首页

> 论文发表知识库

首页 论文发表知识库 问题

计算机视觉景物识别论文检测

发布时间:

计算机视觉景物识别论文检测

随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读!

图像识别技术研究综述

摘要:随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。图像识别是利用计算机对图像进行处理、分析和理解,由于图像在成像时受到外部环境的影响,使得图像具有特殊性,复杂性。基于图像处理技术进一步探讨图像识别技术及其应用前景。

关键词:图像处理;图像识别;成像

中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)10-2446-02

图像是客观景物在人脑中形成的影像,是人类最重要的信息源,它是通过各种观测系统从客观世界中获得,具有直观性和易理解性。随着计算机技术、多媒体技术、人工智能技术的迅速发展,图像处理技术的应用也越来越广泛,并在科学研究、教育管理、医疗卫生、军事等领域已取得的一定的成绩。图像处理正显著地改变着人们的生活方式和生产手段,比如人们可以借助于图像处理技术欣赏月球的景色、交通管理中的车牌照识别系统、机器人领域中的计算机视觉等,在这些应用中,都离不开图像处理和识别技术。图像处理是指用计算机对图像进行处理,着重强调图像与图像之间进行的交换,主要目标是对图像进行加工以改善图像的视觉效果并为后期的图像识别大基础[1]。图像识别是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。但是由于获取的图像本事具有复杂性和特殊性,使得图像处理和识别技术成为研究热点。

1 图像处理技术

图像处理(image processing)利用计算机对图像进行分析,以达到所需的结果。图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。这种处理大多数是依赖于软件实现的。其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。

1)图像采集,图像采集是数字图像数据提取的主要方式。数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。图像的提取是将一个图像变换为适合计算机处理的形式的第一步。

2)图像增强,图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。

3)图像复原,图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。

4)图像编码与压缩,数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。由于视频可以被看作是一幅幅不同的但有紧密相关的静态图像的时间序列,因此动态视频的单帧图像压缩可以应用静态图像的压缩标准。图像编码压缩技术可以减少图像的冗余数据量和存储器容量、提高图像传输速度、缩短处理时间。

5)图像分割技术,图像分割是把图像分成一些互不重叠而又具有各自特征的子区域,每一区域是像素的一个连续集,这里的特性可以是图像的颜色、形状、灰度和纹理等。图像分割根据目标与背景的先验知识将图像表示为物理上有意义的连通区域的集合。即对图像中的目标、背景进行标记、定位,然后把目标从背景中分离出来。目前,图像分割的方法主要有基于区域特征的分割方法、基于相关匹配的分割方法和基于边界特征的分割方法[2]。由于采集图像时会受到各种条件的影响会是图像变的模糊、噪声干扰,使得图像分割是会遇到困难。在实际的图像中需根据景物条件的不同选择适合的图像分割方法。图像分割为进一步的图像识别、分析和理解奠定了基础。

2 图像识别技术

图像识别是通过存储的信息(记忆中存储的信息)与当前的信息(当时进入感官的信息)进行比较实现对图像的识别[3]。前提是图像描述,描述是用数字或者符号表示图像或景物中各个目标的相关特征,甚至目标之间的关系,最终得到的是目标特征以及它们之间的关系的抽象表达。图像识别技术对图像中个性特征进行提取时,可以采用模板匹配模型。在某些具体的应用中,图像识别除了要给出被识别对象是什么物体外,还需要给出物体所处的位置和姿态以引导计算初工作。目前,图像识别技术已广泛应用于多个领域,如生物医学、卫星遥感、机器人视觉、货物检测、目标跟踪、自主车导航、公安、银行、交通、军事、电子商务和多媒体网络通信等。主要识别技术有:

指纹识别

指纹识别是生物识别技术中一种最实用、最可靠和价格便宜的识别手段,主要应用于身份验证。指纹识别是生物特征的一个部分,它具有不变性:一个人的指纹是终身不变的;唯一性:几乎没有两个完全相同的指纹[3]。一个指纹识别系统主要由指纹取像、预处理与特征提取、比对、数据库管理组成。目前,指纹识别技术与我们的现实生活紧密相关,如信用卡、医疗卡、考勤卡、储蓄卡、驾驶证、准考证等。

