首页

> 学术发表知识库

首页 学术发表知识库 问题

湿热灭菌柜毕业论文

发布时间:

湿热灭菌柜毕业论文

一.湿热灭菌的原理与要求二.湿热灭菌设备 (一)高压蒸汽灭菌器 (二)快速冷却灭菌器 (三)水浴式灭菌器 (四)回转式水浴灭菌器 湿热灭菌是指物质在灭菌器内利用高温高压的水蒸气或其他热力学灭菌手段杀灭细菌的方法。 特点:比热容大,穿透力强,容易使蛋白质变性或 凝固,故其灭菌可靠、操作简便、易于控制、具有 效率高,经济实用等特点。但不适用于对湿热敏感 的药物。 1.原理:蒸汽释放潜热,使细菌蛋白质、核酸、酶变性,最后导致细菌死亡。 二.湿热灭菌设备(一)高压蒸汽灭菌器:有手提式、卧式、立式movie 1.基本原理:以蒸汽为灭菌介质,用一定压力得饱和 蒸汽,直接通入灭菌柜内,对待灭菌品进行加热, 冷凝后的饱和水及过剩的蒸汽由柜体底部排出。 2.系统介绍:合金制成、夹套、格车(网格架)压力表两只、温度计一只,安全阀、里柜放气阀、 总来气阀(侧面)、里柜进气阀、外柜排气阀以 及外柜放水阀。 3.主要特点:(1)广泛使用于输液瓶、口服液的灭菌、操作简单、方 (2)升温、保温和降温靠阀门控制。(3)柜内空气要排净,否则灭菌不完全。 (4)自然降温,时间长,药液容易变黄。 (5)开门时,温差大,易引起爆炸。 4.工作过程:(1)打开夹套,加热10min,至升至所需压力 (2)物品入柜 (3)夹套加热完成后,在通入柜内 (4)T=115.5;P=70KPa 记时 (5)完成关闭气阀,逐渐打开排气阀,P=0 (6)取物品 5动力参数 T=115.5;P=70KPa 6.设备操作: 注意事项:(1)先进行灭菌条件的试验,确保灭菌效果 (2)必须把冷空气全部排出 (3)灭菌时间的计算 (4)灭菌结束的操作 7.维护保养 (1)必须按压力容器规范进行维护保养 (2)定期校对压力表、安全阀、温度计 (3)保持箱内清洁,定期消毒 (4)清洗干净将门关闭,但不要紧锁 10 (二)快速冷却灭菌器 适用于瓶装液体及软包装 图示: 缺点:柜内温度不均匀,快速冷却容易引起爆炸 蒸汽 冷却 冷却 11(三)水浴式灭菌器: 安瓿瓶、输液瓶、口服液等制剂、塑料瓶(袋)、 食品行业的灭菌。计算机控制,高温水直接喷淋灭菌, 冷却水间接冷凝。 1.基本原理:以去离子水为载热介质对输液进行加 热、升温、保温(灭菌) 、冷却。加热 和冷却都是在柜外的板式热交换器Flash中 进行的。 12 密封门3.系统介绍 管路系统 控制执行系统 13 4.主要特点 安全可靠5.工作过程: 装料、注水、升温、灭菌、冷却、排去离 6.动力参数7.设备操作 8.维护保养 14 Flash 15 Flash16 6.测量F值的功能17 Flash 18 Flash 19 Flash 设备特点本设备具备双层水浴式杀菌锅的特点,而且比双层杀菌锅提高1倍的产量,节约能源和 时间. 自动切换锅内水流方向,温度均匀无死角。高温短时间双锅交叉灭菌,节约时间、节约能 源、省人工。 全程电脑自动化控制,无需人工操作。 采用温度薄膜调节阀自动调节锅内温度,杀菌 精确度高。 测量F值功能。 根据不同产品设定多种专职灭菌公式。

湿热杀菌是有作用的,湿热杀菌将物品放入灭菌柜中,用高压饱和蒸汽、热水喷雾等方式使微生物细胞内的蛋白质和核酸变性,从而达到杀灭微生物的目的。湿热杀菌是热灭菌中最有效、应用最广泛的灭菌方法。药品、容器、培养基、无菌衣、胶塞等暴露在高温高湿环境中不会发生变化或损坏的物品,可采用该方法进行灭菌。

