医学影像是指为了医疗或医学研究,对人体或人体某部分,以非侵入方式取得内部组织影像的技术与处理过程。下面,我为大家分享关于医学影像的论文,希望对大家有所帮助!
前 言
数字图像处理技术以当前数字化发展为基础, 逐渐衍生出的一项网络处理技术, 数字图像处理技术可实现对画面更加真实的展示。 在医学中,随着数字图像处理技术的渗透,数字图像将相关的病症呈现出来, 并通过处理技术对画面上相关数据进行处理,这种医疗手段,可大幅提升相关病症的治愈率,实现更加精准治疗的疗效。 在医学中医学影像广泛用于以下几方面之中,其中包括 CT(计算机 X 线断层扫描)、PET(正电子发射断层成像)、MRI(核磁共振影像)以及 UI(超声波影像)。 数字图像处理技术在技术发展基础上,其应用的范围将会在逐渐得到扩展,应用成效将会进一步得到提升。
1 关键技术在数字图像处理中的应用
医学影像中对于数字图像的处理, 通常是将数字图像转化成为相关数据,并针对相关数据呈现的结果,对患者病症进行分析,在对数字图像处理中,存在一定的关键技术,这些关键技术直接影响着整个医疗治疗与检查。
图像获取
图像获取顾名思义将医患的相关数据进行整理, 在进行数字图像检测时,得出的相关图像,在获取相关图像后,经过计算机的转变,将图像以数据的形式进行处理,最后将处理结果呈现出来。 在计算机摄取图像中,通过光电的转换,以数字化的形式展现出来, 数字图像处理技术还可实现将分析的结果作为医疗诊断的依据,进行保存[1].
图像处理
在运用数字图像获取相关图像后,需对图像进行处理,如压缩处理、编码处理,将所有运行的数据进行整理,将有关的数据进行压缩,并将相关编码进行处理,如模型基编码处理、神经网络编码处理等。
图像识别与重建
在经过图像复原后,将图像进行变换,在进行图片分析后分割相关图像,测量图像的区域特征,最后实现图像设备与呈现,在重建图像后,进行图像配准。
2 医学影像中数字图像处理技术
数字图像处理技术的辅助治疗
当前医学图像其中包括计算机 X 线断层扫描、 正电子发射断层成像、核磁共振影像以及超声波影像,在医疗治疗中,可根据相关数据的组建,进而实现几何模式的呈现,如 3D,还原机体的各项组织中,对于细小部位可实现放大观察,可实现医生定量认识,更加细致的观察病变处,为接下来的医疗治疗提供帮助。 例如在核磁共振影像治疗中, 首先设定一定的磁场,通过无线电射频脉冲激发的'方式,对机体中氢原子核进行刺激,在运行过程中产生共振,促进机体吸收能力,帮助查找病症所在[2].
提升放射治疗的疗效
在医疗中, 运用数字图像处理技术即可实现对患病处的观察,也可实现对病患处的治疗,这种治疗方式常见于肿瘤或癌症病变的放射性治疗。 在进行治疗前, 首先定位于病患方位,在准确定位后,借助数字图像处理技术,全方位的计划治疗方案,并在此基础上对病患处进行治疗。 例如在治疗肿瘤癌症等病变之处,利用数字图像排查病变以外机体状况,降低手术风险。
加深对脑组织以其功能认识
脑组织是人体机能运转的核心, 在脑组织中存在众多复杂的结构,因此想要实现对脑组织的功能认识,必须对脑组织进行全方位的观测,深层探析其各项组织结构。 近些年随着医疗技术的提升,数字图像处理技术被运用到医学之中,数字图像处理技术可实现透过大脑皮层对脑组织进行全方位观测,最后立体的呈现出脑组织中各项机构的运作状况[3]. 例如功能性磁共振成像即 FMRI,这种成像可对机体大脑皮层的活动状况进行检测, 还可实时跟踪信号的改变, 其高清的时间分辨率,为当代医疗提供了众多帮助。
实现了数字解剖功能
数字解剖即虚拟解剖, 这种解剖行为需以高科技为依托从力学、视觉等各方面,通过虚拟人资源得建立,透析机体各项组织结构,实现对虚拟人的解剖,增加对机体的认识,真实的还原解剖学相关知识,这种手段对于医疗教学、解剖研究具有重要的影响作用。
3 结 论
综上所述, 数字图像处理技术在医学影像中具有重要的应用价值,其技术的发展为医疗技术提供了进步的平台,也为数字图像处理技术的发展提供了应用空间, 这种结合的方式既是社会发展的要求,也是时代进步的趋势。
参考文献:
[1]张瑞兰,华 晶,安巍力,刘迎九。数字图像处理在医学影像方面的应用[J].医学信息,2012,03:400~401.
[2]刘 磊,JINChen-Lie.计算机图像处理技术在医学影像学上的应用[J].中国老年学杂志,2012,24:5642~5643.
[3]李 杨,李兴山,何常豫,孟利军。数字图像处理技术在腐蚀科学中的应用研究[J].价值工程,2015,02:51~52.
图像处理是利用计算机对图像信息进行加工以满足人的视觉心理或者应用需求的行为,应用广泛,多用于测绘学、大气科学、天文学、美图、使图像提高辨识等。学术堂在这里为大家整理了一些图像处理本科毕业论文题目,希望对你有用。1、基于模糊分析的图像处理方法及其在无损检测中的应用研究2、数字图像处理与识别系统的开发3、关于数字图像处理在运动目标检测和医学检验中若干应用的研究4、基于ARM和DSP的嵌入式实时图像处理系统设计与研究5、基于图像处理技术的齿轮参数测量研究6、图像处理技术在玻璃缺陷检测中的应用研究7、图像处理技术在机械零件检测系统中的应用8、基于MATLAB的X光图像处理方法9、基于图像处理技术的自动报靶系统研究10、多小波变换及其在数字图像处理中的应用11、基于图像处理的检测系统的研究与设计12、基于DSP的图像处理系统的设计13、医学超声图像处理研究14、基于DSP的视频图像处理系统设计15、基于FPGA的图像处理算法的研究与硬件设计
对于目标检测方向并不是特别熟悉,本文记录一下RCNN, fast-RCNN, faster-RCNN, mask-RCNN这4篇有关目标检测的论文笔记和学习心得。
R-CNN的意思就是Region based,主要思路就是根据一张图像,提取多个region,再将每个Region输入CNN来进行特征的提取。因此RCNN就可以分为 Region proposals , Feature extraction 两个主要部分,提取的特征就可以输入任意一个分类器来进行分类。 模型的流程图如下:
在训练的时候,首先使用的是已经训练好的CNN网络作为特征提取器,但是由于预训练是在分类数据集上,因此在应用到检测之前要做finetune。也就是说,为了将用ImageNet数据集训练的网络应用到新的任务(检测),新的数据集(region)上,作者将原来的CNN最后的1000类的fc层,更改为了 层, 代表待检测的物体的类别数。然后,对于所有的region,如果它和ground truth的重叠率大于,就认为是正类。 对于分类器的训练,作者发现选择多大的IoU来区分正类和负类非常关键。并且,对于每一类,都会训练一个分类器。
框的回归非常重要,在对每一个region proposal使用分类器进行打分评价之后,作者使用一个回归器来预测一个新的框作为结果。这个回归器使用的特征是从CNN中提取的特征。回归器的训练中,输入是 region proposal 的 和ground truth的 ,目标是学习一种变换,使得region proposal通过该变换能够接近ground truth。同时,希望这种变换拥有尺度不变性,也就是说尺度变化的话,变换不会改变。 如下图所示,每一个regressor会学习一组参数,特征输入是pool 5的特征输出,拟合的目标是 。
Fast-RCNN 主要解决的问题是在RCNN中对于每一个region proposal都进行特征提取,会产生非常多的冗余计算,因此可以先对一张图像进行特征提取,再根据region proposal在相应的特征上进行划分得到对应region的特征(映射关系)。 这样便可以实现共享计算提高速度,但是与SPPnets不同,SPPnets在一副图像得到对应的特征后,从这张图像的特征上proposal对应的部分,采用空间金字塔池化,如下图:
RoI pooling的方法很简单,类似于空间金字塔pooling,它将proposal部分对应卷积层输出的特征(称之为RoI,因为用于做pooling的特征是 region of interest,也就是我们感兴趣的区域)划分成 块,然后对每一块求最大值,最终得到了一个 的特征图。可以看出,它只是空间金字塔pooling的一部分。 但是SPP-nets的空间金字塔也是可以求导的,那么它到底不好在哪里呢?因为当每一个RoI都可能来源于不同的图像的时候(R-CNN和SPPnets的训练策略是从一个batch的不同图像中,分别挑选一个proposal region),SPPNets的训练非常地低效,这种低效来源于在SPPnets的训练中,每个RoI的感受野都非常地大,很可能对应了原图的整个图像,因此,得到的特征也几乎对应了整张图像,所以输入的图像也就很大。 为了提高效率,Fast-RCNN首先选取 个图像,再从每个图像上选择 个RoI,这样的效率就比从每个图像提取一个RoI提高了 倍。
为了将分类和框回归结合起来,作者采用了多任务的loss,来进行联合的训练。具体来说就是将分类的loss和框回归的loss结合起来。网络的设计上非常直接,就是将RoI得到的特征接几个FC层后,分别接不同的输出层。对应于分类部分,特征会接一个softmax输出,用于分类,对于框回归部分,会接一个输出4维特征的输出层,然后分别计算loss,用于反向传播。loss的公式如下:
回归的target可以参考前面的R-CNN部分。
notes
为什么比fast还fast呢?主要原因是在这篇论文中提出了一个新的层:RPN(region proposal networks)用于替代之前的selective search。这个层还可以在GPU上运算来提高速度。 RPN的目的:
为了能够进行region proposal,作者使用了一个小的网络,在基础的卷积层输出的特征上进行滑动,这个网络输入大小为 ,输入后会映射(用 的卷积)为一个固定长度的特征向量,然后接两个并联的fc层(用 的卷积层代替),这两个fc层,一个为box-regressoin,一个为box-classification。如下图:
在每一个滑动窗口(可以参考 ),为了考虑到尽可能多的框的情况,作者设计了anchors来作为region proposal。anchors就是对于每一个滑动窗口的中心位置,在该位置对应的原图位置的基础上,按照不同的尺度,长宽比例框出 个不同的区域。然后根据这些anchors对应的原始图像位置以及区域,和ground truth,就可以给每一个滑动窗口的每一个anchor进行标记,也就是赋予label,满足一定条件标记为正类(比如和ground truth重叠大于一个值),一定条件为负类。对于正类,就可以根据ground truth和该anchor对应的原图的区域之间的变换关系(参考前面的R-CNN的框回归),得到回归器中的目标,用于训练。也就是论文中的loss function部分:
自然地,也就要求RPN的两个并联的FC层一个输出2k个值用于表示这k个anchor对应的区域的正类,负类的概率,另一个输出4k个值,用于表示框回归的变换的预测值。
对于整个网络的训练,作者采用了一种叫做 4-step Alternating Training 的方法。具体可以参考论文。
与之前的检测任务稍有不同,mask r-cnn的任务是做instance segmentation。因此,它需要对每一个像素点进行分类。 与Faster R-CNN不同,Faster R-CNN对每一个候选框产生两个输出,一个是类别,一个是bounding box的offset。Mask R-CNN新增加了一个输出,作为物体的mask。这个mask类似于ps中的蒙版。
与Faster R-CNN类似的是,Mask R-CNN同样采用RPN来进行Region Proposal。但是在之后,对于每一个RoI,mask r-cnn还输出了一个二值化的mask。
不像类别,框回归,输出都可以是一个向量,mask必须保持一定的空间信息。因此,作者采用FCN来从每个RoI中预测一个 的mask。
由于属于像素级别的预测问题,就需要RoI能够在进行特征提取的时候保持住空间信息,至少在像素级别上能够对应起来。因此,传统的取最大值的方法就显得不合适。 RoI Pooling,经历了两个量化的过程: 第一个:从roi proposal到feature map的映射过程。 第二个:从feature map划分成7*7的bin,每个bin使用max pooling。
为此,作者使用了RoIAlign。如下图
为了避免上面提到的量化过程
可以参考
作者使用ResNet作为基础的特征提取的网络。 对于预测类别,回归框,mask的网络使用如下图结构:
整体看完这几篇大佬的论文,虽说没有弄清楚每一个实现细节,但是大体上了解了算法的思路。可以看出,出发点都源于深度神经网络在特征提取上的卓越能力,因此一众大神试图将这种能力应用在检测问题中。从R-CNN中简单地用于特征提取,到为了提高速度减少计算的Fast R-CNN,再到为了将region proposal集成进入整个模型中,并且利用GPU加速的RPN,也就是Faster R-CNN。再到为了应用于instance segmentation任务中,设计的RoIAlign和mask。包括bounding box regression,pooling层的设计,训练方法的选择,loss的设计等等细节,无一不体现了大师们的思考和创造力。 可能在我们这些“拿来”者的眼中,这些方法都显得“理所应当”和巧妙,好用,但是,它们背后隐藏的选择和这些选择的思考却更值得我们学习。 以及,对待每一个问题,如何设计出合理的解决方案,以及方案的效率,通用性,更是应该我们努力的方向。
随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读!
图像识别技术研究综述
摘要:随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。图像识别是利用计算机对图像进行处理、分析和理解,由于图像在成像时受到外部环境的影响,使得图像具有特殊性,复杂性。基于图像处理技术进一步探讨图像识别技术及其应用前景。
关键词:图像处理;图像识别;成像
中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)10-2446-02
图像是客观景物在人脑中形成的影像,是人类最重要的信息源,它是通过各种观测系统从客观世界中获得,具有直观性和易理解性。随着计算机技术、多媒体技术、人工智能技术的迅速发展,图像处理技术的应用也越来越广泛,并在科学研究、教育管理、医疗卫生、军事等领域已取得的一定的成绩。图像处理正显著地改变着人们的生活方式和生产手段,比如人们可以借助于图像处理技术欣赏月球的景色、交通管理中的车牌照识别系统、机器人领域中的计算机视觉等,在这些应用中,都离不开图像处理和识别技术。图像处理是指用计算机对图像进行处理,着重强调图像与图像之间进行的交换,主要目标是对图像进行加工以改善图像的视觉效果并为后期的图像识别大基础[1]。图像识别是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。但是由于获取的图像本事具有复杂性和特殊性,使得图像处理和识别技术成为研究热点。
1 图像处理技术
图像处理(image processing)利用计算机对图像进行分析,以达到所需的结果。图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。这种处理大多数是依赖于软件实现的。其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。
1)图像采集,图像采集是数字图像数据提取的主要方式。数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。图像的提取是将一个图像变换为适合计算机处理的形式的第一步。
2)图像增强,图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。
3)图像复原,图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。
4)图像编码与压缩,数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。由于视频可以被看作是一幅幅不同的但有紧密相关的静态图像的时间序列,因此动态视频的单帧图像压缩可以应用静态图像的压缩标准。图像编码压缩技术可以减少图像的冗余数据量和存储器容量、提高图像传输速度、缩短处理时间。
5)图像分割技术,图像分割是把图像分成一些互不重叠而又具有各自特征的子区域,每一区域是像素的一个连续集,这里的特性可以是图像的颜色、形状、灰度和纹理等。图像分割根据目标与背景的先验知识将图像表示为物理上有意义的连通区域的集合。即对图像中的目标、背景进行标记、定位,然后把目标从背景中分离出来。目前,图像分割的方法主要有基于区域特征的分割方法、基于相关匹配的分割方法和基于边界特征的分割方法[2]。由于采集图像时会受到各种条件的影响会是图像变的模糊、噪声干扰,使得图像分割是会遇到困难。在实际的图像中需根据景物条件的不同选择适合的图像分割方法。图像分割为进一步的图像识别、分析和理解奠定了基础。
2 图像识别技术
图像识别是通过存储的信息(记忆中存储的信息)与当前的信息(当时进入感官的信息)进行比较实现对图像的识别[3]。前提是图像描述,描述是用数字或者符号表示图像或景物中各个目标的相关特征,甚至目标之间的关系,最终得到的是目标特征以及它们之间的关系的抽象表达。图像识别技术对图像中个性特征进行提取时,可以采用模板匹配模型。在某些具体的应用中,图像识别除了要给出被识别对象是什么物体外,还需要给出物体所处的位置和姿态以引导计算初工作。目前,图像识别技术已广泛应用于多个领域,如生物医学、卫星遥感、机器人视觉、货物检测、目标跟踪、自主车导航、公安、银行、交通、军事、电子商务和多媒体网络通信等。主要识别技术有:
指纹识别
指纹识别是生物识别技术中一种最实用、最可靠和价格便宜的识别手段,主要应用于身份验证。指纹识别是生物特征的一个部分,它具有不变性:一个人的指纹是终身不变的;唯一性:几乎没有两个完全相同的指纹[3]。一个指纹识别系统主要由指纹取像、预处理与特征提取、比对、数据库管理组成。目前,指纹识别技术与我们的现实生活紧密相关,如信用卡、医疗卡、考勤卡、储蓄卡、驾驶证、准考证等。
人脸识别 目前大多数人脸识别系统使用可见光或红外图像进行人脸识别,可见光图像识别性能很容易受到光照变化的影响。在户外光照条件不均匀的情况下,其正确识别率会大大降低。而红外图像进行人脸识别时可以克服昏暗光照条件变化影响,但由于红外线不能穿透玻璃,如果待识别的对象戴有眼镜,那么在图像识别时,眼部信息全部丢失,将严重影响人脸识别的性能[4]。
文字识别
文字识别是将模式识别、文字处理、人工智能集与一体的新技术,可以自动地把文字和其他信息分离出来,通过智能识别后输入计算机,用于代替人工的输入。文字识别技术可以将纸质的文档转换为电子文档,如银行票据、文稿、各类公式和符号等自动录入,可以提供文字的处理效率,有助于查询、修改、保存和传播。文字识别方法主要有结构统计模式识别、结构模式识别和人工神经网络[5]。由于文字的数量庞大、结构复杂、字体字形变化多样,使得文字识别技术的研究遇到一定的阻碍。
3 结束语
人类在识别现实世界中的各种事物或复杂的环境是一件轻而易举的事,但对于计算机来讲进行复杂的图像识别是非常困难的[6]。在环境较为简单的情况下,图像识别技术取得了一定的成功,但在复杂的环境下,仍面临着许多问题:如在图像识别过程中的图像分割算法之间的性能优越性比较没有特定的标准,以及算法本身存在一定的局限性,这使得图像识别的最终结果不十分精确等。
参考文献:
[1] 胡爱明,周孝宽.车牌图像的快速匹配识别方法[J].计算机工程与应用,2003,39(7):90—91.