人脸识别 目前大多数人脸识别系统使用可见光或红外图像进行人脸识别,可见光图像识别性能很容易受到光照变化的影响。在户外光照条件不均匀的情况下,其正确识别率会大大降低。而红外图像进行人脸识别时可以克服昏暗光照条件变化影响,但由于红外线不能穿透玻璃,如果待识别的对象戴有眼镜,那么在图像识别时,眼部信息全部丢失,将严重影响人脸识别的性能[4]。

文字识别

文字识别是将模式识别、文字处理、人工智能集与一体的新技术,可以自动地把文字和其他信息分离出来,通过智能识别后输入计算机,用于代替人工的输入。文字识别技术可以将纸质的文档转换为电子文档,如银行票据、文稿、各类公式和符号等自动录入,可以提供文字的处理效率,有助于查询、修改、保存和传播。文字识别方法主要有结构统计模式识别、结构模式识别和人工神经网络[5]。由于文字的数量庞大、结构复杂、字体字形变化多样,使得文字识别技术的研究遇到一定的阻碍。

3 结束语

人类在识别现实世界中的各种事物或复杂的环境是一件轻而易举的事,但对于计算机来讲进行复杂的图像识别是非常困难的[6]。在环境较为简单的情况下,图像识别技术取得了一定的成功,但在复杂的环境下,仍面临着许多问题:如在图像识别过程中的图像分割算法之间的性能优越性比较没有特定的标准,以及算法本身存在一定的局限性,这使得图像识别的最终结果不十分精确等。

参考文献:

[1] 胡爱明,周孝宽.车牌图像的快速匹配识别方法[J].计算机工程与应用,2003,39(7):90—91.

[2] 胡学龙.数字图像处理[M].北京:电子工业出版社,2011.

[3] 范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007.

[4] 晓慧,刘志镜.基于脸部和步态特征融合的身份识别[J].计算机应用,2009,1(29):8.

[5] 陈良育,曾振柄,张问银.基于图形理解的汉子构型自动分析系统[J].计算机应用,2005,25(7):1629-1631.

[6] Sanderson C,Paliwal K Fusion and Person Verification Using Speech & Face Information[C].IDIAP-RR 02-33,Martigny,Swizerland,2002.