辐照灭菌论文参考文献

透过中子吸收,由稳定的钴-59可以产生同位素钴-60。对医学和工业方面的应用,同位素钴-60是x射线管的重要替代物。钴-60发射的γ辐射能量为 1.17和l.33兆电子伏,这两种辐射对检查金属中的缺陷特别有作用。用带有钴射线照相设备的扫描装置扫描,可以揭示金属的内部裂缝、焊接缺陷和非金属夹杂物。同位素钴-60源的优点是小型轻便,无需电源。钴的半衰期为5.27年,因此钴源可长期使用而无需更换。另一方面,射线能量是固定的,强度也不会改变,但x射线机上发出的射线能量和强度是可以改变的。如果用射线照相法给薄样品拍照,用铱-192比较方便。它的半衰期是74.2天,光子能量约0.4 兆电于伏。收获后的马铃薯或洋葱,经过一定的休眠期,就会一齐发芽。这是日常生活中常见的现象。如果在其休眠期间,利用钴-60的伽玛射线进行照射,就可以破坏其发芽组织,保证在半年以上不发芽,而食品的味道和成分决不会因此发生任何变化。另外,辐射的杀伤力可加以利用。污水通常是采用活性污泥法进行处理的。由此产生的沉积物、淤渣泥浆也是十分讨厌的,需要进一步处理。日本用的处理办法是把污泥放到焚烧炉中焚烧。而德国则采用钴-60的伽玛射线进行处理,为此,在慕尼黑附近建造了一个专用的试验场。该试验场一直在工作,每天处理的污泥浆可达100立方米左右。这就是利用辐射杀伤力的一个实例。污泥浆本身含有很多磷、氮等优质肥料。但是另一方面,人们也担心在污泥中隐藏了各种各样的细菌。因此,先要用钴-60的伽玛射线进行辐照灭菌,然后才能用作肥料。在日本,正在研究采用艳-137进行照射的方法,以代替价格比较昂贵的钴-60。放射性同位素的杀伤力的应用,大家比较熟悉的就是在治疗方面,其中之一是对癌症的放射治疗。许多人可能已经听说过,患了癌症的病人要接受钴-60的放射治疗。也就是说,利用放射性杀伤细胞的性能去杀伤癌细胞。利用放射性同位素发出的射线彻底灭菌,是射线杀伤力的一种最直接的利用。这也是大家最容易想到的一种射线应用。尤其是人们经常利用射线对医疗器械进行灭菌消毒。这是另一种典型的以毒攻毒的方法。早期对手术时缝合伤口用的缝线、肠壁缝合线进行消毒。这些缝合线是胶质物,用牛、羊的骨胶或皮胶制成,手术后缝在体内慢慢被消化吸收,不需要拆线。这些原料的来源和本身的性能使得这些缝线容易沾染细菌,再说,它们本身就是蛋白质,不能利用加热的办法来消毒。因此,这种缝线常常会引起感染事故。所以,对耐热性差而又必须灭菌消毒的这类物品,利用射线进行消毒是非常合适的。后来,随着石油化学的发展,塑料制的一次性(用过一次就扔的)医疗器具逐渐增多。因为它具有如下一些优点:可以防止在医院内部引起交叉感染、使用方便、节省人力等。对这些医疗器械的消毒,过去一直采用气体消毒法。可用高温蒸汽,或者利用环氧乙烷气体来进行,但对塑料制品来说,这种消毒法也是不能用的了。采用射线灭菌法进行消毒的物品迅速增加。据说,约有近30%的包装型医疗用具是利用射线进行灭菌消毒的。平时,人们经常能看到用一次就扔掉的注射器。只要把包装用的聚乙烯塑料袋剪开,取出注射器即可扎入胳膊进行注射。像这样,把注射器装进塑料袋后,连同包装一起直接进行消毒,只有辐射灭菌消毒法才具备这种方便的特点。除了注射器和手术用的缝合线可以利用射线进行灭菌消毒以外,还有一些物品,例如插入支气管用的探针导管、手术用的橡皮手套、取血用的采血板、放入子宫的避孕环、人工肾脏透视器等等,也都采用射线消毒技术。此外,无菌实验动物的饲料也可以采用射线进行灭菌消毒。各个国家应用射线消毒的情况也是多种多样的。例如在印度,盘尼西林,四环素等医药品的消毒是采用射线灭菌法。而俄罗斯,甚至认为塑料制的医疗用品、疫苗、血清等等,只有利用射线灭菌消毒法才是唯一可靠、适用的消毒方法。消毒设施的基本原理很简单:里面装有强度很大的钴-60放射源,其周围装有传送带装置;靠着传送带的不断移动,需要消毒的物品缓慢透过钴-60源的旁边,就可以达到灭菌的目的。 ◆50年代首次将辐照杀菌商业性应用于仪器和产品的杀菌;◆陆续有研究报告发表;◆1970年,国际食品辐照项目的联合专家委员会宣布辐照杀菌是安全;◆1981年有辐照食品保健功能的报告发表。1983年食品法典增加了辐照食品标准;◆1986年英国辐照食品和新型食品顾问委员会发布有关的指导原则。在1992年和1997年世界卫生组织两次发布关于辐照食品安全的报告;◆1998年美国食品药品管理局宣布红肉的辐照杀菌是安全的。而此前早已宣布禽肉和海产食品的辐照杀菌是安全的。 联合国粮农组织、卫生组织、国际原子能机构(FAO/WHO/IAEA)在1995粘9月25日公布的世界37个联合国辐照食品标准种,包括10个国家辐照草药的标准,是作为食品管理范畴,其剂量在10-30kGy。而食品方面,由联合国粮农组织、卫生组织、国际原子能机构(FAO/WHO/IAEA)所资助的辐照食品安全性莲荷专家委员会于1980年12月4日批准,为便于实物的贮存,任何食物可用10 kGy以下的剂量辐照,不需要进行毒理学方面的检验。认为食品辐照是一个物理过程,10kGy以下剂量辐照不会引起毒性危害。从已研究的结果结合国际上对西药的辐照研究成果来看,当剂量小于10 kGy时,γ射线辐照对大多数药材中有效成分的影响是可以忽略的。药材中有效成分的辐解主要是水的间接作用引起的,含水量大时有效成分辐解会增大。已鉴定的辐解产物尚未发现对人体有毒,而且这些辐解产物在光解及原药材中也可以或多或少地存在。据有关资料报导,在采用的辐射消毒剂量下,辐射对药品的效应可概括为干燥的药品和油膏对辐射消毒是最稳定的,水溶液药品是最不稳定的。根据大量的文献报导,关于产品灭菌剂量的选择,参照以下的辐照灭菌公式SD=DlogNo/N(SD为灭菌剂量,D为菌的抵抗力,No为灭菌前的染菌数,N为灭菌后的存活菌数)进行计算。美国药典(USP25)规定2.5kGy为有效灭菌剂量。我国卫生部1997年颁发了“60Co中药灭菌标准”,该标准限国内流通中药可用60Co辐照灭菌,规定了允许辐照的药材和中成药的品种和剂量。规定的中药辐照最大吸收剂量标准如下:散剂 3kGy片剂 3kGy丸剂 5kGy中药原料粉 6kGy 用于医药产品的辐射灭菌通常利用60Co辐射线源放出的γ射线。放射线同位素60Co是用高纯金属钴在原子反应堆中辐照后获得,它的物理半衰期是5.26年,按β-形式衰变,衰变时放射出两支能量各为1.17和1.33百万电子伏特的γ射线。γ射线属于电磁波,以光速前进,不受电场或磁场所偏转,对物质的穿透能力很强,属电离辐射。γ射线与微波不同,γ射线频率高达3×1018~3×1021Hz,被辐射分子、原子、离子及电子尚未极化,不随电磁场变化而转动,故不产生热效应。γ射线能量大于分子键能,故可使分子电离和断键,因而杀菌。一般来说,γ射线可使所有蛋白质变性;在溶液中的酶失去活性;脱氧核糖酸在溶液中粘度下降,干燥状态时交联或降解,或两者都有。γ射线杀菌机理分为直接作用和间接作用:(1)直接作用 γ射线直接破坏微生物的核糖核酸、蛋白质和酶而致死。微生物内核糖核酸、蛋白质和酶分子吸收γ射线能量而被激发或电离;激发态分子的共价键断裂或与其它分子反应经电子传递产生自由基;电离分解或其它分子反应,导致微生物分子结构破坏而亡。(2)间接作用 γ射线能量被微生物内生命重要分子周围物质如水吸收而激发或电离,产生激发的水分子、电子水离子,或裂解为氢自由基、羟自由基,由此产生一系列的与核糖核酸、蛋白质、酶进行氧化还原等反应,致微生物死亡。在辐射微生物学中:有些微生物对辐射是敏感的,因为这些微生物不具有修复辐射引起的损伤能力,抗辐射的微生物则能顶住辐射损伤。各种微生物之间,对辐射敏感性差异很大,革兰氏阴性微生物对辐射敏感,有一些革兰氏阳性微生物对辐射异常顽固。牙孢比生长的细胞更能抗辐射,所以带有牙孢物质的灭菌应特别注意。对微生物的致死剂量,还取决于所处环境及其生长周期的哪个阶段,不同阶段对辐射敏感程度不同。一般认为,病毒比细菌芽孢对辐射更具有抵抗力,其抗辐射性能随着微生物个体的减少而增大,芽孢的抗辐射性能按次序比细菌、酵母、霉菌更强些。 1、含有紫菀、锦灯笼、乳香、天竺黄和补骨脂一种以上(含一种)药材的中药辐照灭菌时,最大吸收剂量不得超过3 kGy;含有秦艽、龙胆药材不得用辐照灭菌;2、辐照前需测定样品的染菌量;根据染菌量来确定辐照剂量。3、辐照时尽量采用小包装辐照。包装材料必须耐辐照,同时样品的包装必须满足引起辐照后中药再次污染微生物的要求。4、控制中药的水份,以减少辐解产物的产生。5、对于一些有变化的品种,可以采用多种方法联合灭菌。

辐射灭菌是利用电辐离射杀死大多数物质上的微生物的一种有效方法。用于灭菌的电磁波有微波、紫外线(UV)、X射线和γ射线等。它们都能通过特定的方式控制微生物生长或杀死微生物。 例如微波可以通过热产生杀死微生物的作用;紫外线使DNA分子中相邻的嘧啶形成嘧啶二聚体,抑制DNA复制与转录等功能,杀死微生物;X射线和γ射线能使其它物质氧化或产生自由基(OH·H)再作用于生物分子,或者直接作用于生物分子,打断氢键、使双键氧化、破坏环状结构或使某些分子聚合等方式,破坏和改变生物大分子的结构,从而抑制或杀死微生物。

辐照灭菌即射线灭菌,又称辐照消毒(灭菌产品的表面生物负载水平一般在 10的-6次,消毒则是10的-3次),通过射线来达到对芽泡杆菌,虫卵,等微生物进行杀灭或保持一定限定范围内。辐照灭菌种类:微波(高温热杀灭细菌),紫外线(破坏DNA转录杀灭细菌),电子束(切断DNA分子键),X射线(打断分子结构),钴60伽马射线

