首页

> 论文发表知识库

首页 论文发表知识库 问题

寻找生活中的数学模型论文

发布时间:

寻找生活中的数学模型论文

数学家华罗庚曾经说过:宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。这是对数学与生活的精彩描述。《数学课程标准》中十分强调数学与现实生活的联系,要求通过义务阶段的数学学习,使学生能够:获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法和必要的应用技能;初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识;体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心。数学源于生活,又广泛用于生活。在实际生活中运用所学数学知识,处理实际问题是小学生的数学素养之一。新课程标准强调数学教学要“从学生已有的生活经验出发”,“使学生获得对数学知识的理解”。因此,在数学教学中,如何结合学生的生活实际,使学生“领悟”数学知识源于生活,又服务于生活,培养学生用数学眼光去观察生活,运用数学知识解决实际问题的素养,是每位数学教师重视的问题。1 挖掘教材中的生活资源。例如,在低年级的教学中,教师可以提出这样的问题:你今年几岁啦?多高呀?身体有多重?比一比你和你的同桌谁重?……这些都是小学生经常遇到的问题,而要准确地说出结果,就需要我们量一量、称一称、算一算,这些都离不开数学。再如,像水电费收取、储蓄利息的计算、日常购物等生活中常用的各种知识均发生在身边,我们买东西、做衣服、外出旅游,也离不开数学。 2 指导学生观察生活中的数学。让学生观察生活中的数学,既是积累数学知识,更是培养学生学习数学兴趣的最佳途径。如在长正方形认识时,从生活中观察哪些物体的表面是长方形的,用实物的表面在黑板上画出一个长方形。学生善于发现并研究生活中的数学,本身就是最好的学习方法。学生在研究中不断思考,不断尝试,并不断地体验成功。如布置学生用硬纸板做一个长方体模型,学生要思考观察什么物体的形状是长方体,长方体有什么特征,怎样做才美观大方。第二天学生带着自己制作的长方体模型到课堂时,每个学生根据已有体验与同学交流,各抒己见,这样的课堂能不充实、活跃吗?(二)创设情境1 创设生活情景:新课程标准在解决问题目标中明确提出,“能从现实生活中发现问题”,“初步学会从数学的角度提出问题,理解问题”。而现有教材中提供给学生的材料有很多是与学生生活脱离的,为此我们要“创设生活情景”。如《统计》的教学,可创设情境:班上准备开庆祝会,需要买水果,买哪种水果,买多少水果,。这样,学生的参与积极性可能更高,更深刻的感受了知识的作用。再如教学二年级的除法应用题时,老师为学生创设了“逛超市”这一生活情境,学生拿着钱到超市选购商品。第一层次:老师呈现信息“我带了20元钱,想买饼干……”引发学生提问。甲学生:“得先看看一包饼干多少钱?”乙学生:“一包饼干5元钱,20元钱可以买几包饼干?”第二层次:学生拿着钱,互相提供信息发问,解决问题。第三层次:鼓励学生创新。有学生提出买两样或两样以上物品。教师及时组织学生结合生活情境较好地解决了问题,拓展了学生的思维。这样原本枯燥乏味的除法应用题教学,在老师的精心设计下变成了一个个富有情趣的数学活动,学生在数学活动中获取信息的能力,发现问题、解决问题的能力都得到了很好的发展,学生的学习热情始终处于积极的状态。2 动手操作创设情境。在推导三角形的面积公式时,学生自带两个完全一样的三角形,动手操作,通过旋转平移方法把两个一样三角形拼成一个平行四边形或长方形,平行四边形面积等于底乘以高,所以三角形面积等于底乘高的一半。三角形面积公式是学生在操作、观察、思考、概括得来。学生尝试到成功的快乐,不但能掌握知识,更能培养学生的信心和兴趣。3 用实例创设情境。如教学循环小数概念时,让学生讲永远讲不完的故事,“从前有座山,山上有座庙,庙里有个老和尚。老和尚对小和尚说:从前有座山,山上有座庙,庙里有个老和尚……”,通过实例初步感知“不断重复”,再举出自然现象“水→汽→云→水”的循环引出“循环”的概念。 4 运用实物创设情境。圆的认识教学,可以这样导入:出示一幅颜色鲜艳的用正方形做轮子的自行车,问同学们这辆自行车漂亮吗?喜不喜欢?(不喜欢)为什么?(虽漂亮但踩不动)老师把正方形车轮换成椭圆后再问学生喜不喜欢?(不喜欢,因为骑这样的自行车在平坦大路上都会象踩在颠跛不平的路上一样)教师再把椭圆形车轮换成圆形,学生这才满意。(三) 抽象概括小学数学中的许多概念和法则都是在现实生活中抽象出来的,因此概念法则的教学也就必须在生活实际中找到相应的实例,并引导学生从直观入手从而抽象出来,逐步加深理解和运用。例如:在教学应用题常见的数量关系时,学生对于“工作效率×工作时间=工作总量”中的“工作效率”不易理解。为此,教学前在班里举行了一次口算比赛和写字比赛。教学新课时,联系两次比赛活动,学生就非常容易理解工作效率这一抽象而又陌生的概念:即指单位时间内所作的工作量。二、在生活中用数学数学源于生活,生活中充满了数学,可以说生活就是数学,数学就在我们每个人的身边。数学只有与生活紧密联系起来,它才可亲、可爱、富有无穷魅力。数学教学必须建立在学生主动、积极地参与数学实践活动的基础上。唯如此,数学才能从学生的现实生活中产生和发展,数学才能成为人们日常生活中的自然组成部分,并且是不可缺少的部分。(一)在生活中发现数学的价值在学习了“多位数的认识”之后,要求学生找找生活中的多位数,把你认为有意义的记下来。不找不知道,一找吓一跳,在课堂交流中,学生纷纷把自己在课外书上、在报纸上、在网络上……找到的多位数展示在大家面前。再因势利导,进行多位数的改写、省略练习,这样不仅使学生掌握了数学知识,还受到了情感的熏陶。在综合实践活动中进一步体会数学的作用和价值,学习综合运用所学知识解决生活中的问题。老师可以带学生收集数据,进行调查研究。学习了面积和面积单位以后,以统计“家庭丢弃塑料袋”为课题,收集数据,把课外收集到的信息处理,学生体会非常深刻,有的学生还想出这样的主意:如果把全国所有的废弃塑料袋生意全包下来,那每月将有一笔相当可观的利润。有的还体会到,一个家庭要丢弃那么多塑料袋,全县、全国呢……这将产生巨大“白色污染”,必须保护环境。通过这节实践活动课,建立了知识之间的联系,发展了学生综合运用知识解决问题的能力。并且通过活动让学生感受到丢弃塑料袋的行为对大自然所造成的污染,以唤起学生的环保意识,收到了意想不到的效果。(二)在生活中体验数学为了在学生学习数学知识的同时,初步接触和掌握数学思想,不断增强数学意识,就必须使学生有更多的机会接触生活和生产实践中的数学问题,认识现实中的问题和数学问题之间的联系和区别,在生活中体验数学。例如:学习了应用题后,设计一个“春游活动方案”实践活动。活动中要求学生以老师的身份来组织春游,设想应从哪些方面来考虑活动的组织。学生们积极主动地探讨起来,考虑了如何租车才既省钱又合理、安全;如何购票最合算等,设计出了很多春游方案。像这样的数学实践活动很多,如铺地砖方案、礼品包装方案、跑道的设计等。通过这些模拟性的实践活动,使数学更接近实际生活,使学生学会综合运用数学知识、数学思维方式、生活经验等去解决问题,使学生身临其境地感受到数学的优越性以及数学与社会生活的关系,懂得数学的真正价值,提高学生真正参与社会生活的能力。(三) 在生活中增强数学应用意识数学知识在日常生活中有着广泛的应用,生活中处处有数学。学了三角形的稳定性后,可以让学生观察生活中哪些地方运用了三角形的稳定性;学习了圆的知识,让学生从数学的角度说明为什么车轮的形状是圆的,其它形状的行不行?为什么?学习了简便运算后,走进市场,了解商人的口算技能……通过让学生走出去的方法,了解数学知识在实际中的广泛运用,培养学生用数学眼光看问题,用数学头脑想问题,增强学生用数学知识解决实际问题的意识。

数学源于生活、根植于生活。数学教学就要从学生的生活经验和已有的知识点出发,联系生活讲数学,把生活经验数学化,数学问题生活化。激发学生学习数学的兴趣,让学生深刻体会到生活离不开数学,数学是解决生活问题的钥匙,从而增强学习数学的趣味性。当我打开小学一年级的数学课本时,给我的印象好像一本童话书一样漂亮,每一课的内容,都有一个场景故事表现出来,把数学知识融入到了学生非常熟悉的生活中,与学生身边的生活联系较为密切。刚入学的一年级学生,大部分都受到学前教育,在生活中也学到一些与数学有关的生活知识,所以他们对数学并不是一无所知。我在第一单元实际数学教学中,尝试如何将学生已有的生活经验引导学生学习认数,取得了较好的效果。一、培养学生主动学习的愿望,让学生体会到身边有数学数学教学中,要善于引导学生观察生活中的实际问题,感受数学与生活的密切联系。在学习第一单元《快乐的校园》之前,我先带领学生熟悉美丽如画的校园和参与各种课内外活动,让学生体验感受学校生活的丰富多彩,从尔喜欢即将开始的校园生活。教授信息窗2《老鹰捉小鸡》这一课时,我把学生领到操场这个“大课堂”,实地做游戏组织教学活动。通过学生非常熟悉喜爱的“老鹰捉小鸡”的游戏,来学习1—10数的认识。在游戏中让学生数一数“有几个小朋友参加游戏?”“男同学有几人?”“女同学有几人?”等等,在数扎长辫女孩“排第几”的过程中感知数的另一个含义——“序数”。整节课,学生们“玩”的很开心,“大课堂”气氛很活跃,改变了以往枯燥乏味的被动式课堂,每一位学生都积极主动的参与到游戏学习中去,“学习”热情很高。学生在不知不觉中圆满完成了整节课的学习任务。这样的数学课堂,让学生深切体会到原来数学就在自己身边,身边就有数学,而且离得很近,使学生对数学逐渐产生亲切感,从而培养学生主动学习的愿望。二、发现生活中的数学问题,借助生活经验,学会探索解决数学问题学生的学前数学知识,生活中的数学常识,经验的建立,是依赖于实际生活实践,是学生看得见,摸得着,听的到的现实。生活中的数学问题具有形象性和启发性,它能唤醒学生已有的生活经验增强学习动机和信心,有助于引导学生进入数学情境,也有利于学生思维发展。教师要善于挖掘数学内容中的生活画面,让数学贴近生活,在组织学生活动中,引导学生讨论解决数学问题:我在信息窗1《科技小组活动》的教学中,学生在解决红点标示的问题“天上有几架飞机?”时,引导学生去看一看数一数,让学生充分利用情境图中的信息体会1-10各数的意义,再联系生活,广泛选取学生身边生活中非常熟悉的问题,进一步体会数的意义。如“我们的教室有几扇窗?几盏灯?教室门前有几棵树?”“你家里有几口人?你有几只铅笔……”等等。在教学中我注意选择学生身边的感兴趣的事物,提出数学问题,为学生在生活中寻找探索新知识的依托,使学生学会借助生活经验思考探索问题。三、有意识创设活跃的学习氛围和生动有趣的学习情境“好玩”是孩子的天性,托尔斯泰说过:“成功的教学所需要的不是强制,而是激发学生的学习兴趣。”兴趣是人对客观事物产生的一种积极的认知倾向。怎样才能让孩子在玩中获得知识呢?我针对每课不同的学习内容,安排了很多不同的游戏、故事……在第一单元《快乐的校园-10以内数的认识》中,我带学生到操场上做他们非常熟悉、喜欢的“拔河、老鹰捉小鸡、小小运动会”等等 ,让他们边玩边数数 “拔河比赛,左边有几个小朋友?右边呢?运动会上,6号运动员排在第几?第1名是几号运动员?等等……”使学生在活跃的学习氛围和有趣、喜爱的“玩”中学会了1-10各数的认识。四、培养孩子数学的生活实践能力许多孩子在上学前,就会做100以内的加减,数100以内的数甚至更多,但是如果把它们拿到具体的生活中就不是那么尽如人意,一般5岁以后数学的思维能力才开始蒙发,上一年级的学生部分只能机械的数数,但对数的意义就不一定清楚,因此,就要加强数学与生活的联系,让学生在自己的身边熟悉的环境中寻找数。如3个人,1枝铅笔,5朵花等等,在生活中慢慢建立数的概念,认识数的含义。使学生在生活实践中得到锻炼,把数学真正融入现实生活中更好的为生活服务,同时用生活经验更好的为数学学习服务打好了结实的基础。总之,数学教学让学生的生活经验走进数学课堂,为学生提供了亲身体验和动手操作的机会,指导学生更好的学习数学。在这方面,我受益良多,通过上学期的教学实践活动,我们班的学生学习数学的兴趣非常浓厚,改变了以往数学学习的枯燥乏味,学生在思想上有了从“要我学”-----到“我要学和我喜欢学”质的飞跃,学生变的喜欢学习数学。我的教学工作也变很顺利,学生中没有了见了数学就头疼的“老大难”,工作效率有了很大的提高,学生的学习成绩有明显的进步。新《课标》也给我们明确提出:“数学教学要紧密联系学生的生活实际,从学生的生活经验和已有的知识出发,创设生动有趣的情境,引导学生开展观察、操作、猜想、推理、交流等活动。使学生通过数学活动,掌握基本的数学知识和技能,初步学会从数学角度去观察事物,思考问题。激发对学习数学的兴趣,以及学好数学的愿望,树立学好数学的自信心。

数学应用是数学 教育 的重要内容,呼唤数学应用意识,提高数学应用教学质量,已成为广大数学教育工作者的共识。下面是我为大家推荐的数学建模论文,供大家参考。

数学建模论文 范文 一:建模在高等数学教学中的作用及其具体运用

一、高等数学教学的现状

(一) 教学观念陈旧化

就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及 逻辑思维 能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

(二) 教学 方法 传统化

教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

二、建模在高等数学教学中的作用

对学生的 想象力 、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

三、将建模思想应用在高等数学教学中的具体 措施

(一) 在公式中使用建模思想

在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

(二) 讲解习题的时候使用数学模型的方式

课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

(三) 组织学生积极参加数学建模竞赛

一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

四、结束语

高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。

参考文献

[1] 谢凤艳,杨永艳. 高等数学教学中融入数学建模思想[J]. 齐齐哈尔师范高等专科学校学报,2014 ( 02) : 119 -120.

