,育人为本”,“德、智、体、美,德育为先”,“修养高于技巧,品德高于 方法 ,人的本质特征高于人的外在魅力”。卡耐基曾经说过:“一个人事业上的成功,只有15%是由于他的专业技术,另外的85%靠人际关系、处事技能。”这里的“人际关系、处事技能”指的就是一个人的职业道德素质。在我国,据有关方面统计,在许多“窗口”性、服务性职业中,60%以上的消费者投诉涉及职业道德,而涉及技术操作水平的不超过40%。有些行业,如按摩业可能由于其职业道德问题而最终失去顾客的信任而消亡。一个人有德无才或有才无德,都可能会四处碰壁,只有德才兼备才会畅通无阻。
社会主义市场经济呼唤社会主义职业道德,职业道德作为社会主义道德体系的重要组成部分,在道德体系中起着承上启下的作用,是连接社会公德和家庭美德的纽带,是每一个职业工作者在工作中必须遵守的行为规范。然而在现实中,由于种种原因,职业教育的培养模式由过去的“重理论,轻实践”到现在的“理论实践一体化”都没有从教育战略的层次上把握职业道德在职业教育中的重要作用。职业教育中“专业知识本位”、“专业实践本位”、“技能本位”的现象还比比皆是:《思想道德修养与法律基础》与《就业指导》课程中的职业道德知识内容过于浅显,至多只能讲一讲职业道德的基本要求,职业技能鉴定中的职业道德学习也只是为了取得职业资格证书而已,职业性的职业道德知识内容在职业教育中根本无从涉及。就深度而言,职业教育中职业道德教育表现出明显的边缘化特征。这是造成目前职业教育中职业道德教育不被重视、相对滞后的根本原因。职业教育“能力本位”的教育理念强调的是学生综合职业能力的培养,而并非单纯的“职业技能”培养,即学生的专业能力、方法能力与社会能力。专业能力即“做事”的能力;方法能力和社会能力即“做人”的能力。方法能力和社会能力中的很多内容属于 情感类 的教学目标,无法简单通过传统的学科系统化课程和传授式教学来实现,只能通过基于工作过程的实践性教学环节来实现。在学习中“工作”,在“工作”中学习;“工作”客观上要求工作者具有符合职业规定的职业道德素质。可见,职业道德教育是职业教育中必不可少的育人环节。当职业道德具体地体现在职业活动中的时候,它就具体内化并表现为职业品格,包括职业理想、进取心、责任感、意志力、创新精神等。职业教育以工作过程为导向,以实践性教学为切入点的教育模式为塑造高职学生的职业品格创造了良好的条件:通过课堂理论教学、具体的实践性教学情境和具体的项目化实践性教学活动在“学中做,做中学”,使学生“学会学习、学会做人、学会做事、学会合作、学会生存”,使学生在学校和工作中,掌握职业道德 文化 知识,形成职业道德观念情感,进而“外修技能,内修品德”,最终获得完善的职业品格。
四、结语
社会经济的发展及职业岗位对职业人才的客观要求,使职业道德与职业教育紧密地联系在一起,应从战略的高度将职业道德教育纳 入职 业教育体系中,并与职业技能教育处于同等地位;在职业教育中搭建课堂教学、职业技能鉴定、项目化实践性教学、顶岗实习、职业生涯规划、志愿者行为的职业道德培育平台;在理论和实践性教学中践行职业道德规范;在评价考核中衡量学生的职业道德素质。还要营造“厚德、勤学、敬业、强能”的校园文化氛围,使职业教育真正成为培养社会经济发展需要的、德才兼备的技能型、应用型人才的教育。
参考文献:
[1]姜大源.职业教育学研究新论.教育科学出版社,2007.1.
[2]陈宇人力资源开发论集.走向世界技能强国.北京:长城出版社,2001.11.
[3]许启贤.国家职业资格培训教程职业道德.北京:蓝天出版社,2000.12.
四年的大学生活是我人生的关键点。四年的校园生涯和社会实践生活我不断的挑战自我、充实自己,为实现人生的价值打下坚实的基 础。一直都认为人应该是活到老学到老的我对知识、对本专业一丝不苟,因而在成绩上一直都得到肯定,每学年都获得三等奖学金。在不满足于学好理论课的同时也注重于对各种应用软件和硬件的研究。 在大学期间,我始终以提高自身的综合素质为目标,以自我的全面发展为努力方向,树立正确的人生观、价值观和世界观。为适应社会发展的需求,我认真学习各种专业知识,发挥自己的特长;挖掘自身的潜力,结合每年的暑期社会实践机会,从而逐步提高了自己的学习能力和分析处理问题的能力以及一定的协调组织和管理能力。思想上,令我最自豪的事情是经过不断的努力学习和提高自己,我顺利的加入了中国共产党,并且成为一名光荣的党员。感觉就象在自己的生命上添上了神圣的一笔,转化成为一种无形的力量在鼓励我,在督促我,在时时刻刻的检查我,让我在思想行为方面能够作风优良、待人诚恳,能较好处理人际关际,处事冷静稳健,能合理地统筹安排生活中的事务。为社会为学校为同学为身边的人做事不再是觉得是一种累赘,而是很乐意的去做并且能够得到满足和快乐,不会去想做好自己的事情,别人的事情少管。并且一直在追求人格的升华,注重自己的品行。我崇拜有巨大人格魅力的人,并一直希望自己也能做到。在大学生活中,我坚持着自我反省且努力的完善自己的人格。现在我理解道理,乐于助人不仅能铸造高尚的品德,而且自身也会得到很多利益,帮助别人的同时也是在帮助自己。回顾这几年,我很高兴能在同学有困难的时候曾经帮助过他们,同样的,在我有困难时我的同学们也无私的伸出了援助之手。对于老师,我一向是十分敬重的,因为他们在我彷徨的时候指导帮助我。如果没有老师的帮助,我可能将不知道何去何从。我现在领悟到,与其说品德是个人的人品操行,不如说是个人对整个社会的责任。一个人活在这个世界上,就得对社会负起一定的责任义务,有了高尚的品德,就能正确认识自己所负的责任,在贡献中实现自身的价值。 学习上,我没有让自己失望,成绩一直名列前茅。每年都获得奖学金,特别英语考试每次都是班级第一,因此也是第一个并且以97.5分的成绩通过了高等学校英语应用能力考试a级考试,随后也是第一个获得了国家英语四级证书。由于所学的是计算机专业,因此非常注重实际操作能力,除了理论学习之外,我的实践能力也得到非常大的提高。后来女生经常找我处理电脑出现的各种各样的问题,有的时候这些问题我也没见过,然后就到网上搜相关资料,基本上每次都能够解决,到后来也有不少男同学也请教我计算机方面的问题,这些都让我学到了不少新的东西,因此我依然十分乐意帮助需要帮助的人,并且极大程度的提高了自己的自学能力。再有就是懂得了运用学习方法同时注重独立思考。要想学好只埋头苦学是不行的,要学会“方法”,做事情的方法。古话说的好,授人以鱼不如授人以渔,我来这里的目的就是要学会“渔”,但说起来容易做起来难,我换了好多种方法,做什么都勤于思考,遇有不懂的地方能勤于请教。在学习时,以“独立思考”作为自己的座右铭,时刻不忘警戒。随着学习的进步,我不止是学到了公共基础学科知识和很多专业知识,我的心智也有了一个质的飞跃,能较快速的掌握一种新的技术知识,我认为这对于将来很重要。在学习知识这段时间里,我更与老师建立了浓厚的师生情谊。老师们的谆谆教导,使我体会了学习的乐趣。我与身边许多同学,也建立了良好的学习关系,互帮互助,克服难关。现在我已经面临毕业,正在做毕业设计,我成为设计小组的组长,更锻炼了自我的动手和分析问题能力,受益匪浅. 生活上,我非常感谢学校能够提供给我助学贷款,缓解了我的经济压力。我利用课余时间和假期时间在外面找兼职、做家教,也锻炼了我的社会交往能力。好几年都没见到父母也让我更加的坚强,让我学会了合理的自理生活。同学们都说我是一个很会理财的人。 作为一名2007年大学应届毕业生,我所拥有的是年轻和知识。年轻也许意味着欠缺经验,但是年轻也意味着热情和活力,我自信能凭自己的能力和学识在毕业以后的工作和生活中克服各种困难,不断实现自我的人生价值和追求的目标。 参考资料: 采纳哦