美国目前有一个很明显的趋势,就是采用辐照方法完成肉或肉制品的全部杀菌操作。尽管美国的这种辐照杀菌的趋势已十分明朗,但欧洲却有些反其道而行之。欧洲对辐照杀菌的应用很少,每年大约只有5万吨。其中荷兰约有1.8万吨辐照杀菌的食品,法国有2万吨,比利时有1万吨,其它欧洲国家每年只有2000吨。辐照杀菌对于冷冻禽肉、海产食品、草本食品配料和调味品、蔬菜干制品、蛋粉、奶粉、元葱、马铃薯、大蒜及水果的催熟等,应慎用。英国已批准了这方面的应用,并于1991年授权Isotron公司独家从事食品的辐照杀菌业务。该公司所处理的食品产品不允许超过3年。从世界范围看,辐照杀菌已在40多个国家获得批准使用,其中有21个国家正在大量使用。大约有40种食品获准采用辐照杀菌,每年的处理量约为50万吨。与热杀菌不同的是,行业内都把辐照杀菌称为“冷杀菌”。美国食品药品管理局(FDA)1985年批准将辐照杀菌用于杀死猪肉中的旋毛虫。5年后,FDA批准了禽肉的辐照杀菌。直到1993年美国农业部才批准了这项应用。1997年FDA批准了辐照杀菌对红肉的应用,而美国农业部尚未批准该项应用。而在欧洲,尽管有个别国家曾对禽肉和海产食品等做过辐照杀菌,但对红肉的辐照尚无先例,欧盟也无相关法规。据说欧洲委员会正在制订将用于欧洲各国的辐照食品方面的法规和标准。预计这些法规与标准能在2000 年正式实施。同时,欧洲委员会也以开出了能应用辐照杀菌的食品清单。正式批准使用的只有草本食品配料和调味品。如果这些法规的实施范围未超出现有法规,则法国、比利时与荷兰就会停止对禽肉制品的辐照,当然也不会用辐照方法对红肉制品进行杀菌处理了。英国Isotron公司的市场部经理AndySpry博士表示,推广辐照杀菌遇到的最大问题是消费者的担忧。他说,很难让公众及食品经销商相信辐照杀菌系统是安全的,有些大的经销商曾经也认识到辐照杀菌技术是安全的,但因为激烈的市场竞争,他们只关心其市场分额、营业成本和风险,尚未看到辐照杀菌的好处。他们只关注非辐照产品,谁也不愿在应用辐照杀菌技术方面做第一。但关于辐照杀菌的话题已从“是否安全”转到“是否有必要采用”了。Puridec公司是世界上能为辐照工厂提供辐射源钴60棒的两家供应商之一,其市场开发部经理CathieDeeley博士说,“关于辐照杀菌的安全性,所有能做的都做了,能说的也都说了。现在能做的就是不要停止,不断推广。”这些业内人员都表示,食品辐照杀菌规模太小,需要一个有市场号召力的企业来牵头,整个食品行业也需要一个推广和宣传的运动。在1998年第5届欧洲肉类加工年会“Meat98” 上,Puridec公司的RogerLangley先生指出,如果不进行必要的宣传与培训,我们听到消费者的议论肯定是“天然食品安全,辐照食品不安全”。事实上恰恰相反,有些天然食品的安全性就不如辐照食品好。我们将推出一项精心设计的宣传活动,按产品类别分别介绍辐照防腐的切实需求和益处,是公众了解它对消费者和食品加工业有何价值。FoodTechnologyService公司的总裁与首席执行官E.W.PeteEllis先生正在与ColoradoBoxedBeef公司共同推进对红肉进行辐照杀菌。他表示,对消费者的培训需要公共卫生部门的官员提供支持与引导。他说,我不相信大的禽肉生产商对辐照技术的应用会犹豫不决,但他们的逻辑还是比较谨慎的。就像他们说要等消费者需要时再不辐照食品送上。这就有点脱离实际了。因为消费者的需要在市场上表现出来之前是无法确知的。所以对新产品,应尽管先让其上市。这是否有点像“先有鸡还是先有蛋”这个哲学问题? 1896年--明克(Minck)经实验证实X-射线对原生虫有致死作用。1921年--斯彻瓦特日(Schwatz)使用X-射线杀死肉中的旋毛虫(Trichinella Spiralis)并获得美国专利。1930年--乌斯特(Wüst)证实所有食品包装在密封金属罐中,再用强力伦琴射线照射可杀灭所有细菌,并获得法国专利。第二次世界大战结束后--随着放射性同位素的大量应用和电子加速器等机械辐射源的问世,促进了射线处理食品的发展。1953年--艾森豪威尔(Eisehower)促使美国军方深入研究食品辐照。1957年--美国军方负责,为期5年的辐照食品研究计划启动,投入了大量人力、物力。1960年--在美国军队开始试用辐照食品。1963年--在美国军方Natick实验室举行首次辐照食品国际会议。1965年--加拿大建立起世界最大的马铃薯辐照工厂。1970年--FAO/IAEA/WHO的专家在日内瓦会议上确立食品辐照领域的国际计划(IFIP)。1976年--联合国粮农组织认为五种辐照产品(即马铃薯、小麦、鸡肉、木瓜和草莓)是绝对安全的。1978年--世界用于辐照消毒灭菌的60Co工厂有80家(其中60家用于医疗消毒)。1980年--FAO/IAEA/WHO的会议认为,受辐照食品平均吸收剂量10千戈瑞(kGy)及以下,没有毒性危害,无必要再进行毒性试验。1988年--世界用于辐照消毒灭菌的60Co工厂发展到182家,全世界辐照食品产量约50万吨。1997年以后--WHO进一步废除10 kGy的上限量,国际食品法规委员会(CAC)相继提出辐照食品的通用标准及法规。 1958年--开始食品辐照研究工作。七十年代中期--国内多个地区相继进行辐照保藏食品的研究,辐照品种有肉类、水产品、水果、干果、蔬菜、粮食、蛋类等。八十年代--食品辐照已进入一定规模的生产阶段九十年代初--我国建成辐照装置近150多台,其中设计装机能量1.11×1016贝可以上的装置超过50座。1984年~1997年--国家卫生部颁布的食品辐照卫生标准基本覆盖了绝大部分食品。

清洁消毒灭菌研究论文

1 污水消毒工艺的技术比较消毒方法可分为物理消毒法和化学消毒法。物理消毒法主要利用加热、冷冻、辐照等方法对微生物的遗传物质核酸进行破坏而达到消毒目的,工程中常用的物理消毒方法主要有紫外线消毒法等。化学消毒法是利用消毒剂的强氧化性来破坏微生物的结构而达到消毒的目的,工程中常用的化学消毒方法有液氯消毒、-30-二氧化氯消毒、臭氧消毒以及新型活性氧消毒( 如单过硫酸氢钾)等。1.1 氯消毒氯与水反应时,一般产生“歧化反应”,生成次氯酸(HOCl) 和盐酸(HCl)。其反应式为:Cl2+H2O = HOCl+Cl-+H+氯的灭菌作用主要是次氯酸,因为它是体积很小的中性分子,能扩散到带有负电荷的细菌表面,具有较强的渗透力,能穿透细胞壁进入细菌内部。氯对细菌的作用是破坏其酶系统,导致细菌死亡。而氯对病毒的作用,主要是对核酸破坏的致死性作用。自从20 世纪初,氯化法就广泛地应用于水消毒工艺。目前,氯化法消毒仍是应用最广的化学消毒方法,其主要特点是:1)处理水量较大时,单位水体的处理费用较低。2)水体氯消毒后能长时间地保持一定数量的余氯,从而具有持续消毒能力。3)氯消毒历史较长,经验较多,是一种比较成熟的消毒方法。江心洲污水处理厂原先选择这样的消毒工艺肯定也是考虑到氯消毒的这些特点。但据研究发现氯消毒至今已知的消毒副产物已经有500 种以上,但是绝大多数的浓度只有微克/ 升(μg/ L) 级,且许多消毒副产物未作进一步的研究。在大量的消毒副产物中,目前集中研究的只有三卤甲烷、卤乙酸、卤乙腈、卤代酮、卤代醛、卤代酚等20 余种, 其中对于THMs 的致癌性已有共识,其它大部分具有一般毒性,部分具有致突性。THMs 等卤化有机物的产生主要是水体中的有机物与氯作用的结果,而城市生活污水中含有大量的有机物,经氯消毒后,会生成卤化有机物等消毒副产物,随污水进入地面水体,污染水源,并对鱼类等水生生物产生毒害作用。氯消毒的副产物已经引起了广泛的关注,我国新型颁布的水质指标中就明确增加对卤代产物的控制,新标准将在2012 年7 月1 号之前全部实施,因此,改变江心洲污水处理厂目前的氯消毒工艺势在必行。1.2 二氧化氯消毒二氧化氯也是一种强氧化剂,其氧化能力是氯的25 倍,消毒能力仅次于臭氧,高于氯。试验表明,二氧化氯在控制THMs 的形成和减少总有机卤方面,与氯相比具有优越性,二氧化氯与水中的腐殖酸和富里酸等腐殖质都不会生成THMs,即使在饮水消毒过程中,投加少量的二氧化氯,也能有效地抑制THMs 的生成。二氧化氯是广谱型消毒剂,对水中的病原微生物包括:病毒、芽孢、真菌、致病菌及肉毒杆菌均有很高的灭活效果,有剩余消毒能力,二氧化氯对孢子和病毒的灭活作用均比氯有效,并且在高pH 值与含氨的水中灭菌效果不受影响。另外,二氧化氯去除水中的色度、嗅、味的能力也较强。制备二氧化氯的起始原料有氯酸钠和亚氯酸钠, 因亚氯酸钠不能贮存,必须现场制取及时使用,且亚氯酸钠价格昂贵,成本较高,所以现在一般用氯酸纳制备二氧化氯的比较多。为了全面了解二氧化氯工艺, 江心洲污水处理厂委托某环保公司专门设计了一整套的工程方案。工程方案中以二氧化氯发生器来制备二氧化氯,其反应式为:2NaClO3 + 4HCl = 2ClO2 + 2NaCl + Cl2 + 2H2O但在与该公司的技术沟通中,我们了解到不管是用亚氯酸钠还是氯酸钠制备二氧化氯,它们在消毒过程中都会产生消毒副产物,当反应不完全时,自由性氯同样会与有机物反应,有可能生成THMs,所以使用二氧化氯也要追加一定的安全管理成本。1.3 臭氧消毒臭氧是强氧化剂,臭氧化和氯化一样,既起消毒的作用,也起氧化作用,但是臭氧的消毒能力和氧化性都比氯强,能氧化水中的有机物,并能杀死病毒、芽孢及细菌。臭氧都是在现场用空气或纯氧通过臭氧发生器制取,产率分别为1%-3% 和2%-6%。根据目前的研究可以发现:1)臭氧消毒反应迅速,杀菌效率高,同时能有效地去除水中残留有机物、色、嗅、味等,受pH 值、温度的影响很小。2)臭氧能够减少水中THMs 等卤代烷类消毒副产物的生成量。3)臭氧消毒可以降低水中总有机卤化物的浓度。由于臭氧消毒工艺目前在大型城市污水处理厂运用的较少,另外臭氧稳定性差容易分解为氧气,故不能瓶装贮存和运输,必须现场制备及时使用,设备投资大,电耗大,成本较高;运行管理比较复杂。所以江心洲污水处理厂在选择的替代消毒工艺中并没有考虑臭氧工艺。1.4 紫外线消毒紫外线根据生物效应的不同,按照波长划分为A、B、C、D 四个波段,水处理领域的消毒主要采用的是C 波段紫外线。水的紫外线消毒,是一种光化学效应。研究表明,紫外线主要是通过对微生物(细菌、病毒、芽孢等病原体)的辐射损伤和破坏核酸的功能使微生物致死从而达到消毒的目的。微生物的核酸分子吸收光谱的范围是240nm ~ 280 nm,对波长260nm 的紫外线有最大吸收,而低压紫外线消毒灯所产生的光波波长其中心辐射波长是253.7 nm,正好与之相符合。 -31-紫外线消毒是一种物理方法,相比于化学方法, 它的优点也很多。它不向水中增加任何物质,没有副作用,不会产生消毒副产物,它的消毒速度快﹑效率高﹑占地面积小;设备操作简单,便于运行管理和实现自动化等。然而,紫外线的灭菌作用只在其辐照期间有效,所以被处理的水一旦离开消毒器就不具有残余的消毒能力,容易遭受二次污染,所以当细菌未被灭活而进入后续系统,就无法阻止其粘附在下游管道表面并繁衍后代;只有吸收紫外线的微生物才会被灭活,因此对于悬浮固体很多水质较差的水,例如污水, 由于悬浮固体可以庇护微生物使其免遭伤害,消毒效果很难保证。尤其江心洲污水处理厂日处理为64 万吨, 如果其处理效果不理想的话,这么大量的出水势必会对接纳水体长江造成巨大的污染。另外,由于紫外线消毒采取的是明渠,而我厂为接触池,需要进行部分的土建改造。1.5 活性氧消毒剂( 以单过硫酸氢钾为例)单过硫酸氢钾复合物溶于水后,经过循环链式反应,连续持久产生新生态氧「O」:HSO5- → HSO4- +「O」HSO4- + 2H2O → HSO5- + 2H+ + 2e复合物在水中释放出一定浓度的超氧自由基「ROOO」,反应活性大,氧化能力极强,可以使细胞中的单糖、多糖、蛋白质、DNA、RNA 等发生氧化, 遭受损伤与破坏。活性氧自由基在极低浓度时就能完全杀灭水中的原生动物、藻类、孢子细菌等策生物, 剩余的基因及微生物尸体均可被分解成H2O、CO2、O2 及无机盐类,没有药剂残留。单过硫酸氢钾复合物溶于水后具有如下的特点:(1)氧化能力强,杀灭效率高,不但能杀灭水中的各种微生物,还能杀灭原虫和藻类。(2)可直接氧化水中的腐植物及三卤甲烷前体物,因此反应不产生三卤甲烷(thm)、卤乙酸和其它有害物质。(3)能破坏水中的酚类、硫化物类、氰化物类、亚硝酸类及其它有害化合物,特别是对酚类控制效果好,不产生有厌氧气味的氯酚,提高了水质和除臭作用,同时能和水中有色、味的有机物反应,脱去其色和味,改善水的味道。(4)在水中通过链式反应,维持微量新生态[O] 氧和活性氧自由基[ROOO] 使其氧化能力稳定,作用持久,可以防止水中的再次污染。通过它的特点我们可以看出其消毒剂的消毒能力是强于液氯的,而同时又不产生消毒副产物,还有它的作用持久以及氧化能力的稳定又是紫外线工艺所不能及的。考虑采用此工艺设计变更,可以很好的利用现有的已经建成的管道、水泵等设备,另外,溶药罐也可以从一级加药处理的投资设备中调剂使用,不需要增加更多的投资。2 污水消毒工艺的经济比较通过对比以上这些工艺的特点,单过硫酸氢钾为代表的活性氧消毒工艺显示出了超出其它工艺的优点。但是否适合投入到污水处理的消毒中还需要看他们的实际投资及运行成本,所以,下面我们又对其投资运行的经济性做了比较。以江心洲污水处理厂64 万吨/ 日处理量为例, 设备投资按照10 年使用寿命周期计算。说明:从上表我们可以分析得出,紫外线消毒的投资成本最高,活性氧的投资成本最低;液氯的运行成本最低,活性氧的运行成本最高。3 结论(1)传统的化学消毒工艺消毒液氯和二氧化氯, 都比较容易产生副产物,安全管理成本较高。(2) 臭氧消毒工艺由于在大型污水处理厂使用的并不多, 而且它的投入成本较大,运营管理成本也很高。(3) 物理的方法紫外线消毒由于它对水质要求比较高,设备投资和运行维护费用也较高,以及后续的消毒效果差也没有显示出优势来。(4)新型的活性氧消毒剂在水处理过程中体现出了高效、安全等优势,同时操作简单,工艺也不复杂,适合大、中、小型污水处理厂。(5)江心洲污水处理厂针对目前的设备设施现状, 如果要完善液氯的所有设施及安全用具,其投资不会低于100 万元;如果通过设计变更,采用活性氧消毒工艺,需要增加36 万元的投资;采用二氧化氯消毒工艺;需要增加投资200 万元元;采用紫外线消毒工艺, 需要增加投资800~1000 万元。经综合技术经济分析比较,以及今后消毒运行的实际情况,我们最终建议了江心洲污水处理厂采用活性氧消毒工艺的变更。