点击下页还有更多>>>图像识别技术论文

姓名:宋子璇学号: 【嵌牛导读】:分析RNN做目标识别 【嵌牛鼻子】:RNN 【嵌牛提问】:计算机视觉中RNN怎么应用于目标检测? 【嵌牛正文】 深度学习在计算机视觉领域取得的巨大的发展,最近几年CNN一直是目前主流模型所采取的架构。最近半年RNN/LSTM应用在识别领域逐渐成为一种潮流,RNN在获取目标的上下文中较CNN有独特的优势。以下我们分析最近有关RNN做目标识别的相关文章。1、Inside-Outside Net: Detecting Objects in Context with Skip Pooling and Recurrent Neural Networks CVPR2016(论文笔记) 本文的主要贡献是用skip pooling和 RNNlayer。在多尺度的feature map 上做roi pooling,最后一个feature map是通过rnn得到的。 识别精度在VOC2012上达到,原因主要是利用多尺度的feature map和rnn layer。文章中用到了很多trick: 1) rnn 用的是修改后的IRNN,速度快,精度与LSTM相似。 2)由于是在多尺度feature map上做roi pooling,每个尺度上feature map的响应幅度不一样,所以需要先做L2-norm,然后再将这些尺度得到roi 特征concate到一起。然后统一在scale到一个尺度上(scale由网络学习得到)。 3)加入的lstm单元现用segmentation的数据集做预训练,让权重预学习。(很重要,有两个百分点提升) 4)如果把最后一层IRNN换成级联的3*3的卷积层,精度下降,所以IRNN对于提升不是那么明显。 思考: 1)此方法对于小尺度的物体,如bottle、plant等识别效果不好,是否可以利用最早的feature map做识别,最早的feature 尺度信息保存的较好。 2)rnn只是用来提特征用,并没有考虑到物体的上下文信息。 3)是否可以在第一轮识别到物体后,利用attention的机制,现将这些物体在feature map上去除,重点识别小的物体。 2、End-to-end people detection in crowded scenes 在Lentet得到特征的基础用,用LSTM做控制器,按序列输出得到的框。细节方面需要注意的是没有用NMS,用的hungarian loss(匈牙利算法)。本文最大的贡献出了源码,方便做detection的理解LSTM在目标识别中的应用。 Github仓库地址: 3、CNN-RNN: A Unified Framework for Multi-label Image Classification 本文的主要目的是做图像的多label识别。 文中有一句话很重要:"when using the same image features to predict multiple labels, objects that are small in the images are easily get ignored or hard torecognize independently". 用同一个feature map预测多label时,往往会忽略小物体。 所以作者利用两个并行的网络,第二个网络输入时当前输出的label,先得到label embeding,然后通过rnn得到一向量,融合图像的feature map得到image embeding,最终输出当前图像下一个label。 思考: 1)利用Deconvolution 将feature 扩到原图一样大小,做小物体的目标识别。 2)用不同尺寸的卷积核。 小思考-----为什么原来多级的级联的卷积,最后的卷积的感受野很大了,为什么还能识别一些较小的物体,比如行人,想象一下最后一层的类别热度图,原因是: a 此类有较强的文理信息b 尺度还是比较大. faster RCNN最后一层卷积层只有14*14,最后也有很好的识别效果,究竟是为什么? 4、Attentive contexts for object detection 文章利用local(多尺度的cnn特征)和global(LSTM生成)来做目标识别。用global的原因是:图像中的其他信息有利于当前box的识别,比如图像中出现其他的汽车对当前框识别为汽车的提升很大,但在文章中global的提升不是很明显,只有的提升。作者所用的global信息感觉很一般,并没有真正用到lstm的作用。 思考一下,lstm到底怎么用才能提取global信息:之前不容易识别到的椅子或者瓶子,不能用cnn最后得到的特征,应为太稀疏了,一是瓶子之类的没有纹理信息,而是像椅子之类的纹理太乱,与其他的物体太冲突。可以利用本文lstm的思路,将隐层的输出当做test时候的隐层输入,怎么将这20类的所有隐层信息集合起来是个难点。 5. Recurrent Convolutional Neural Network for Object Recognition CVPR2015 清华大学 链接二 每一层卷积后用RNN(类似一种cnn,只不过权重共享),在参数较少的情况下,让网络的层数更深,每层获取的context信息更丰富,用cuda-convenet实现,文章借鉴意义不大,从引用量上就可以看出。 6. Image caption相关论文 show and tell: a neural image caption generator CVPR2015 image captioning with deep bidirectional LSTMs 此类文章的主要思想是将图像的cnn特征当做传统LSTM的输入,最终生成一句句子描述,对目标识别的借鉴意义不大. the best of convolutional layers and recurrent layers: a hybrid network for semantic segmentation 本文的主要思想也是用了3层的lstm去提特征,最后用1*1的卷积层降维到K(类别数)层的feature map,本身没有什么创意,只是效果很好. 而且文中作者又设计了一个FCN+LSTM的级联网络,效果做到了state-of-the-art. 借鉴的地方不多。 8. semantic object parsing with graph LSTM 本文主要思想是抛弃原来逐点做序列的思想,转而利用超像素做为序列,而且超像素的输入顺序是根据前一步FCN得到的confidence map决定。 Graph LSTM是用来做语义分割,是否可以借鉴用来做目标识别. 9. pixel recurrent nerual networks 本文利用pixel rnn来做图像的补全,将各种门的计算用cnn来实现,加快计算速度(仅限于门的计算,cell state的更新还是传统方式),最大的贡献是用了多中网络,pixel CNN pixel RNN multiscale RNN---先生成低分辨率的图像,然后用这些低分变率的pixel作为先验知识最终生成一幅完整的图。