学术堂精心准备了一篇大学德育论文范文,希望对你的写作能提供帮助范文题目:别了,我的大学生活当日子成为旧照片,当旧照片成为记忆,我的大学生活已经接近尾声。我曾经数着钟表的滴答声熬过一个又一个无聊的夜晚,总觉得时间走得好慢好慢。可是,一不留神,它已经走得好远好远,大一报到时的情景仿佛就在昨天,军训的点点滴滴还历历在目。想起自己刚刚进入这所大学校门的时候,那既激动又有着些许害怕的自己,时间冲淡了我的胆怯与幼稚,在这里我进一步深入的认识自己,学习为人处世,学习照顾自己,关心他人。而如今的我已经是即将跨出大学校门的毕业生学生,从初进校门到即将离开,仿佛就是那么一瞬间的事,回想着大学生活里的点点滴滴,内心充满着波澜,难以平静,即将毕业了,心中有太多的感慨。总的来说,大学让我成长了不少,是我人生中的一个非常非常重要的阶段。一、大学这样走过高中的时候就对大学生活非常向往,以为只要上了大学就无忧无虑了,呵呵,那时的自己这是太幼稚了。刚刚进入大一的时候,甩掉高考的痛楚和疲惫,满怀憧憬地迈入大学的校门。那个时候什么都不懂,在与同学室友的相处方面上也一直表现得比较慢热,而与高中老同学联系的比较频繁,经常写信或者打电话电话。那时的自己比较缺乏主见,总是别人做什么自己也跟着做什么。那是虽然早上有早操晚上又自习,但已经没有高中时那么累了。没有了老师的督促,生活和学习完全靠自己,一下子像挣脱缰绳的野马,从学习中一下子放松出来,玩心肆起,直到临近考试才想起学习,那时自己真的好担心会挂科,从来没有想到自己居然会为了60分而担惊受怕,真的没想过。我开始迷茫,开始不知所措,这让我一度迷失自我,我开始反省自己,进入大学以来自己都做了些什么,这样的大学生活有什么意义,而后自己慢慢的觉醒,真的不应该再这样下去了,我寻找着自己的方向,重新树立起奋斗的目标,并一直为实现这一目标而努力的储蓄资本。到了大二,我身上少了些大一时期的稚气,多了点成熟,我开始有自己的计划,开始独立的面对一切,不再纵容自己放弃学习理论知识,不再逃课,认真听取老师的讲解,经常去图书馆查阅资料,充实自己的知识库,我慢慢的学习那些原本对于我来说那么生疏的概念和理论,在自习室里呆的时间也越来越久,终于,在大二期间我通过了大学英语四级和六级考试,同时也通过了全国计算机三级考试。进入大三后,我已经是高年级的学生了,看着大一的新生,觉得自己老了很多。这时的自己,开始有了更多的想法,更多的看法,对身边事物的辨别能力也有了很大的提升。大三开始学习专业课,理论性更强了,虽然学习有些枯燥,但是随着知识积累的增加也是苦中有乐。大三下学期的时候开始为考研做准备,一下子想回到了高考的时候,每天自习吃饭睡觉重复着,没有老师告诉自己今天该学什么,该学多少东西,一切都得靠自己。我开始制定学习计划,按天,按周,按月,然后按计划一步一步向前走,虽然有时会觉得很烦,但觉得活的很充实。大四了,同学们都纷纷忙碌着,找工作,考研,考公务员,我的考研成绩也出来了,虽然分数还算高的,但复试却失败了。自己种的苦果只能自己食了,初试结束后太过放松自己,初试成绩出来后又太大意,没有好好的复习复试的相关理论知识,最后只能惨败了。情绪一下子坠入谷底,陷入深深地自责之中,但生活还得继续,不会因为后悔而改变什么,我开始重新调整自己的心态,让自己接受现实,最后我选择了调剂。在大学生活结束之前,我寻找着各种实习机会,希望实习的经验能让我从理论出发结合实际对自己的专业有足够的认识。二、友谊之树长青朋友是人生中不可或缺的,友情是我生活中的重要组成部分。从小到大,自己也交了不少朋友,人来人去,留下的不多,虽然不能永久的陪伴在一起,但感谢他们一直给予我的帮助和鼓励。在大学这个“小社会”里的友谊给了我学习和生活上的诸多帮助,让我从初入大学到如今都不感孤单,人生的旅程中多一份友谊就多了一份感知世界感知心灵的窗口,朋友能给你的不仅仅是陪伴,更多的是精神上的共鸣。大学里最亲密的当然还是自己的室友了,我们一起上课,一起吃饭,一起逛街,一起玩乐,在生活上是无话不谈的朋友,学习上是互相帮助的伙伴。相互分享彼此的快乐,分担彼此的忧愁,虽然马上就要分开了,但四年积累的友谊,早已深深地刻在每一个人的心里。我感谢我的室友,从大一到大四,她们是我最好的朋友,我有困难的时候是她们帮助我,我失落的时候是他们开导我,我开心的时候也是她们跟我分享,我们约定做彼此的伴娘,做彼此孩子的干妈,呵呵,虽然将来还是个未知数,但甜甜的回忆永远不会改变。同时我还有其他很多朋友,他们是我最宝贵的财富,对待每一个朋友,我都真心以待。特别要说的是两位鲁东的朋友,来自家乡的朋友,初到这个陌生的城市真的有些不知所措,幸好还有你们,隔得不远也不近的朋友,曾经问过我“等我们毕业了我们会怎么样,还会不会再见面”之类的话。我说只要我嫁的不远话,见面还是很容易的,呵呵,现在交通工具这么发达,只要有心再见有什么难的啊!这段友谊之路,我希望能一直走下去,直到永远。三、大学,别了大学教会了我如何学习,生活和做人,让我从一个幼稚不懂事的大孩子过渡为一个有主见有想法的成年人,我已经不再是那个爱幻想爱做白日梦的懵懂小孩,从我的身上能够清楚地看到岁月的车轮碾过的痕迹,我的内心已足够坚强,大学给了我一对翅膀,给了我智慧和力量,让我能自由的飞翔,飞向任何我想去的地方,任何风雨都不能够阻挡。但此时此刻,我不想去任何地方,只想让时间停留,让我与我的母校,我的同窗呆在一起好好享受这最后的时光。今天才发现原来我是如此的热爱这个地方,我看不够这里的花草树木,教学楼和操场。更舍不得那些舍友们,我们曾经同舟共济,一起生活,一起成长,我还想和你们一起继续疯狂,愿我们的友谊地久天长。四年的时光,有快乐有悲伤,有收获也有遗憾,虽然没有多么的轰轰烈烈,但还算充实,并没有虚度这四年的光阴,在这四年的时间里我学到了很多的东西,大学确实是个值得我们留恋的地方,这段时间,我做了自己想做的很多事情,也学习到很多东西,真的不想离开。这四年,我也曾经迷茫过,也曾失落过,但地球不是绕自己转的,开心也是一天,不开心也是一天,既然如此就努力调整好自己,以平常心坦然面对一切,努力提升自己的价值,让自己在毕业的时候不会不知所措,让自己能够有一个明确的方向。这段时间在人的一生中说长不长,说短也不短,相信这是我人生中最难忘的时期之一。在学校里我不仅学到了许多知识,更学会了许多人生道理,这些道理和知识不断完善我的人生观和价值观,是我人生中一笔巨额的财富。想着自己的大学生活马上就要结束了,不免有些伤感。可是,以后的路还很长,踏出大学校门又是一个新的起点,相信明天会更好。四、明天会更好新的生活就在眼前,我们已经站在起点,感悟的是一段美好的回忆,一段难忘的经历,一种平和的心态,一种前进的动力。我不断告诫自己,不要因为眼前的碌碌无为而懊恼不已,不要因为天资禀赋的不足就否定自己,更不要因为别人的一言一行而徘徊不前,拿出自己的勇气去面对,去体会生活,去寻求人生的真谛。作为大四的学生,大学生活已近尾声,开始更多的考虑自己的明天。人,都应该有自己的理想,而在当今这样一个人才济济的社会里,竞争是不可避免的。俗话说:“真金不怕火炼”,只有把自己打造成金子,才能经得住生活的考验、社会的考验。失败没什么,最重要的是自己有一颗不屈服的心,让自己在失败之中找到成功的途径。没有人会永远帮助你,值得永远依靠的人只能是自己!人生里,没有做不到的,只有想不到的,尽情地去发挥自己的才能吧!不要让青春虚度,在每一天的生活里载入一点点收获,让自信的微笑浮在你我的脸上,坚信付出就有回报,激情迸发精彩,相信明天会更好!