[2] 胡学龙.数字图像处理[M].北京:电子工业出版社,2011.
[3] 范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007.
[4] 晓慧,刘志镜.基于脸部和步态特征融合的身份识别[J].计算机应用,2009,1(29):8.
[5] 陈良育,曾振柄,张问银.基于图形理解的汉子构型自动分析系统[J].计算机应用,2005,25(7):1629-1631.
[6] Sanderson C,Paliwal K Fusion and Person Verification Using Speech & Face Information[C].IDIAP-RR 02-33,Martigny,Swizerland,2002.
点击下页还有更多>>>图像识别技术论文
数字图像处理是利用计算机对图像信息进行加工以满足人的视觉心理或者应用需求的行为,应用广泛,多用于测绘学、大气科学、天文学、美图、使图像提高辨识等。这里学术堂为大家整理了一些数字图像处理毕业论文题目,希望对你有用。1、基于模糊分析的图像处理方法及其在无损检测中的应用研究2、数字图像处理与识别系统的开发3、关于数字图像处理在运动目标检测和医学检验中若干应用的研究4、基于ARM和DSP的嵌入式实时图像处理系统设计与研究5、基于图像处理技术的齿轮参数测量研究6、图像处理技术在玻璃缺陷检测中的应用研究7、图像处理技术在机械零件检测系统中的应用8、基于MATLAB的X光图像处理方法9、基于图像处理技术的自动报靶系统研究10、多小波变换及其在数字图像处理中的应用11、基于图像处理的检测系统的研究与设计12、基于DSP的图像处理系统的设计13、医学超声图像处理研究14、基于DSP的视频图像处理系统设计15、基于FPGA的图像处理算法的研究与硬件设计
随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读!
图像识别技术研究综述
摘要:随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。图像识别是利用计算机对图像进行处理、分析和理解,由于图像在成像时受到外部环境的影响,使得图像具有特殊性,复杂性。基于图像处理技术进一步探讨图像识别技术及其应用前景。
关键词:图像处理;图像识别;成像
中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)10-2446-02
图像是客观景物在人脑中形成的影像,是人类最重要的信息源,它是通过各种观测系统从客观世界中获得,具有直观性和易理解性。随着计算机技术、多媒体技术、人工智能技术的迅速发展,图像处理技术的应用也越来越广泛,并在科学研究、教育管理、医疗卫生、军事等领域已取得的一定的成绩。图像处理正显著地改变着人们的生活方式和生产手段,比如人们可以借助于图像处理技术欣赏月球的景色、交通管理中的车牌照识别系统、机器人领域中的计算机视觉等,在这些应用中,都离不开图像处理和识别技术。图像处理是指用计算机对图像进行处理,着重强调图像与图像之间进行的交换,主要目标是对图像进行加工以改善图像的视觉效果并为后期的图像识别大基础[1]。图像识别是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。但是由于获取的图像本事具有复杂性和特殊性,使得图像处理和识别技术成为研究热点。
1 图像处理技术
图像处理(image processing)利用计算机对图像进行分析,以达到所需的结果。图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。这种处理大多数是依赖于软件实现的。其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。
1)图像采集,图像采集是数字图像数据提取的主要方式。数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。图像的提取是将一个图像变换为适合计算机处理的形式的第一步。
2)图像增强,图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。
3)图像复原,图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。
4)图像编码与压缩,数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。由于视频可以被看作是一幅幅不同的但有紧密相关的静态图像的时间序列,因此动态视频的单帧图像压缩可以应用静态图像的压缩标准。图像编码压缩技术可以减少图像的冗余数据量和存储器容量、提高图像传输速度、缩短处理时间。
5)图像分割技术,图像分割是把图像分成一些互不重叠而又具有各自特征的子区域,每一区域是像素的一个连续集,这里的特性可以是图像的颜色、形状、灰度和纹理等。图像分割根据目标与背景的先验知识将图像表示为物理上有意义的连通区域的集合。即对图像中的目标、背景进行标记、定位,然后把目标从背景中分离出来。目前,图像分割的方法主要有基于区域特征的分割方法、基于相关匹配的分割方法和基于边界特征的分割方法[2]。由于采集图像时会受到各种条件的影响会是图像变的模糊、噪声干扰,使得图像分割是会遇到困难。在实际的图像中需根据景物条件的不同选择适合的图像分割方法。图像分割为进一步的图像识别、分析和理解奠定了基础。
2 图像识别技术
图像识别是通过存储的信息(记忆中存储的信息)与当前的信息(当时进入感官的信息)进行比较实现对图像的识别[3]。前提是图像描述,描述是用数字或者符号表示图像或景物中各个目标的相关特征,甚至目标之间的关系,最终得到的是目标特征以及它们之间的关系的抽象表达。图像识别技术对图像中个性特征进行提取时,可以采用模板匹配模型。在某些具体的应用中,图像识别除了要给出被识别对象是什么物体外,还需要给出物体所处的位置和姿态以引导计算初工作。目前,图像识别技术已广泛应用于多个领域,如生物医学、卫星遥感、机器人视觉、货物检测、目标跟踪、自主车导航、公安、银行、交通、军事、电子商务和多媒体网络通信等。主要识别技术有:
指纹识别
指纹识别是生物识别技术中一种最实用、最可靠和价格便宜的识别手段,主要应用于身份验证。指纹识别是生物特征的一个部分,它具有不变性:一个人的指纹是终身不变的;唯一性:几乎没有两个完全相同的指纹[3]。一个指纹识别系统主要由指纹取像、预处理与特征提取、比对、数据库管理组成。目前,指纹识别技术与我们的现实生活紧密相关,如信用卡、医疗卡、考勤卡、储蓄卡、驾驶证、准考证等。
人脸识别 目前大多数人脸识别系统使用可见光或红外图像进行人脸识别,可见光图像识别性能很容易受到光照变化的影响。在户外光照条件不均匀的情况下,其正确识别率会大大降低。而红外图像进行人脸识别时可以克服昏暗光照条件变化影响,但由于红外线不能穿透玻璃,如果待识别的对象戴有眼镜,那么在图像识别时,眼部信息全部丢失,将严重影响人脸识别的性能[4]。
文字识别
文字识别是将模式识别、文字处理、人工智能集与一体的新技术,可以自动地把文字和其他信息分离出来,通过智能识别后输入计算机,用于代替人工的输入。文字识别技术可以将纸质的文档转换为电子文档,如银行票据、文稿、各类公式和符号等自动录入,可以提供文字的处理效率,有助于查询、修改、保存和传播。文字识别方法主要有结构统计模式识别、结构模式识别和人工神经网络[5]。由于文字的数量庞大、结构复杂、字体字形变化多样,使得文字识别技术的研究遇到一定的阻碍。
3 结束语
人类在识别现实世界中的各种事物或复杂的环境是一件轻而易举的事,但对于计算机来讲进行复杂的图像识别是非常困难的[6]。在环境较为简单的情况下,图像识别技术取得了一定的成功,但在复杂的环境下,仍面临着许多问题:如在图像识别过程中的图像分割算法之间的性能优越性比较没有特定的标准,以及算法本身存在一定的局限性,这使得图像识别的最终结果不十分精确等。
参考文献:
[1] 胡爱明,周孝宽.车牌图像的快速匹配识别方法[J].计算机工程与应用,2003,39(7):90—91.