【嵌牛导读】目标检测在现实中的应用很广泛,我们需要检测数字图像中的物体位置以及类别,它需要我们构建一个模型,模型的输入一张图片,模型的输出需要圈出图片中所有物体的位置以及物体所属的类别。在深度学习浪潮到来之前,目标检测精度的进步十分缓慢,靠传统依靠手工特征的方法来提高精度已是相当困难的事。而ImageNet分类大赛出现的卷积神经网络(CNN)——AlexNet所展现的强大性能,吸引着学者们将CNN迁移到了其他的任务,这也包括着目标检测任务,近年来,出现了很多目标检测算法。 【嵌牛鼻子】计算机视觉 【嵌牛提问】如何理解目标检测算法——OverFeat 【嵌牛正文】 一、深度学习的典型目标检测算法 深度学习目标检测算法主要分为 双阶段检测算法 和 单阶段检测算法 ,如图1所示。双阶段目标检测算法先对图像提取候选框,然后基于候选区域做二次修正得到检测结果,检测精度较高,但检测速度较慢;单阶段目标验测算法直接对图像进行计算生成检测结果,检测速度快,但检测精度低。 1、双阶段目标检测算法 双阶段目标检测方法主要通过选择性搜索(Selective Search)或者Edge Boxes等算法对输入图像选取可能包含检测目标的候选区域(Region Proposal),再对候选区域进行分类和位置回归以得到检测结果。 OverFeat 算法 《OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks》 Sermanet 等改进AlexNet 提出 OverFeat 算法。该算法结合AlexNet通过多尺度滑动窗口实现特征提取功能,并且共享特征提取层,应用于图像分类、定位和目标检测等任务。 关键技术: 1、FCN( 全卷积神经网络 ) 对于一个各层参数结构都设计好的网络模型,要求输入图片的尺寸是固定的(例如,Alexnet要求输入图片的尺寸为227px*227px)。如果输入一张500*500的图片,希望模型仍然可以一直前向传导,即一个已经设计完毕的网络,可以输入任意大小的图片,这就是FCN。 FCN的思想在于: 1、从卷积层到全连接层,看成是对一整张图片的卷积层运算。 2、从全连接层到全连接层,看成是采用1*1大小的卷积核,进行卷积层运算。如上图所示,绿色部分代表卷积核大小。假设一个CNN模型,其输入图片大小是14*14,通过第一层卷积后得到10*10大小的图片,然后接着通过池化得到了5*5大小的图片。像但是对于像素值为5*5的图片到像素值为1*1的图片的过程中: (1)传统的CNN:如果从以前的角度进行理解的话,那么这个过程就是全连接层,我们会把这个5*5大小的图片,展平成为一维向量进行计算。 (2)FCN:FCN并不是把5*5的图片展平成一维向量再进行计算,而是直接采用5*5的卷积核,对一整张图片进行卷积运算。 二者本质上是相同的,只是角度不同,FCN把这个过程当成了对一整张特征图进行卷积,同样,后面的全连接层也是把它当做是以1*1大小的卷积核进行卷积运算。 当输入一张任意大小的图片,就需要利用以上所述的网络,例如输入一张像素为16*16的图片:根据上图,该网络最后的输出是一张2*2的图片。可见采用FCN网络可以输入任意大小的图片。同时需要注意的是网络最后输出的图片大小不在是一个1*1大小的图片,而是一个与输入图片大小息息相关的一张图片。 Overfeat就是把采用FCN的思想把全连接层看成了卷积层,在网络测试阶段可以输入任意大小的图片。 2、offset max-pooling 简单起见,不用二维的图像作为例子,而是采用一维作为示例: 如上图所示,在X轴上有20个神经元,并且选择池化size=3的非重叠池化,那么根据之前所学的方法应该是:对上面的20个神经元,从1位置开始进行分组,每3个连续的神经元为一组,然后计算每组的最大值(最大池化),19、20号神经元将被丢弃,如下图所示: 或者可以在20号神经元后面,添加一个数值为0的神经元编号21,与19、20成为一组,这样可以分成7组:[1,2,3],[4,5,6]……, [16,17,18],[19,20,21],最后计算每组的最大值。 如果只分6组,除了以1作为初始位置进行连续组合之外,也可以从位置2或者3开始进行组合。也就是说其实有3种池化组合方法: A、△=0分组:[1,2,3],[4,5,6]……,[16,17,18]; B、△=1分组:[2,3,4],[5,6,7]……,[17,18,19]; C、△=2分组:[3,4,5],[6,7,8]……,[18,19,20]; 对应图片如下: 以往的CNN中,一般只用△=0的情况,得到池化结果后,就送入了下一层。但是该文献的方法是,把上面的△=0、△=1、△=2的三种组合方式的池化结果,分别送入网络的下一层。这样的话,网络在最后输出的时候,就会出现3种预测结果了。 前面所述是一维的情况,如果是2维图片的话,那么(△x,△y)就会有9种取值情况(3*3);如果我们在做图片分类的时候,在网络的某一个池化层加入了这种offset 池化方法,然后把这9种池化结果,分别送入后面的网络层,最后的图片分类输出结果就可以得到9个预测结果(每个类别都可以得到9种概率值,然后我们对每个类别的9种概率,取其最大值,做为此类别的预测概率值)。 