清洁、消毒、灭菌的效果评价 (1)凡灭菌后的物品、器械不能检出活的微生物。 (2)各类物品表面微生物学检测指标各类病房的物体表面细菌菌落总数≯10cfu/cm2;化学消毒过程中,每毫升消毒液细菌的含考试大收集整理量≯100个菌落;接触粘膜的医疗用品细菌菌落总数应≤20cuf/g或100cm3;接触皮肤的医疗用品的细菌菌落总数则应≤200cuf/g或100cm3;凡接触血液、分泌物的医疗用品,如注射器、针头、口腔器械、漱口杯等消毒后不得检出HbsAg。 (3)空气中细菌含量监测手术室、产房、婴儿室、保护隔离室、烧伤病房、重症监护病房等,空气中细菌菌落总数≯200cuf/m3,不得检出致病菌;检查室、注射室、换药室、治疗室、急诊室及各普通病房空气中细菌菌落总数≯500cuf/m3,无致病菌;各门诊治疗室、挂号室、取药室、候诊室等空气中细菌菌落总数≯2500cuf/m3。

消毒,这个是选题内容,有不一昂

消灭幽门螺杆菌研究论文

1 抗Hp治疗的适应证 世界胃肠病学术会议Hp专题组列出如下几点,可供参考。①难治性十二指肠溃疡,需持续用药或有出血,穿孔并发症或考虑手术治疗者;②Hp相关性十二指肠溃疡排除类固性抗炎药物(NSAID)所致者。宜抗Hp治疗,不能排除者宜用胃酸抑制剂或细胞保护剂治疗;③轻型溃疡病人应用抑酸剂或细胞保护剂疗效满意者,一般不宜采用抗Hp治疗;④非溃疡性消化不良(NUD)和胃溃疡病人除做为研究外,不建议抗Hp治疗,因其疗效尚不十分肯定;⑤非类醇抗炎药物或克隆性十二指肠溃疡不宜抗Hp治疗。 2 疗效标准 2.1 清除标准 清除(clear)是指Hp阳性病例抗菌治疗结束时Hp消失,但在停药4周内又重新出现,提示Hp只是暂时被抑制而示被全部杀死。 2.2 根除标准 根除(eradication)是指抗菌治疗停药4周后Hp仍保持阴性。这才真正代表Hp被杀灭,若停药4周后Hp再次出现则称之为复发,抗菌治疗的目的是根除Hp防止复发。Hp根除的最后证实必须建立在胃镜活检,实验室检查(包括组织学检查和细菌学检查)以及临床疗效观察的基础之上,最近国际会议建议将根除改为治愈,作为评价Hp感染治疗效果的指标。 3 Hp根除方案 判断一种根除方案是否理想而有价值,只有当其根除率在到80%以上且不引起重要的临床或生化副作用和细菌的耐药性时,才被临床认可而以采用。应包括①Hp根除率≥80%以上;②减疗程;③副作用小;④闰人依从性好;⑤治疗简单;⑥疗效持续,不易复发。 目前在根除Hp治疗中,根除率能达到80%以上的方案主要二种:①铋盐+抗后素物药物联合;②质子泵抑制剂(PPI)+抗生素联合。具体可有以下多种组合方式(包括中药疗法): 3.1 铋盐+抗微生物药物联合 胶态次枸橼酸铋(CBS),即三钾二枸橼酸铋,已成为治疗Hp感染的核心药物。应用时可遵循以下3个重要的治疗原则:①所有已发表的前瞻性临床试验的集成分析表明,在根除Hp感染上,应用以铋剂为主的三种药(成功率82.3%)比二种药(成功率48.2%)好。二种药又单一药(成功率18.6%)好;②治疗方案中含甲硝唑、四环素和铋盐感染根除最好(>90%),其次为甲硝唑、阿莫西林和铋盐(79.1%);③疗程2周比1周效果好。 3.1.1 标准三联疗法 第九届世界胃肠病会议推存的三联方案:CBS或次水杨酸铋(BSS)120mg,每日4次加甲硝唑400mg每日3次,再加四环素(或阿莫西林)500mg每日4次,两周为1疗程,Hp根除率可达85%以上,是目前比较有效的联合疗法,为根除Hp的首先治疗方案。但存在许多问题;①副作用较多,发生率在30%以上;②病人依从性差;③Hp对甲硝唑易产生耐药。所以还不是最理想的治疗方案。 3.1.2 改良三联疗法 在对标准三联冶法中某些药物耐或或过敏者可选择其它改良三联治疗方案,虽然根除率达不到80%以上,但各自有其不同的优点,仍不失为较为理想的抗Hp治疗组合。①呋喃唑酮0.1g,阿莫西林0.5g,甲硝唑0.25g,每日各服3次,疗程5d,其有效率可达75%。该疗法的最大优点是疗程短,服药次数最少,而且Hp且感染发生率低。②CBS120mg,甲硝唑200mg,每日各服4次,强力霉素0.1,每日2次,疗程4周,其Hp根除率为15%,该疗法中的优点是减少了标准三联疗法中的服药次数,同时由于强力霉素是肾外排泄,因而减轻了药物对肾脏的损害,但是该疗法的胃肠副反应如恶心较标准三联更为明显。

幽门螺旋杆菌的治疗方法,知道后8成的人都不用去医院了!