[2] 胡学龙.数字图像处理[M].北京:电子工业出版社,2011.
[3] 范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007.
[4] 晓慧,刘志镜.基于脸部和步态特征融合的身份识别[J].计算机应用,2009,1(29):8.
[5] 陈良育,曾振柄,张问银.基于图形理解的汉子构型自动分析系统[J].计算机应用,2005,25(7):1629-1631.
[6] Sanderson C,Paliwal K Fusion and Person Verification Using Speech & Face Information[C].IDIAP-RR 02-33,Martigny,Swizerland,2002.
点击下页还有更多>>>图像识别技术论文
随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读!
图像识别技术研究综述
摘要:随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。图像识别是利用计算机对图像进行处理、分析和理解,由于图像在成像时受到外部环境的影响,使得图像具有特殊性,复杂性。基于图像处理技术进一步探讨图像识别技术及其应用前景。
关键词:图像处理;图像识别;成像
中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)10-2446-02
图像是客观景物在人脑中形成的影像,是人类最重要的信息源,它是通过各种观测系统从客观世界中获得,具有直观性和易理解性。随着计算机技术、多媒体技术、人工智能技术的迅速发展,图像处理技术的应用也越来越广泛,并在科学研究、教育管理、医疗卫生、军事等领域已取得的一定的成绩。图像处理正显著地改变着人们的生活方式和生产手段,比如人们可以借助于图像处理技术欣赏月球的景色、交通管理中的车牌照识别系统、机器人领域中的计算机视觉等,在这些应用中,都离不开图像处理和识别技术。图像处理是指用计算机对图像进行处理,着重强调图像与图像之间进行的交换,主要目标是对图像进行加工以改善图像的视觉效果并为后期的图像识别大基础[1]。图像识别是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。但是由于获取的图像本事具有复杂性和特殊性,使得图像处理和识别技术成为研究热点。
1 图像处理技术
图像处理(image processing)利用计算机对图像进行分析,以达到所需的结果。图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。这种处理大多数是依赖于软件实现的。其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。
1)图像采集,图像采集是数字图像数据提取的主要方式。数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。图像的提取是将一个图像变换为适合计算机处理的形式的第一步。
2)图像增强,图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。
3)图像复原,图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。
4)图像编码与压缩,数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。由于视频可以被看作是一幅幅不同的但有紧密相关的静态图像的时间序列,因此动态视频的单帧图像压缩可以应用静态图像的压缩标准。图像编码压缩技术可以减少图像的冗余数据量和存储器容量、提高图像传输速度、缩短处理时间。
5)图像分割技术,图像分割是把图像分成一些互不重叠而又具有各自特征的子区域,每一区域是像素的一个连续集,这里的特性可以是图像的颜色、形状、灰度和纹理等。图像分割根据目标与背景的先验知识将图像表示为物理上有意义的连通区域的集合。即对图像中的目标、背景进行标记、定位,然后把目标从背景中分离出来。目前,图像分割的方法主要有基于区域特征的分割方法、基于相关匹配的分割方法和基于边界特征的分割方法[2]。由于采集图像时会受到各种条件的影响会是图像变的模糊、噪声干扰,使得图像分割是会遇到困难。在实际的图像中需根据景物条件的不同选择适合的图像分割方法。图像分割为进一步的图像识别、分析和理解奠定了基础。
2 图像识别技术
图像识别是通过存储的信息(记忆中存储的信息)与当前的信息(当时进入感官的信息)进行比较实现对图像的识别[3]。前提是图像描述,描述是用数字或者符号表示图像或景物中各个目标的相关特征,甚至目标之间的关系,最终得到的是目标特征以及它们之间的关系的抽象表达。图像识别技术对图像中个性特征进行提取时,可以采用模板匹配模型。在某些具体的应用中,图像识别除了要给出被识别对象是什么物体外,还需要给出物体所处的位置和姿态以引导计算初工作。目前,图像识别技术已广泛应用于多个领域,如生物医学、卫星遥感、机器人视觉、货物检测、目标跟踪、自主车导航、公安、银行、交通、军事、电子商务和多媒体网络通信等。主要识别技术有:
指纹识别
指纹识别是生物识别技术中一种最实用、最可靠和价格便宜的识别手段,主要应用于身份验证。指纹识别是生物特征的一个部分,它具有不变性:一个人的指纹是终身不变的;唯一性:几乎没有两个完全相同的指纹[3]。一个指纹识别系统主要由指纹取像、预处理与特征提取、比对、数据库管理组成。目前,指纹识别技术与我们的现实生活紧密相关,如信用卡、医疗卡、考勤卡、储蓄卡、驾驶证、准考证等。
人脸识别 目前大多数人脸识别系统使用可见光或红外图像进行人脸识别,可见光图像识别性能很容易受到光照变化的影响。在户外光照条件不均匀的情况下,其正确识别率会大大降低。而红外图像进行人脸识别时可以克服昏暗光照条件变化影响,但由于红外线不能穿透玻璃,如果待识别的对象戴有眼镜,那么在图像识别时,眼部信息全部丢失,将严重影响人脸识别的性能[4]。
文字识别
文字识别是将模式识别、文字处理、人工智能集与一体的新技术,可以自动地把文字和其他信息分离出来,通过智能识别后输入计算机,用于代替人工的输入。文字识别技术可以将纸质的文档转换为电子文档,如银行票据、文稿、各类公式和符号等自动录入,可以提供文字的处理效率,有助于查询、修改、保存和传播。文字识别方法主要有结构统计模式识别、结构模式识别和人工神经网络[5]。由于文字的数量庞大、结构复杂、字体字形变化多样,使得文字识别技术的研究遇到一定的阻碍。
3 结束语
人类在识别现实世界中的各种事物或复杂的环境是一件轻而易举的事,但对于计算机来讲进行复杂的图像识别是非常困难的[6]。在环境较为简单的情况下,图像识别技术取得了一定的成功,但在复杂的环境下,仍面临着许多问题:如在图像识别过程中的图像分割算法之间的性能优越性比较没有特定的标准,以及算法本身存在一定的局限性,这使得图像识别的最终结果不十分精确等。
参考文献:
[1] 胡爱明,周孝宽.车牌图像的快速匹配识别方法[J].计算机工程与应用,2003,39(7):90—91.
[2] 胡学龙.数字图像处理[M].北京:电子工业出版社,2011.
[3] 范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007.
[4] 晓慧,刘志镜.基于脸部和步态特征融合的身份识别[J].计算机应用,2009,1(29):8.
[5] 陈良育,曾振柄,张问银.基于图形理解的汉子构型自动分析系统[J].计算机应用,2005,25(7):1629-1631.
[6] Sanderson C,Paliwal K Fusion and Person Verification Using Speech & Face Information[C].IDIAP-RR 02-33,Martigny,Swizerland,2002.
点击下页还有更多>>>图像识别技术论文
测绘工程论文题目
测绘工程在整个工程建设过程中所起的作用很大,测绘工程论文题目大家想好了吗?下面是我整理的测绘工程论文题目,欢迎阅读参考!