自然科学被公认为 经验 科学,是创新和完善马克思主义哲学意识论的重要基础和必要条件。下面是我为大家精心推荐的自然科学3000字论文,希望能够对您有所帮助。
摘要:本文以现代物理学的建立与发展过程为出发点,分析了现代物理学的建立对新的自然观形成的推动作用,并论述了自然观对科学研究的影响,作者认为,自然观影响了科研工作者对世界的认识、研究者对自身的认识与科学态度的形成,同时自然观促进了科学研究的 方法 和手段的发展。
关键词:现代物理学 自然观 科学研究
1 概述
自然观是人们对自然界总的看法和观点。任何时代的自然观都是在一定的历史 文化 背景下形成的,尤其与当时的自然科学发展水平密切相关。同时,它又对自然科学有着这样或那样的影响。
在历史上,最先出现的是神话形态的自然观;进入阶级社会以来,唯物主义自然观与唯心主义自然观的对垒日趋明显,在古代,人们基本上把自然界看作是一个普遍联系、不断运动的整体,由此形成朴素的自然观,近代科学深入自然界的各个细节进行孤立静止的考察,由此产生形而上学自然观,现代科学则日益广泛地揭示了自然界的各种联系,从各个不同的角度发展着辩证唯物主义自然观,这一科学的自然观对整个自然科学和哲学日益发挥着积极的作用。
物理学是集思想、方法、实验于一体的先导学科,在人类正确的自然观、世界观、方法论的形成和发展中,起着 其它 学科无法替代的作用,物理学研究所形成的物质观、自然观、时空观、宇宙观对科学技术的进步、生产力的发展乃至整个人类文化都产生极其深刻的影响,而现代物理学的建立和发展,则彻底改变了20世纪整个科学的面貌,也由此开始了自然科学发展的新纪元。
2 现代物理学的建立对新的自然观形成的推动作用
20世纪以来,以相对论与量子力学的创立为标志的现代物理学研究工作,从理论和实践两个方面,对人类认识和社会发展起到了难以估量的作用[1]。物理学理论的发展,把人类对自然界的认识推进到了前所未有的深度和广度。
2.1 相对论的诞生对绝对时空观的改变 相对论是关于物质运动与时间空间关系的理论,是现代物理学和科学技术的重要理论基础之一。1905年6月,爱因斯坦以“运动物体的电动力学”为题发表了关于狭义相对论的第一篇杰出论文,提出了狭义相对论的两条原理――相对性原理和光速不变原理。根据这两条原理,可以推出许多重要结论。例如,关于时空坐标相互联系的洛伦兹变换,从而改变了自牛顿以来统治物理学两百多年的绝对时空观[2]。
相对论的诞生,不仅大大推动了自然科学和技术的发展,而且在哲学世界观方面具有非常重大的意义,为辩证唯物主义的时空观提供了坚实的科学依据,广义相对论的建立,则为人类探索宇宙奥秘提供了有力的理论工具。
2.2 量子力学的建立对确定性世界的改变 量子力学的建立是二十世纪初物理学取得的最伟大成就之一。量子力学揭示了微观物质世界的基本规律,使人们认识到波粒二象性是微观世界最基本的特征,量子力学的创立,推动了原子物理学的发展,同时对物质结构理论以及化学、生物学的发展也产生了深刻的影响。
二十世纪二十年代末开始,爱因斯坦和玻尔之间展开了一场激烈争论,争论的焦点是就是量子学的哲学解释,因为爱因斯坦认为这种解释明显陷入唯心主义,而他坚信的是[3]:“有一个离开知觉主体而独立的外在世界,是一切自然科学的基础。”
然而从1972年到1982年十年的实验结果,却都显示了一个惊人的也是出乎唯物主义哲学家意料之外的结果。“贝尔不等式”这把双刃剑的确威力强大,但它斩断的却不是量子论的光辉,而是反过来击碎了爱因斯坦所执着信守的那个梦想[4]。世界是由独立于人的意识之外而存在的客体构成的这种学说,却原来和量子力学相矛盾,也和为实验所确立的事实相矛盾[5]。
欧洲核子研究中心(CERN)在2011年9月24日公布的一份研究结果显示,科研人员在让中微子进行近光速运动时,其到达时间比预计的早了60纳秒[6],如果这个研究被验证,人类的物理观将再次被改变,甚至人类存在的模式都将被改变。
3 自然观对科学研究的影响
哲学和自然科学发展的历史表明:哲学每前进一步。都依赖于和伴随着自然科学的巨大进步;同样,自然科学的每一步发展,也都凝聚着和渗透着哲学的指导,现代物理学的建立和发展,影响了新自然观的建立与形成,新的自然观又作用于科学研究,为自然科学提供了正确的世界观和方法论的指导,推动科学技术的进步。
3.1 自然观影响了科学家对世界的认识 当今科学所研究的对象,更多的是微观或者是宇观的客体,这些客体的性质与规律,已经超越了人类的感官能直接感知的范畴。如果说量子力学主要关注最微小的“基本粒子”,那么爱因斯坦的广义相对论则关注最大尺度的“宇宙”,一个研究最小,一个研究最大,由于难以获得显而易见的证明,所以在这两个领域的认识论便受研究者的自然观左右。
量子物理的理论具有高度的辩证性质,“非此即彼”的形式 逻辑思维 已不足以解释量子物理实验中众多的“亦此亦彼”的现象,而一种新的逻辑 思维方式 可能是现代物理学取得进一步突破的关键。量子力学的情况,如果从我们通常的观念看来,是充满着矛盾和难以克服的困难,但量子力学却是以独特的数学结构卓越而合理地把握了它,要理解这种逻辑结构,唯有依靠辩证逻辑[7]。为了消除用经典语言描述微观客体行为时与量子力学结论相悖的因果异常,赖辛巴哈试图建立一种消除形式逻辑排中律的三值逻辑,这种新的逻辑形式揭示了用传统形式逻辑描述不确定现象时的困难[8],沿着赖辛巴哈的思路,有人进一步发展出应用抽象代数学中“格演算”工具,用基本联词“遇”与“接”来取代“与”和“或”,用以更好地描述量子领域中的“亦此亦彼”现象,并使这种量子逻辑可以用一种广义的命题演算工具表述[9],这新的逻辑思维方式,便是受自然观影响下科研工作者对世界的认识,它成为现代物理学取得进一步突破的关键。
关于自然观影响了科学家对世界的认识这个问题,玻尔对此有过非常重要的认识,他说:“由作用量子的存在规定了的客体与测量仪器之间的有限相互作用,引起了最后放弃因果性这一经典概念并激烈地修正我们对于物理实在问题的态度”[10]。由此可见,自然观影响了科学家对世界的认识,更教会了他们辩证地认识世界。
自从辩证唯物主义自然观出现之后,人类第一次具有了客观而辩证的思维体系,可以从本质上把握到科学发展的方向与领域,再也不会像前人那样因为思维和领域的局限性,在科学研究中面对不解问题时就归咎于神学和宗教。
3.2 自然观影响了研究者对自身的认识 新的自然观从普遍联系出发,强调人和自然是相互联系的相互影响的,现代物理学的发展,完全证实了这一思想。相对论中的相对性原理表明,认识事物的运动与选择的参照系有关,即与人的主体有关,在量子力学中,海森堡的“测不准”原理也表明,在对微观世界的认识中,不能把人的因素独立在微观世界之外,对于量子论中的观测问题,尤金.维格纳认为:意识无疑在触动波函数中担当了一个重要的角色。于是当人们还在为薛定谔那只倒霉的猫而争论不休的时候,维格纳又出来捅了一个更大的马蜂窝,就是所谓的“维格纳的朋友”[4]。
所以说,自然观无时无刻不在影响着研究者对自身的认识,而这种认识,又影响着研究者对待科学研究的态度,放弃因果性,也就使得实验检验成为一句空谈,因为当科学实验与科学理论发生矛盾时,并不能证明科学理论是错的,因为二者可以不服从因果关系。
3.3 自然观促进了科学研究方法的发展 科学研究的结果跟研究者所采取的方法有很大的关系,科学的发展总是与方法的更新与发展紧密相连,相辅相成的。例如近代物理学的诞生,就得益于伽利略、牛顿等人在研究方法上的大胆创造与革新,他们把观察、实验等经验方法与数学、逻辑等理论方法有机结合起来,甚至还发明新的数学工具――微积分[11]。本世纪初,相对论与量子力学的思想一经形成,就可以在19世纪下半叶新兴的数学分支中找到相应的数学工具,如非欧几何学、张量分析、线性代数等等,这些方法上的成就不仅大大促进了现代物理学的进展,而且具有重大的方法论意义,为以后物理学的发展起了巨大的示范作用。
现代物理学的发展历程清楚地表明:物理学每前进一步,都伴随着方法上的重大革新和改进,自然观的改变,仿佛打开了一道方法学上的大门,在科学研究中,科学的理论陈述和与之相应的数学、逻辑和形而上学陈述一起组成了这个整体的知识场,现代物理学的发展已更清楚地表现出了理论与方法之间这种联动的特征。
但随着现代物理学的进一步发展,数学手段已显得不够得力,例如:目前关于大统一理论的研究难以取得有效的突破,不管超弦还是M理论[4],它们都刚刚起步,还有更长的路要走,究竟是相对论与量子力学两者自身难以统一,需要建立一种能取代二者的新理论,还是缺乏必要的数学处理方法及研究方法?这是科学家们目前亟需解决的问题。
值得注意的是,自弦论以来,人们开始注意到,似乎量子论的结构才是更为基本的,在弦论里,必须首先引进量子论,然后才导出大尺度上的时空结构。人们开始认识到,也许“自小而大”才是根本的解释宇宙的方法[4]。如今大多数弦论家都认为,量子论在其中扮演了关键的角色,量子结构不用被改正,只有更进一步地依赖量子的力量,超弦才会有一个比较光明的未来。
3.4 自然观和科学研究的相互促进 人类从古代开始到现在,经历了原始神话、宗教“自然观”、古代朴素自然观、形而上学自然观,直到产生了辩证唯物主义自然观的现在,可以说,自然观和科学研究是一种相互促进、相互推动的关系。
近代以来,随着实验科学的兴起和数学方法的应用,自然科学从自然哲学中独立出来,成为探索自然的排头兵,哲学的研究重心也从本体论转向认识论,但自然哲学仍然是哲学的一个研究领域。就自然观而言,由于中世纪宗教神学的熏陶,逐渐形成了有关自然界的有序、统一、服从简单性原理等观念,这种自然观深刻影响了近代自然科学的思维,尤其是当自然科学进入新的领域、遇到新的问题时,科学家都要从这些观念出发寻求解决的途径。
4 结束语
无论是何种自然观,都是先植根于当时的科学与自然认识的大环境,再从中吸取养分,经过深刻地思考与提炼进而产生的,从这一点说,任何一种自然观在其刚诞生之时,都是促进当时科学等方面学科的发展的,现代物理学的建立和发展,无疑对当前人类的自然观产生了深刻的影响,而新的自然观不仅影响了人类对自身的认识、对世界的认识,也改变了人类从事科学研究的手段和方法,由此开始了自然科学发展的新纪元,21世纪的曙光,交织着人类对未来的希望,已经投射出东方的地平线。
参考文献:
[1]魏凤文.当代物理学进展[M].江西 教育 出版社.1997.