幽门螺旋杆菌寄生在胃粘膜组织中,67%-80%的胃溃疡和95%的十二指肠溃疡是由幽门螺旋杆菌引起的。胃溃疡是指发生于贲门与幽门之间的炎性坏死性病变。机体的应激状态、物理和化学因素的刺激、某些病原菌的感染都可引起胃溃疡病。消化性溃疡则泛指胃肠道粘膜在某种情况下被胃液所消化(自身消化)而造成的超过粘膜肌层的坏死糜烂面。胃溃疡可发生于任何年龄,以45-55岁最多见,在性别上,男性和女性基本相同,男性稍占优势。纯酸性的胃液能够破坏和消化包括胃在内的一切活组织。在正常情况下,胃的粘膜不被消化,是因为胃粘膜具有一系列保护机制,包括粘稠的粘液、粘膜上皮以及粘膜细胞的高度更新能力,还有胃壁丰富的血液供应、碱性的胰液和十二指肠液的作用、胃的正常排空功能,都是有效的防卫。可以想象,酸性胃液的侵蚀作用和胃粘膜的防御力量,在正常时处于动态平衡,而胃溃疡病的发生则是失去这一平衡的结果。需要强调的是,胃溃疡与胃糜烂不同,前者穿透粘膜肌层,愈合后不可避免地留有纤维瘢痕,表面为一层上皮所覆盖,粘膜肌层不能再生,后者的定义是不穿透粘膜肌层,因而愈合后不留任何痕迹

首先认识一下幽门螺杆菌是什么特点的细菌,幽门螺杆菌是定植于胃内的一种细菌,特点是在胃内能够长期存在,但是在体外环境中很难存活。另外,幽门螺杆菌的抗酸能力很强,胃内虽然有极强的胃酸,但是它能长期存在。但是也有弱点,即幽门螺杆菌一旦离开它的环境,很难存活。另外,不耐高温,所以了解了这个细菌的特点就可以选择一些方法尽量预防。首先在生活上要注意卫生,在饮食上尽量不要喝生水,不要吃生食。另外,这个细菌在口腔中也可以查到,所以要保持口腔卫生,可以一段时间用漱口水做一下口腔卫生处理。在饮食上,特别是在家庭聚餐上,尽量采用分餐制,因为这个细菌具有传染性,家庭的餐具上做到定期消毒,减少细菌的存在。幽门螺 杆 菌的传播途径有经口腔进入人体,针对这些途径要注意哪些:①要注 意 口 腔卫生、防止病从口入,这是预防幽门螺杆菌感染、预防胃病与胃癌的重要措施。②改变用餐方式,宜选择分餐制或使用公筷。③要做到喝开水不喝生水、吃 熟 食不吃生食,牛奶则要在消 毒后再饮用。做好幽 门 螺 杆菌的预防,避免胃 病的发生。如有您或您的家 人有胃 病,必须及时到医 院就诊治疗,避免给身边的人带来严重的影响。将薄荷叶20克(药店有售)研成粉,挤出牙膏60克放在干净容器里,加入薄荷粉搅拌均匀,每日用其刷牙,连续使用 30日,可有效杀灭寄生在牙菌斑上的幽门螺杆菌。卷心菜 有抗生素的作用,可杀死包括幽门螺杆菌在内的多种细菌,每天喝1/4个卷心菜榨的汁,3周后可减轻由胃溃疡和十二指肠溃疡造成的腹痛,并有助于两种溃疡病的愈合。卷心菜还含有一种类似生胃酮的化学物质,可刺激胃肠细胞分泌黏液以形成屏障,从而与胃酸隔离,保护胃不受伤害。卷心菜越新鲜抗溃疡的效果越好。紫皮独头大蒜 可抑制幽门螺杆菌繁殖。新鲜大蒜比较辛辣,杀菌力较强。坚持每日吃饭时生吃1个紫皮独头大蒜,两周后抑菌效果即可显现。蜂蜜 实验浓度为20~/6时可抑制所有幽门螺杆菌;浓度为10%时可使一半幽门螺杆菌受到抑制。蜂蜜主要是通过渗透作用来抑制幽门螺杆菌;所以应在餐后喝蜂蜜,以延长其在胃黏膜上停留的时间。将蜂蜜30毫升放在碗里,用筷子搅拌至起泡沫,加入120毫升温开水搅匀后,缓缓喝下。 西兰花 新鲜西兰花中含有大量的莱菔硫烷,有助于抗击幽门螺杆菌。研究发现,每天吃西兰花者粪便中幽门螺杆菌抗原水平可下降40%以上。将西兰花200克切成小块,用沸水快速烫一下,凉拌食用。减少胃酸每天早上吃4-5粒花生米。花生米中的脂肪进入小肠后,可刺激肠壁产生肠抑胃素,这种激素可通过血液循环抵达胃部,能明显抑制胃的活动,减少胃酸分泌,对溃疡病的康复也有一定作用。另外,可经常食用猴头菇,能增强胃黏膜屏障机能,对溃疡的愈合、胃黏膜上皮的再生和修复大有好处。