[2] 李薇. 在高等数学教学中融入数学建模思想的探索与实践[J]. 教育实践与改革,2012 ( 04) : 177 -178,189.

[3] 杨四香. 浅析高等数学教学中数学建模思想的渗透 [J].长春教育学院学报,2014 ( 30) : 89,95.

[4] 刘合财. 在高等数学教学中融入数学建模思想 [J]. 贵阳学院学报,2013 ( 03) : 63 -65.

数学建模论文范文二:数学建模教学中数学素养和创新意识的培养

前言

创新人才的培养是新的时代对高等教育提出的新要求.培养高质量、高层次人才不仅需要传统意义上的逻辑思维能力、推理演算能力,更需要具备对所涉及的专业问题建立数学模型,进行数学实验,利用先进的计算工具、数学软件进行数值求解和做出定量分析的能力.

因此,如何培养学生的求知欲,如何培养学生的学习积极性,如何培养学生的创新意识和创新能力已成为高等教育迫切需要解决的问题[1].

在数学教学中,传统的数学教学往往注重知识的传授、公式的推导、定理的证明以及应用能力的培养.尽管这种模式并非一无是处,甚至有时还相当成功,但它不能有效地激发广大学生的求知欲,不能有效地培养学生的学习积极性,不能有效地培养学生的创新意识和创新能力.

而如何培养学生的创新意识和创新能力,既没有现成的模式可循,也没有既定的方法可套用,只能靠广大教师不断探索和实践.

近年来,国内几乎所有大学都相继开设了数学建模和数学实验课,在人才培养和学科竞赛上都取得了显着的成效.数学建模是指对特定的现象,为了某一目的作一些必要的简化和假设,运用适当的数学理论得到的一个数学结构,这个数学结构即为数学模型,建立这个数学模型的过程即为数学建模[2].

所谓数学教学中的数学实验,就是从给定的实际问题出发,借助计算机和数学软件,让学生在数字化的实验中去学习和探索,并通过自己设计和动手,去体验问题解决的教学活动过程.数学实验是数学建模的延伸,是数学学科知识在计算机上的实现,从而使高度抽象的数学理论成为生动具体的可视性过程.

因此,数学实验就是一个以学生为主体,以实际问题为载体,以计算机为媒体,以数学软件为工具,以数学建模为过程,以优化数学模型为目标的数学教学活动过程[3-7].

因此,如何把实际问题与所学的数学知识联系起来;如何根据实际问题提炼数学模型;建模的方法和技巧;数学模型所涉及到的各类算法以及这些算法在相应数学软件平台上的实现等问题就成了我们研究的重点.现结合教学实践,谈谈笔者在数学建模和数学实验课的教学中 总结 的几点看法.

1掌握数学语言独有的特点和表达形式

准确使用数学语言模拟现实模型数学语言是表达数学思想的专门语言,它是自然语言发展到高级状态时的特殊形式,是人类基于思维、认知的特殊需要,按照公有思维、认知法则而制造出来的语言及其体系,给人们提供一套完整的并不断精细、完善、完美的思维和认知程序、规则、方法.

用数学语言进行交流和良好的符号意识是重要的数学素质.数学建模教学是以训练学生的思维为核心,而语言和思维又是密不可分的.能否成功地进行数学交流,不仅涉及一个人的数学能力,而且也涉及到一个人的思路是否开阔,头脑是否开放,是否尊重并且愿意考虑各方面的不同意见,是否乐于接受新的思想感情观念和新的行为方式.数学建模是利用数学语言模拟现实的模型,把现实模型抽象、简化为某种数学结构是数学模型的基本特征.

现实问题要通过数学方法获得解决,首先必须将其中的非数学语言数学化,摒弃其中表面的具体叙述,抽象出其中的数学本质,形成数学模型.通过分析现实中的数学现象,对常见的数学现象进行数学语言描述,从而将现实问题转化为数学问题来解决.

2借助数学建模教学使学生学会使用数学语言构建数学模型

根据现阶段普通高校学生年龄特点和知识结构,我们可以通过数学建模对学生加强数学语言能力的培养,让他们熟练掌握数学语言,以期提升学生的形象思维、 抽象思维 、逻辑推理和表达能力,提高学生的数学素质和数学能力.在数学建模教学过程中,教师要力求做到用词准确,叙述精炼,前后连贯,逻辑性强.在问题的重述和分析中揭示数学语言的严谨性;在数学符号说明和模型的建立求解中揭示数学语言的简约性,彰显数学语言的逻辑性、精确性和情境性,突出数学符号语言含义的深刻性;在模型的分析和结果的罗列中,显示图表语言的直观性,展示数学语言的确定意义、语义和语法;在模型的应用和推广中,显示出数学符号语言的推动力的独特魅力.

而在学生的书面作业或论文 报告 中,注意培养学生数学语言表达的规范性.书面表达是数学语言表达能力的一种重要形式.通过教师数学建模教学表述规范的样板和学生严格的书面表达的长期训练来完成.在书面表达上,主要应做到思维清晰、叙述简洁、书写规范.例如在建立模型和求解上,严格要求学生在模型的假设,符号说明、模型的建立和求解,图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.

对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面要及时纠正.

3借助数学实验教学,展示高度抽象

的数学理论成为具体的可视性过程要培养创新人才,上好数学实验课,首先要有创新型的教师,建立起一支"懂实验""会试验""能创新"的教师队伍.由于数学实验课理论联系实际,特点鲜明,内容新颖,方法特别,所以能够上好数学实验课,教师就必须具备扎实的数学理论功底,计算机软件应用操作能力,良好的科研素质与科研能力.

因此,数学与统计学院就需要选取部分教师,主攻数学建模、数学实验、数值分析课程.优先选派数学实验教师定期出去进修深造提高,以便真正形成一支"懂实验""会实验""能创新"的教师队伍.实验课的地位要给予应有的重视.我院现存的一个重要表现就是实验设备不足,实验室开放时间不够.为了确保数学实验有物质条件上的保证,必须建立数学实验与数学建模实验室.

配备足够的高性能计算机,全天候对学生开放,尽快尽早淘汰陈旧的计算机设备.精心设计实验内容,强化典型实验,培养宽厚扎实理论水平;精选实验内容,加强学生之间的互动,培养协作意识和团队精神.在实验教学时数有限的情况下,依据培养目标和教学纲要,对教材中的实验内容进行选择、设计.要最大限度地开发学生的创造性思维,数学实验在项目设计过程中应当遵循适应性、趣味性、灵活性、科学性、渐进性和应用性的基本原则.

选择基础性试验,重点培养宽厚扎实的理论水平,提高对数学理论与方法的深刻理解.熟练各种数学软件的应用与开发,提高计算机应用能力,增强实践应用技能;增加综合性实验和设计性实验,从实际问题出发,培养学生分析问题,解决问题的能力,强化 创新思维 的开发.

教学方法上实行启发参与式教学法:启发-参与-诱导-提高.充分发挥学生主体作用,以学生亲自动脑动手为主.

教师先提出问题,对实验内容,实验目标,进行必要的启发;然后充分发挥学生主体作用,学生动手操作,每个命令、语句学生都要在计算机上操作得到验证;根据学生出现的情况,老师总结学生出现的问题,进行进一步的诱导;再让其理清思路,再次动手实践,从理论与实践的结合上获得能力上提高.数学实验是一门强调实践、强调应用的课程.

数学实验将数学知识、数学建模与计算机应用三者融为一体,可以使学生深入理解数学的基本概念和理论,掌握数值计算方法,培养学生运用所学知识使用计算机解决实际问题的能力,是一门实践性很强的课程.在这一教学活动中,通过数学软件如MAT-LAB、Mathematica、SPSS的教学和综合数学实验,如碎片拼接、罪犯藏匿地点的查找、光伏电池的连接、野外漂流管理、水资源的有效利用、葡萄酒的分类等,通这些实际问题最终的数学化的解决,将高度抽象的数学理论呈现为生动具体的可视性结论,展示数学模型与计算机技术相结合的高度抽象的数学理论成为生动具体的可视性过程.

4突出学生的主体作用,循序渐进培养学生学习、实践到创新

实践教学的目的是要提高学生应用所学知识分析、解决实际问题的综合能力.

在教学中,搭建数学建模与数学实验这个平台,提示学生用计算机解决经过简化的问题,或自己提出实验问题,设计实验步骤,观察实验结果,尤其是将庞大繁杂的数学计算交给计算机完成,摆脱过去害怕数学计算、画函数图像、解方程等任务,避免学生一见到庞大的数学计算公式就会产生畏惧心理,从而丧失信心,让学生体会到在数学面前自己由弱者变成了强者,由失败者变成了胜利者、成功者.

再设计让学生自己动手去解决的各类实际问题,使学生通过对实际问题的仔细分析、作出合理假设、建立模型、求解模型及对结果进行分析、检验、总结等,解决实际问题,逐步培养学生熟练使用计算机和数学软件的能力以及运用数学知识解决实际问题的意识和能力.

同时,给学生提供大量的上机实践的机会,提高学生应用数学软件的能力.一个实际问题构成一个实验内容,通过实践环节加大训练力度,并要求学生通过计算机编程求解、编写实验报告等形式,达到提高学生解决实际问题综合能力的目标.数学建模与数学实验课程通过实际问题---方法与分析---范例---软件---实验---综合练习的教学过程,以实际问题为载体,以大学基本数学知识为基础,采用自学、讲解、讨论、试验、文献阅读等方式,在教师的逐步指导下,学习基本的建模与计算方法.

通过学习查阅文献资料、用所学的数学知识和计算机技术,借助适当的数学软件,学会用数学知识去解决实际问题的一些基本技巧与方法.通过实验过程的学习,加深学生对数学的了解,使同学们应用数学方法的能力和发散性思维的能力得到进一步的培养.实践已证明,数学建模与数学实验课这门课深受学生欢迎,它的教学无论对培养创新型人才还是应用型人才都能发挥其他课程无法替代的作用.

5具体的教学策略和途径

数学建模课程和数学实验课程同时开设,在课程教学中,要尽可能做到如下几个方面:

1)注重背景的阐述

让学生了解问题背景,才能知道解决实际问题需要哪些知识,才能做出贴近实际的假设,而这恰恰是建立一个能够解决实际问题的数学模型的前提.再者,问题背景越是清晰,越能够体现问题的重要性,这样才能激发学生解决实际问题的兴趣.

2)注重模型建立与求解过程中的数学语言的使用

在做好实际问题的简化后,使用精炼的数学符号表示现实含义是数学语言使用的彰显.基于必要的背景知识,建立符合现实的数学模型,通过多个方面对模型进行修正,向学生展示不同的条件相对应的数学模型对于现实问题的解决.在模型的求解上,严格要求学生在模型的假设,符号说明、图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面及时纠正.

3)注重经典算法的数学软件的实现和改进

由于实际问题的特殊性导致数学模型没有固定的模式,这就要求既要熟练掌握一般数学软件和算法的实现,又要善于改进和总结,使得现有的算法和程序能够通过修正来解决实际问题,这对于学生能力的培养不可或缺.只有不断的学习和总结,才有数学素养的培养和创新能力的提高.

参考文献:

[1]叶其孝.把数学建模、数学实验的思想和方法融人高等数学课的教学中去[J].工程数学学报,2003,(8):1-11.