[2]黄祖洽.现代物理学前沿选讲[M].科学出版社.2007.
[3]许良英,李宝恒等.爱因斯坦文集[M].商务印书馆.2009.
[4]曹天元.量子物理史话――上帝之骰子吗?[M].辽宁教育出版社.2011.
[5]何祚庥.唯物主义是否为现代科学实验所证伪[J].哲学研究.1992(8).
[6]刘霞.科技日报[N].2011.
[7]K.Popper.Quantum Theory and the Schism in Physics [M].Rowman and Littlefield Prb.1982.
[8]H.赖辛巴哈.量子力学的哲学基础[M].商务印书馆.1966.
[9]Scientific American[G].1982(2).
[10]玻尔.原子物理学和人类知识[M].商务印书馆.1964.
[11]万小龙,殷正坤.当代物理学哲学研究途径浅析[J].哲学研究.1996(12).
物理及自然科学教学的有效开展要求教师优化教学设计,使物理及自然科学的教学内容更加有趣和易于理解,从而激发学生的学习信心和兴趣,提高物理及自然科学教学的质量和效果。本文从三个方面阐述了在中等师范学校中开展中等师范有效物理及自然科学教学的方式。
一、风趣讲课,创设轻松的教学氛围
教师是物理及自然科学教学的主导者,教师的一言一语都会受到学生的关注。教师只有提高自身的语言运用能力,采取风趣的讲课方式,才能营造出良好的教学氛围,减少学生上课的紧张感,同时也可以提高教材讲解的效率。如在正式开始上课前,教师可以问学生:“同学们,从古至今有三个有名的苹果,你们知道是哪三个吗?”大多数学生都摇头,纷纷说不知道。教师趁机解释:“第一个苹果,被夏娃和亚当吃了;第二个苹果,砸在牛顿头上了;第三个苹果,就是苹果手机啊!我们现在没有苹果,但是可以看看牛顿被苹果砸了之后,为物理及自然科学做了什么贡献。”教师的讲话会让学生觉得很有趣,同时对物理及自然科学课堂也有了更多的期待。这时,教师就可以讲解教材内容了。教师风趣的讲课不仅可以创设轻松的教学氛围,而且可以增加学生对物理及自然科学的喜爱之情,这都有利于物理及自然科学教学的有效开展。
二、实验导入,激发学生的学习好奇心
好奇心能够驱使人们积极思考,通过努力获得答案,从而得到心理上的满足。因此,在中等师范物理及自然科学教学中,教师应把握学生的心理特点,通过实验导入激发学生的好奇心,引导学生努力思考和认真听课。如教师可以问学生:“同学们,不同物体下降时的速度一样吗?它们会同时落到地上吗?”学生一时难以肯定地回答教师的问题,于是教师就可以做一个实验,选取几种不同的物体在同一时间从相同的高度抛下,然后与学生一起观察实验结果。当实验结果与学生的认知发生冲突时,学生一定很想弄清楚原因,这时教师就可以引入教材内容,解决学生的疑问,帮助学生学习和理解教材内容。
三、鼓励学生自己动手,加强对课本知识的理解
物理及自然科学教学之所以让学生觉得很难,主要原因是学生缺乏实践,难以验证和深入地理解所学的知识。动手实践有利于学生巩固课本知识,也有助于学生在实践中发现问题、解决问题,从而加深他们对知识的理解。因此,在中等师范的物理及自然科学教学中,教师应当鼓励学生多自己动手。如在讲关于摩擦力的知识时,教师就可以鼓励学生动手,采用不同的物体做实验,通过自己的实践发现摩擦力的大小与什么有关,然后再根据教材内容的讲解验证自己的实验结果和猜想。亲自动手可以让学生充分参与到教学当中,不仅体现了学生的学习主体地位,而且发挥了学生的主观能动性。所以,在中等师范物理及自然科学的教学中,教师应多鼓励学生动手,从而提高学生学习的自信心,强化学生对教材内容的理解和掌握。
四、 总结
中等师范物理及自然科学教学的有效开展,对学生知识的增长和能力的提高都有重要意义。因此,在物理及自然科学教学中,教师应当运用风趣的语言授课,积极导入实验,鼓励学生多动手,从而降低教学难度,激发学生的学习主动性,促使教学的有效开展。
这个好说,,按照你的要求来完成就行
写作思路:根据高新技术的发展与科技素养养成的重要性来进行论述,表达出自己的观点和体会,语言要具有逻辑思维,避免平铺直叙等等。
正文:
科技的成长带动了人类精力的超越。天文千里镜和显微镜的发现使人的思维跳出地球,达到浩大宇宙的同时又起头从微观认识本人。不止如斯,科技的成长拓展了教育的深度和广度,使人类脱节愚蠢,为全面成长供给了认知根本。还有科技衍生的各类交换手段和文娱勾当,都极大地丰硕了人的精力糊口,使人类的精力素养获得很大的提拔。
在古代,人们迷信鬼神,认为人的终身是天定的,生老病死是天来掌控的; 在现代,人们通过科技的成长,证了然迷信思维是不成取的,要通过本人的双手缔造本人的糊口。在古代,很多人得了沉痾,医生也力所不及,只能眼睁睁地看着病人疾苦地死去可此刻,通过科技的成长,大部门疑问杂症已能成功治愈,人们不消为生病而懊恼。……以上所举的例子莫非不是人类文明的前进,人类素养的提高的间接证据吗?
我们是幸福的,我们是幸运的,我们赶上了一个科技高速成长的时代,一个充满高科技的时代,一个文明有素养的时代。这是我们的先人在进化时选择了成长,选择了前进,选择了提高本人的能力,也包罗了所有人的不懈勤奋,他们吃苦研究,不懈勤奋,才换回我们今天这个文明,文化,文雅的礼节之邦。
现代科学手艺正以史无前例的速度改变着世界的面孔,影响着人们的糊口。丰足的衣、食,舒服的住、行,千百年来不断是人类最根基的追求。现代科学手艺的成长,使人们的希望逐渐变成现实,让人们的糊口跳动科技的音符。
1900年全世界人均寿命仅为45岁,而今天这一数字正提高到66岁。结合国生齿署曾经把老年人的春秋边界制在“85岁以上”。人类寿命的大幅度耽误,身体素养的提高,得益于20世纪医学的迅猛成长和糊口程度的显著提高。 科学手艺是第终身产力,高新手艺及其财产推进了国民经济的成长,能够说高新手艺及其财产已成为现代科技成长的火车头科学手艺改变人们的思维观念,科学手艺使劳动东西获得不竭改善和更新,能够提高劳动者本质,能够使劳动对象获得充实操纵。
科技的成长对人类的全面成长有推进感化,全面提高人类的素养,包罗身体素养、学问技术、审美素养的平衡成长是我国一直对峙科学成长观的缘由之一,全面提高国民的本质、加强精力文明扶植,跟上时代科技的潮水。这是我们党,我们国度一直对峙的成长路线,也是我国进行科教兴国的缘由。
由于科技的成长使我们的物质文明获得了空前绝后的成长。GDP的每次冲破中都有科技的汗马功绩。若是没有科技,人类将重返阿谁掉队愚蠢的时代,连日常温饱都无法包管。前人已经说过“没有温饱,何来素养。”恰是因为科技的前进,出产力的成长,人类出产程度的提高,人类的素养才获得了提拔。
少年智则国智。德国元帅毛奇曾说:我们普鲁士的胜利早就在小学课堂里就决定了。一个人素质的养成,很大程度上决定于他幼时接受过什么样的教育。如何培养青少年科技素养和解决问题的思维方式?课堂教育固然重要,课外科技活动在中国现实环境下也发挥着相当重要的作用。
科技是人类发展的引导者:科技带给我们人类好处实在是太多了,当今世界上人们的衣食住行都离不开科技的产物。古代的神话:天空自由的飞行,千里眼,顺风耳都是人们普通生活离不开的。科技素养是对科技工作者的基本要求!
科技素养内涵是对科技工作者高标准要求:一个科技工作者首先本着先做人,后做事的态度,严谨,认真负责的工作态度,才能成就科技成就!