算法原理: 文献中的算法,就是把这两种思想结合起来,形成了文献最后测试阶段的算法。 1、论文的网络架构与训练阶段 (1)网络架构 对于网络的结构,文献给出了两个版本——快速版、精确版,一个精度比较高但速度慢;另外一个精度虽然低但是速度快。下面是高精度版本的网络结构表相关参数: 表格参数说明: 网络输入:图片大小为221px*221px; 网络结构方面基本上和AlexNet相同,使用了ReLU激活,最大池化。不同之处在于:(a)作者没有使用局部响应归一化层;(b)然后也没有采用重叠池化的方法;(c)在第一层卷积层,stride作者是选择了2,这个与AlexNet不同(AlexNet选择的跨步是4,在网络中,如果stride选择比较大得话,虽然可以减少网络层数,提高速度,但是却会降低精度)。 需要注意的是把f7这一层,看成是卷积核大小为5*5的卷积层,总之就是需要把网络看成前面所述的FCN模型,去除了全连接层的概念,因为在测试阶段可不是仅仅输入221*221这样大小的图片,在测试阶段要输入各种大小的图片,具体请看后面测试阶段的讲解。 (2)网络训练 训练输入:对于每张原图片为256*256,然后进行随机裁剪为221*221的大小作为CNN输入,进行训练。 优化求解参数设置:训练的min-batchs选择128,权重初始化选择高斯分布的随机初始化: 然后采用随机梯度下降法,进行优化更新,动量项参数大小选择,L2权重衰减系数大小选择10-5次方。学习率初始化值为,根据迭代次数的增加,每隔几十次的迭代后,就把学习率的大小减小一半。 然后就是DropOut,这个只有在最后的两个全连接层,才采用dropout,dropout比率选择。 2、网络测试阶段 在Alexnet的文献中,预测方法是输入一张图片256*256,然后进行multi-view裁剪,也就是从图片的四个角进行裁剪,还有就是一图片的中心进行裁剪,这样可以裁剪到5张224*224的图片。然后把原图片水平翻转一下,再用同样的方式进行裁剪,又可以裁剪到5张图片。把这10张图片作为输入,分别进行预测分类,在后在softmax的最后一层,求取个各类的总概率,求取平均值。 然而Alexnet这种预测方法存在两个问题: 一方面这样的裁剪方式,把图片的很多区域都给忽略了,这样的裁剪方式,刚好把图片物体的一部分给裁剪掉了; 另一方面,裁剪窗口重叠存在很多冗余的计算,像上面要分别把10张图片送入网络,可见测试阶段的计算量还是较大的。 Overfeat算法: 训练完上面所说的网络之后,在测试阶段不再是用一张221*221大小的图片了作为网络的输入,而是用了6张大小都不相同的图片,也就是所谓的多尺度输入预测,如下表格所示: 当网络前向传导到layer 5的时候,就利用了前面所述的FCN、offset pooling这两种思想的相结合。现以输入一张图片为例(6张图片的计算方法都相同),讲解layer 5后面的整体过程,具体流程示意图如下: 步骤一: 对于某个尺度的图片,经过前五层的卷积后得到特征图。上图中特征图的分辨率是20x23,256个通道。 步骤二: 对于该特征图,重复多次使用非重叠的池化,每次池化的偏置不同,有行偏置和列偏置。上图中偏置池化3次,偏置分别为为(0,1,2)。这就是offset pooling,也被称为fine stride。offset pooling得到的特征图的维度为6x7x3x3xD,其中6x7是特征图的分辨率,3x3是偏置池化的次数,D是通道数。上图中是以1维显示的。 步骤三: 池化后得到的特征图将被送入分类器。 步骤四: 分类器的输入是的5x5xD,输出是C(类别数)维向量。但是offset pooling后得到的特征图并不是5x5xD,比如上图中的特征图大小为6x7xD,因此分类器以滑动窗口的方式应用在特征图上,每个滑动窗口经过分类器输出一个C维向量。比如上图中输入的6x7xD的特征图最终得到2x3xC的输出,其中2x3是滑动窗口的个数。 步骤五: 而2x3xC只是一组偏置池化的输出,总的输出为2x3x3x3xC,将输出的张量reshape,得到6x9xC输出张量。最终输出分类张量为3d张量,即两个分辨率维度 x C维。 然后需要在后面把它们拉成一维向量,这样在一个尺度上,可以得到一个C*N个预测值矩阵,每一列就表示图片属于某一类别的概率值,并且求取每一列的最大值,作为本尺度的每个类别的概率值。 最后一共用了6种不同尺度(文献使用了12张,另外6张是水平翻转的图片)进行做预测,然后把这六种尺度结果再做一个平均,作为最最后的结果。 从上面过程可以看到整个网络分成两部分:layer 1~5这五层称之为特征提取层;layer 6~output称之为分类层。 六、定位任务 用于定位任务的时候,就把分类层(上面的layer 6~output)给重新设计一下,把分类改成回归问题,然后在各种不同尺度上训练预测物体的bounding box。