制药药品灭菌论文参考文献

青霉素 (Benzylpenicillin / Penicillin)【简介】 青霉素是指分子中含有青霉烷,能破坏细菌的细胞壁并在细菌细胞的繁殖期起杀菌作用的一类抗生素。 青霉素又被称为青霉素G、peillin G、 盘尼西林、配尼西林、青霉素钠、苄青霉素钠、青霉素钾、苄青霉素钾。 青霉素是抗菌素的一种,是指从青霉菌培养液中提制的分子中含有青霉烷、能破坏细菌的细胞壁并在细菌细胞的繁殖期起杀菌作用的一类抗生素,是第一种能够治疗人类疾病的抗生素。青霉素类抗生素是β-内酰胺类中一大类抗生素的总称。但它不能耐受耐药菌株(如耐药金葡)所产生的酶,易被其破坏,且其抗菌谱较窄,主要对革兰氏阳性菌有效。青霉素G有钾盐、钠盐之分,钾盐不仅不能直接静注,静脉滴注时,也要仔细计算钾离子量,以免注入人体形成高血钾而抑制心脏功能,造成死亡。 青霉素类抗生素的毒性很小,由于β-内酰胺类作用于细菌的细胞壁,而人类只有细胞膜无细胞壁,故对人类的毒性较小,除能引起严重的过敏反应外,在一般用量下,其毒性不甚明显.是化疗指数最大的抗生素。但其青霉素类抗生素常见的过敏反应在各种药物中居首位,发生率最高可达5%~10% ,为皮肤反应 ,表现皮疹、血管性水肿,最严重者为过敏性休克,多在注射后数分钟内发生,症状为呼吸困难、发绀、血压下降、昏迷、肢体强直,最后惊厥,抢救不及时可造成死亡。各种给药途径或应用各种制剂都能引起过敏性休克,但以注射用药的发生率最高。过敏反应的发生与药物剂量大小无关。对本品高度过敏者,虽极微量亦能引起休克。注入体内可致癫痫样发作。大剂量长时间注射对中枢神经系统有毒性(如引起抽搐、昏迷等),停药或降低剂量可以恢复。 使用本品必须先做皮内试验。青霉素过敏试验包括皮肤试验方法(简称青霉素皮试)及体外试验方法,其中以皮内注射较准确。皮试本身也有一定的危险性,约有25%的过敏性休克死亡的病人死于皮试。所以皮试或注射给药时都应作好充分的抢救准备。在换用不同批号青霉素时,也需重作皮试。注射液、皮试液均不稳定,以新鲜配制为佳。而且对于自肾排泄,肾功能不良者,剂量应适当调整。此外,局部应用致敏机会多,且细菌易产生抗药性,故不提倡。【英文简述】 Penicillin (sometimes abbreviated PCN) refers to a group of beta-lactam antibiotics used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms. The name “penicillin” can also be used in reference to a specific member of the penicillin group Penam Skeleton, which has the molecular formula R-C9H11N2O4S, where R is a variable side chain. 【分类】 按其特点可分为 : 青霉素G类:如青霉素G钾、青霉素G钠、长效西林等。 耐酶青霉素:如苯唑青霉素(新青Ⅱ号)、氯唑青霉素等。 广谱青霉素:如氨苄青霉素、羟氨苄青霉素等。 抗绿脓杆菌的广谱青霉素:如羧苄青霉素、氧哌嗪青霉素、呋苄青霉素等。 氮咪青霉素:如美西林及其酯匹美西林等,其特点为较耐酶,对某些阴性杆菌(如大肠、克雷伯氏和沙门氏菌)有效,但对绿脓杆菌效差。 【特点】 青霉素类抗生素是β-内酰胺类中一大类抗生素的总称,由于β-内酰胺类作用于细菌的细胞壁,而人类只有细胞膜无细胞壁,故对人类的毒性较小,除能引起严重的过敏反应外,在一般用量下,其毒性不甚明显,但它不能耐受耐药菌株(如耐药金葡)所产生的酶,易被其破坏,且其抗菌谱较窄,主要对革兰氏阳性菌有效。青霉素G有钾盐、钠盐之分,钾盐不仅不能直接静注,静脉滴注时,也要仔细计算钾离子量,以免注入人体形成高血钾而抑制心脏功能,造成死亡。 青霉素类抗生素的毒性很小,是化疗指数最大的抗生素。但其青霉素类抗生素常见的过敏反应在各种药物中居首位,发生率最高可达5%~10% ,为皮肤反应 ,表现皮疹、血管性水肿,最严重者为过敏性休克,多在注射后数分钟内发生,症状为呼吸困难、发绀、血压下降、昏迷、肢体强直,最后惊厥,抢救不及时可造成死亡。各种给药途径或应用各种制剂都能引起过敏性休克,但以注射用药的发生率最高。过敏反应的发生与药物剂量大小无关。对本品高度过敏者,虽极微量亦能引起休克。注入体内可致癫痫样发作。大剂量长时间注射对中枢神经系统有毒性(如引起抽搐、昏迷等),停药或降低剂量可以恢复。 【历史发展】 亚历山大·弗莱明由于一次幸运的过失而发现了青霉素。有一次他外出度假时,把实验室里在培养皿中正生长着细菌这件事给忘了。3周后当他回实验室时,注意到在一个培养皿中长了一个霉菌斑。并且霉菌斑周围的细菌都死了。 霉菌渗出了什么强有力的物质?弗莱明称为青霉素,并发现了它可以杀死许多致命性细菌。然而,因为青霉素在试管内和血清混合后很快失活,弗莱明认为它不会在人和动物身上发生作用。 10多年后,弗洛里和钱恩在1940年用青霉素重新做了实验。他们给8只小鼠注射了致死剂量的链球菌,然后给其中的4只用青霉素治疗。几个小时内,只有那4只用青霉素治疗过的小鼠还健康活着。“这真像一个奇迹!”弗洛里说道。 到了1943年,制药公司已经发现了批量生产青霉素的方法。英国和美国当时正在和纳粹德国交战。这种新的药物对控制伤口感染非常有效。到了1944年,药物的供应已经足够治疗第二次世界大战期间所有参战的盟军士兵。 青霉素是一种高效、低毒、临床应用广泛的重要抗生素。它的研制成功大大增强了人类抵抗细菌性感染的能力,带动了抗生素家族的诞生。 20世纪40年代以前,人类一直未能掌握一种能高效治疗细菌性感染且副作用小的药物。当时若某人患了肺结核,那么就意味着此人不久就会离开人世。为了改变这种局面,科研人员进行了长期探索,然而在这方面所取得的突破性进展却源自一个意外发现。 在1928年夏季的一天,英国微生物学家弗莱明发现,一个与空气意外接触过的金黄色葡萄球菌培养皿中长出了一团青绿色霉菌。在用显微镜观察这只培养皿时弗莱明发现,霉菌周围的葡萄球菌菌落已被溶解。这意味着霉菌的某种分泌物能抑制葡萄球菌。此后的鉴定表明,上述霉菌为点青霉菌,因此弗莱明将其分泌的抑菌物质称为青霉素。然而遗憾的是弗莱明一直未能找到提取高纯度青霉素的方法,于是他将点青霉菌菌株一代代地培养,并于1939年将菌种提供给准备系统研究青霉素的英国病理学家弗洛里和生物化学家钱恩。 通过一段时间的紧张实验,弗洛里、钱恩终于用冷冻干燥法提取了青霉素晶体。之后,弗洛里在一种甜瓜上发现了可供大量提取青霉素的霉菌,并用玉米粉调制出了相应的培养液。1941年开始的临床实验证实了青霉素对链球菌、白喉杆菌等多种细菌感染的疗效。青霉素之所以能既杀死病菌,又不损害人体细胞,原因在于青霉素所含的青霉烷能使病菌细胞壁的合成发生障碍,导致病菌溶解死亡,而人和动物的细胞则没有细胞壁。但是青霉素会使个别人发生过敏反应,所以在应用前必须做皮试。在这些研究成果的推动下,美国制药企业于1942年开始对青霉素进行大批量生产。这些青霉素在世界反法西斯战争中挽救了大量美英盟军的伤病员。1945年,弗莱明、弗洛里和钱恩因“发现青霉素及其临床效用”而共同荣获了诺贝尔生理学或医学奖。 青霉素的出现开创了用抗生素治疗疾病的新纪元。通过数十年的完善,青霉素针剂和口服青霉素已能分别治疗肺炎、肺结核、脑膜炎、心内膜炎、白喉、炭疽等病。继青霉素之后,链霉素、氯霉素、土霉素、四环素等抗生素不断产生,增强了人类治疗传染性疾病的能力。但与此同时,部分病菌的抗药性也在逐渐增强。为了解决这一问题,科研人员目前正在开发药效更强的抗生素,探索如何阻止病菌获得抵抗基因,并以植物为原料开发抗菌类药物。【药理学】 内服易被胃酸和消化酶破坏。肌注或皮下注射后吸收较快,15~30min达血药峰浓度。青霉素在体内半衰期较短,主要以原形从尿中排出。 氯霉素是具广谱抗菌作用,对革兰阴性菌的作用较革兰阳性菌强,对伤寒杆菌、流感杆菌和百日咳杆菌的作用比其他抗生素强,对立克次体感染(如斑疹伤寒)以及病毒感染(如沙眼)均有较好作用。对布氏杆菌、大肠杆菌、产气杆菌、肺炎杆菌、痢疾杆菌、霍乱弧菌、脑膜炎双球菌、淋球菌等也有较强抗菌作用。本品属抑菌剂,其作用机理主要抑制细菌蛋白质的合成,系作用于核糖核蛋白体的50S亚基上,抑制肽基转移酶的作用,阻止了肽链的增长。临床上主要用于伤寒、副伤寒和其他沙门氏菌感染,疗效好,目前仍是治疗这些疾病的首选药物。【作用】 青霉素对溶血性链球菌等链球菌属,肺炎链球菌和不产青霉素酶的葡萄球菌具有良好抗菌作用。对肠球菌有中等度抗菌作用,淋病奈瑟菌、脑膜炎奈瑟菌、白喉棒状杆菌、炭疽芽孢杆菌、牛型放线菌、念珠状链杆菌、李斯特菌、钩端螺旋体和梅毒螺旋体对本品敏感。本品对流感嗜血杆菌和百日咳鲍特氏菌亦具一定抗菌活性,其他革兰阴性需氧或兼性厌氧菌对本品敏感性差.本品对梭状芽孢杆菌属、消化链球菌厌氧菌以及产黑色素拟杆菌等具良好抗菌作用,对脆弱拟杆菌的抗菌作用差。青霉素通过抑制细菌细胞壁四肽则链和五肽交连桥的结合而阻碍细胞壁合成而发挥杀菌作用。对革兰阳性菌有效,由于革兰阴性菌缺乏五肽交连桥而青霉素对其作用不大。 其中青霉素为以下感染的首选药物: 1.溶血性链球菌感染,如咽炎、扁桃体炎、猩红热、丹毒、蜂窝织炎和产褥热等 2.