现代社会是一个民主化社会,每个人的命运和整个人类社会、整个国家的命运联系在一起,每个公民都有一定的社会责任和权利,不能被排除于社会事务之外。
而现代社会更是一个科学技术高度发达的社会,无论是公民的个人生活还是社会生活,都离不开科学技术,这就要求公民必须具备基本的科学素养,使个体能把握自己的命运,过上负责任的幸福生活,同时在涉及到人类社会和国家命运时,能发表自己的看法,并采取合乎理性的行动。因此,中国新一轮课程改革把目标定位于“提高全体学生科学素养”上。
大学数学是大学生必修的课程之一,如何提升大学生数学学习兴趣,培养数学型人才,是每一个大学数学教师都需要思考的。下面是我为大家整理的大学数学论文,供大家参考。
大学数学论文 范文 一:大学数学网络 教育 论文
一、教师要转变观念
意识是行动的主宰者。首先,教师要充分认识到网络教学资源对大学数学教学所产生的深刻影响。在网络信息快速发展的当今时代,如果仍旧拘泥于传统教学方式,势必将会处于落伍的境地。不仅影响教学效率,往深层次讲,还会影响学生 毕业 走向社会的适应能力以及生存能力。因此,教师要积极主动投身于教学改革的先行者行列中,构建现代化网络教学平台、加强网络教学资源的建设。
二、进行有效引导
在现代网络信息资源的基础上,学生能够变传统被动接受知识为主动探索知识。因此,教师要进行适当引导,指导学生掌握有效运用现代网络资源的 方法 ,不断发挥学生的主观能动性,培养学生的自主学习与探索能力,进而实现学生主动探索、教师指导的理想教学模式。 课前预习 、课中学习、课后巩固等这些环节,教师均可以让学生先自主学习,而后再进行有效指导。
三、有效整合教学资源
现代网络为我们带来丰富多彩的教学资源的同时,也带来了一些垃圾信息。因此,在大学数学教学中,教师要具备有效甄选、整合教学资源的能力。要根据课程内容,选择适合课时内容的资源融入到教学中。在选择网络资源时要遵循趣味性原则、实用性原则以及内容相符原则。运用网络教学资源进行大学数学教学是提高大学数学教学质量与教学效率的有效途径与方法,也是教育教学发展的必然趋势。教师应当转变传统的教学观念,充分重视网络信息资源,以教材为中心,有效整合网络资源,并运用于教学中,提高学生的学习兴趣,不断培养学生的自主学习能力。
大学数学论文范文二:大学数学教学中网络教育资源研究
一、如何利用网络教育资源提高大学数学教育质量
(一)加强教师对网络教育资源的认知
以前的大学数学教学方式单一,与学生的交流也少之又少,但是随着网络资源的发展,这一切将会有很大的变化,这也是适应社会的发展,提高数学教学质量的一种必然趋势。学校也应加大网络资源建设,顺应社会发展的潮流,不要封闭在传统的教育理念之中。大学教师也应适应社会的发展,不断的学习,摆脱落伍的危机。
(二)教师要把网络教育资源的内容融入到教学之中
教师应该适应网络的发展,把网络教育资源融入到现代教学之中,但是不要盲目的引进,首先就要考虑引进内容的适用性,所引进的内容要与所学的内容有相关性,能起到补充,扩充的作用,这样能够开拓学生们的视野。其次引进的内容还要具有适用性,能够让学生们把所学的内容融入到生活,融入到社会,达到学生们能认识数学,应用数学,培养他们的能力。最后还要具有一定的趣味性,这样才能令学生更能接受所学内容,更愿意去学习数学,应用数学。所以教师合理的引进网络教育资源使十分重要的。
(三)教师要引导学生们自主利用网络教育资源
教师不但要学习引进网络教育资源,还要充分的引导学生利用网络资源,培养他们自主学习数学, 爱好 数学的良好作风。以前的数学教育中,以老师讲解为主,学生被动的接受知识,学习过后学生们无法应用,这是一个很大的失败,而现在的网络发展情况下,老师可以引导学生们更好的利用网络资源,引导学生们自主学习,可以布置学生做课前预习,到网络上寻求资料,还可以让学生们课后巩固学习内容,网上寻求交流,以便达到巩固知识的作用。
(四)增强学生自主学习能力和兴趣
现在大学数学教育尽管很重视学生的学习,教师又会安排课余时间组织学生们给他们进行答疑解惑,但是受到时间性和地域性的限制,效果往往是不太理想,现在网络资源的丰富,不再受时间和地域的限制, 网络技术 可以让学生和老师间进行多样化的交流和辅导,也可以让学生们通过一些论坛,邮箱,视频等等不断的学习巩固自己的知识。学习不再有时间地域的限制,学生们的积极性会大大提高,兴趣也会越来越高,提高数学成绩不再是难事。
二、结束语
大学数学教育充分有效的利用网络课程资源是提高大学数学教育质量的有效办法,教师应该打破传统教学的局限性,以课材为中心,充分利用网络资源融入到现在教学之中,补充课本上的不足,增强教育之中的趣味性,这样会开拓学生们的视野,培养学生们的 兴趣爱好 ,让他们更加具备学习数学的激情,更加具备自主学习的能力。只有这样学生们才会更加有发展,大学数学的教育才会更加成功。
大学数学论文范文相关 文章 :
1. 大学生论文范文
2. 大学论文格式范文
3. 大学生论文范文模板
4. 大学毕业论文范文
5. 大学生毕业论文范文
6. 大学毕业生论文范文
高斯(Gauss 1777~1855)生于Brunswick,位于现在德国中北部。他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲可以说是一名「大老粗」,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。 高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道著名的「从一加到一百」,终于发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。 老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但不久之后,Bartels也没有什么东西可以教高斯了。 1788年高斯不顾父亲的反对进了高等学校。数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。 1791年高斯终于找到了资助人--布伦斯维克公爵费迪南(Braunschweig),答应尽一切可能帮助他,高斯的父亲再也没有反对的理由。隔年,高斯进入Braunschweig学院。这年,高斯十五岁。在那里,高斯开始对高等数学作研究。并且独立发现了二项式定理的一般形式、数论上的「二次互逆定理」(Law of Quadratic Reciprocity)、质数分布定理(prime numer theorem)、及算术几何平均(arithmetic-geometric mean)。 1795年高斯进入哥廷根(G?ttingen)大学,因为他在语言和数学上都极有天分,为了将来是要专攻古典语文或数学苦恼了一阵子。到了1796年,十七岁的高斯得到了一个数学史上极重要的结果。最为人所知,也使得他走上数学之路的,就是正十七边形尺规作图之理论与方法。 希腊时代的数学家已经知道如何用尺规作出正 2m×3n×5p 边形,其中 m 是正整数,而 n 和 p 只能是0或1。但是对于正七、九、十一边形的尺规作图法,两千年来都没有人知道。而高斯证明了: 一个正 n 边形可以尺规作图若且唯若 n 是以下两种形式之一: 1、n = 2k,k = 2, 3,… 2、n = 2k × (几个不同「费马质数」的乘积),k = 0,1,2,… 费马质数是形如 Fk = 22k 的质数。像 F0 = 3,F1 = 5,F2 = 17,F3 = 257, F4 = 65537,都是质数。高斯用代数的方法解决二千多年来的几何难题,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。 1799年高斯提出了他的博士论文,这论文证明了代数一个重要的定理: 任一多项式都有(复数)根。这结果称为「代数学基本定理」(Fundamental Theorem of Algebra)。 事实上在高斯之前有许多数学家认为已给出了这个结果的证明,可是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出自己的见解,他一生中一共给出了四个不同的证明。 在1801年,高斯二十四岁时出版了《算学研究》(Disquesitiones Arithmeticae),这本书以拉丁文写成,原来有八章,由于钱不够,只好印七章。 这本书除了第七章介绍代数基本定理外,其余都是数论,可以说是数论第一本有系统的着作,高斯第一次介绍「同余」(Congruent)的概念。「二次互逆定理」也在其中。 二十四岁开始,高斯放弃在纯数学的研究,作了几年天文学的研究。 当时的天文界正在为火星和木星间庞大的间隙烦恼不已,认为火星和木星间应该还有行星未被发现。在1801年,意大利的天文学家Piazzi,发现在火星和木星间有一颗新星。它被命名为「谷神星」(Cere)。现在我们知道它是火星和木星的小行星带中的一个,但当时天文学界争论不休,有人说这是行星,有人说这是彗星。必须继续观察才能判决,但是Piazzi只能观察到它9度的轨道,再来,它便隐身到太阳后面去了。因此无法知道它的轨道,也无法判定它是行星或彗星。 高斯这时对这个问是产生兴趣,他决定解决这个捉摸不到的星体轨迹的问题。高斯自己独创了只要三次观察,就可以来计算星球轨道的方法。他可以极准确地预测行星的位置。果然,谷神星准确无误的在高斯预测的地方出现。这个方法--虽然他当时没有公布--就是「最小平方法」 (Method of Least Square)。 1802年,他又准确预测了小行星二号--智神星(Pallas)的位置,这时他的声名远播,荣誉滚滚而来,俄国圣彼得堡科学院选他为会员,发现Pallas的天文学家Olbers请他当哥廷根天文台主任,他没有立刻答应,到了1807年才前往哥廷根就任。 