[2]颜荣芳,张贵仓,李永祥.现代信息技术支持的数学建模创新教育[J].电化教育研究,2009,(3)。

[3]郑毓信.数学方法论的理论与实践[M].广西教育出版社,2009.

[4]姜启源.数学实验与数学建模[J].数学的实践与认识,2001,(5):613-617.

[5]姜启源,谢金星,叶俊.数学建模[M].第3版.北京:高等教育出版社,2002.

[6]周家全,陈功平.论数学建模教学活动与数学素质的培养[J].中山大学学报,2002,(4):79-80.

[7]付桐林.数学建模教学与创新能力培养[J].教育导刊,2010,(08):89-90.

数学小论文初一寻找身边的数学

一、数学适应源于生活,用于创设问题情境 生活中充满了数学,数学就在我们周围,让学生学习数学,可从他们已有的经验和已有的知识出发,有目的的,合理地创设出一些贴近学生生活实际的问题情境,把生活中的实际问题抽象成有兴趣的数学问题,只要引起学生的兴趣,就会大大增加学生的求知欲,学生就会主动地去开启智慧之门。例如,在学习归一应用题时,我出示了这样一道习题,让学生练习。“使用139全球通手机,月租费50元,每分钟通话费元;而某一人用136神州行手机,没有月租费,每分钟通话费元,而这个人用136手机,每月计费150元以上,若他要换用全球通手机合算吗?”这些题目,是学生从示接触过的,又很贴近学一的现实生活。通过让学生业计算,既是让学生对所学知识的巩固,对现实生活的了解,又很好地创造了生活的新方法,激发了学生学习的兴趣。又例如,在学习“圆的面积”的时候,可以设置疑问。“为什么自来水的管道是圆形的而不是长方形的”、“你们有没有见过正方形的自来水管”,这样一个带有生活常识的问题。一提出,学生马上对它充满兴趣,交头接耳,议论纷纷,这样使教材的内容融入趣味的生活情节中,让学生带着兴趣去学习新知识,使学生尝试成功的喜悦,诱发学生再次学习的兴趣。 二、数学知识用于生活,使学生了解生活实际在数学教学中,除了要讲清概念外,使学生正确理解各个知识点和概念,更要注意知识的实用性,在练习的过程中,要把数学知识用到实际中来,要从多方面来考虑数学问题,来打开学开学生的眼界,增加学生信息量,了解生活的实际。如美国第三次全国进展评估中有这样一个试题是:每辆卡车可载36名士兵,现在有1128个士兵需要用卡车送到练营地,问需要多少辆卡车?乍一看,这是个很简单的除法应用题,测试的结果也表明,有70%的学生正确地完成了计算,即得出了36除1128商是31,余数为12。然而,在此基础上,只有23%的学生给出了32这一正确的答案,这说明了什么问题呢?这说明了学生没有把这一问题看成是真正的问题,没有从实际生活的角度去想这个问题,而只是把题目看成是虚构的数学问题,为了练习而杜撰的故事。他们所做的事就是进行计算把得数写出来,这也是一些学生的通病,只注重机械练习,而很少考虑其他问题。这只是数学教学中的小小一例,在教学中还有很多这样的例子,这就给了我们一个启示:我们的数学要加强真实感要把所学的知识用于解决实际问题,学数学要为生活服务,从而来增加学生的数学意识。 三、从数学实践活动入手,拓展数学视野开展数学实践活动,可以让学生体验到数学在生活中的应用,对于培养学生学习数学的兴趣、爱好、有着十分积极的意义。例如,在教学中,让学生到操场上去走走、跑跑、测测、量量,让学生感受50米、100米、400米的距离,并让学生辨别步测与目测的差别;让学生到食堂去看看、称称,根据各种水果、蔬菜的重量,使学生去感受100克、1千克、10千克的实际重量等等,这些活动深受学生的喜爱,不仅可获得数学知识,还能培养学生的数学意识,对数学学习充满乐趣。 一、走进生活,用数学眼光去观察和认识周围的事物:世界之大,无处不有数学的重要贡献。培养学生的数学意识以及运用数学知识解决实际问题的能力,既是数学教学目标之一,又是提高学生数学素质的需要。在教学中,要使学生接触实际,了解生活,明白生活中充满了数学,数学就在你自己的身边。例如在“比例的意义和基本性质”的导入中,我设计了这样一段:你们知道在我们人体上的许多有趣的比例吗?将拳头翻滚一周,它的长度与脚底长度的比大约是1:1,脚底长与身高长的比大约是1:7……知道这些有趣的比有很多用处,到商店买袜子,只要将袜子在你的拳头上绕一周,就会知道这双袜子是否合适你穿;如果你是一个侦探,只要发现罪犯的脚印,就可以估计出罪犯的身高……这些都是用身体的比组成了一个个有趣的比例,今天我们就来研究“比例的意义和基本性质”;此外教师还可结合学生年龄特点,设计一些“调查”、“体验”、“操作”等实践性强的作业,让学生在活动中巩固所学知识,提高各方面的能力:如教学“单价、数量、总价”三者关系应用题前可布置学生做一回小小调查员,完成下列表格:品名黄瓜白菜萝卜猪肉单价(元)数量(千克)总价(元)这样做,使学生对所学知识有了感性认识,减缓他们在学习上坡度,对他们深刻理解单价、数量、总价三者之间的关系有很大帮助。再如学习了三角形的稳定性后,可让学生观察生活中哪些地方运用了三角形的稳定性;学习了圆的知识后,让学生从数学的角度说明为什么车轮的形状是圆的,三角形的行不行?还可以让学生想办法找出锅盖、脸盆的圆心在哪儿;……这样大大丰富了学生所学的知识,让学生真正认识到周围处处有数学,数学就在我们生活中间,并不神秘,同时也在不知不觉中感悟数学的真谛,进而激起从小爱数学、学数学、用数学的情感,促进学生的思维向科学的思维方式发展,培养学生自觉地把所学的知识应用于实际生活的意识。 二、感悟生活,架构数学与生活的桥梁:“人人学有用的数学,有用的数学应当为人人所学”成了数学教学改革实验的口号。教学中我联系生活实际,拉近学生与数学知识之间的距离,用具体生动、形象可感的生活事例解释数学问题。1、运用生活经验解决数学问题在上“用字母表示数”一课的内容时,我用CAI课件演示李蕾同学拾金不昧的情景,紧接着播出一则“失物招领启事”:失物招领李蕾同学在校园升旗台附近拾到人民币A元,请失主前来少先队大队部认领。校少先队大队部 学生惊奇于数学课上老师怎么讲起了失物招领的事呢?我和学生通过分析、讨论A元所表示的意义,师:A元可以是1元钱吗?生1:A元可以是1元钱,表示拾到1元钱。师:A元可以是5元钱吗?生2:可以!表示拾到5元钱。师:A元还可以是多少钱呢?生3:还可以是85元,表示拾到85元钱。师:A元还可以是多少钱呢?生4:还可以是元,表示拾到5角钱。……师:那么A元可以是0元吗?生5:绝对不可以,如果是0元,那么这个失物招领启事就和大家开了一个大玩笑!师:为什么不直接说出拾到多少元,而用A元表示呢?……由于学生容易认识具体、确定的对象,而用字母表示的数是不确定的、可变的,因此开始学习学生往往难以理解。本题中的“失物招领启事”是学生所熟悉的活动,激发了学生学习新知的欲望,学生便能不由自主地参与到解题过程中去。在讨论交流中,集思广益,使学生在愉快的氛围理解了新知,并对所学的知识更理解,掌握地更牢固;另一方面也提高了人际交往能力,增强了相互帮助、合作的意识,受到良好的思想教育,也锻炼了学生对社会的洞察力。2、运用数学知识解决实际问题例如学习了长方形、正方形面积的计算及组合图形的计算后,我尝试着让学生运用所学知识解决生活中的实际问题。如:老师家有一间两室一厅的住房,如图:你能帮帮他算一算这两室一厅的住的面积有多大?要计算面积有多大我们先要测量哪些长度的面积?在给出一定的数据后让学生们计算;接下来我还让学生们回家测算一下自己家的实际居住面积。在这样一个实际测算的过程中,既提高了兴趣,又培养了实际测量、计算的能力,让学生在生活中学、在生活中用。 如,学过了100以内加减法之后,创设了“买汽车”的教学情境:微型汽车大削价,小林花去100元买了几辆汽车,他买了几辆汽车,是哪几辆?通过观察、思考、讨论,在我的鼓励指导下,同学们用式子有序地依次表示为:(1)把100元分解为两个数的和:(2)把100元分解为3个数的和:50+50=100 40+60=100 30+70=10020+80=100 60+20+20=100 50+20+30=100 40+40+20=100 30+30+40=100 (3)把100元分解为4个数的和(4)把100元分解为5个数的和40+20+20+20=100 20+20+20+20+20=100 30+30+20+20=100 学生以发现者的心态去探索、去求新、去寻觅独创性的答案,这也正验证了苏霍姆林斯基所说的:“在人的心灵深处,都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者、探索者。”这种图文并茂的应用题,使学生感到不是在解应用题,而是在解生活中的问题,锻炼了学生捕捉信息的能力,增强了应用题的应用味:漫画的形式更贴近于儿童的实际生活,学生从图中获得各种汽车价钱的信息,又从文字中获取“小林花去100元”的信息,由于问题具有现实意义,但又不能刻板地归为哪一种类型,要想解决“买了几辆汽车,是哪几辆?”的问题,联系生活实际,就能得到不同的解法。整个学习活动给学生提供了广阔的思维空间,让学生经历观察、分析、概括和归纳等学习过程。不仅巩固了100以内认识和加法,而且促进数学的交流,学生的分析、解决问题的能力得到培养,有利于因材施教,体现不同的人学习不同层次的数学,使学生感受到数学与生活的密切联系,体验到生活中处处有数学,感受数学的趣味与作用。 三、创造生活,解决生活中的数学问题两步应用题之后的教学,我让学生“创作”应用题,学生们积极思考,发挥自己的想象力:“一份鸡翅8元,一个汉堡包比它贵4元,我吃了一份鸡翅和一个汉堡包,你们说我用了多少元?”;“我的妈妈上午买了一斤青菜,买的萝卜是青菜的两倍,请问我的妈妈一共买了几斤菜?;《西游记》有62集,《西游记续集》比它多5集,《西游记续集》有多少集?”学生们编应用题时眉飞色舞的神态,夸张的动作,幽默风趣的语言常常引起哄堂大笑。由于题材来自学生所熟知的事物,学生发言积极、语言流畅,思维呈多极化和多元化,得出“雪融化后是春天而不是水”的新思路,因创造而倍感兴奋,更体会到生活中处处有数学。再如学习了“按比例分配”的知识后,让学生帮助爸爸妈妈算一算本住宅楼每户应付的水费(电费)是多少;学习了“利息”的知识后,算一算自己在银行存储的钱到期后可以拿多少本息;再如学习完“比例尺”一节的知识后,让学生绘制“我给未来的校园设计平面图”、“我给生活小区设计平面图”等等,其对图表内容的丰富和社会关注程度令人感叹!生活是教育的中心,“生活即教育”的理论为小学数学教学的改革开辟了广袤的原野。“让学生在生活中学数学” 使学生对数学有一种亲近感,感到数学与生活同在,增强了学生学习数学的主动性,发展了求异思维,培养了学生理论联系实际的学风和勇于探究、大胆创新、不断进取的精神,让学生亲自体会参与应用所学知识去解决实际问题的乐趣。

有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。 我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。

活动意义 1、让学生知道数学与生活是密切联系的; 2、让学生体验数学与生活是能够联系的; 3、让学生展示数学与生活是怎么联系的; 4、让学生释放数学与生活相联系的能力。 参与对象 鼓楼区各小学1-6年级学生及指导教师。活动内容 高年段(五、六年级)活动内容: 1、应用数学知识为校园、教室、自己的家或者公共场所进行一项局部设计。设计要求:(1)要实用。或者改善周围环境,或者改进空间结构,或能改变传统认识。(2)有价值。设计的效果应该比原来更科学合理,更方便实用,更新颖美观,更富有创意。(3)有数学。设计要体现出设想、测量、计算、实际验证等具有数学意义、数学内容和有效数据真实资料,写一份图文并茂的《×××设计报告》。 2、应用数学知识做一个自己喜欢的专项研究,内容不限。写一份体现数学作用、研究数据真实、图文并茂的《×××研究报告》。