1、改善GIS数字底图的质量
2、教学实习在土地资源管理专业中的应用
3、数字化土地利用现状调查的数据采编
4、数字化地形测量的几个问题探讨
5、数字化地籍测量在城镇地籍调查中的应用探讨
6、数字化成图几种作业模式的分析比较
7、数字化测图与地籍信息系统研究
8、数字化测图在地籍补测中的两种应用技巧
9、数字化测图技术在郑州高新区房地产测量中的应用
10、数字化测图教学方法探讨
11、数字化测绘技术在地籍图测绘中的应用与建议
12、数字化测绘技术在地籍测量中的应用与实施
13、数字化测绘技术在地籍测量中的应用初探
14、数字化测绘技术在城镇地籍测量中的应用
15、数字化测绘技术在源影寺古砖塔测绘中的应用
16、数字图像边缘检测方法的探讨
17、数字土地利用现状图的制图概括
18、数字土地利用现状图的制图综合
19、数字地图系统设计
20、数字地形图测绘中的几个问题探析
21、数字地籍测绘实施中的技术问题
22、数字地籍测量中GPS控制网的建立
23、数字地籍测量主要误差来源探讨
24、数字地籍测量作业探讨
25、数字地籍测量应用分析
26、数字地籍测量控制网的建立及精度分析
27、数字地籍测量有关作业流程及精度控制的探讨
28、数字地籍测量精度的讨论及控制方法
29、数字平顶山空间数据基础设施建设的初步研究
30、数字摄影测量生产的质量控制
31、数字水准仪SPRINTERM的试验与评述
32、数字水准仪及其在机场跑道板块高程测量中的应用
33、数字水准仪及水准尺的检定与精度分析
34、数字水准仪的测量算法概述
35、数字水准仪自动读数方法研究
36、数字水准仪观测模式及其应用实践
37、数字水准测量外业数据格式的转换与统一的实践
38、数字水果湖水下地形和淤泥厚度测量
39、数字测图中的坐标变换方法
40、数字测图中设站错误的内业改正
41、数字测图技术在罗营口水电站坝址地形测量中的应用
42、数字测绘产品的质量检查与质量控
43、数字综合法用于平坦地区地形图修测
44、数字高程模型与等高线质量相关性研究
45、数字高程模型及其数据结构
46、数字高程模型在农地整理排水渠道规划设计中的应用
47、数字高程模型地形描述精度的研究
48、数字高程模型的生产及更新
49、数字高程模型的裁剪与拼接技术
50、数学形态学在遥感图像处理中的应用
51、数据化测量在河道治理工程中的应用
52、数码相机可量测化的研制
53、斜拉桥变形观测方法及精度分析
54、斜距法在工程中的应用
55、断面测量内外业一体化系统研究
56、断高法在高等级公路测设中的应用
57、新州公路平面控制测量问题研究与施测
58、方位交会法在城区测量中的'应用
59、方向交会法坐标计算之初探——待定点坐标的计算
60、方向后交最佳点位分析
61、施工测量中快速设站方法
62、无像控基础地理空间数据更新方法
63、无反射棱镜全站仪测距性能测试
64、无反射镜测距的目标特性研究
65、无定向导线环在城市地籍测量中的应用
66、无控制DEM表面差异探测研究
67、既有铁路航测数字化测图的特点与质量控制
68、时态地籍数据库设计与宗地历史查询的实现方法
69、明暗等高线自动绘制方法
70、智能全站仪ATR实测三维精度分析
71、智能全站仪快速测量处理系统
72、曲线拟合高程在公路测量中的应用研究
73、曲线放样中的坐标转换及转换精度分析
74、曲线矢量数据压缩算法实现及评析
75、最小二乘平差理论在制图自动综合中的应用
76、最小二乘法在土地复垦场平整中的应用
77、最小二乘法对多周期函数的周期筛选优化
78、有关地籍调查的几个问题探讨
79、有限条件下坐标转换矩阵的确定与精化
80、有非对称缓和曲线的曲线主点测设方法
81、服务城市化的测绘工程专业培养计划探讨
82、村庄地籍测量之初探
83、条码信号复原技术在数字水准仪中的应用
84、条码因瓦水准标尺校准方法的探讨
85、极坐标法测设平面位置的精度分析
86、构建城镇地籍管理系统的研究
87、栅格数据矢量化及其存在问题的解决
88、标准化大比例尺数字测图的实践与体会
89、树状河系自动绘制的结构化实现
90、根据三斜距确定点的三维坐标及精度
91、桥梁墩_台的沉降观测和沉降值的预测
92、模拟GPS控制网精度估算方法研究
93、模糊数学在土地利用更新调查质量评定中的应用探讨
94、模糊综合评判及其在测绘中的应用
95、气象因素对全站仪测量的影响
96、水下地形分析中空间数据存储与管理方法的研究
97、水下地形测量误差分析及对策
98、水下地形测量误差来源及处理方法探讨
99、水下地形测量高程异常点剔除方法研究
100、水位改正中虚拟验潮站的快速内插
视觉传达毕业论文题目
视觉传达毕业论文题目具体有哪些呢,大家有了解过吗?下面是我为大家介绍的视觉传达毕业论文题目,欢迎参考和阅读,希望能帮到大家!
视觉传达毕业论文题目
1.浅谈计算机图形图像设计与视觉传达设计
2.基于视觉传达设计中视觉思维模式创新的研究
3.新媒体艺术语言在视觉传达中的应用
4.基于视觉传达艺术发展的民族传统设计创新探讨
5.数字广告中数字媒体的视觉传达设计
6.视觉传达设计视角下的科技图像创作研究
7.动态构成在视觉传达设计中的运用与研究
8.跨界与融合--数字信息时代背景下视觉传达设计的新思考
9.色彩符号与企业形象的视觉传达
10.汉字象形造字法在视觉传达中的设计应用
11.中国传统元素在视觉传达设计中的应用研究
12.“视觉传达设计专业”在现实中的应用探究
13.新媒体语境下的视觉传达设计探讨
14.移动互联网背景下视觉传达设计专业人才培养模式研究
15.视觉传达设计中的图形创意表现研究
16.从空无、自然、融合三个角度谈视觉传达设计中的艺术美
17.“私人定制”视觉传达中的定制式设计理念
18.数码技术在视觉传达设计中的应用研究
19.基于视觉传达要素的制造装备人机优化设计方法研究
20.敦煌联珠纹的形态特征与其在视觉传达设计中的应用
21.基于可持续发展理论下的视觉传达设计
22.浅析视觉传达设计与品牌形象的有效整合
23.现代视觉传达的多维感官设计运用探析
24.探究UI设计的视觉传达艺术
25.旅游纪念品视觉传达设计与开发
26.色彩的视觉传达在广告设计中的运用
27.基于视觉传达设计领域的互补设计方法研究
28.信息时代的视觉传达设计特征与发展研究综述
29.动态视觉传达设计在数字媒体中的应用及发展方向
30.视觉传达的灵境语言
31.本土文化视域下的视觉传达设计及拓展重构
32.探讨视觉传达设计发展趋势的分析
33.独特的视觉传达系统研究
34.订制婚礼中视觉传达设计的应用研究
35.视觉传达设计中图形创意的应用与商业价值研究
36.基于观者位移产生的动态错觉在视觉传达设计中的应用
37.关于多媒体设计与视觉传达的完美结合研究
38.视觉传达设计中民族文化符号的应用
39.浅谈视觉传达设计中图形创意的表现
40.视觉传达设计专业学生的实践能力培养探析
41.视觉传达设计中的色彩应用分析
42.视觉传达设计在空间设计中的新发展
43.视觉传达设计中的视觉疲劳现象研究
44.基于信息设计的视觉传达领域新应用
45.文化产业背景下视觉传达设计的转型
46.江汉大学视觉传达设计专业创新型人才培养探析
47.视觉传达设计创新性思维模式初探
48.浅析视觉传达设计创新思维的内涵及原则
49.展示空间中的视觉传达设计元素分析
50.女性身体元素在竞技体育中的视觉传达
51.谈信息时代下视觉传达设计的发展
52.视觉传达设计中笔墨艺术元素的应用
数字化广告的视觉传达效应探析
54.论包装色彩视觉传达的话语意义
55.浅析现代婚庆视觉传达设计
56.数字时代的视觉传达专业的内涵与外延
57.视觉传达设计中抽象图形的针对性提炼与表现
58.探讨视觉传达艺术设计的创新设计理念
59.数字媒体对视觉传达设计的影响分析
60.浅谈视觉传达设计的多元化发展
61.对视觉传达设计中情感理念的表现研究
62.视觉传达设计中视觉思维模式的创新
63.网页设计之视觉传达研究
64.虚拟现实环境下计算机图形图像设计与视觉传达设计
65.数字媒体时代视觉传达专业图形创意课程改革研究
66.景颇族服饰视觉呈现中的社会情境表述