1809年他写了《天体运动理论》二册,第一册包含了微分方程、圆椎截痕和椭圆轨道,第二册他展示了如何估计行星的轨道。高斯在天文学上的贡献大多在1817年以前,但他仍一直做着观察的工作到他七十岁为止。虽然做着天文台的工作,他仍抽空做其他研究。为了用积分解天体运动的微分力程,他考虑无穷级数,并研究级数的收敛问题,在1812年,他研究了超几何级数(Hypergeometric Series),并且把研究结果写成专题论文,呈给哥廷根皇家科学院。 1820到1830年间,高斯为了测绘汗诺华(Hanover)公国(高斯住的地方)的地图,开始做测地的工作,他写了关于测地学的书,由于测地上的需要,他发明了日观测仪(Heliotrope)。为了要对地球表面作研究,他开始对一些曲面的几何性质作研究。 1827年他发表了《曲面的一般研究》 (Disquisitiones generales circa superficies curva),涵盖一部分现在大学念的「微分几何」。 在1830到1840年间,高斯和一个比他小廿七岁的年轻物理学家-韦伯(Withelm Weber)一起从事磁的研究,他们的合作是很理想的:韦伯作实验,高斯研究理论,韦伯引起高斯对物理问题的兴趣,而高斯用数学工具处理物理问题,影响韦伯的思考工作方法。 1833年高斯从他的天文台拉了一条长八千尺的电线,跨过许多人家的屋顶,一直到韦伯的实验室,以伏特电池为电源,构造了世界第一个电报机。 1835年高斯在天文台里设立磁观测站,并且组织「磁协会」发表研究结果,引起世界广大地区对地磁作研究和测量。 高斯已经得到了地磁的准确理,他为了要获得实验数据的证明,他的书《地磁的一般理论》拖到1839年才发表。 1840年他和韦伯画出了世界第一张地球磁场图,而且定出了地球磁南极和磁北极的位置。 1841年美国科学家证实了高斯的理论,找到了磁南极和磁北极的确实位置。 高斯对自己的工作态度是精益求精,非常严格地要求自己的研究成果。他自己曾说:「宁可发表少,但发表的东西是成熟的成果。」许多当代的数学家要求他,不要太认真,把结果写出来发表,这对数学的发展是很有帮助的。 其中一个有名的例子是关于非欧几何的发展。非欧几何的的开山祖师有三人,高斯、 Lobatchevsky(罗巴切乌斯基,1793~1856), Bolyai(波埃伊,1802~1860)。其中Bolyai的父亲是高斯大学的同学,他曾想试着证明平行公理,虽然父亲反对他继续从事这种看起来毫无希望的研究,小Bolyai还是沉溺于平行公理。最后发展出了非欧几何,并且在1832~1833年发表了研究结果,老Bolyai把儿子的成果寄给老同学高斯,想不到高斯却回信道: to praise it would mean to praise myself.我无法夸赞他,因为夸赞他就等于夸奖我自己。 早在几十年前,高斯就已经得到了相同的结果,只是怕不能为世人所接受而没有公布而已。 美国的着名数学家贝尔(E.T.Bell),在他着的《数学工作者》(Men of Mathematics) 一书里曾经这样批评高斯: 在高斯死后,人们才知道他早就预见一些十九世的数学,而且在1800年之前已经期待它们的出现。如果他能把他所知道的一些东西泄漏,很可能现在数学早比目前还要先进半个世纪或更多的时间。阿贝尔(Abel)和雅可比(Jacobi)可以从高斯所停留的地方开始工作,而不是把他们最好的努力花在发现高斯早在他们出生时就知道的东西。而那些非欧几何学的创造者,可以把他们的天才用到其他力面去。 在1855年二月23日清晨,高斯在他的睡梦中安详的去世了...... 1客车长190米,货车长240米,两车分别以每秒20米和每秒23M的速度前进.在双轨铁路上,相遇时从车头相遇到车尾相离需几秒? 答案:10秒. 2 计算1234+2341+3412+4123=? 答案:11110 3 一个等差数列的首项是5.6 ,第六项是20.6,求它的第4项 答案:14.6 4 求和0.1+0.3+0.5+0.7+.....+0.87+0.89=? 答案:22.5 5 求解下列同余方程: (1)5X≡3(mod 13) (2)30x≡33(mod 39) (3)35x≡140(mod 47) (4)3x+4x≡45(mod 4) 答案:(1)x≡11(mod 13) (2)x≡5(mod 39) (3)x≡4(mod 47) (4)x≡3(mod 4) 6 请问数2206525321能否被7 11 13 整除? 答案:能 7现有1分.2分.5分硬币共100枚,总共价值2元.已知2分硬币总价值比一分硬币总价值多13分,三类硬币各几枚? 答案:一分币51`枚.二分币32枚.5分币17枚. 8 找规律填数: 0 , 3,8,15,24,35,___,63 答案: 48 9 100条直线最多能把平面分为几个部分? 答案:5051 10 A B两人向大洋前进,每人备有12天食物,他们最多探险___天 答案:8天 11 100以内所有能被2或3或5或7整除的自然数个数 答案:78个 12 1/2 + 1/2+3 + 1/2+3+4 + ......+ 1/2+3+4+....+10=? 答案:343/330 13 从1,2,3,......2003,2004这些数中最多可取几个数,让任意两数差不等于9? 答案:1005 14 求360的全部约数个数. 答案: 24 15 停车场上,有24辆车,汽车四轮,摩托车3轮,共86个轮.三轮摩托车____辆. 答案:10辆. 16 约数共有8个的最小自然数为____. 答案:24 17求所有除4余一的两位数和 答案;1210
数学这门古老而又充满生命力同时兼顾理论性和应用性的课程,被誉为“思维的 体操 ”,其中无论是理论(纯数学)还是实践(应用数学),都包含丰富的知识和思维的技巧。下文是我为大家搜集整理的关于数学论文的内容,欢迎大家阅读参考!
浅析小学数学学习特点对教学的影响
小学数学是知识学习的起始点,与人类的学习比起来,小学数学的学习更有具体性。小学生对数量关系和空间形式知识的学习,具有抽象性,需要学生认真思考。要从学生的实际情况出发,分析学生在学习小学数学前在知识、能力、情感态度价值观等方面所达到的水平,使教师根据小学数学学习特点策划教学方案,为教学提供理论依据。本文从学习内容、学习过程以及学习方式三点来论述小学数学学习特点对教学的影响。
一、学习内容的抽象性与形象性
1.抽象性和形象性的特点
教材编写人员将富有抽象的数学知识转变为 儿童 易理解的形象化数学知识,通过转化,它不但没有失去数学学科的抽象性、逻辑性和严密性,而且更加形象生动。大大提高了学生的学习兴趣。教材通过丰富多样的图片和 故事 ,把数学知识以多种方式呈现在学生面前。使学生想学爱学。虽然小学数学学习内容很抽象,但经过多种方式的呈现,使知识更形象生动。这种 方法 解决了数学知识特点与小学生思维之间的矛盾问题。
2.抽象性和形象性特点对小学数学教学的影响
教师在讲解小学数学时要使形象性与抽象性相结合,通过各种教学方式把抽象的数学知识形象化。因此教师需恰当地解决具体与抽象之间的联系,即要解决以下四个问题:第一,怎样将学习内容的形象性与数学的本质结合起来;第二怎样进行抽象概括;第三,怎样对数学知识的理解深入到学生心中;第四,使学生学会用自己的语言来描述数学问题。
二、学习过程的渐进性和系统性
1.渐进性和系统性的特点
教学模式开发和应用的过程,是一个随着 教育 理论和教学实践不断发展的过程。它具有渐进性和系统性。这两种特性遵循了小学生的发展规律,对知识的学习是一个循环渐进的过程。在教学中要充分考虑学生的年龄特点和小学数学学习的特点,在具体活动中引导学生多动手、动脑和动口,调动各种感官参与活动,提高学习效率。渐进性和系统性是学生学习过程中的特点,它主要表现在,数学知识的逻辑性和系统性,数学知识具有扩展性,每个知识点要相互渗透,形成全面系统的知识。学会举一反三。对小学数学循序渐进学习。
2.渐进性和系统性特点对小学数学学习的影响
根据小学数学渐进性和系统性的特点,合理地选择教学方式。在教学过程中遵循学生发展的规律。将小学数学学习的渐进性和系统性恰当的结合起来,从而制定有效的教学方案,使得小学数学的教学有计划、高效的开展。适应这个特点需要满足以下两个方面:第一个方面,按照教科书为学生制定的数学学习顺序进行学习;第二个方面,在学习原理的基础上,使小学数学学习过程具有系统性。
三、学习方式的接受性和探索性
1.接受性和探索性在小学数学学习活动中的体现
小学数学的学习方式分为接受学习和发现学习两种。无论是哪种学习方式,都是学生将已存在的数学知识转化为自己知识的过程,来提高数学水平。转化知识的过程既是学生自己发现探索的过程,也是接受原有知识的过程。通过学生对数学学习方式的探索,小学数学的学习是在接受性和探索性及两者统一的基础上表现出来的。而对数学知识的再发现决定了小学数学学习的探索性,对数学知识的传递决定了其学习的接受性。接受性和探索性是小学数学学习的必要条件。
在教学过程中,教师要正确地认识和承认学生的差异,通过独立思考和小组合作交流,使学生能在不同的基础上得到发展,并能从教师对每一种方法的肯定中获得成功的喜悦。可以让学生选择自己喜欢的计算方法与同学交流,增加本节课学习的兴趣,提高教学效率。
2.接受性和探索性特点对小学数学教学的影响
接受性和探索性特点是通过教与学的方式对小学数学教学产生影响。教师要以学生为主体,在小学数学的教学过程中起引导作用,教师要采用多种教学方式引导学生思考,且根据学生接受的程度和讲授的数学知识恰当地选择教授方法,这样学生既能运用多种方法学习数学,又能掌握知识,小学数学教学过程的进步需要靠多样的学习方式和先进的 教学方法 来完成,使学生能够在玩中学,提高学习兴趣,达到教学目的。在教学过程中需要关注以下三点:第一,以多种多样的学习方式指导学生;第二,在教学过程中,要注重培养学生自己探索发现数学问题及解决数学问题的能力;第三,根据小学数学的学习特点采用多种教学方式提高学生学习的主动性和积极性。