身边的数学--------------------------------------------------------------------------------用天平称物品的学问??我们先来研究一下只许在天平的一边盘上放砝码,要求一次称出物品重量的情况。??例如:在天平的一边盘上放砝码,要把1克到3O克整克重的物品,都能一次性地分别称出来,至少要备置几个什么样的砝码???要“一次性”称出,又要做到砝码的个数“少”,各个砝码的克数不要相同,能将几个砝码拼凑成要称的重量,就尽量拼凑。??显然,1克、2克的砝码是不可少的。1+2=3(克),3克的砝码可以不要。利用1克、2克的砝码各一个,无论怎么也不能一次称出4克的重量,必须要有一个4克砝码。有了4克的砝码,再配上1克、2克的砝码,就能分别称出5克、6克、7克的重量来。顺着这个思路,我们模拟天平称物的情况,制得下表:放置砝码(克)称出物品重量(克)11223+13444+154+264+2+1788…………8+4+2+1151616…………16+8+4+23016+8+4+2+131??从表中可以看出,称3O克重量的物品时,用了4个砝码;但要分别称出1克到3O克的整克重量的物品时,需准备的砝码应该是5个,即1克、2克、4克、8克、16克,并且利用这5个砝码的最大称重量是1+2+4+8+16=31(克)。??找一找,l克、2克、4克、8克、16克这5个按从轻到重的顺序排列的砝码之间有什么关系?我们不难发现,相邻的两个砝码的重量,较重的是较轻的2倍。由此可知,只许在天平一边盘上放砝码,并且要求一次性分别称出1克至若干千克整克重的物品,至少需备置的各个砝码的重量,第1个是1克,其余可依次按“2倍法”得出。密铺的学问??地砖的形状往往是正方形的,也有长方形的,我们还见过正六边形的地砖。无论是正方形、长方形、还是正六边形的地砖,都可以将一块地面的中间不留空隙、也不重叠地铺满,也就是密铺。还有什么形状的图形可以密铺地面呢?同学们在思考这一问题时总是借助于画出的图形去实验,通过实际观察而得出结论。??其实用地砖铺地这一生活问题也有数学方面的道理,可以用数学中学到的圆周角是36O度这一知识从理论上分析、解决。??我们都知道,铺地时要把地面铺满,地砖与地砖之间就不能留有空隙。如果用的地砖是正方形,它的每个角都是直角,那么4个正方形拼在一起,在公共顶点处的4个角,正好拼成一个36O度的周角。正六边形的每个角都是120度,3个正六边形拼在一起时,在公共顶点上的3个角度数的和正好也是36O度。除了正方形、长方形以外,正三角形也能把地面密铺。因为正三角形的每个内角都是6O度,6个正三角形拼在一起时,在公共顶点处的6个角的度数和正好是36O度。??正因为正方形、正六边形拼合以后,在公共顶点上几个角度数的和正好是36O度,这就保证了能把地面密铺,而且还比较美观。??还有什么形状的图形可以密铺地面呢?你现在会从数学的角度回答这个问题吗?试试看?

生活中的数学小论文

生活中的数学“对我来说什么都可以变成数学。”数学家笛卡儿曾这样说过。“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。”我国家喻户晓的数学家华罗庚也曾下过这样的结论。的确,正如两位前辈所说,数学与我们的生活息息相关,数学的脚步无处不在。 2006年已经接近尾声了,迎面而来的是新的一年——2007年。行走在繁华的大街上,随处可见商家打出的“满400送400”,“满300送300”的促销招牌。“这真实惠!”消费者们蜂拥而至,商场里人山人海,抢购成风。此情此景,真让人以为回到了物资短缺的年代。实际上商家心里早打好了如意算盘。俗话说:只有买亏,没有卖亏,“满400送400元券”只是商家的一种促销手段,其中暗藏着数学问题,暗藏着商业机密,暗藏着许多玄机。 去年,我们一家三口,也在新年之际在商场里“血拼”,当时是满400送400元券。我们先用980元买了一件苹果牌的皮夹克给爸爸,送来了800元购物券。我们并没有过分浪费,花了300元券买了一件298元藏青色的李宁牌棉袄,又用剩下的500元券中的488买了一件太子龙男装(由于是购物券,不设找零)。到底便宜了多少?298+488+980=1766(元)——这是原来不打折时需要花的钱。980/1776,所打的折扣大约是五五折。 我的姑姑和姑夫从前也做过服装生意,我对服装的进货成本与销售价的关系也有些了解。服装的进价一般只占建议零售价的20%~30%。随着竞争的加剧和商场促销力度越来越大,为了保持利润,商家或厂家还不断地把衣服的建议零售价标高。就如前几天在电视中看见的一位消费者所说,某一品牌同一款式的一条尼料的裤子,三年前建议零售价还只是299元,今年标价变成了999元。这么一算,进价大概只有商场里售价的10%~20%。就算打了五五折,商家还稳赚三至五成的毛利。 广告,广告,便是广而告之。许多人一窝蜂似的赶来抢购、血拼,商场的人流量多了,商品销售量也快速增长。就按人流量是平时的三倍算,这里又出现了一个数学问题。假设平时人流量少时,一件商品按8折销售。8折减去进价2折,标价部分的6成就成了毛利。虽然现在“满400送400元券”时同一件商品可能只赚三至五成,但销量起码是平时的三倍以上。就按三成毛利和三倍销量来计算,3×3=9,与平时的6成毛利相比,一天能多赚50%。虽说这样卖每件单位毛利率有所下降,毛利额却因销售量的增加而增长,更因大量销售而加快了资金周转,带来额外的收益。 商品标价和促销中有数学,购物消费中有数学,装修房子有数学,织毛衣中有数学……总而言之,数学在现实生活中无处不在!

动物数学气象学家Lorenz提出一篇论文,名叫「一只蝴蝶拍一下翅膀会不会在Taxas州引起龙卷风?」论述某系统如果初期条件差一点点,结果会很不稳定,他把这种现象戏称做「蝴蝶效应」。就像我们投掷骰子两次,无论我们如何刻意去投掷,两次的物理现象和投出的点数也不一定是相同的。Lorenz为何要写这篇论文呢?这故事发生在1961年的某个冬天,他如往常一般在办公室操作气象电脑。平时,他只需要将温度、湿度、压力等气象数据输入,电脑就会依据三个内建的微分方程式,计算出下一刻可能的气象数据,因此模拟出气象变化图。这一天,Lorenz想更进一步了解某段纪录的后续变化,他把某时刻的气象数据重新输入电脑,让电脑计算出更多的后续结果。当时,电脑处理数据资料的数度不快,在结果出来之前,足够他喝杯咖啡并和友人闲聊一阵。在一小时后,结果出来了,不过令他目瞪口呆。结果和原资讯两相比较,初期数据还差不多,越到后期,数据差异就越大了,就像是不同的两笔资讯。而问题并不出在电脑,问题是他输入的数据差了,而这些微的差异却造成天壤之别。所以长期的准确预测天气是不可能的。参考资料:阿草的葫芦(下册)——远哲科学教育基金会2、动物中的数学“天才”蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成。组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料。蜂房的巢壁厚毫米,误差极小。丹顶鹤总是成群结队迁飞,而且排成“人”字形。“人”字形的角度是110度。更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契”?蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺的圆规也很难画出像蜘蛛网那样匀称的图案。冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。真正的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。奇怪的是,古生物学家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当时地球一天仅小时,一年不是365天,而是400天。(生活时报)

对我来说什么都可以变成数学。”数学家笛卡儿曾这样说过。“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。”我国家喻户晓的数学家华罗庚也曾下过这样的结论。的确,正如两位前辈所说,数学与我们的生活息息相关,数学的脚步无处不在。 2006年已经接近尾声了,迎面而来的是新的一年——2007年。行走在繁华的大街上,随处可见商家打出的“满400送400”,“满300送300”的促销招牌。“这真实惠!”消费者们蜂拥而至,商场里人山人海,抢购成风。此情此景,真让人以为回到了物资短缺的年代。实际上商家心里早打好了如意算盘。俗话说:只有买亏,没有卖亏,“满400送400元券”只是商家的一种促销手段,其中暗藏着数学问题,暗藏着商业机密,暗藏着许多玄机。 去年,我们一家三口,也在新年之际在商场里“血拼”,当时是满400送400元券。我们先用980元买了一件苹果牌的皮夹克给爸爸,送来了800元购物券。我们并没有过分浪费,花了300元券买了一件298元藏青色的李宁牌棉袄,又用剩下的500元券中的488买了一件太子龙男装(由于是购物券,不设找零)。到底便宜了多少?298+488+980=1766(元)——这是原来不打折时需要花的钱。980/1776,所打的折扣大约是五五折。 我的姑姑和姑夫从前也做过服装生意,我对服装的进货成本与销售价的关系也有些了解。服装的进价一般只占建议零售价的20%~30%。随着竞争的加剧和商场促销力度越来越大,为了保持利润,商家或厂家还不断地把衣服的建议零售价标高。就如前几天在电视中看见的一位消费者所说,某一品牌同一款式的一条尼料的裤子,三年前建议零售价还只是299元,今年标价变成了999元。这么一算,进价大概只有商场里售价的10%~20%。就算打了五五折,商家还稳赚三至五成的毛利。 广告,广告,便是广而告之。许多人一窝蜂似的赶来抢购、血拼,商场的人流量多了,商品销售量也快速增长。就按人流量是平时的三倍算,这里又出现了一个数学问题。假设平时人流量少时,一件商品按8折销售。8折减去进价2折,标价部分的6成就成了毛利。虽然现在“满400送400元券”时同一件商品可能只赚三至五成,但销量起码是平时的三倍以上。就按三成毛利和三倍销量来计算,3×3=9,与平时的6成毛利相比,一天能多赚50%。虽说这样卖每件单位毛利率有所下降,毛利额却因销售量的增加而增长,更因大量销售而加快了资金周转,带来额外的收益。 商品标价和促销中有数学,购物消费中有数学,装修房子有数学,织毛衣中有数学……总而言之,数学在现实生活中无处不在!

无论是身处学校还是步入社会,大家都接触过论文吧,论文是描述学术研究成果进行学术交流的一种工具。你知道论文怎样写才规范吗?以下是我为大家收集的数学小论文作文,仅供参考,大家一起来看看吧。

星期天,全家人在一起讨论清明节回老家扫墓的事。谈着谈着,我心里忽然冒出了一个疑问:这里离老家有多远呢?”我问妈妈,妈妈笑了,说:你说呢?你上了这么多年学,一定会有办法知道的,对吧?”

我想了想,灵光一闪,对了,可以用我们最近学的比例尺的知识来算。我立即拿来地图,找到了泰州市,却怎么也找不到老家所在地顾高镇。怎么办呢?我冥思苦想,突然灵机一动:我可以先找到离老家顾高镇最近的乡镇黄桥镇,量出地图上泰州到黄桥的距离,再减去一些,就是地图上泰州到老家的大约的距离了!说干就干,我立即量出地图上泰州到黄桥的距离,它是0。6cm。因为老家比黄桥离泰州更近些,我便把减去了,变成了。因为这份地图的比例尺是1:6000000,我便用0。5×6000000=3000000cm,3000000cm=30km。

我立即向妈妈报出了我的答案:大约30千米,本以为会得到妈妈的表扬,可谁知妈妈却疑惑地说:好像没这么近吧?”听了妈妈的话,我也疑惑不解:怎么会这样?”我又来到地图前,重新量起来。量着量着,我突然发现了其中的奥秘:我量的是地图上两点间的直线距离,而实际的道路不是直线的,是绕来绕去的,所以实际路程一定比依据地图计算出来的远。

我把我的发现告诉了妈妈,妈妈也恍然大悟:对!就是这样!你真聪明!”

在学校里,学了如何算体积的,急忙想算一下周围用品的体积。突然,我的目光集中在我的未开封清风面巾纸上,有了,就只算单张面巾纸的体积。

既然算单张的,就要先算整包的。我拿出尺子,分别量出了长,宽,高。

长:7。4厘米 体积为:7·4×5。6×2。5=103。6立方厘米

宽:5,6厘米 但是,我突然想到,面巾纸是可以压的扁一点的,这不

高:2。5厘米 就减少了体积吗?我思考了几分钟,想到既然是测量未开封的的,就应该是未压扁的。想到这,我又看到了我的数据。可能是量的是压得。最后仔仔细细量重新变动数据。

长:7。5厘米 体积为:7·5×5。5×2。5=立方厘米

宽:5,5厘米 眼看就要成功了,可我猛地发现,包装塑料纸也是有体

高:2。5厘米 积的,可是又有什么办法。思考许久,忽然,我想到了一个很原始的办法。我抽出里面的面巾纸,把塑料包装纸对折4着,这成了一个小正方体。

长:2。1厘米 体积为:2。1×1。8×0。3=1。134立方厘米

宽:1,8厘米 虽然可能有误,但是我也想不出其他办法了。

高:0。3厘米

最后算式:(103,125—1。134)÷10(一包面巾纸里有10张)=10。1991立方厘米

经过这次,我终于享受到写数学小论文的快乐。

今天,我无意间发现里一个有趣的测试,这是一个由印第安人发明的水晶球心理测试。

我打开页面,看了看规则,是这样的:随便从10—99之间选一个数字,把十位数和个位数相加,再把原数减去相加的数,最后记住得出数字的图案,点一下水晶球,就会出现那个你记住的图案了(水晶球旁边有10——99的数字,数字旁有一种图案)。如:23 2+3=5 23——5=18。

我看好后,就选了78 7+8=15 78——15=63。我又看了看63旁的图案,便点了点水晶球,发现出现的图还真的是我记下的图。我又选了一些数字,算了算,水晶球都可以准确的出现我记下的图案。好神奇啊!