67.视觉传达技术在茶叶包装设计上的运用
68.从视觉心理角度解读自由版式中的视觉游戏
69.基于视觉信息传达的网页界面设计研究
70.“东方葵”的图像叙事与视觉传达
71.网络广告中的视觉传达设计艺术探究
72.浅析视觉营销在商品E化过程中的应用
73.广告视觉传达设计的研究与探讨
74.从标志设计的演变谈视觉简化心理
75.视觉传达设计中传统装饰艺术符号的融入
76.节约型包装视觉传达设计研究
77.数字时代视觉传达设计的新观念探索
78.图表设计与可视化分析
79.技术推动观念 VR技术引发的视觉传达新观念
80.视觉传达设计中的多媒体艺术的表现形式
81.基于数字媒体语境下的视觉传达设计
82.虚拟现实环境下计算机图形图像设计与视觉传达设计
83.视错觉表现在视觉传达设计中的应用
84.论互联网时代视觉传达设计的方法和表现特性
85.视觉传达设计中的多媒体艺术表现形式研究
86.考虑视觉传达效果的夜视环境视觉定位方法研究
87.当代中国设计活动中审美形态的来源--以视觉传达设计为例
88.中国传统文化元素在视觉传达设计中的应用
89.数字时代视觉传达设计的新观念
90.交通标示颜色的视觉传达作用仿真分析
91.视觉传达设计中的传统文化符号探究
92.中国传统家具元素在视觉传达设计中的应用探析
93.视觉传达设计对地方经济发展的实效性研究
94.当代视觉传达设计中的适老性问题研究
95.黑暗中颜色刺激作用的视觉传达分析研究
96.视觉传达设计的交互动画特效制作手法探析
97.学习类网页设计中视觉传达理论的应用研究
98.字体创意设计是加深视觉传达记忆的根蒂
99.对中国甲骨文文字符号视觉传达的属性研究
100.广告视觉传达设计艺术在信息网络时代的传播研究
101.中国禅道文化中的神、意、形、色在视觉传达设计中的应用研究
102.视觉传达设计中的多媒体艺术表现形式分析
103.公共艺术形态下的视觉传达设计研究
104.浅谈数字图像时代视觉传达设计的几个要素
105.浅析视觉传达设计的情感效应
106.如何做到视觉传达艺术设计的与时俱进
107.试论传播学在视觉传达设计中的应用
108.隐喻图形在视觉传达设计中的应用研究
109.视觉传达设计中视觉思维模式的创新
Graphic在视觉传达中的应用研究
111.数字媒体时代视觉传达设计的特征与发展
112.当代视觉传达下汉字图形化设汁的形、意研究
113.网络媒体的视觉艺术传达设计研究
114.数字时代视觉传达设计的新思维探讨
115.中国传统元素在视觉传达设计中的应用
116.浅析视觉传达在室内设计中的应用
117.“新古琴双行谱”中的视觉传达设计
118.视觉传达图形创意在服装设计中的应用
119.从视觉传达的角度对新媒体时代地产广告的探究
120.分析创新设计理念在视觉传达艺术设计中的具体实施
121.视觉传达设计专业的基础课程改革探索
拓展:测绘工程论文题目
1、改善GIS数字底图的质量
2、教学实习在土地资源管理专业中的应用
3、数字化土地利用现状调查的数据采编
4、数字化地形测量的几个问题探讨
5、数字化地籍测量在城镇地籍调查中的应用探讨
6、数字化成图几种作业模式的分析比较
7、数字化测图与地籍信息系统研究
8、数字化测图在地籍补测中的两种应用技巧
9、数字化测图技术在郑州高新区房地产测量中的应用
10、数字化测图教学方法探讨
11、数字化测绘技术在地籍图测绘中的应用与建议
12、数字化测绘技术在地籍测量中的应用与实施
13、数字化测绘技术在地籍测量中的应用初探
14、数字化测绘技术在城镇地籍测量中的应用
15、数字化测绘技术在源影寺古砖塔测绘中的应用
16、数字图像边缘检测方法的探讨
17、数字土地利用现状图的制图概括
18、数字土地利用现状图的制图综合
19、数字地图系统设计
20、数字地形图测绘中的几个问题探析
21、数字地籍测绘实施中的技术问题
22、数字地籍测量中GPS控制网的建立
23、数字地籍测量主要误差来源探讨
24、数字地籍测量作业探讨
25、数字地籍测量应用分析
26、数字地籍测量控制网的建立及精度分析
27、数字地籍测量有关作业流程及精度控制的探讨
28、数字地籍测量精度的讨论及控制方法
29、数字平顶山空间数据基础设施建设的初步研究
30、数字摄影测量生产的质量控制
31、数字水准仪SPRINTERM的试验与评述
32、数字水准仪及其在机场跑道板块高程测量中的应用
33、数字水准仪及水准尺的'检定与精度分析
34、数字水准仪的测量算法概述
35、数字水准仪自动读数方法研究
36、数字水准仪观测模式及其应用实践
37、数字水准测量外业数据格式的转换与统一的实践
38、数字水果湖水下地形和淤泥厚度测量
39、数字测图中的坐标变换方法
40、数字测图中设站错误的内业改正
41、数字测图技术在罗营口水电站坝址地形测量中的应用
42、数字测绘产品的质量检查与质量控
43、数字综合法用于平坦地区地形图修测
44、数字高程模型与等高线质量相关性研究
45、数字高程模型及其数据结构
46、数字高程模型在农地整理排水渠道规划设计中的应用
47、数字高程模型地形描述精度的研究
48、数字高程模型的生产及更新
49、数字高程模型的裁剪与拼接技术
50、数学形态学在遥感图像处理中的应用
51、数据化测量在河道治理工程中的应用
52、数码相机可量测化的研制
53、斜拉桥变形观测方法及精度分析
54、斜距法在工程中的应用
55、断面测量内外业一体化系统研究
56、断高法在高等级公路测设中的应用
57、新州公路平面控制测量问题研究与施测
58、方位交会法在城区测量中的应用
59、方向交会法坐标计算之初探——待定点坐标的计算
60、方向后交最佳点位分析
61、施工测量中快速设站方法
62、无像控基础地理空间数据更新方法
63、无反射棱镜全站仪测距性能测试
64、无反射镜测距的目标特性研究
65、无定向导线环在城市地籍测量中的应用
66、无控制DEM表面差异探测研究
67、既有铁路航测数字化测图的特点与质量控制
68、时态地籍数据库设计与宗地历史查询的实现方法
69、明暗等高线自动绘制方法
70、智能全站仪ATR实测三维精度分析
71、智能全站仪快速测量处理系统
72、曲线拟合高程在公路测量中的应用研究
73、曲线放样中的坐标转换及转换精度分析
74、曲线矢量数据压缩算法实现及评析
75、最小二乘平差理论在制图自动综合中的应用
76、最小二乘法在土地复垦场平整中的应用
77、最小二乘法对多周期函数的周期筛选优化
78、有关地籍调查的几个问题探讨
79、有限条件下坐标转换矩阵的确定与精化
80、有非对称缓和曲线的曲线主点测设方法
81、服务城市化的测绘工程专业培养计划探讨
82、村庄地籍测量之初探
83、条码信号复原技术在数字水准仪中的应用
84、条码因瓦水准标尺校准方法的探讨
85、极坐标法测设平面位置的精度分析
86、构建城镇地籍管理系统的研究
87、栅格数据矢量化及其存在问题的解决
88、标准化大比例尺数字测图的实践与体会
89、树状河系自动绘制的结构化实现
90、根据三斜距确定点的三维坐标及精度
91、桥梁墩_台的沉降观测和沉降值的预测
92、模拟GPS控制网精度估算方法研究
93、模糊数学在土地利用更新调查质量评定中的应用探讨
94、模糊综合评判及其在测绘中的应用
95、气象因素对全站仪测量的影响
96、水下地形分析中空间数据存储与管理方法的研究
97、水下地形测量误差分析及对策
98、水下地形测量误差来源及处理方法探讨
99、水下地形测量高程异常点剔除方法研究
100、水位改正中虚拟验潮站的快速内插
随着影像医学的快速发展,影像检查已成为医疗工作中的重要环节,临床医疗对影像检查的依赖性越来越强。下面是我为大家整理的医学影像技术 毕业 论文,供大家参考。
《 医学影像学的现状和未来初探 》
摘要:医学影像学检查不仅在诊断与治疗的环节发挥作用,而且可以在疾病预防、健康体检、重大疾病筛查、健康管理、早期诊断、病情严重程度评估、治疗 方法 选择、疗效评价、康复等环节发挥越来越大的作用,医学影像学科的地位必将不断提高。
关键词:医学影像学;现状;未来;综述