四、结语
小学数学教学过程中必须要关注小学生学习数学的特点,根据其特点采用多种教学方法进行教学。教学内容应生动形象而不缺抽象,教授过程中要把系统性与渐进性相结合,接受性与探索性相结合,遵循小学数学学习的特点,循环渐进地掌握知识,达到期望的教学目标。小学数学学习的特点对教学既有指导性,也有探索性,只要充分理解其特点,才能使小学数学的教学向着有利于学生接受的方向迅速前进,从而提高教学效率,达到教学目标。
浅析新课改下高中数学导数教学的发展
最近几年来,伴随着我国市场经济的飞速发展,社会也在不断的发生着变化,同期我国的科学技术水平也迈上了一个新的台阶。为了能够更好的发展,同期也需要我们的自然学科进行相应的发展,这样可以更好的适应社会发展的需要。众所周知,数学学科是高中素质教育中不可或缺的重要组成部分之一,自从我国教育体制开始形成之时,数学科目就开始存在,所以说数学在素质教育中占据的地位非常重要,而导数作为帮助学生解决函数、数列等难点的工具,同时又能紧密联系其他学科,更是有着十分重要的地位。在实行新课改后,微积分作为教学内容而列入高中数学教材,这对学生的导数知识掌握能力提出了更高的要求。因此本文对新课改实施背景下,如何通过教学方法的改进来提高学生导数掌握能力进行研究。
一.现阶段高中数学导数教学的现状
(1)教学模式单一,对学生 学习方法 引导不够
在文理分科的背景下,导数在高中数学学科中是作为一门选修课程来学的,这造成了文科学生由于对导数的应用了解不深而不能很好地掌握,利用导数求解函数参数问题也就无从谈起。同时由于实行新课改后,数学学科的课时被压缩,很多教师为了在短时间内完成大纲规定的内容,在教学过程中一般来说都是采取的教师讲授或者板书,毫无疑问,在整个教学的过程中学生都是被动听课的方式进行教学的,这种教学方式在一定程度上大大压制了学生思维的活跃性和课堂参与的积极性。这就造成了学生由于导数内容太难而失去学习激情,这更加不利于导数知识的掌握,不利于教学活动的开展。
(2)应试教育观念导致的教学僵化
一直以来,我国的应试教育体制在教育体系中的地位都比较稳固,甚至到现在为止还没有得到完全的消除。即使实行了新课改,很多教师由于教学观念没有转换过来,在教学过程中过于重视考试题型的讲解和练习,而忽视了帮助学生对数学思想和内涵进行正确认识,这导致了学生在导数学习中纯粹以考试为目的,机械式地背诵公式,无法将所学导数知识运用于生活和其他学科的内容学习中,这与新课改提倡的素质教育理念是不相符的。导数教学的难点在于学生对于导数的认识不足,难以理解导数概念,这需要老师利用物理学科或者生活中的场景进行深入了解,而不是用纯粹的理论化的数学概念来对学生进行“填鸭教育”。
二、新课改下提高数学导数教学质量的 措施
(1)帮助不同的学生制定不同的 学习计划
总的来说,学习方法是学生进行有效学习的基础,而且在一定程度上对学生的学习起着举足轻重的作用。正确的学习方法是学生有效掌握所学知识的保证,这就要求数学教师在课堂教学中除了对学生进行课堂内容讲解外,还需要通过一定的测试和沟通来了解学生的导数内容掌握情况,对于掌握不足的学生应该帮助制定相应的学习计划,测试的目的不是为了成绩,而是为了掌握学生的学习情况,同时针对学生的学习情况对教学计划进行适当的调整,如果后续的学习计划制定没有跟上,那么测试也就失去了意义。
(2)借助案例帮助学生加深对导数的理解
导数由于其对于高中学生来说过强的理论性,造成了学生对于导数的理解和应用往往掌握不够,这种情况下纯粹的理论教学只会造成学生进一步的不理解,这十分不利于学生的学习效率和老师的课堂效率,所以在导数的课堂教学中,老师要注意借助导数应用案例来激发学生的学习热情,比如物理运动的速度变化问题、加速度变化问题等,这样不仅能够帮助学生更好地理解导数内涵,而且能够使学生在加强对其他学科知识的理解的同时主动思考导数知识在生活中的应用,大大提高了教学质量和效率。
(3)加强导数技巧性和应用训练
在平时的教学中应该多鼓励学生应用导数内容求解函数等相关问题,这样可以进一步提高学生对导数的理解程度和应用水平。同时老师也可以针对导数的应用多出一些技巧性的题目对学生进行训练,比如利用导数知识来画出二阶、三阶函数的图像等,学生要做出这种题目就需要一定的技巧,随着解答的技巧性题目数量的增多,学生对于导数的应用也就更熟练。同时在导数的初学阶段,由于学生对于导数理解不够,老师可以出一些含有生活案例的题目让学生来解答,比如将学生骑车时速度变化的问题加入到导数题目中,这样可以促使学生主动思考导数知识,加深对导数的理解,为以后的导数深入学习打下基础。
三、结语
综上所述,我们可以知道,高中数学的导数教学具有其一定的独特性,究其原因是因为在一定程度上不但具有数学学科严密的逻辑性,而且同时还具有初中数学不具备的抽象性,所以在教学中需要教师根据高中数学的特点进行相应的教学。高中导数的有效教学不但需要教师采用积极引导的教学,同时还需要学生培养出数学思维进行学习,只有通过教师和学生共同努力,这样才能在新课改的情况下,让高中数学导数教学得到稳定可持续的发展。
浅谈初中生数学问题意识的培养
一、初中生问题意识培养的意义
问题意识即在学科学习过程中能够主动思考、认真探究,从而针对某个方面提出问题的思想准备。在数学课堂上,学生常常不敢或不愿回答课堂提问,不能或不善提出问题,能够经常积极回答问题的只有少数学生,能够在课堂中提出问题的学生更是少之又少。学生缺少问题意识,不能提出问题,不利于学生思维的发展,不利于学习能力的进一步提升。朱永新关于新课程的核心理念之一:教给学生一生有用的东西。而学生自主学习、勤学好问的习惯一定是学生一辈子受益的。心理学研究表明,意识到问题的存在是思维的起点,学生没有问题本身就是大问题.被称为现代科学之父的爱因斯坦曾指出:“提出一个问题往往比解决一个问题更重要。”初中生数学问题意识的培养,是学习习惯和学习能力培养的重要方面,是新课程改革的需要。
二、初中生问题意识培养策略
如何培养学生问题意识呢?我们通过教学实践进行了相关探索,并初步形成了一些策略。
1、改变评价方式,鼓励提问
造成学生问题意识缺失的原因是多方面的。我们的评价导向不利于学生问题意识的培养是原因之一,多数时候我们对回答问题对、考试分数高大加赞赏,对于学习有困难的学生缺少鼓励指导。大批循规蹈矩的学生,不敢也不会去质疑。学生学习中的问题本应该由学生主动提出,而实际教学中常常是学生被老师问。如何改变这一现状?我们可以采用多种方式鼓励学生提问。(1)注意运用表扬或激励性语言,逐步使学生感受到课堂中能提出问题和敢于回答问题一样都是值得肯定和鼓励的。(2)把学生课堂提问是否积极作为对学生评价的一个重要方面。(3)有目的进行一些提问竞赛等活动。
2、夯实学习基础,让学生能问
教学实践中我们体会到学生能否提出问题与学生学习基础有密切关系,学习基础较好的学生更容易提出问题。因此,教师要注重夯实学习基础、培养学生勤学好问的品质,让学生坚实的学习基础成为产生问题的土壤.
3、营造轻松学习氛围,使学生敢问
数学课堂上学生没有提出问题,并不是没有问题,更多时候是因为紧张等原因导致有问题不敢提出。学生只有在宽松、和谐的氛围中,思维潜力才会得到最大限度的开启。为了消除学生在课堂上的紧张和害怕的情绪,教师需要尽可能营造轻松、和谐、民主的学习氛围,可以先让学生在学习小组内交流、质疑,再让学生在全班内提出或解答问题。教师以微笑、平和、宽容、鼓励的心态指导学生,与学生交流探讨,帮助学生树立自信,拉近师生情感距离,使学生做到想问就问。
数学教学应教会学生会思考。让学生经历观察、猜想、操作、实验、合情推理的过程,不仅有利于培养学生的独立性、能动性和创新精神,而且学生在轻松学习氛围中能够 消除紧张 因素,有问题时敢于提出。
4、教师示范引领,诱导学生善问
如果一个人没有问题,就不会有新的发现,就不会有真正的成长。学生没有问题意识就会学得被动低效,教师没有问题意识就会阻碍专业成长。教师要让学生有问题意识,就首先自己具有问题意识。教师强烈的问题意识能起到很好的示范作用,能促进学生的问题意识发展。
案例2.三角形三边关系教学
(1)让生拿出课前准备好的三根长度不一样的塑料吸管。
(2)把这三根吸管“首尾顺次连结”你有何发现?这时学生发现有的能构成三角形,有的却不能。
(3)教师再继续提出三个问题:①你的三根吸管的长度各是多少?②三根吸管的长度具有怎样关系时能“首尾顺次连结”组成三角形?③是否具有任何长度的三条线段都能“首尾顺次连结”构成三角形?
在上述探究过程中,正是教师不断追问诱导,集中学生的思维,引发了学生的不断质疑,思考层层深入,结果不断涌现,惊喜不断。长此以往,学生就会善于提问。
5、利用现代媒体技术,促学生提问
《义务教育课程标准(2011版)》(以下简称《标准》)指出:数学课程的设计与实施应根据实际情况合理地运用现代信息技术,要注意信息技术与课程的整合。把信息技术作为学生学习数学和解决问题的有力工具,有效地改进教和学的方式,使学生乐意投入到现实的、探索性的数学活动中。现代信息技术应用于数学教学能达到其他方式无法比拟的效果,有力于学生在“问题空间”自主探究。教师为学生设置环境,提供他们需要使用的工具与资源,促使学生提出问题并进行探索,激发学生解答问题,实现学生自己建构知识。
现代信息技术为数学活动的开展提供了广阔的天地,只要学生投入到运用媒体软件做数学的活动过程中,必然发现或提出各种问题、引发自主探究。
三、结语
总之,真正的教育应该是以学生的发展为本,老师不仅关注如何教,更应该关心学生如何学.我们要求学生创造出能够提出问题、敢于提出问题、善于提出问题的学习环境,从而培养学生的问题意识和创新精神.