机械视觉检测论文

CCD视觉系统就是用工业相机代替人眼睛去完成识别,测量,定位等功能。CCD视觉检测系统广泛应用于电子连接器生产制造行业,连接器平整度和正位度检测。随着电子产品市场高速发展,CCD视觉检测重要性就越发明显。

ICCV论文是计算机视觉领域最高级别的会议论文

计算机视觉是使用计算机及相关设备对生物视觉的一种模拟。它的主要任务就是通过对采集的图片或视频进行处理以获得相应场景的三维信息,就像人类和许多其他类生物每天所做的那样。

计算机视觉是一门研究如何使机器“看”的科学,更进一步的说,就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像。

CVPR录用标准

CVPR有着较为严苛的录用标准,会议整体的录取率通常不超过30%,而口头报告的论文比例更是不高于5%。而会议的组织方是一个循环的志愿群体,通常在某次会议召开的三年之前通过遴选产生。CVPR的审稿一般是双盲的,也就是说会议的审稿与投稿方均不知道对方的信息。

通常某一篇论文需要由三位审稿者进行审读。最后再由会议的领域主席(area chair)决定论文是否可被接收。

视觉检测强化了细微缺陷的检测;缩短检测时间,提升产品检测效率;因检测产品的材质,加工能容而产生缺陷的种类各式各样,在影光检测仪器下,由于可以一次拍摄中生成检测用途的多张图像,因此可以选择适合目标缺陷的图像数据;

影光视觉检测

机器视觉检测的特点是提高生产的柔性和自动化程度。在一些不适合于人工作业的危险工作环境或人工视觉难以满足要求的场合,常用机器视觉来替代人工视觉;同时在大批量工业生产过程中,用人工视觉检查产品质量效率低且精度不高,用机器视觉检测方法可以大大提高生产效率和生产的自动化程度。而且机器视觉易于实现信息集成,是实现计算机集成制造的基础技术。

机械视觉检测系统设计论文

在设计一个机器视觉检测系统时,应该考虑首先考虑以下几点 1). 选取合适的光源;因为合理的照明可以让采集系统得到高质量的图像。 2). 选取合适的工业镜头; 3). 选取合适的信息处理系统; 4). 设计合理的检测控制系统; 5). 针对用户需求根据软件设计相应的程序;图像提取的方法是重点要考虑的,简化软件算法,提高检测速度。合适的提取方法可以是任务完成的更轻松。由于机器视觉系统是一种比较复杂的系统,大多数系统检测对象都是运动的物体,系统与运动物体的匹配和协调动作尤为重要,所以系统各部分的动作时间和处理速度带来了严格的要求。 还不知道的给我发消息,