【中图分类号】R473【文献标识码】A【 文章 编号】1672-3783(2012)04-0140-01
随着医学影像学飞速发展,它在临床医学中的地位不断提高,由X线、超声、放射性核素显像、CT、数字减影血管造成影及介入装置、磁共振成像所组成的医学影像学家族已经成为临床主要的诊断和鉴别诊断方法、医院现在化的重要标志、科学研究的主要手段及医院重要的经济收入来源。现将医学影像学的发展与展望综述如下。
1 医学影像学技术发展的历史回顾
1895年11月8日德国物理学家伦琴发现了一种新型射线(a kind of new rays)。并于11月22日为夫人拍摄了一张手部x线照片,也是人类第一张x线影像。随后,x线被广泛的应用于对疾病的诊断和治疗,形成了放射诊断学和放射治疗学。x线还用于疾病的预防、康复和预后随访。在医学之外,还用于x线衍射分析和工业探伤等多种用途。因此,x线的发现对人类作了重大贡献。1971年亨氏菲尔德发明了CT,将传统的X线的直接成像转变为间接成像,从而奠定了现在影像学的基础,随后出现的MRI、正电子发射型体层摄影术等影像学技术,以及近期出现的分子成像和光成像,使医学影像学在显示形态学状态之外,还能完成组织器官功能检查,并最终在分子和细胞水平显示组织、器官的化学成分和代谢变化。
2 医学影像学现状
曾经在我国长期使用用的x线透视检查的应用逐年减少, 大型医院或者发达地区的中小医院已逐步取消透视, 而代之 以x线摄影检查, 且以DR检查占主导地位。传统 X线造影检查被多排螺旋CT和磁共振成像所取代 首先是 X线脊髓造影检查被 MRI所取代;其次是多排螺旋CT和MRI结合光学内镜逐步取代 X线消化道造影、经静脉肾盂造影和胆道造影等检查;然后是 DSA的诊断性血管造影检查逐步被CT血管成像和MR血管成像所取代。 伴随设备的逐步普及,CT已经成为临床(尤其急诊)最重要的影像检查方法。MRI具有无创伤、 无射线辐射危 害,成像参数多、获得的信息量大,软组织对比度最佳等显著优点,是最活跃的影像学研究手段,已经成为很多重要疾病的确证诊断方法。超声以其设备普及、价格低廉、无创伤、无射线辐射危害、可在病床旁边实施和便于复查等优点, 成为目前临床应用最主要的影像学筛选检查技术。以早年的CT为起点,CT、MRI等设备开始提供横断层面影像。同时,得益于计算机技术的进步,今天已经可以在较短时间内把上述的信息“重组”(reformation)为三维的、分别显示兴趣结构的、带有仿真色彩的,甚至以内窥镜的信息模式显示的“直观信息”。举例说,一个重度创伤的病人可能会有骨折、颅脑损伤、内脏损伤、血管损伤及其他并发症。今天,只需用CT从头到脚在数十秒钟内完成采集,病人即可回病房作急症处理,而放射科医师可使用一次采集的信息分别显示出骨骼、颅脑、内脏、血管等结构与病变,并给急症医师提供“直观的”兴趣结构的三维的、彩色仿真的诊断信息。这样的信息已经超越了大体解剖学的可视能力,达到了即使在手术刀或解剖刀下都不可能完全洞察的水平。
3 医学影像学技术的发展趋势
各种医学影像学设备向小 型化、专门化、高分辨力和超快速化方向发展,MRI和CT的全器官灌注成像得到临床普及应用。虽然目前MSCT主要生产厂家的设计理念和主攻方向不一致,导致彼此设备的差异巨大,但是可以预测,在不远的将来,CT机的构造(包括发生器、X线球管的结构和数量、探测器种类和排数等) 将发生实质性变改, 也许球管和探测器的旋转速度更快,使MSCT的时间分辨力突破50 ms大关,使心脏得到真正的“冻结”,而探测器材质的改进能显著提高MSCT的空间分辨力。 各种介入治疗成为常规有效的治疗方法。集诊断与治疗一体化的医学影像学设备也在不断成熟和普及, 使疾病的诊断更加及时、 准确,治疗效果更佳。应用计算机仿真技术设计外科手术方案、 由影像导航 系统直接引导外科手术入路、确定手术切除范围,并在术中直接应用MRI对病灶切除范围进行现场评价会逐渐普及应用。在影像学网络化的基础上,医学图像处理将成为常规,而服务器软件取代工作站,实现多点同时后处理,并使图像后处理的自动化程度进一步提高。 伴随远程影像学的普及和宽频带网络的应用,医学影像学图像的远程传输更为快捷,图像更加清楚,影像学科医生可以在家里或者在出差旅途中完成诊断 报告 。
分子成像是医学影像学的 热点 研究方向之一,伴随分子成像的研究进展,会有多种组织、器官特异性对比剂问世,这些新型对比剂能显示特定基因表达、 特定代谢过程、特殊生理功能,其毒副作用更小、对比增强效果更佳、诊断的特异性更强,真正实现疾病早期诊断。开发疗效监测对比剂(或称分子探针),以在最短时间得到治疗的反馈信息, 在分子水平上进行疾病的靶向治疗。除PET外, 其他医学影像学技术也能直接用于药物的研发和监测疗效,在活体早期、连续观察药物或基因治疗 的机制和效果,以利于药物筛选和新药开发。此外,分子成像方法和图像后处理技术将得到持续改进,并开发出用于分子成像的影像学新技术。 医学影像学技术的进展还将导致影像学科内部人员构成发生变化,物理师、数学家、生物医学工程师、计算机专家和循证医学专家占影像科室人员的比例越来越高,针对某种重大疾病可以组建包含内、外科和影像学医生的新型科室。医学影像学检查不仅在诊断与治疗的环节发挥作用,而且可以在疾病预防、健康体检、重大疾病筛查、健康管理、早期诊断、病情严重程度评估、治疗方法选择、疗效评价、康复等环节发挥越来越大的作用,医学影像学科的地位必将不断提高。参考文献
[1] 贺延莉,王亚蓉,殷茜,等.T-PACS在医学影像学实践教学中的应用和优势[J].中国医学 教育 技术,2011,25(6):657-659
[2] 刘卫宾,韩冬.浅析普通X射线摄影及其应用[J].中国卫生产业,2011,8(11):115-115
[3] 蒋震,沈钧康,宦坚,等.医学影像学研究生读书报告的方法学探讨[J].中华医学教育探索杂志,2011,10(10):1179-1181
[4] 高艳,李坤成,杜祥颖,等.医学影像学教学中比较影像学的重要性[J].中国高等医学教育,2011(11):79-80
[5] 王安明,史跃,赵汉青,等.格式塔理论在医学影像学诊断中的作用[J].医学与哲学.临床决策论坛版,2011,32(10):67-68
[6] 江传海,余梁,胡正宇.PACS在医学影像学教学中的应用[J].安徽医学,2011,32(10):1778-1779
《 数字图象在医学影像中的应用 》
【摘要】医学影象技术从70年代进入数字时代,二十多年来先后有了MR、B超、DR、DSA、ECT、CR等数字化影像设备投入使用。对医学影像诊断起了很大的推进作用。在客观上促使各种成像技术凭借自身的优势竞相发展。取长补短,综合利用,使疾病的早期诊断率有明显提高。
【关键词】数字图象;医学影像;应用
Digital image in medicine image application
Rao Tianquan
【Abstract】medicine phantom technology enters the Digital Age from the 70's,20 for many years successively have had MR,B ultra,digitized image equipment and so on DR,DSA,ECT,R put into the use. Diagnosed the very big advancement function to the medicine image. In on is objective urges each kind of imagery technology to rely on own superiority unexpectedly to develop. Makes up for one's deficiency by learning from others' strong points,the comprehensive utilization,enable the disease the early diagnosis rate to have the distinct enhancement.