肺炎链球菌感染如肺炎、中耳炎、脑膜炎和菌血症等 3.不产青霉素酶葡萄球菌感染 4.炭疽 5.破伤风、气性坏疽等梭状芽孢杆菌感染 6.梅毒(包括先天性梅毒) 7.钩端螺旋体病 8.回归热 9.白喉 10.青霉素与氨基糖苷类药物联合用于治疗草绿色链球菌心内膜炎 青霉素亦可用于治疗: 1.流行性脑脊髓膜炎 2.放线菌病 3.淋病 4.奋森咽峡炎 5.莱姆病 6.多杀巴斯德菌感染 7.鼠咬热 8.李斯特菌感染 9.除脆弱拟杆菌以外的许多厌氧菌感染 风湿性心脏病或先天性心脏病患者进行口腔、牙科、胃肠道或泌尿生殖道手术和操作前,可用青霉素预防感染性心内膜炎发生【生产方法】 天然青霉素与半合成青霉素生产方法完全不同。 天然青霉素 青霉素G生产可分为菌种发酵和提取精制两个步骤。①菌种发酵:将产黄青霉菌接种到固体培养基上,在25℃下培养7~10天,即可得青霉菌孢子培养物。用无菌水将孢子制成悬浮液接种到种子罐内已灭菌的培养基中,通入无菌空;气、搅拌,在27℃下培养24~28h,然后将种子培养液接种到发酵罐已灭菌的含有苯乙酸前体的培养基中,通入无菌空气,搅拌,在27℃下培养7天。在发酵过程中需补入苯乙酸前体及适量的培养基。②提取精制:将青霉素发酵液冷却,过滤。滤液在pH2~2.5的条件下,于萃取机内用醋酸丁酯进行多级逆流萃取,得到丁酯萃取液,转入pH7.0~7.2的缓冲液中,然后再转入丁酯中,将此丁酯萃取液经活性炭脱色,加入成盐剂,经共沸蒸馏即可得青霉素G钾盐。青霉素G钠盐是将青霉素G钾盐通过离子交换树脂(钠型)而制得。 半合成青霉素 以6APA为中间体与多种化学合成有机酸进行酰化反应,可制得各种类型的半合成青霉素。 6APA是利用微生物产生的青霉素酰化酶裂解青霉素G或V而得到。酶反应一般在40~50℃、pH8~10的条件下进行;近年来,酶固相化技术已应用于6APA生产,简化了裂解工艺过程。6APA也可从青霉素G用化学法来裂解制得,但成本较高。侧链的引入系将相应的有机酸先用氯化剂制成酰氯,然后根据酰氯的稳定性在水或有机溶剂中,以无机或有机碱为缩合剂,与6APA进行酰化反应。缩合反应也可以在裂解液中直接进行而不需分离出6APA。【剂型用法和用量】 片剂:每片0.25克。胶囊剂:每粒0.25克。注射剂:每支2毫升,含药0.25克。滴眼剂:8毫克:0.02克。口服,每天成人1~2克;儿童每日按千克体重服用50~100毫克,分2~4次。肌注,成人每次0.5~1克,每天2次;儿童每日按千克体重服用25~50毫克,分2次。静脉滴注,剂量同肌注,因注射剂系以丙二醇为溶剂,用时以等渗葡萄糖注射液或生理盐水稀释至2.5毫克:毫升供用,即2毫克(0.25克)以100毫升输液稀释,并应以干燥空针抽取,以免析出结晶,稀释完后应仔细检查无结晶析出,方可使用。【不良反应】 1.主要毒性反应是抑制骨髓造血机能,引起粒细胞及血小板减少症,用药期间如发现轻度白细胞或血小板减少,应立即停药,一般可恢复。氯霉素所致的再生障碍性贫血虽少见,但难逆转,常可致死,多发生于儿童长期反复用氯霉素者,偶有用量很少而发病者。 2.过敏反应较少见,但也可引起皮疹,药物热。少数可引起黄疸,原有肝脏疾病者甚至可引起急性肝坏死。 3.可引起精神症状如幻觉、谵妄,大多发生于用药后3~5日,停药后两日内可消失。 4.口服后可发生胃肠道反应,如恶心、呕吐、腹泻、食欲不振等。【副作用】1 青霉素类的毒性很低,但较易发生变态反应,发生率约为5%�10%。多见的为皮疹、哮喘、药物热、严重的可致过敏性休克而引起死亡。 2 大剂量应用青霉素抗感染时,可出现神经精神症状,如反射亢进、知觉障碍、抽搐、昏睡等,停药或减少剂量可恢复。 3 使用青霉素前必须作皮肤过敏试验。如果发生过敏性休克,应立即皮下或肌内注射0.1%肾上腺素0.5ml~1ml,同时给氧并使用抗组胺药物及肾上腺皮质激素等。 4 肌注钾盐时局部疼痛较明显,用苯甲醇溶液作为稀释剂溶解,则可消除疼痛。 【细菌对青霉素类产生耐药性】细菌对青霉素类产生耐药性主要有三种机制:1.细菌产生β内酰胺酶,使青霉素类水解灭活;2.细菌体内青霉素作用靶位——青霉素结合蛋白发生改变;3.细胞壁对青霉素类的渗透性减低。其中以第一种机制最为常见,也最重要。青霉素类抗生素水溶性好,血消除半衰期大多不超过2小时,主要经肾排出,多数品种可经血液透析清除。按我国卫生部规定,使用青霉素类抗生素前均需做青霉素皮肤试验,阳性反应者禁用。【注意事项】 1.口服或注射给药时忌与碱性药物配伍,以免分解失效。 2.本品不宜与盐酸四环素、卡那霉素、多粘菌素E、磺胺嘧啶钠、三磷酸腺苷、辅酶A等混合静滴,以免发生沉淀或降效。 3.氯霉素与青霉素一般不要联用,因氯霉素为抑菌剂,而青霉素为繁殖期杀菌剂,联用可影响青霉素的抗菌活性而降效。但这一问题尚有争论,意见不一,因两者联用对革兰阳性菌、阴性菌混合感染及颅内感染临床效果好。解决的办法,如需联用,宜先用青霉素2~3小时后再用氯霉素。 4.由于本品可抑制某些肝脏酶的活性,因此可干扰甲苯磺丁脲、苯妥英钠和双香豆素在人体内的生物转化,可增强甲苯磺西脲、苯妥英钠的作用,对双香豆素和华法林的抗凝作用均可增强。 5.婴儿、肝、肾功能减退者慎用,妊娠末期产妇慎用,哺乳期妇女忌用。应用青霉素前除做皮试外,还要注意以下几点: 1、要到有抢救设备的正规医疗单位注射青霉素,万一发生过敏反应,可以得到及时有效的抢救治疗。在注射过程中任何时候出现头晕心慌、出汗、呼吸困难等不适,都要立即告诉医生护士。 2、注射完青霉素,至少在医院观察20分钟,无不适感才可离开。 3、不要在极度饥饿时应用青霉素,以防空腹时机体对药物耐受性降低,诱发晕针等不良反应。 4、两次注射时间不要相隔太近,以4—6小时为好。静脉点滴青霉素时,开始速度不要太快,每分钟以不超过40滴为宜,观察10—20分钟无不良反应再调整输液速度。 5、如果当天有注射青霉素史,在家中出现头晕心慌、出汗、呼吸困难等不适,应及时送医院诊治。青霉素配伍应用中的相互作用: 近年来,临床中出现滥用药物的问题,造成一些不良反应,尤其是青霉素与其他药物的配伍应用,所产生的相互作用和不良反应是不可忽视的。 1 青霉素不可与同类抗生素联用 由于它们的抗菌谱和抗菌机制大部分相似,联用效果并不相加。相反,合并用药加重肾损害,还可以引起呼吸困难或呼吸停止。它们之间有交叉抗药性,不主张两种β-内酰胺类抗生素联合应用。 2 青霉素不可与磺胺和四环素联合用药 青霉素属繁殖期“杀菌剂”,阻碍细菌细胞壁的合成,四环素属“抑菌剂”,影响菌体蛋白质的合成,二者联合作用属拮抗作用,一般情况下不应联合用药。临床资料表明单用青霉素抗菌效力为90%,单用磺胺类药效力为81%,两者联合用药抗菌效力为75%,若非特殊情况不可联合使用。 3 青霉素不可与氨基苷类联合用药 两者混合同于输液器给病人输液,因青霉素的β-内酰胺可使庆大霉素产生灭活作用,其机制为两者之间发生化学相互作用,故严禁混合应用,应采用青霉素静脉滴注,庆大霉素肌肉注射。 综上所述,青霉素联用不当,由于药物的相互作用,而导致药物不良反应是不可低估的。青霉素是治疗各种感染性疾病的最常用抗生素,严格掌握用药的适应证,合理联用,措施得力,减少不必要的不良反应。【青霉素家族】 青霉素用于临床是40年代初,人们对青霉素进行大量研究后又发现一些青霉素,当人们又对青霉素进行化学改造,得到了一些有效的半合成青霉素,70年代又从微生物代谢物中发现了一些母核与青霉素相似也含有β-内酰胺环,而不具有四氢噻唑环结构的青霉素类,可分为三代:第一代青霉素指天然青霉素,如青霉素G(苄青霉素);第二代青霉素是指以青霉素母核-6-氨基青霉烷酸(6-APA),改变侧链而得到半合成青霉素,如甲氧苯青霉素、羧苄青霉素、氨苄青霉素;第三代青霉素是母核结构带有与青霉素相同的β-内酰胺环,但不具有四氢噻唑环,如硫霉素、奴卡霉素。【青霉素浓缩法】 利用青霉素特异性地杀死野生型细胞、保留营养缺陷型细胞的方法。青霉素能抑制细菌细胞壁的合成,所以只能杀死生长繁殖中的细菌,而不能杀死停止分裂的细菌。在只能使野生型生长而不能使突变型生长的选择性液体培养基中,野生型被青霉素杀死,而突变型则不被杀死,从而淘汰野生型,使突变型得以浓缩。可适用于细菌和放线菌,是营养缺陷型突变体筛选的常用方法之一。 【岛青霉素】 稻谷在收获后如未及时脱粒干燥就堆放很容易引起发霉。发霉谷物脱粒后即形成"黄变米"或"沤黄米",这主要是由于岛青霉(Penicillium.islandicum)污染所致。黄变米在我国南方、日本和其他热带和亚热带地区比较普遍。小鼠每天口服200g受岛青霉污染的黄变米,大约一周可死于肝肥大;如果每天饲喂0.05g黄变米,持续两年可诱发肝癌。流行病学调查发现,肝癌发病率和居民过多食用霉变的大米有关。吃黄变米的人会引起中毒(肝坏死和肝昏迷)和肝硬化。岛青霉除产生岛青霉素(Silanditoxin)外,还可产生环氯素(Cyclochlorotin),黄天精(Luteoskyrin)和红天精(Erythroskyrin)等多种霉菌毒素。 岛青霉素和黄天精均有较强的致癌活性,其中黄天精的结构和黄曲霉素相似,毒性和致癌活性也与黄曲霉素相当。小鼠日服7mg/kg体重的黄天精数周可导致其肝坏死,长期低剂量摄入可导致肝癌。环氯素为含氯环结构的肽类,对小鼠经口LD50为6.55mg/kg体重,有很强的急性毒性。环氯素摄入后短时间内可引起小鼠肝的坏死性病变,小剂量长时间摄入可引起癌变。