当接触一个全新的 机器视觉 检测项目时,如何开展一个机器视觉检测项目?机器视觉检测项目基本流程有哪些?简单流程如下:确定客户需求、方案设计、软件开发、现场调试、文档交接。在实际项目中,各个流程可能互相耦合,不过整体流程是基本明确的,整理后如下。 一、确定客户需求 项目伊始,需要准确、详细地了解客户需求,这个过程需要多次现场考察、反复与客户沟通,才能落实客户需求。主要确定项目的应用类型、节拍要求、精度要求、安装空间、光照环境、通讯接口等内容。 应用类型——确定机器视觉应用类型(测量、识别、检测、引导定位),了解产品表面状态、外形尺寸等影响 视觉检测 因素的变化情况,初步评估能否满足需求 节拍要求——客户对生产效率方面的要求,量化视觉检测步骤时间 精度要求——针对各检测功能点及客户生产要求量化视觉检测精度 安装空间——确认现场环境对视觉系统的安装是否有限制 光照环境——确认现场环境是否有强光、日光干扰等特殊影响 通讯接口——确认现场与视觉系统配合的数据传输接口类型、I/O接口类型等 二、方案设计 视觉系统 是一个各部分互相配合的有机整体,并不是简单的组合,所以一个项目的方案设计关乎着整个项目的成败,从初步方案,到ZUI终方案,以及中间经历的各个版本,需要整个团队共同评审,才能敲定ZUI终方案。整体方案内容主要包括需求分析、视觉硬件设计、视觉软件设计、可行性验证、开发计划。 需求分析——整理客户关键需求,并分析需求可行性 机器视觉硬件设计——包括视觉系统平台、相机、镜头、光源的选择 机器视觉软件设计——采用第三方视觉软件,抑或自行开发视觉处理软件 可行性验证——搭建软硬件环境,初步测试能否满足客户需求 开发计划——罗列项目开发计划,模块化项目节点,跟进项目进度 另外,一个完整的项目应包括机械、电气、视觉等其他部分,以上只是简单陈述下视觉方案的设计内容,而ZUI终呈现给客户的完整项目方案还应包括机械设计、电气设计。 三、软件开发 软件开发主要包括人机交互界面、底层算法,测试运行。 人机交互界面开发——简单易用、处理结果直观显示;落实软件框架,功能化软件模块;软件框架多采用生产者/消费者模式,功能模块一般包括图像采集模块、算法处理模块,数据保存模块,通讯模块等。 底层算法开发——落实算法处理工具(Halcon、OpenCV、NI Vision等);开发算法处理流程;生成动态库.dll 测试运行——模拟现场出现的各种情况,测试软件算法的稳定性、鲁棒性。 四、现场调试 现场调试是一个比较繁琐的过程,主要体现在调试过程中的不确定性因素较多,例如环境光的影响、机械振动的影响、硬件工作的稳定性等。主要流程包括设备安装、模块调试、系统联调、自动运行。 设备安装—— 运动部件安装;相机、镜头、光源安装;视觉系统内部线缆附件走线;视觉控制器、光源控制器安装;外部通信、I/O线缆走线等; 模块调试—— 相机功能调试(触发拍照等);工件检测特征视觉参数调试(相机参数、镜头参数、光源位置和亮度等);外部通讯调试等; 系统联调—— 调试完整视觉程序;正常生产检测调试等; 自动运行—— 开机自动运行; 五、文档交接 需要与客户进行文档交接时,说明已进入项目尾部,此时应编写操作文档并进行现场培训。 操作手册—— 软件基本操作;常见问题及解决方法; 现场培训—— 项目工作流程;软件操作;问题解决步骤; 深圳 瑞视特科技 有限公司() 有多年的机器视觉行业经验的,在机器视觉的应用领域上积累了不少的案例,大家可以了解一下。