我心想:水晶球为什么知道我记下的图案啊?

于是,我做了一个很笨的小实验:从10——99的数字都算一遍。结果发现得出来的数都是9的倍数:9。18。27。36。45。54。63。72。我又看了看这些数字边的图案,都是一样的。我说:”哦,所以水晶球会知道我记下的图案啊!哈哈哈!“

我发现数学其实无处不在。只要我们善于发现,善于观察,善于思考,数学的海洋将任我们翱翔!

西瓜是夏天中最爱欢迎的水果。今天,妈妈买回了一个又大又圆的`西瓜。于是,我们准备吃西瓜了!

小妹妹问我:”嘉嘉姐姐,你要吃多少呀!“我想了想说,”我吃这个西瓜的1/2吧。“”1/2是什么?“她问。”1/2是分数,是把一个东西平均分成2份,取其中的1份。“我说。”哦。“小妹妹似懂非懂地说。”我吃这个西瓜剩下的1/2。“妈妈插话道。小妹妹问:”剩下的1/2是不是嘉嘉姐姐留下的全部吃掉啊?那我没得吃了?“”哈哈!“我和妈妈哈哈大笑。”不是这样的。“妈妈笑着说。我接话道:”剩下的1/2就是把我吃剩的那部分看作一个整体,再把这部分平均分成2份,取其中的1份。“”是这样啊!那我还是有西瓜吃的了!“小妹妹恍然大悟。小妹妹调皮地说:”以后我要先吃1/2,这样我的1/2比你的多,这次不划算!“”你的,我哪吃得了这么多?你想吃多少就吃多少!“我们都笑了!

你现在认识分数了吗?分数还有很多哦!等着你去发现。让我们一起踏上寻找数学的旅程吧!

一年一度的双11“剁手节”来了。

今天下午,妈妈坐在沙发上,翻看着天猫里面的商品准备在明天双十一抢购。我一直想买一个做奶茶的工具,妈妈是一个实用主意者,没有用的东西一般都不会买回来。我很担心提出需求后妈妈不给买,又说我乱花钱。忍不住内心的想要还是说了出来。

“妈妈可以给我买个玩具吗”?我轻声细语的问。妈妈说,只要我能回答她一个数学问题可以买,我爽快的答应了。我们搜了做奶茶的工具,出现了许多的旗舰店,其中有两家销量最好的都各有各的优惠。它们一套都是68。5元,但是甲店是买两套送一套,乙店是打七折。我要买三套,妈妈问我哪一家便宜,我说甲店是68。5×2=137元(3套),乙店是68。5×3=205。5元,205。5×0。7=143。85元(3套)。143。85大于137,所以甲店划算。当我准确算出答案时,妈妈很爽快的我买了做奶茶的工具。

数学知识在生活中无处不在,我要找到数学的乐趣,遨游在数字的海洋里。

关于速度一向学习成绩不好的我,在无意中发现了一道题,并且给做出来了,下面我给大家分享一下吧!在20xx年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电。该地供电局组织电工进行抢修供电局距离抢修工地15千米。抢修车装载着所需材料先从供电局出发,15分钟后电工乘吉昔车从同一地点出发,结果他们同时到达抢修工地,已知吉普车速度是抢修车速度的1。5倍,求这两种车的速度。

解:1。设抢修车的速度为x千米/时,则吉普车的速度为1。5x千米/时.由题意走相同路程15千米,吉普车比抢修车快15分钟(即0。25小时)得方程15/X-15/1。5X=0。25解得X=20千米/小时,则1。5X=30千米/小时

答:抢修车的的速度为20千米/时,吉普车的速度为30千米/时.

2。因为走的路程(S=15KM)一样,人用的时间是X。材料用的时间是X+15,即(15÷X)÷(15÷(X+15))=1。5,一元一次方程,得X=30分钟,即0。5小时,那么吉普车的速度就是30KM/H,抢修车20KM/H

答:抢修车的的速度为20千米/时,吉普车的速度为30千米/时.

3。设吉普车用的时间为x小时。

根据题意得:x+15=1。5x

一天,数学老师提出了一个问题:1+2+3+4+5+6……一直加到100的得数是多少?那么,一直加到1000和10000呢?用简便方法计算。

算式:1+2+3+4+5+6+7……+100=5050 5050×10=50500 50500×10=505000

答:1一直加到100的得数是5050,一直加到1000和10000各是50500和505000.

简便算法:或许有些同学会觉得这个算是太长,需要计算器!no,那就错了。只要仔细看看就可以发现1和99可以凑成100,2和98可以凑成100,3和97也可以凑成100,4和96,5和95,6和94 ,7和93,8和92,9和91,10和90,11和89……一直这样凑成100,结果可以得到能凑成50个100,就是5000,但是还剩下一个50单独一个数字,就可以拿5000 + 50 =5050,得出1一直加到100的得数。但有人会问了,1一直加到1000和10000为什么不着要算呢?因为100和1000的进率是10倍,1000和10000的进率也是10倍,所以可以拿1一直加到100的得数5050乘10倍等于50500,再拿50500乘10倍等于5050000。行对应的,1一直加到100000、1000000、10000000......以此类推,都可以这样算,当然,你也可以更深的理解这道题的规律哦!

今天,妈妈要去买灯泡。到了超市,发现超市里有两种灯泡:一种是节能灯泡,一种是普通灯泡。节能灯泡虽然开200小时只需要用一度电,比普通灯泡一度电多用170个小时,但是它一个要5元,;普通灯泡一个只要1元,比节能灯泡便宜4元,但是它30个小时就要用一度电。

妈妈问我:“考考你,如果我要买一个灯泡回家,买哪种的灯泡最划算?”

我思索了一会儿,不慌不忙地说:“可以这样算:

5/1=5

30*5=150(小时)200小时>150小时

还可以这样算:

5/1=5

200/5=40(小时)30小时<40小时

由这几步可得出结论,节能灯泡省钱。”

妈妈又问我:“很好。再想想看,还有没有别的办法来算?”

我又想了一会儿,一个字一个字地说:“可以用我这学期才学的?百分数?来算。也可以这样算:

5/200*100=*100=

1/30*100≈*100=

>

或者这样算:

200/5*100=40*100=4000

30/1*100=30*100=3000

4000>3000

因此,也是节能灯泡便宜。。”

我和妈妈买了比较划算的节能灯泡回去了。

经过这件事,我明白了:“生活处处有数学”这个道理。

今天,老师给我们讲了一道三级训练上的重点难题:一个长100米,宽80米的广场中间留了宽4米的人行道,把广场平均分成4块,求每块的面积是多少?

看到题目后,有的人开动脑筋,寻找方法;有的人望着天花板干瞪眼;我绞尽脑汁使劲地想,终于思考出一种方法,于是赶紧举起小手,老师便叫我起来回答,我大声地说:“100-4=96米;96÷2=48米;80-4=76米;76÷2=38米;38×48=1824平方米”。

“你能说说你的思考方法吗?”沈老师问。“先把长减去4,算出两块的长,再除以2就得出一块小广场的长;宽也用同样的方法,最后长和宽相乘便得出一块的面积了。”

沈老师又问“还有其他的方法吗?”

夏雨航站起来回答,他连说了好几个算式,可我们却不懂。

老师又让大家想其他方法,大家看起来信心十足,但又害怕不对又都低下了头。

于是沈老师就带着我们一起理解了各个算式,这困难就迎刃而解了.

通过这节课我明白了一个道理:世上无难事,只怕有心人,只要你肯想,就一定能想出解决问题的办法来!

有一天,我跟妈妈去逛商场。妈妈进了超市买东西,让我站在付钱的地方等她。我没什么事,就看着营业员阿姨收钱。看着看着,我忽然发现营业员阿姨收的钱都是1元、2元、5元、10元、20元、50元的,我感到很奇怪:人民币为什么就没有3元、4元、6元、7元、8元、9元或30元、40元、60元呢?我赶快跑去问妈妈,妈妈鼓励我说:“好好动脑筋想想算算,妈妈相信你能自己弄明白为什么的。”我定下心,仔细地想了起来。过了一会儿,我高兴地跳了起来:“我知道了,因为只要有1元、2元、5元就可以随意组成3元、4元、6元、7元、8元、9元,只要有10元、20元、50元同样可以组成30元、40元、60元……”妈妈听了直点头,又向我提了一个问题:“如果只是为了能随意组合的话,那只要1元不就够了吗?干吗还要2元、5元呢?”我说:“光用1元要组成大一点的数就不方便了呀。”

这下妈妈露出了满意的笑容,夸奖我会观察,爱动脑筋,我听了真比吃了我最喜欢吃的冰激凌还要舒服。在此,我也想告诉其他的小朋友:其实生活中到处都有数学问题,只要你多留心观察,多动脑思考,你就会有很多意外的发现,不信你就试一试!

大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。

比如,在我爸爸给我买的一本数学拓展题中,有一题思考题是这样说的:”一辆客车从东城开向西城,每小时行45千米,行了2。5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?“ 这时,我就在数学草稿纸上这样写: 45×2。5=112。5(千米),112。5+18=130。5(千米),130。5×2=261(千米),答:东西两城相距261千米。

但我又看了看,发现有点不对劲。原来,我忽略了一个重要的东西,就是:这时刚好离东西两城的中点18千米,其中的”离“,这到底是没到中点呢?还是过了中点呢?如果是还没到中点,离中点还差18千米的话,就是我刚刚这么写。但如果是到了中点多了18千米,那就应该这么写:45×2。5=112。5(千米),112。5——18=94。5(千米),94。5×2=189(千米)。

那到底是怎么写呢?我便向爸爸求助,我跟爸爸讲了这件事后,又给爸爸看了看式子,结果,爸爸却说:”嗯……你写的这两个式子都对。都可以写。“

在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,根据生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案。

今天早上一起来,妈妈就宣布:由于家里停水,今天全家到欧尚那边去吃早餐,顺便到超市买东西。

到了那边,我们准备先去吃早餐,先来到了珅府捞面。可是,这里一碗面就要3、40块钱,好贵,而且更加“惊悚”的是,这里的一个鸡爪要5块钱。我们觉得太贵不合算,就来到了“丸来丸趣”,没想到,仅仅一墙之隔,价钱差距就这么大:这里一碗面只要9块钱。吃完早餐,我们就开始逛超市啦!我们先买了一袋我和爸爸最喜欢吃的青桔子,总共数量是11个,价钱是元,差不多一个5毛钱左右。我们又去买了5个鸡爪,一共元。这个鸡爪的价格简直与珅府捞面的价格有着“天壤之别”,一边是不到1元/个,一边是5元/个。来到水果区,我们买了一袋青蛇果,3个共元,这么小的一个青蛇果差不多一个要6元,好贵!接下来,我们又去买了一个哈密瓜,元,没想到,3个小小的青蛇果比一个大大的哈密瓜整整还贵出了元。由于我在邻居桃桃家里尝过黄桃很好吃,我们又去买了3个大大的黄桃,一共元,平均下来每个黄桃是元。我们买完所有需要的东西去结帐,算上这里没有提到的东西,一共是500元。

这次,我从买东西里面学到了很多数学知识,今天真是太开心了!