给你一篇作参考;采撷中西之长 振兴民族药业 ——中药现状及前景思考 摘要:本文指出,在制药业面临机遇与挑战的今天,中药也迎来了发展的春天。但是,真正要实现中药的现代化和产业化,振兴民族药业,在研发、生产、销售及文化普及方面还有很长的路要走。与国际接轨,在国际医药市场激烈的竞争中立于不败之地,更是任重而道远。然而,总结经验,吸取教训,灵活运用中西方的优势,民族药业的瑰丽画卷即将展开。 关键词:中药 中药现代化及产业化 文化 目录 1.中药现状及前景概述 2.中药现代化及产业化对制药行业的要求 2.1中药现代化及产业化对研发的要求 2.2中药现代化及产业化对生产的要求 2.3中药现代化及产业化对销售的要求 3.中药发展对文化的要求 3.1中药发展对企业的要求 3.2中药发展对人才的要求 3.3中药发展对社境环境的要求 4.中药的知识产权保护 2006年6月,我获得了选择药大的机会 2006年7月,我有幸被药大录取 2006年9月,我终于踏上了药大的土地 2006年12月,我坐在了《药学概论》的课堂上, 第一次系统而全面地接触药学 2006年底,我奋笔疾书,笔尖开始流淌那似有似无的药香 身为炎黄子孙,我为祖先留下的瑰宝感到无比骄傲 身为药大人,我为学校完备的学科设置感到无比自豪 1. 中药现状及前景概述 随着科学技术的发展与人类保健事业需求的增长,药品已成为一类供人们防病治病与提高生活 质量并还不段“推陈出新”的特殊药品。作为“朝阳产业”的理论基础,药学的前景毫无疑问是光明的。 作为祖先留给我们后人的宝贵财富,中药曾经为中华民族的繁衍昌盛及世界民族医药学的发展作出了重大贡献,现在也必将发挥它的巨大作用和价值。中药在疑难病症的治疗上所获得的成果令人惊讶不已,诸如神经系统疾病、微循环系统疾病、糖尿病及并发症、恶性肿瘤、肝炎、爱滋病、老年性痴呆等均转向从天然药物、民族药物和传统药物中寻找出路。在全球制药市场的兼并收购中,中药题材也开始崛起。随着人们在使用化学药物的过程中发现其副作用逐渐增多,西方近来又回过来用含有全部有效成分的生药制剂,模仿天然有效成分,以克服副作用。在西药已走到穷途末路的时候,中药是否可以“柳暗花明又一村”,为制药业带来一线生机?作为中华文明的传承者,我们有义务发扬传统文化;作为世界公民,我们有责任造福人类。 但是,目前中药在国际医药市场激烈的竞争中还处于劣势。要改变这种现状,我们还有很长的路要走。 2.中药现代化及产业化对制药行业的要求 2.1中药现代化及产业化对研发的要求 研发是制药业保持活力的关键之所在。 作为传统瑰宝,古人给我们留下了大量文献及技艺,我们必须善于发掘利用,从中汲取智慧和灵感。同时,随着现代化进程的推进和加快,我们应该采取必要措施,抢救性保护散落在民间的经典药方,加以研究。总之,我们必须打破封闭的理论体系,不拘泥于中医理论,在中药研究中注重中西医结合,注重现代医学方法和生物技术的应用,进行创新。 中药仅仅是一种载体,我们要通过现代药学的一系列新理论、新方法、新技术,如受体学说、免疫理论、光谱与色谱技术、生物技术、分子生物学等,以中药为蓝本,研发新药。 同时,必须加大研发投入,实现研发经费和利润的良性循环。但也应该避免困扰全球制药市场稳定和高速增长的问题,即官僚作风对研发的影响。 2.2中药现代化及产业化对生产的要求 中药现代化及产业化要求出厂的药品质量可靠,为此,必须从原料、生产、检验、包装等各环节严加把关。 一方水土养育一方人。中药材在特定产区集天地之灵,能发挥出最大的药效。因此,应视具体情况对中药材实施原产地保护政策,建立和发展道地药材生产的规范基地,解决中药材质量问题,对于某些稀有药材,应当积极探索其中的有效成分,进而寻找替代品或人工合成,以便从中药角度开展研发,突破研发瓶颈。 在实际生产中,改变原始煎煮的生产状态,实现工业化生产,要求各环节质量可控,并实现现代化管理。 中药的前景在于中成药的推广。我们应在科学的原则下探究改变剂型,适应现代社会的节奏和习惯,方便消费者使用。近年来,随着中药成分提取、分离、灭菌等技术的应用,口服液、胶囊逐渐成为中药制剂的主体,有些甚至制成注射剂,不但提高了疗效,还发现了一些新作用,扩大了临床应用范围。 在生产过程中,还应注重现代工艺的运用,进行二次创新。 同时,鼓励复方生产,联合用药,以避免单一用药使病原体产生变异,出现抗药性。如现在普遍同时使用青蒿素和奎宁联合治疗疟疾。 2.3中药现代化及产业化对销售的要求 任何一件产品的成功与否,都取决于消费市场对它的认同度。中药要实现最终的腾飞,文化和产品的营销尤为重要。 首先,可以加强中药保健作用的开发,改变社会的保健观念,使社会对中药滋补品有认同感。其次,应该在全球积极推广中医药文化,改变目前中医药只在华人社会步履维艰的现状,让全世界都能因中医药而受益。同时在这种文化的普及中消除偏见,改变目前有些国家以食品标准检验进口中药的现状。再次,企业应注意创立自己的品牌,利用品牌效应打开市场。 3.中药发展对文化的要求 3.1中药发展对企业的要求 企业在振兴民族药业的道路上无疑扮演着重要的角色,也担负着重大的责任。除了上文已提到的加大研发投入,避免官僚作风影响研发之外,在自身发展的进程中,企业应当力求专业化,做好做精一类药,避免面面俱到,全而不精。 3.2中药发展对人才的要求 不管是研发、生产,还是销售,离开可人才,什么都是空谈。但是,我国现有的人才数量和质量,都与中药现代化发展的要求相距甚远,这也严重阻碍了中药事业的发展。 为此,各级相关学校应该加强中药教育,中西并重,奠定人才培养的基础。同时,必须看到当今制药的主流已从单一的化学制药转向化学-生物制药并重,因此,学校在加强化学相关学科教学的同时,应该加大生物学(尤其是植物学)、中西医基础理论等课程的深度和广度,力求毕业生有较宽的知识面和灵活的思维方式,能够担当理论创新和生产实践的重任。 3.3中药发展对社会环境的要求 中药事业的健康有序发展,离不开外部社会环境的支持。遗憾的是,由于医药行业的特殊性和专业性,大部分人对中药不了解甚至存在偏见。培育良好的社会环境,需要我们不懈的努力。 正如上文所提到的那样,在让消费者产生认同感方面,除了从保健角度切入,推广中医药文化以外,还应在全社会倡导健康的生活方式,鼓励食疗。 另外,在国外市场的推广方面,要克服文化背景和哲学思想的差异,注意到中西医在理论体系上的不同,努力让全球接受东方文化。 4.中药的知识产权保护 知识产权保护是全球制药业面临的最大问题。中国由于法制不健全,相关人员意识不强等因素,这一问题尤为突出。发展中药事业,不仅要求立法部门尽快完善相关法律,也要求相关部门加强宣传力度,使知识产权保护深入人心。 传统的总经典的,民族的才是世界的。站在这个挑战和机遇并存的时代,站在这个古典和现代交相辉映的时代,采撷中西之长,相信民族药业的腾飞就在明天! 参考文献:药学概论,中国药科大学教务处,2005年10月

相关百科

热门百科

首页
发表服务