2017大学数学论文范文
由于特殊函数是数学分析中的一种重要工具,因此特殊函数的学习及应用非常重要。但是特殊函数往往不是用一种方法就能解决的,它是多种方法的灵活运用,也是各种思想方法的集中体现,因此难度较大。下面是我整理的关于几类特殊函数的性质及应用的数学论文范文,欢迎大家阅读。
几类特殊函数的性质及应用
【摘要】本文将对数学分析中特殊函数,诸如伽玛函数、贝塔函数贝塞尔函数等超几何数列函数,具有特殊的性质和特点,在现实中得到大量的运用的函数。本文主要以简单介绍以上三种特殊函数性质,及其在其它领域的应用,诸如利用特殊函数求积分,利用特殊函数解相关物理学问题。本文首先以回顾学习几类常见特殊函数概念、性质,从而加深读者理解,然后以相关实例进行具体分析,从而达到灵活应用的目的。
【关键词】特殊函数;性质;应用;伽马函数;贝塔函数;贝塞尔函数;积分
1.引言
特殊函数是指一些具有特定性质的函数,一般有约定俗成的名称和记号,例如伽玛函数、贝塔函数、贝塞尔函数等。它们在数学分析、泛函分析、物理研究、工程应用中有着举足轻重的地位。许多特殊函数是微分方程的解或基本函数的积分,因此积分表中常常会出现特殊函数,特殊函数的定义中也经常会出现积分。传统上对特殊函数的分析主要基于对其的数值展开基础上。随着电子计算的发展,这个领域内开创了新的研究方法。
由于特殊函数是数学分析中的一种重要工具,因此特殊函数的学习及应用非常重要。本文归纳出特殊函数性质、利用特殊函数在求积分运算中的应用、特殊函数在物理学科方面的应用,利用Matlab软件画出一些特殊函数的图形,主要包含内容有:定义性质学习,作积分运算,物理知识中的应用,并结合具体例题进行了详细的探究和证明。
特殊函数定义及性质证明
特殊函数学习是数学分析的一大难点,又是一大重点,求特殊函数包含很多知识点,有很多技巧,教学中可引导学生以探究学习的方式进行归纳、总结;一方面可提高学生求函数极限的技能、技巧;另一方面也可培养学生的观察、分析、归类的能力,对学生的学习、思考习惯,很有益处。
特殊函数性质学习及其相关计算,由于题型多变,方法多样,技巧性强,加上无固定的规律可循,往往不是用一种方法就能解决的,它是多种方法的灵活运用,也是各种思想方法的集中体现,因此难度较大。解决这个问题的途径主要在于熟练掌握特殊函数的特性和一些基本方法。下面结合具体例题来探究特殊函数相关性质及应用。
2.伽马函数的性质及应用
2.1.1伽马函数的定义:
伽马函数通常定义是:这个定义只适用于的区域,因为这是积分在t=0处收敛的条件。已知函数的定义域是区间,下面讨论Г函数的两个性质。
2.1.2Г函数在区间连续。
事实上,已知假积分与无穷积分都收敛,则无穷积分在区间一致收敛。而被积函数在区间D连续。Г函数在区间连续。于是,Г函数在点z连续。因为z是区间任意一点,所以Г函数在区间连续。
2.1.3,伽马函数的递推公式
此关系可由原定义式换部积分法证明如下:
这说明在z为正整数n时,就是阶乘。
由公式(4)看出是一半纯函数,在有限区域内的奇点都是一阶极点,极点为z=0,-1,-2,...,-n,....
2.1.4用Г函数求积分
2.2贝塔函数的性质及应用
2.2.1贝塔函数的定义:
函数称为B函数(贝塔函数)。
已知的定义域是区域,下面讨论的三个性质:
贝塔函数的性质
2.2.2对称性:=。事实上,设有
2.2.3递推公式:,有事实上,由分部积分公式,,有
即
由对称性,
特别地,逐次应用递推公式,有
而,即
当时,有
此公式表明,尽管B函数与Г函数的定义在形式上没有关系,但它们之间却有着内在的联系。这个公式可推广为
2.2.4
由上式得以下几个简单公式:
2.2.5用贝塔函数求积分
例2.2.1
解:设有
(因是偶函数)
例2.2.2贝塔函数在重积分中的应用
计算,其中是由及这三条直线所围成的闭区域,
解:作变换且这个变换将区域映照成正方形:。于是
通过在计算过程中使用函数,使得用一般方法求原函数较难的问题得以轻松解决。
2.3贝塞尔函数的性质及应用
2.3.1贝塞尔函数的定义
贝塞尔函数:二阶系数线性常微分方程称为λ阶的贝塞尔方程,其中y是x的未知函数,λ是任一实数。
2.3.2贝塞尔函数的'递推公式
在式(5)、(6)中消去则得式3,消去则得式4
特别,当n为整数时,由式(3)和(4)得:
以此类推,可知当n为正整数时,可由和表示。
又因为
以此类推,可知也可用和表示。所以当n为整数时,和都可由和表示。
2.3.3为半奇数贝塞尔函数是初等函数
证:由Г函数的性质知
由递推公式知
一般,有
其中表示n个算符的连续作用,例如
由以上关系可见,半奇数阶的贝塞尔函数(n为正整数)都是初等函数。
2.3.4贝塞尔函数在物理学科的应用:
频谱有限函数新的快速收敛的取样定理,.根据具体问题,利用卷积的方法还可以调节收敛速度,达到预期效果,并且计算亦不太复杂。由一个函数的离散取样值重建该函数的取样定理是通信技术中必不可少的工具,令
称为的Fourier变换。它的逆变换是
若存在一个正数b,当是b频谱有限的。对于此类函数,只要取样间隔,则有离散取样值(这里z表示一切整数:0,)可以重建函数,
这就是Shannon取样定理。Shannon取样定理中的母函数是
由于Shannon取样定理收敛速度不够快,若当这时允许的最大取样间隔特征函数Fourier变换:
以下取样方法把贝塞尔函数引进取样定理,其特点是收敛速度快,且可根据实际问题调节收敛速度,这样就可以由不太多的取样值较为精确地确定函数。
首先建立取样定理
设:
其中是零阶贝塞尔函数。构造函数:
令
经计算:
利用分部积分法,并考虑到所以的Fourier变换。
通过函数卷积法,可加快收敛速度,使依据具体问题,适当选取N,以达到预期效果,此种可调节的取样定理,计算量没有增加很多。取:
类似地
经计算:
经计算得:
则有:设是的Fourier变换,
记则由离散取样值
因为,故该取样定理收敛速度加快是不言而喻的,通过比较得,计算量并没有加大,而且N可控制收敛速度。
例2.4,利用
引理:当
当
因为不能用初等函数表示,所以在求定积分的值时,牛顿-莱布尼茨公式不能使用,故使用如下计算公式
首先证明函数满足狄利克雷充分条件,在区间上傅立叶级数展开式为:
(1)
其中
函数的幂级数展开式为:
则关于幂级数展开式为: (2)
由引理及(2)可得
(3)
由阶修正贝塞尔函数
其中函数,且当为正整数时,取,则(3)可化为
(4)
通过(1)(4)比较系数得
又由被积函数为偶函数,所以
公式得证。
3.结束语
本文是关于特殊函数性质学习及其相关计算的探讨,通过对特殊函数性质的学习及其相关计算的归纳可以更好的掌握特殊函数在日常学习中遇到相关交叉学科时应用,并且针对不同的实例能够应用不同的特殊函数相关性质进行证明、计算,从而更加简洁,更加合理的利用特殊函数求解相关问题。有些特殊函数的应用不是固定的,它可以通过不止一种方法来证明和计算,解题时应通过观察题目结构和类型,选用一种最简捷的方法来解题。
参考文献:
[1] 王竹溪.特殊函数概论[M].北京大学出版社,2000.5,90-91.
[2] 刘玉琏.数学分析讲义(下册)[M].高等教育出版社,2003,331.
[3] 刘玉琏.数学分析讲义(下册)[M].高等教育出版社,2003,331.
[4]王坤.贝塔函数在积分计算中的应用.[J]科技信息,2012(34)
[5] 王纪林.特殊函数与数学物理方程[M].上海交通大学出版社,2000,96-98.
[6] 陶天方.由特殊函数表达的快速取样定理 [J]. 上海大学学报(自然科学版),1997,8(4):368-371.
[7]饶从军,王成.让数学建模活动促进数学教学改革[J].中央民族大学学报(自然科学版),2004,2.
[8]赵宜宾.一类特殊函数定积分的求解[J].防灾技术高等专科学校学报,2010,1(3):38-39.
[9]董林.降次公式的探究—兼论一个猜想的证明[J].教学通报,1992.2.
[10] 李德新.利用对称原理计算定积分的三种方法[J].高等数学研究,2004,7(6):41—42.
[11]翟忠信,龚东山.高等数学的教与学[J].高等理科教育,2004(6):29—34.
[12]胡淑荣. 函数及应用[J]. 哈尔滨师范大学学报.2002,18(4):12~15.