今天是中秋节,我们一家人可高兴了。爸爸妈妈说:“今天是个好日子,我们来玩一个抓纸的游戏怎么样?”我点了点头,爸爸拿了4个形状相等,大小相同的纸,分别把2张红纸和2张蓝纸放进这个袋子里说:“这个不是透明袋子,里有2张红和2张蓝纸,如果你摸到2张都是红纸或2张都是蓝纸的话,我就给你5块钱,否则你给我5块钱,好不好?”我说:“那我可不干。

”爸爸问:“这是为什么呀?你不是也有机会挣钱吗?”我有说:“虽然我也能挣钱,可是机会并没有你多呀!你想,一共有4张纸,如果我第一张摸到的是红色,袋子里还剩下2张蓝色纸和一张红色纸,那么再摸到红色的机会只有1/3,而摸到蓝色的机会却是2/3;如果我第一张摸到的是蓝色,那么再摸到蓝色的机会只有1/3,而摸到过红色的机会却是2/3,所以你当然比我更容易挣钱喽。”爸爸说:“不错吗,小子,看你也挺聪明的嘛,这样也迷不到你,好吧,看你今天表现得还不错,奖励你五块钱吧!”我高兴极了,今天真是个好日子。

爸爸是一个的十足的数学迷,平时最爱出些数学题来考我了。这不,今天闲来无事又向我出题了,我问道“:爸爸今儿要出啥题?我奉陪到底:”爸爸看我自信满满,满脸笑意说:“输了可别哭鼻子,请听题:有一师徒二人共同加工26个零件,徒弟先到车间,就先拿了一些零件放在自己的机床边。师傅”来了,一看徒弟要拿去加工的零件太多了,他除了拿了留给他的零件外,又从徒弟那里拿了一半零件。徒弟觉得自己应该多干一点,又从师傅那里拿来一半。师傅不肯,徒弟只好再给师傅5个零件,最后还是师傅比徒弟多加工2个零件。请问,徒弟最初准备加工零件是多少个?“我不禁想:可以先求出徒弟最后加工零件(26÷2)÷2=12个。徒弟没给师傅5个零件时,徒弟有零件12+5=17个,徒弟没从师傅那里拿走一半之前,师傅有9×2=18个,而这时徒弟只有零件26——18=8个,因此师傅没拿走徒弟手中零件的一半之前徒弟有零件8×2=16个。这时,爸爸拍了我的肩,说:”想出来了没。“我这才恍过神来,答道:”徒弟最初准备加工零件16个。“

爸爸故弄玄虚地问:”你确定吗,还要改吗?“我胸有成竹的摇了摇脑袋,说:”不用改了 。“”恭喜你……答对了!“

我高兴的一蹦三尺高,心里乐滋滋的,像吃了蜜一样甜。

我和妈妈去金鸡湖玩。途中看到很多交通指示牌。有的写着离前方1000米,有的500米,也有3公里等等。我就好奇的问妈妈:”妈妈,10公里有多少米啊?“妈妈笑着对我说就是10000米啊!”啊?我以为10米呢!“我对妈妈说。

”哦,儿子你知道一公里等于多少米么?“妈妈问

”100米?“我试着回答

”错了,一公里等于1000米!“妈妈说

”那为什么人们不说一公里是1000米,而以公里计算呢?“我问道

”那样太麻烦啦,如果是几百几千甚至几万公里,以米计算的话那得写多少个0啊,人们为了便于记录,就以公里代替,1000米,10000米,100000米等等,只要把后面的3个0去掉,就是公里数啦!“妈妈说。

”我懂了,妈妈,1000米去了3个0就是1公里,10000米去了3个0就是10公里,100000米去了3个0就是100公里!“我兴奋地告诉妈妈

”儿子,你真棒!“妈妈赞许的说道。

哈哈,原来计算公里数是有窍门的呀!

数学小论文生活中的负数

意义:

1.在数学中,负数是比0小的数叫,负数与正数表示意义相反的量。

2.在生活中,我们经常会遇到各种相反意义的量。比如,在记帐时有余有亏;在计算粮仓存米时,有时要记进粮食,有时要记出粮食。为了方便,人们引入了正负数这个概念,把余钱记为正,把亏钱记为负。可见正负数是生产实践中产生的。

负数可以广泛应用于温度、楼层、海拔、水位、盈利、增产/减产、支出/收入、得分/扣分等等的这些方面中,生活中常见的负数有:

1.新疆吐鲁番盆地比海平面低155米,高度应表示为(-155m)

2.学校四年级共转来25名新同学记作(+25名),五年级转走了18名同学应记作(-18名)

3.“做对1题,加5分”记作“+5”,“做错1题,减5分”记作(-5)

4.今天股票从10块涨到11块,表示为+1元。那么明天11元跌到块,表示为()元

5.地球表面的最低气温在南极,是℃

6.水的温度为0°以上,是正数,那么冰的温度低于0°,为(负数)

7.我家住在1楼,而我家楼下还有地下停车场,可以称作(-1)楼

8.我今天做买卖赚了100,表示为(+100),但是回家的时候不小心被偷了,表示为(-200)

扩展资料

负数的引进,是中国古代数学家对数学的一个巨大贡献。在我国古代秦、汉时期的算经《九章算术》的第八章"方程"中,就自由地引入了负数,如负数出现在方程的系数和常数项中,把"卖(收入钱)"作为正,则"买(付出钱)"作为负,把"余钱"作为正,则"不足钱"作为负。

在关于粮谷计算的问题中,是以益实(增加粮谷)为正,损实(减少粮谷)为负等,并且该书还指出:"两算得失相反,要以正负以名之"。当时是用算筹来进行计算的,所以在算筹中,相应地规定以红筹为正,黑筹为负;或将算筹直列作正,斜置作负。这样,遇到具有相反意义的量,就能用正负数明确地区别了。

参考资料:百度百科-负数

三年级怎么会知道这么难的题呢?