【key word】digital image; Medicine image; Using
图象是周围客观世界的一种印象,数字图象是60年代出现的一种全新的,科技含量极高的产物。它的出现使传统的模拟图象受到了极大的挑战。数字图象和模拟图象相比,二者的区别在于:一:模拟图象是以一种直观的物理量的方法来连续地表现我们期望得知的另一种物理场的特征。而且数字图象则完全以一种规则的数字量的集合来表达我们面对的物理图象。二:用模拟图象的方法来显示图象具有直观,方便的特点,一旦设计出一种图象的处理方法则具有全场性与实时处理等优点。但是模拟图象亦有抗干扰性差,重复精度差,处理功能有限,处理灵活性差的缺点。而数字图象具有很好的抗干扰性,图象处理方便,适应性能强等优点,特别是随着计算机技术的发展,数字图象处理的速度也变得越来越快,越来越显示它的发展潜力和优势。三:数字图象和模拟图象相比,它的图象更清晰、无失真,更便于储存和传输。
从70年代末期开始,医学影像技术进入了数字时代。二十多年来先后有了MR、B超、DR、DSA、ECT、CR等数字化影像设备投入使用。对医学影像诊断起了很大的推进作用。这一些进展无一不是从根本上破除了原有信息载体形式和成像原理的束缚,开创新径而取得的。同时这也在客观上促使各种成像技术凭借自身的优势竞相发展。它们之间不仅没有相互代替,而是取长补短,综合利用,使疾病的早期诊断率有明显提高。
1 数字X线图象的形成
X线透射成像是基于人体内不同结构的脏器对X线吸收的差异。一束能量均匀的X线照射到人体不同部位时,由于各部位对X线吸收的不同,透过人体各部位的X线的强度亦不同,这些穿透过人体的剩余X线就携带着人体被照射部分的组织密度和厚度的信息。这些信息投影到一个检测平面上,即形成一幅人体的X线透射图象。如果这个检测平面是荧光屏,那么我们就得到一幅模拟的图象了。再将这幅图象用不同的方法采集下来(如摄影,录像,拍照等方法)。检测器也可以是 其它 ,如电离室、光电管、晶体压电等等。然后将收集到的信号进行模数转换就形成了一组由不同数字代表X线强弱排列的数字信号了。最后将该组信号交计算机处理经数模转换即成为清晰、无干扰、无变形、无失真的数字X线图象。
2 数字图象技术在X线检查中的运用
X线电视系统:主要由影像增强器和X线闭路电视系统组成,影像增强器把X线像转换成可见光像,而且图象的亮度得到很大的增强,然后通过电视系统进行观察和分析图象,它是实现X线图象数字化的基础。
数字摄影:(DR)对影像增强器所得到的电视信号,用摄像机拾取的高信噪比的电视信号进行数字化,然后再进行各种计算机处理,得到不同效果的图象,这种技术多用于胃肠透视和血管造影成像。该种检查拍摄后立即可以得到图象。不必等待冲洗,还可以动态的观察。
计算机摄影:(CR)它是用影像板(IP)代替胶片暴光,然后将存储在IP板上的X线潜影用激光扫描拾取并转换成电信号,再经计算机处理得到一幅X线数字图象,最终用激光像机把X线图象记录在胶片上。这种方法灵敏度高、敏感范围大、图象清晰。
数字减影:(DSA)用于血管造影,原理是将检查部位于造影前后用摄像机各采集图象,然后将图象数字化后存储在计算机里,用计算机进行处理,将两次采集的图象进行对应像素逐个相减,减影后的图象只留下充盈的血管图象,这样去掉了组织的重叠干扰,可以清楚地观察血管情况。
计算机横断体层装置:(CT)X线对人体横断面的各个方向进行照射,检测器采集到体层各个面对X线的吸收曲线后,用计算机处理所得数据最后以数字矩阵的形式表示横断面上个点的密度值,这样断面上的各点的密度都用确定的数值表示出来,这种对组织密度的量化,可以从数值上来区分健康组织和病变组织,大大提高了诊断的科学性。
此外;数字图象还应用于MIR、ECT、B超等医学影象学科,在我们的日常生活中都离不开数字图象。
参考文献
[1] 王容泉. 《医用大型X线机系统》
[2] 梁振声. 《医用X先机结构与维修》
[3] 邹 仲.《X线检查技术学》
[4] 吴恩惠.《头部CT诊断学》
有关医学影像技术毕业论文推荐:
1. 医学影像毕业论文范文
2. 有关医学影像类毕业论文
3. 医学影像本科毕业论文
4. 医学影像学研究论文
5. 关于医学影像的论文
随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读!
图像识别技术研究综述
摘要:随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。图像识别是利用计算机对图像进行处理、分析和理解,由于图像在成像时受到外部环境的影响,使得图像具有特殊性,复杂性。基于图像处理技术进一步探讨图像识别技术及其应用前景。
关键词:图像处理;图像识别;成像
中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)10-2446-02
图像是客观景物在人脑中形成的影像,是人类最重要的信息源,它是通过各种观测系统从客观世界中获得,具有直观性和易理解性。随着计算机技术、多媒体技术、人工智能技术的迅速发展,图像处理技术的应用也越来越广泛,并在科学研究、教育管理、医疗卫生、军事等领域已取得的一定的成绩。图像处理正显著地改变着人们的生活方式和生产手段,比如人们可以借助于图像处理技术欣赏月球的景色、交通管理中的车牌照识别系统、机器人领域中的计算机视觉等,在这些应用中,都离不开图像处理和识别技术。图像处理是指用计算机对图像进行处理,着重强调图像与图像之间进行的交换,主要目标是对图像进行加工以改善图像的视觉效果并为后期的图像识别大基础[1]。图像识别是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。但是由于获取的图像本事具有复杂性和特殊性,使得图像处理和识别技术成为研究热点。
1 图像处理技术
图像处理(image processing)利用计算机对图像进行分析,以达到所需的结果。图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。这种处理大多数是依赖于软件实现的。其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。
1)图像采集,图像采集是数字图像数据提取的主要方式。数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。图像的提取是将一个图像变换为适合计算机处理的形式的第一步。
2)图像增强,图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。
3)图像复原,图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。
4)图像编码与压缩,数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。由于视频可以被看作是一幅幅不同的但有紧密相关的静态图像的时间序列,因此动态视频的单帧图像压缩可以应用静态图像的压缩标准。图像编码压缩技术可以减少图像的冗余数据量和存储器容量、提高图像传输速度、缩短处理时间。
5)图像分割技术,图像分割是把图像分成一些互不重叠而又具有各自特征的子区域,每一区域是像素的一个连续集,这里的特性可以是图像的颜色、形状、灰度和纹理等。图像分割根据目标与背景的先验知识将图像表示为物理上有意义的连通区域的集合。即对图像中的目标、背景进行标记、定位,然后把目标从背景中分离出来。目前,图像分割的方法主要有基于区域特征的分割方法、基于相关匹配的分割方法和基于边界特征的分割方法[2]。由于采集图像时会受到各种条件的影响会是图像变的模糊、噪声干扰,使得图像分割是会遇到困难。在实际的图像中需根据景物条件的不同选择适合的图像分割方法。图像分割为进一步的图像识别、分析和理解奠定了基础。
2 图像识别技术
图像识别是通过存储的信息(记忆中存储的信息)与当前的信息(当时进入感官的信息)进行比较实现对图像的识别[3]。前提是图像描述,描述是用数字或者符号表示图像或景物中各个目标的相关特征,甚至目标之间的关系,最终得到的是目标特征以及它们之间的关系的抽象表达。图像识别技术对图像中个性特征进行提取时,可以采用模板匹配模型。在某些具体的应用中,图像识别除了要给出被识别对象是什么物体外,还需要给出物体所处的位置和姿态以引导计算初工作。目前,图像识别技术已广泛应用于多个领域,如生物医学、卫星遥感、机器人视觉、货物检测、目标跟踪、自主车导航、公安、银行、交通、军事、电子商务和多媒体网络通信等。主要识别技术有:
指纹识别
指纹识别是生物识别技术中一种最实用、最可靠和价格便宜的识别手段,主要应用于身份验证。指纹识别是生物特征的一个部分,它具有不变性:一个人的指纹是终身不变的;唯一性:几乎没有两个完全相同的指纹[3]。一个指纹识别系统主要由指纹取像、预处理与特征提取、比对、数据库管理组成。目前,指纹识别技术与我们的现实生活紧密相关,如信用卡、医疗卡、考勤卡、储蓄卡、驾驶证、准考证等。
人脸识别 目前大多数人脸识别系统使用可见光或红外图像进行人脸识别,可见光图像识别性能很容易受到光照变化的影响。在户外光照条件不均匀的情况下,其正确识别率会大大降低。而红外图像进行人脸识别时可以克服昏暗光照条件变化影响,但由于红外线不能穿透玻璃,如果待识别的对象戴有眼镜,那么在图像识别时,眼部信息全部丢失,将严重影响人脸识别的性能[4]。
文字识别
文字识别是将模式识别、文字处理、人工智能集与一体的新技术,可以自动地把文字和其他信息分离出来,通过智能识别后输入计算机,用于代替人工的输入。文字识别技术可以将纸质的文档转换为电子文档,如银行票据、文稿、各类公式和符号等自动录入,可以提供文字的处理效率,有助于查询、修改、保存和传播。文字识别方法主要有结构统计模式识别、结构模式识别和人工神经网络[5]。由于文字的数量庞大、结构复杂、字体字形变化多样,使得文字识别技术的研究遇到一定的阻碍。
3 结束语
人类在识别现实世界中的各种事物或复杂的环境是一件轻而易举的事,但对于计算机来讲进行复杂的图像识别是非常困难的[6]。在环境较为简单的情况下,图像识别技术取得了一定的成功,但在复杂的环境下,仍面临着许多问题:如在图像识别过程中的图像分割算法之间的性能优越性比较没有特定的标准,以及算法本身存在一定的局限性,这使得图像识别的最终结果不十分精确等。
参考文献:
[1] 胡爱明,周孝宽.车牌图像的快速匹配识别方法[J].计算机工程与应用,2003,39(7):90—91.
[2] 胡学龙.数字图像处理[M].北京:电子工业出版社,2011.
[3] 范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007.
[4] 晓慧,刘志镜.基于脸部和步态特征融合的身份识别[J].计算机应用,2009,1(29):8.
[5] 陈良育,曾振柄,张问银.基于图形理解的汉子构型自动分析系统[J].计算机应用,2005,25(7):1629-1631.
[6] Sanderson C,Paliwal K Fusion and Person Verification Using Speech & Face Information[C].IDIAP-RR 02-33,Martigny,Swizerland,2002.
点击下页还有更多>>>图像识别技术论文