1.中国古代在数的方面的贡献 算筹 根据史书的记载和考古材料的发现,古代的算筹实际上是一根根同样长短和粗细的小棍子,一般长为13--14cm,径粗0.2~0.3cm,多用竹子制成,也有用木头、兽骨、象牙、金属等材料制成的,大约二百七十几枚为一束,放在一个布袋里,系在腰部随身携带。需要记数和计算的时候,就把它们取出来,放在桌上、炕上或地上都能摆弄。别看这些都是一根根不起眼的小棍子,在中国数学史上它们却是立有大功的。而它们的发明,也同样经历了一个漫长的历史发展过程。在算筹计数法中,以纵横两种排列方式来表示单位数目的,其中1-5均分别以纵横方式排列相应数目的算筹来表示,6-9则以上面的算筹再加下面相应的算筹来表示。表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推,遇零则置空。这种计数法遵循十进位制。 算筹的出现年代已经不可考,但据史料推测,算筹最晚出现在春秋晚期战国初年(公元前722年~公元前221年),一直到算盘发明推广之前都是中国最重要的计算工具。 算筹的发明就是在以上这些记数方法的历史发展中逐渐产生的。它最早出现在何时,现在已经不可查考了,但至迟到春秋战国;算筹的使用已经非常普遍了。前面说过,算筹是一根根同样长短和粗细的小棍子,那么怎样用这些小棍子来表示各种各样的数目呢? 那么为什么又要有纵式和横式两种不同的摆法呢?这就是因为十进位制的需要了。所谓十进位制,又称十进位值制,包含有两方面的含义。其一是"十进制",即每满十数进一个单位,十个一进为十,十个十进为百,十个百进为千……其二是"位值制,即每个数码所表示的数值,不仅取决于这个数码本身,而且取决于它在记数中所处的位置。如同样是一个数码"2",放在个位上表示2,放在十位上就表示20,放在百位上就表示200,放在千位上就表示2000……在我国商代的文字记数系统中,就已经有了十进位值制的荫芽,到了算筹记数和运算时,就更是标准的十进位值制了。 按照中国古代的筹算规则,算筹记数的表示方法为:个位用纵式,十位用横式,百位再用纵式,千位再用横式,万位再用纵式……这样从右到左,纵横相间,以此类推,就可以用算筹表示出任意大的自然数了。由于它位与位之间的纵横变换,且每一位都有固定的摆法,所以既不会混淆,也不会错位。毫无疑问,这样一种算筹记数法和现代通行的十进位制记数法是完全一致的。 中国古代十进位制的算筹记数法在世界数学史上是一个伟大的创造。把它与世界其他古老民族的记数法作一比较,其优越性是显而易见的。古罗马的数字系统没有位值制,只有七个基本符号,如要记稍大一点的数目就相当繁难。古美洲玛雅人虽然懂得位值制,但用的是20进位;古巴比伦人也知道位值制,但用的是60进位。20进位至少需要19个数码,60进位则需要59个数码,这就使记数和运算变得十分繁复,远不如只用9个数码便可表示任意自然数的十进位制来得简捷方便。中国古代数学之所以在计算方面取得许多卓越的成就,在一定程度上应该归功于这一符合十进位制的算筹记数法。马克思在他的《数学手稿》一书中称十进位记数法为"最妙的发明之一",确实是一点也不过分的。 二进制思想的开创国 著名的哲学家数学家莱布尼茨(1646-1716)发明了对现代计算机系统有着重要意义的二进制,不过他认为在此之前,中国的《易经》中已经提到了有关二进制的初步思想。当代的许多科学家认为易经中并不含有复杂的二进制思想,可是这本中国古籍中的一些基本思想和二进制在很大程度上仍然有着千丝万缕的联系。 元始的《灵宝经》里面把阴阳定义为阳是自冬至到夏至的上升的气,阴为从夏至到冬至下降的气,这是对地球周期运动的最简练认识。阴阳是一种物质认识,后来转化为思想方式,反者道之动等等,都是这种思想的表现。从而开创了对立统一的思想方式,实际上计算机的电子脉冲的思想是与之一致的,采样定律也是与之一致的。 《易经》是我国伏羲、周文王等当政者积累观天测算经验而成的关于天象气象和人变易的经典,从八卦到六十四卦,就是二进制三位到六位表达,上世纪八十年代还有四位计算机,可以说,周文王的六十四卦在表达能力上已经高于四位计算机。 十进制的使用 《卜辞》中记载说,商代的人们已经学会用一、二、三、四、五、六、七、八、九、十、百、千、万这13个单字记十万以内的任何数字,但是现在能够证实的当时最大的数字是三万。甲骨卜辞中还有奇数、偶数和倍数的概念。 十进位位值制记数法包括十进位和位值制两条原则,"十进"即满十进一;"位值"则是同一个数位在不同的位置上所表示的数值也就不同,如三位数"111",右边的"1"在个位上表示1个一,中间的"1"在十位上就表示1个十,左边的"1"在百位上则表示1个百。这样,就使极为困难的整数表示和演算变得如此简便易行,以至于人们往往忽略它对数学发展所起的关键作用。 我们有个成语叫"屈指可数",说明古代人数数确实是离不开手指的,而一般人的手指恰好有十个。因此十进制的使用似乎应该是极其自然的事。但实际情况并不尽然。在文明古国巴比伦使用的是60进位制(这一进位制到现在仍留有痕迹,如一分=60秒等)另外还有采用二十进位制的。古代埃及倒是很早就用10进位制,但他们却不知道位值制。所谓位值制就是一个数码表示什么数,要看它所在的位置而定。位值制是千百年来人类智慧的结晶。零是位值制记数法的精要所在。但它的出现却并非易事。我国是最早使用十进制记数法,且认识到进位制的国家。我们的口语或文字表达的数字也遵守这一原则,比如一百二十七。同时我们对0的认识最早。 十进制是中国人民的一项杰出创造,在世界数学史上有重要意义。著名的英国科学史学家李约瑟教授曾对中国商代记数法予以很高的评价,"如果没有这种十进制,就几乎不可能出现我们现在这个统一化的世界了",李约瑟说"总的说来,商代的数字系统比同一时代的古巴比伦和古埃及更为先进更为科学。" 分数和小数的最早运用 分数的应用 最初分数的出现,并非由除法而来。分数被看作一个整体的一部分。"分"在汉语中有"分开""分割"之意。后来运算过程中也出现了分数,它表示两整数比。分数的加减乘除运算我们小学就已完全掌握了。很简单,是不是?不过在七、八百年以前的欧洲,如果你有这种水平那么就可以说相当了不起了。那时精通自然数的四则运算就已达到了学者水平。至于分数,对当时人来说简直难于上青天。德国有句谚语形容一个人陷入绝境,就说:"掉到分数里去了"。为什么会如此呢?这都是笨拙的记数法导致的。在我国古代,《九章算术》中就有了系统的分数运算方法,这比欧洲大约早1400年。 西汉时期,张苍、耿寿昌等学者整理、删补自秦代以来的数学知识,编成了《九章算术》。在这本数学经典的《方田》章中,提出了完整的分数运算法则。 从后来刘徽所作的《九章算术注》可以知道,在《九章算术》中,讲到约分、合分(分数加法)、减分(分数减法)、乘分(分数乘法)、除分(分数除法)的法则,与我们现在的分数运算法则完全相同。另外,还记载了课分(比较分数大小)、平分(求分数的平均值)等关于分数的知识,是世界上最早的系统叙述分数的著作。 分数运算,大约在15世纪才在欧洲流行。欧洲人普遍认为,这种算法起源于印度。实际上,印度在七世纪婆罗门笈多的著作中才开始有分数运算法则,这些法则都与《九章算术》中介绍的法则相同。而刘徽的《九章算术注》成书于魏景元四年(263年),所以,即使与刘徽的时代相比,我们也要比印度早400年左右。 小数的最早使用 刘徽在《九章算术注》中介绍,开方不尽时用十进分数(徽数,即小数)去逼近,首先提出了关于十进小数的概念。到公元 1300年前后,元代刘瑾所著《律吕成书》中,已将写成把小数部分降低一行写在整数部分的后边。而西方的斯台汶直到1585年才有十进小数的概念,且他的表示方法远不如中国先进,如上述的小数,他记成或106368。 九九表的使用 作为启蒙教材,我们都背过九九乘法表:一一得一、一二得二……九九八十一。而古代是从"九九八十一"开始,因此称"九九表"。九九表的使用,对于完成乘法是大有帮助的。齐恒公纳贤的故事说明,到公元前7世纪时,九九歌诀已不希罕。也许有人认为这种成绩不值一提。但在古代埃及作乘法却要用倍乘的方式呢。举个例子。如算23×13,就需要从23开始,加倍得到23×2,23×4,23×8,然后注意到13=1+4+8,于是23+23×4+23×8加起来的结果就是23×13。从比较中不难看出使用九九表的优越性了。 根据考古专家在湖南张家界古人堤汉代遗址出土的简牍上发现的汉代"九九乘法表",竟与现今生活中使用的乘法口诀表有着惊人的一致。这枚记载有"九九乘法表"的简牍是木质的,大约有22厘米长,残损比较严重。此前在湘西里耶古城出土的一枚秦简上也发现了距今2200多年的乘法口诀表,并被考证为中国现今发现的最早的乘法口诀表实物。 除了里耶秦简外,与张家界古人堤遗址发现的这枚简牍样式基本一致的"九九乘法表"还曾在楼兰文书中见到过,那是写在两张残纸上的九九乘法表,为瑞典探险家斯文赫定在上个世纪初期发掘。 乘法表在古代并非中国一家独有,古巴比伦的泥版书上也有乘法表。但汉字(包括数目字)单音节发声的特点,使之读起来朗朗上口;后来发展起来的珠算口诀也承继了这一特点,对于运算速度的提高和算法的改进起到一定作用。 负数的使用 人们在解方程或其它数的运算过程中,往往要碰到从较小数减去较大数的情形,另外,还遇到了增加与减小,盈余与亏损等互为相反意义的量,这样,人们自然地引进了负数。 负数的引进,是中国古代数学家对数学的一个巨大贡献。在我国古代秦、汉时期的算经《九章算术》的第八章"方程"中,就自由地引入了负数,如负数出现在方程的系数和常数项中,把"卖(收入钱)"作为正,则"买(付出钱)"作为负,把"余钱"作为正,则"不足钱"作为负。在关于粮谷计算的问题中,是以益实(增加粮谷)为正,损实(减少粮谷)为负等,并且该书还指出:"两算得失相反,要以正负以名之"。当时是用算筹来进行计算的,所以在算筹中,相应地规定以红筹为正,黑筹为负;或将算筹直列作正,斜置作负。这样,遇到具有相反意义的量,就能用正负数明确地区别了。 在《九章算术》中,除了引进正负数的概念外,还完整地记载了正负数的运算法则,实际上是正负数加减法的运算法则,也就是书中解方程时用到的"正负术"即"同名相除,异名相益,正无入正之,负无入负之;其异名相除,同名相益,正无入正之,负无入负之。"这段话的前四句说的是正负数减法法则,后四句说的是正负数加法法则。它的意思是:同号两数相减,等于其绝对值相减;异号两数相减,等于其绝对值相加;零减正数得负数,零减负数得正数。异号两数相加,等于其绝对值相减;同号两数相加,等于其绝对值相加;零加正数得正数,零加负数得负数,当然,从现代数学观点看,古书中的文字叙述还不够严谨,但直到公元17世纪以前,这还是正负数加减运算最完整的叙述。 在国外,负数出现得很晚,直至公元1150年(比《九章算术》成书晚l千多年),印度人巴土卡洛首先提到了负数,而且在公元17世纪以前,许多数学家一直采取不承认的态度。如法国大数学家韦达,尽管在代数方面作出了巨大贡献,但他在解方程时却极力回避负数,并把负根统统舍去。有许多数学家由于把零看作"没有",他们不能理解比"没有"还要"少"的现象,因而认为负数是"荒谬的"。直到17世纪,笛卡儿创立了坐标系,负数获得了几何解释和实际意义,才逐渐得到了公认。 从上面可以看出,负数的引进,是我国古代数学家贡献给世界数学的一份宝贵财富。负数概念引进后,整数集和有理数集就完整地形成了。 圆周率的计算 圆周率是数学中最重要的常数之一。对它的计算,可以作为显示出一个国家古代数学发展的水平的尺度之一。而我国古代数学在这方面取得了令世人瞩目的成绩。 我国古代最初把圆周率取作3,这虽应用起来简便,但太不准确。在求准确圆周率值的征途中,首先迈出关键一步的是刘徽。他创立割圆术,用圆内接正多边形无限逼近圆而求取圆周率值。用这种方法他求得圆周率的近似值为,也有人认为他得到了更好的结果:。青出于蓝,而胜于蓝。后继者祖冲之利用割圆术得出了正确的小数点后七位。而且他还给出了约率与密率。密率的发现是数学史上卓越的成就,保持了一千多年的世界纪录,是一项空前杰作。2.阿拉伯数字并不是阿拉伯人最早发明的,而是最早起源于印度。据传早在公元七世纪时,阿拉伯人渐渐地征服了周围的其他民族,建立起一个东起印度,西到非洲北部及西班牙的萨拉森大帝国。到后来,这个大帝国又分裂成为东、西两个国家。由于两个国家的历代君主都注重文化艺术,所以两国的都城非常繁荣昌盛,其中东都巴格达更胜一筹。这样,西来的希腊文化,东来的印度文化,都汇集于此。阿拉伯人将两种文化理解并消化,形成了新的阿拉伯文化。大约在公元750年左右,有一位印度的天文学家拜访了巴格达王宫,把他随身带来的印度制作的天文表献给了当时的国王。印度数字1、2、3、4……以及印度式的计算方法,也就好似在这个时候介绍给了阿拉伯人。因为印度数字和计算方法简单又方便,所以很快就被阿拉伯人所接受了,并且逐渐地传播到欧洲各个国家。在漫长的传播过程中,印度创造的数字就被称为“阿拉伯数字”了。到后来,人们虽然弄清了“阿拉伯数字”的来龙去脉,但有大家早已习惯了“阿拉伯数字”这个叫法,所以也就沿用下来了。3.人类认识0早,还是认识1早。1、2、3、4……9、0称为“阿拉伯数字”。其实,这些数字并不是阿拉伯人创造的,它们最早产生于古代的印度。大约在公元750年左右,有一位印度的天文学家拜访了巴格达王宫,把他随身带来的印度制作的天文表献给了当时的国王。印度数字1、2、3、4……以及印度式的计算方法,也就在这个时候介绍给了阿拉伯人。因为印度数字和计算方法简单而又方便,所以很快就被阿拉伯人所接受了,并且逐渐地传播到欧洲各个国家。在漫长的传播过程中,印度创造的数字就被称为“阿拉伯数字”了。 由此可以看出,他们是同时被创造的。但我个人认为,人类是先认识1,因为初一的教科书上写着,负数是在人们的生产生活中产生的。人类应该是先发明了用1,2,3...数数,然后发现有东西没有了再用0表示,再发明了负数。4.数学中的符号+ - × ÷ ∧(表示乘方)√(开方)是有理数基本运算符号。 由于研究的需要,人类创造了大量的数学符号,来代替和表示某些数学概念和规律,简化了数学研究工作,促进了数学的发展。 在中学数学中,常见的数学符号有以下六种:一、数量符号 如,圆周率;a,x等。二、运算符号如加号(+),减号(-),乘号(×或·),除号(÷或-),比号(:)等。三、关系符号如“=”是“等号”,读作“等于”;“≈”或“=”是“约等号”读作“约等于”;“≠”是“不等号”。读作“不等于”;“>”是“大于符号”,读作“大于”;“<”是“小干符号”,读作“小于”;“‖”是“平行符号”,读作“平行于”;“⊥”是“垂直符号”,读作“垂直于”等。四、结合符号 如小括号( ),中括号[ ],大括号{ }。五、性质符号 如正号(+)、负号(-),绝对值符号(||)。六、简写符号 如三角形(△),圆(⊙),幂()等。这些符号的产生,一是来源于象形,实际上是缩小的图形。如平行符号“‖”是两条平行的直线;垂直符号“⊥”是互相垂直的两条直线;三角形符号“△”是一个缩小了的三角形;符号“⊙”表示一个圆,中间的一点表示圆心,以免与数0及英文字母O混淆。二是来源于会意,即由图形就可以看出某种特殊的意义。如用两条长度相等的线段“=”并列在一起,表示等号;加一条斜线“≠”,表示不等号;用符号“>”表示大于(左侧大,右边小),“<”表示小于(左侧小,右边大),意思不难理解;用括号“( )”、“[ ]”、“{}”把若干个量结合在一起,也是不言而喻的。三是来源于文字的缩写。如我们以后将要学到的平方根号“”中的“√”,是从拉丁字母Radix(根值)的第一个字母r演变而来。相似符号“∽”是把拉丁字母S横过来写,而S是Sindlar(相似)的第一个字母。还有大量的符号是人们经过规定沿用下来的。当然这些符号并不是一开始就都是这种形状,而是有一个演变过程的,这里就不多讲了。数学符号的产生,为数学科学的发展提供了有利的条件。首先,提高了计算效率。古时候,由于缺少必要的数学符号,提出一个数学问题和解决这个问题的过程,只有用语言文字叙述,几乎象做一篇短文,难怪有人把它称为“文章数学”。这种表达形式很不方便,严重阻碍了数学科学的发展。当数量、图形之间的关系能够用适当的数学符号表达后,人们就可以在这个基础上,根据自己的需要,深入进行推理和计算,因而能更迅速地得到问题的解答或发现新的规律。其次,缩短了学习的时间。初等数学发展到今天,已有两千多年的历史,内容非常丰富,而其中主要的内容今天能够在小学和中学阶段学完,这里数学符号是起一定作用的。例如,我们的祖先开始只有1、2少数几个数字的概念,而今天幼儿园的小朋友就能掌握几十个这样的数。分析原因,除了古今生活条件不同,人们的见识差别极大以外,今天已有一套完整的记数符号,人们容易掌握。第三、推动了深入的研究。我们研究数学概念和规律,不仅需要简明、确切地表达它们,而对它们内部复杂的关系,需要深人地加以探讨,没有数学符号的帮助,进行这样的研究是十分困难的。所以,数学符号的应用,是多快好省地研究数学科学的重要途径。我国宋朝著名科学家沈括曾经说过,数学方法应该“见繁即变,见简即用”。数学符号正是适应这种变“繁”为“简”的实际需要而产生的。数学符号不仅随着数学发展的需要而产生,而且也随着数学的发展不断完善。比如,古代各民族都有自己的记数符号,但在长期使用过程中,印度——阿拉伯数码记数方法显示出更多的优点,因而其他的数码符号逐渐淘汰,国际上都采用了这种记数方法。

一个数字大于零(<0)。 (相当于减去)带负号“ - ”标记。 如-2,,-45/77,π。 指:非负(非负),负(负号)的数量(正数),0(零),负/负(减号)。 例1,在小学的时候,我们了解到的自然数1,2,3,...; 0的对象,测量和计算可能无法获得的整数结果,用分数和小数。看到了一些其他类型的学生? 现在两个温度计,温度计液面在0刻度,这意味着温度为6℃,温度计液面0第6 规模,当温度是如何表示的? 提示:如果是6°C至,那么它不能区分零°C或零下6℃,所以我们引入了一个新的 - 负参考答案: 记为-6℃,说明:我们为了区分0℃和零下6°C量在这组具有相反意义,的概念引入负 2的情况下,让我们来看看一个例子,从中国地形图,你可以看到,世界最高峰 - 珠穆朗玛峰峰标志着8844 有一个吐鲁番盆地,明显-155你能说出自己的身高是多少你吗? 提示:中国地形图可以看出,两个标有自己的身高,代表的主体相对海平面通常简称为海拔高度珠峰海说:水平8844米,吐鲁番盆地海平面以下155米和参考答案:珠峰海拔高度8844米高度吐鲁番盆地海拔是155米。 -155 说明:这个例子也表明,我们需要引入以实际负,以区分海拔低于海平面的高度,他们也表示金额 0时,英国著名的代数学家摩根在1831年仍被视为负是虚构的。他用下面的例子来说明这一点:“56岁的老父亲,问他的儿子今年29岁,当父亲的年龄是儿子两次?”列式(56)+ = 2×(29 + x)的,提取= -2。他说,这种解决方案是荒谬的。当然,18世纪欧洲的负面排除已经不多了。随着19世纪整数理论基础的建立,负逻辑合理性,真正创建。 [编辑本段]负应用负已被广泛应用于温度,地板,抬高水位,盈利能力,增加/削减支出/收入,得分/标记。 [编辑本段]负中国九章算术“方程”一章的概念引入负(负数),加上或减去一些加法和减法算法。在某些问题上,以积极的(收入)的数量买入负(付款);缺乏金钱遗留下来的钱是负卖多少。粮食,谷物,计算加,减为负。 “正”,“负”,从那个时候到现在一直在使用这个词。 章的“方程”,引进正数和负数的加法法则被称为“阳性和阴性患者。正数和负数的乘法和除法排除朱世杰在1299年写的算术启蒙比较晚,明加上或减去手术“讲座正负数加减法”九章算术“更明确的法律,总共八个,比。明乘法和除法部“,”相同的名称被乘以一个积极的,参见乘以负的一个句子,也就是,(±)×(±)= +从头,(±一个)×(二) = - AB,这样的正面和负面的乘法法则的最早记载之一。宋末李晔创意方案对角线负计数芯片,在概念的引入是中国古代数学最杰出的创作之一。 印度人最早提出负数是约628年的婆罗摩笈多(598-665)。他做了一个小点或小圆圈,记住的数字表示负数的负算法。建议欧洲负数概念有了初步的了解,先计算的意大利数学家斐波那契(1170-1250)。地址的利润,他说:我会证明这个问题是不可能解决的,除非此人承认责任。在15世纪的舒适度开(1445 -1510)和16世纪的非洲历史上(1553年),虽然他们发现负,但认为这是一个荒谬的卡数(1545)时,给出了方程负负根,但他描述为“假数字。韦达知道存在的负面,但他并不完全否定笛卡尔部分接受负,他所谓的负根的方程假根,因为它是比”无“ 哈雷奥特(1560年至1621年)偶尔负个别方程式写在一侧,和“ - ”的意思,但他不接受负。奉李(1526年至1572年)给出了明确的定义,否定的。史蒂夫文本在正,负系数的方程,接受负面根。丌拉德(1595年至1629年)的消极和积极的,即用一个减号“ - ”表示一个负数。总之,在16世纪和17世纪,欧洲人接触到负,但负可接受的进步是缓慢的。

数学论文范文生活中的数学

在学习、工作中,大家肯定对论文都不陌生吧,论文写作的过程是人们获得直接经验的过程。那么,怎么去写论文呢?下面是我精心整理的数学论文作文5篇,供大家参考借鉴,希望可以帮助到有需要的朋友。

我家到观前街大约3500米。周末我们开车出行大约需要30分钟左右,也就是说,平均每分钟大约开120米左右。另外,还要再加上找停车埸的时间,而且还需要付停车费。但有一次奶奶带我骑电瓶车去,只用了20分钟。也就是说,平均每分钟大约骑了175米。这么一比较,骑车的速度是开车速度的1。5倍左右。于是,我跟妈妈说:“如果我们骑车出行,不但能节省时间还可以别让马路上太挤,更可以省了停车费和油费。”妈妈笑着夸我会动脑筋。

这次无意间的计算让我明白了,为什么要提倡绿色出行了!真的省时又省钱。

生活中的数学无处不在。只要肯动脑筋,就会发现很多省时又节约的方法。我喜欢数学,一定要认真学,要把学到的知识用到实际生活中去。

今天,姑妈给我出了一道数学题目,是关于年龄问题的,别看就一道题,它可是奥数题,我可要好好的动一下脑子。题目是;女儿今年3岁,妈妈今年33岁,几年后,妈妈的年龄是女儿的7倍?

我想了想便说;他们的年龄的差要先算出来;33—3=30(岁)她们的年龄差永远都不会变。几年后妈妈的年龄是女儿的3倍?要把女儿的年龄看作是一份,妈妈的年龄看做7份,可以画线段图来做做。就是相差6份,就是‘7—1=6(份)6份就是30岁,所以几年后女儿的年龄是30除以6=5(岁)也就是说;5—3=2(年)后妈妈的年龄是女儿的7倍。

姑妈听了,不时在向我投来赞赏的目光!

星期天,我到隔壁邻居家串门,正巧,他正为一道奥数题目发愁呢,我向他手中的纸一看:小明有1元,2元和5元的.人民币共60张,总面值为200元,已知1元比2元的人民币多4张,问这三种面值的人民币各有多少张?

他说,只要我能把这道题做出来,就和我一起出去玩,我一看这题目,就想到了我这学期新学的知识:替换,我便爽快的答应了。

先假设1元人民币减少4张,那么这三种人民币总共就是60-4=56张,总面值就是200-4=196元,这样1元和2元人民币的张数就变得同样多。再假设这56张人民币全是5元的,那么这些人民币的总面值就是5x56=280元,比前面假设的情形多了280-196=84元

这是由于把1元和2元的都假设成了5元的,这样的话就多算了5x2-1-2=7元,84÷7=12,由此可知有12张1元和12张2元的被假设成5元的了,因此,原来2元面值的人民币有12张,1元的有12+4=16张,5元面值的人民币有60-12-16=32张。

做完后,我在仔仔细细地检查了一遍,答案是正确的,我立刻把我的计算过程讲给了他听,他直夸我解题能力强,我心里比吃了蜜还甜,我们便一起高高兴兴地出去了。

我认为在生活中发现数学,理解运用它并且与朋友分享,这才是最大的快乐!

同学们,我这里有一道题目,你们也haveatry吧!

一辆汽车上午行了3小时,下午行了2小时,上午和下午一共行了340千米。如果上午每小时比下午每小时多行5千米,上午每小时行多少千米?下午呢?

有一天,我在玩一个游戏,碰上一道挑战题,只要题目做对了就能得到相应的奖励,题目是这样的:从1+2+3+……100=?我心想这样要加到什么时候啊。我赶紧请教爸爸,爸爸教了我一个好办法:例如从1加到6,可以组成1+6=7、2+5=7、3+4=7,再将三个7相加或者是3×7,得数就是21。计算方法是将第一个数1和最后一个数6相加得7,再和最后一个数的一半相乘,即和6÷2= 3相乘,3×7 = 21,这样就方便多了。我试着算了一下,从1加到10就是1+10 = 11,10÷2 = 5,11×5= 55;那么从1加到100就是1+100= 101,100÷2= 50,101×50= 5050。

哈哈,加法变乘法,算起来又快又准,数学真奇妙,数学无止境,数学真是快乐的天堂!

生活中,处处有数学,只要你善于观察,就一定能发现它蕴含的无穷奥秘。

我很喜欢数学,平常很爱探究,数学是我生活中的一部分,也是我唯一的爱好。我梦想就是成为一名数学家,成为一名伟大的数学家。

在四年级时,数学老师周老师教了我们商不变的规律,刚学习这个规律的我感到很好奇,有一些不相信。

商不变的规律就是:在除法中,被除数和除数同时扩大若干倍或缩小若干倍,商不会变,但余数会变。

我围绕着这个规律展开了实验。我用40和6两个数进行了实验。40除以6等于6,余数是4,。我将40和6同时扩大相同的倍数100,变成4000除以600,我计算了一下,商是6,余数是400,它的商没有变,余数扩大了相同的倍数100,变成了400。我吃了一惊,商居然真的没有变,还是6,而余数却变了。

我还是有一些不相信,又用50和4试验了一下。50除以4等于12,商是2。这次我将50和4同时扩大到原来的2倍,变成100和8,100除以8,商是12,余数是4。商还是没有变,但余数扩大了相同的倍数2倍,变成了4。我彻彻底底的震惊了,再一次体会到了数学的神奇。

五年级时,我又接触到了方程,方程其实就是含有未知数的等式。在学习商不变的规律后,我再次对方程产生了浓厚的兴趣。我找了许多方程来做,并学会从中发现规律。

3x?2=302计算方法是:先将302减去2,变成3x=302-2,那么3x=300,再将300除以3,变成x=300÷3,结果变成x=100。没想到只需几步就可以将这个方程解开,得到答案。

我又找了一个方程来计算。5x-6÷3=38,先将6÷3算出变成5x-2=38,再将38?2等于40,式子就变成了5x=40,最后将40除以5等于8,结果就是x=8。

数学,就像一座高峰,直插云霄,刚刚开始攀登时,感觉很轻松,但我们爬得越高,山峰就变得越陡,让人感到恐惧。这时候,只有真正喜爱数学的人才会有勇气继续攀登下去,所以,站在数学的高峰上的人,都是发自内心喜欢数学的,站在峰脚的人是望不到峰顶的。只有在生活中发现数学,感受数学,才能让自己的视野更加开阔!

让我们一起来探索数学的奥秘吧!

生活中的数学“对我来说什么都可以变成数学。”数学家笛卡儿曾这样说过。“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。”我国家喻户晓的数学家华罗庚也曾下过这样的结论。的确,正如两位前辈所说,数学与我们的生活息息相关,数学的脚步无处不在。 2006年已经接近尾声了,迎面而来的是新的一年——2007年。行走在繁华的大街上,随处可见商家打出的“满400送400”,“满300送300”的促销招牌。“这真实惠!”消费者们蜂拥而至,商场里人山人海,抢购成风。此情此景,真让人以为回到了物资短缺的年代。实际上商家心里早打好了如意算盘。俗话说:只有买亏,没有卖亏,“满400送400元券”只是商家的一种促销手段,其中暗藏着数学问题,暗藏着商业机密,暗藏着许多玄机。 去年,我们一家三口,也在新年之际在商场里“血拼”,当时是满400送400元券。我们先用980元买了一件苹果牌的皮夹克给爸爸,送来了800元购物券。我们并没有过分浪费,花了300元券买了一件298元藏青色的李宁牌棉袄,又用剩下的500元券中的488买了一件太子龙男装(由于是购物券,不设找零)。到底便宜了多少?298+488+980=1766(元)——这是原来不打折时需要花的钱。980/1776,所打的折扣大约是五五折。 我的姑姑和姑夫从前也做过服装生意,我对服装的进货成本与销售价的关系也有些了解。服装的进价一般只占建议零售价的20%~30%。随着竞争的加剧和商场促销力度越来越大,为了保持利润,商家或厂家还不断地把衣服的建议零售价标高。就如前几天在电视中看见的一位消费者所说,某一品牌同一款式的一条尼料的裤子,三年前建议零售价还只是299元,今年标价变成了999元。这么一算,进价大概只有商场里售价的10%~20%。就算打了五五折,商家还稳赚三至五成的毛利。 广告,广告,便是广而告之。许多人一窝蜂似的赶来抢购、血拼,商场的人流量多了,商品销售量也快速增长。就按人流量是平时的三倍算,这里又出现了一个数学问题。假设平时人流量少时,一件商品按8折销售。8折减去进价2折,标价部分的6成就成了毛利。虽然现在“满400送400元券”时同一件商品可能只赚三至五成,但销量起码是平时的三倍以上。就按三成毛利和三倍销量来计算,3×3=9,与平时的6成毛利相比,一天能多赚50%。虽说这样卖每件单位毛利率有所下降,毛利额却因销售量的增加而增长,更因大量销售而加快了资金周转,带来额外的收益。 商品标价和促销中有数学,购物消费中有数学,装修房子有数学,织毛衣中有数学……总而言之,数学在现实生活中无处不在!

我们身边的数学 数学小论文 我们身边的数学无处不在。有了数学,才有了建筑,才有了交易。。。。。。数学可以说是带来了我们生活的一切。当我们在休闲的时候,就已神奇地接触到数学了。 我们经常用纸牌来玩“24点”的游戏,这个游戏使我们在休闲娱乐的同时也用到了数学。规则很简单:我们任意摸出4张牌,然后通过加减乘除四则运算,必要时也可使用括号,把这4个数连成算式,并使答案为24。排算式时,4张纸牌显示出的四个数必须都要用上,并且只能用一次。例如四张纸牌显示出的四个数分别是3,4,4,6,若排成4乘6等于24或3加4加4加6加4再加3等于24,都不行,虽然符合答案等于24这个条件,但却不符合其他条件,那也没用。但当排成4乘6乘(4减3)等于24或3乘4乘(6减4)等于24就对了。再例如四张纸牌显示出的4个数分别是3,3,7,7.大家略看时会觉得这解不出来,甚至可能会说这根本不能解。但是,在这看似绝境的题目中却存在着‘‘救生’’之路:(3+7分之3)乘7=24。瞧,这不就解出来了吗?所以说,数学就是那么神奇啊。可能还有更多的解法,那就需要人们去仔细思考,去解出了。在玩“24点”游戏时,有时拼得快,有时拼得慢,这就关系到你对数学的运算程度了。而选用‘‘24’’来作为游戏的“主人公”的原因也离不开数学,其原因是24有1,2,3,4,6,8,12,24这8个约数,而其他数:20,21,22,23等的约数都少于24.这普普通通的纸牌游戏却蕴含着这么多 “数学”,有怎能不说,数学就在我们身边,数学就是我们生活的需要。但是,这数学的神奇还是需要用心去创造的。

切西瓜炎热的夏天,西瓜便成了一种解渴的水果.这天小明的妈妈买了一个大西瓜回家.她准备考一考小明.她问小明:“怎么样切西瓜切出9片只用4刀?”这个问题难倒了小明,他拿出一个张纸一个铅笔,画呀画,怎么也不知道怎么切.他实在想不出方法,便去问妈妈答案是什么?妈妈笑了笑说:“用井字切法呀!”说完用刀切西瓜给小明做了一个示范。 小明明白了,拿着一片大西瓜津津有味的吃了起来。这时妈妈又问:“用4刀切8片呢?”小明动了动脑筋,自豪地说用米字切法.妈妈夸他是个好学生。 只用动动脑筋,世界上没有什么事可以难住你的。

相关百科

热门百科

首页
发表服务