轴承清洗传输线的设计与研制基于PLC的夹具自动化教学实验系统的开发面向机械制造的虚拟仪器检测系统的研究和开发罗克韦尔自动化公司OEM配套业务发展战略研究关于降低机械制造成本的方法研究《机械制造技术基础》课程网络实验系统的研制分段多参数输入抛光机控制系统的研究与设计片式电容装配联动机开发及质量检测的研究与实现车床C620的数控改造项目制造型企业作业成本管理信息系统研究武汉市高职高专学生英语学习动机研究基于Pro/E的径向珩轮三维自动化造型及仿真研究基于交易成本视角的临港科技园的建设初探基于嵌入式数控的激光切雕控制系统研究与开发气缸可靠性试验及数据处理方法的研究汽车车身焊接图像识别算法研究单轨列车清洗机研究与设计运动控制技术研究及运动控制板卡开发基于GSM短信模式的温度远程监控系统的研究自动化焊接机器人生产线优化研究大网格非等径钢筋网自动焊接设备的设计汽车车桥半轴套管、过渡接盘焊接设备PLC控制及焊接工艺矿井提升机PLC智能控制系统研究基于串口通信的可视化设计与实现嵌入式机器视觉测控系统轮毂轴承清洗机的研制多工位压力机快速换模系统的电控永磁夹紧研究电力系统提高电能质量方法的研究与实践机床制造企业立体仓库信息管理系统的研究破碎设备液压控制系统的优化设计及故障诊断专家系统初探SOFT型CNC数控系统控制软件的开发花键、螺纹冷滚压成形自动建模与仿真系统开发多工艺金相切割机自动控制系统的设计与研究机电液一体化小型自动生产线的研制电磁式动力吸振器的研究与设计基于CPLD的金相抛光机自动控制系统设计基于文本指令的嵌入式数控系统软件开发定点倾转式电炉及阀控缸角位移控制系统研发二辊矫直机矫直辊CAD/CAM系统的研究和开发聚合物配制站自动化控制系统设计及实现模块化理论在企业中的应用研究Cryostats智能测控系统的设计、研制及其网络化研究机械设计过程中信息集成技术的研究汽车车锁锁芯自动装配系统的研制开发高速加工工具系统研究基于双系统控制的YX-C46-SK数控化改造数控加工实验教学系统的研究与开发新型镀铬量检测分析仪的研究水润滑高速高精密主轴研究长安汽车发动机缸体机械加工自动线总体设计与研究这些都可以,轴承清洗传输线的设计与研制基于PLC的夹具自动化教学实验系统的开发面向机械制造的虚拟仪器检测系统的研究和开发罗克韦尔自动化公司OEM配套业务发展战略研究关于降低机械制造成本的方法研究《机械制造技术基础》课程网络实验系统的研制分段多参数输入抛光机控制系统的研究与设计片式电容装配联动机开发及质量检测的研究与实现车床C620的数控改造项目制造型企业作业成本管理信息系统研究武汉市高职高专学生英语学习动机研究基于Pro/E的径向珩轮三维自动化造型及仿真研究基于交易成本视角的临港科技园的建设初探基于嵌入式数控的激光切雕控制系统研究与开发气缸可靠性试验及数据处理方法的研究汽车车身焊接图像识别算法研究单轨列车清洗机研究与设计运动控制技术研究及运动控制板卡开发基于GSM短信模式的温度远程监控系统的研究自动化焊接机器人生产线优化研究大网格非等径钢筋网自动焊接设备的设计汽车车桥半轴套管、过渡接盘焊接设备PLC控制及焊接工艺矿井提升机PLC智能控制系统研究基于串口通信的可视化设计与实现嵌入式机器视觉测控系统轮毂轴承清洗机的研制多工位压力机快速换模系统的电控永磁夹紧研究电力系统提高电能质量方法的研究与实践机床制造企业立体仓库信息管理系统的研究破碎设备液压控制系统的优化设计及故障诊断专家系统初探SOFT型CNC数控系统控制软件的开发花键、螺纹冷滚压成形自动建模与仿真系统开发多工艺金相切割机自动控制系统的设计与研究机电液一体化小型自动生产线的研制电磁式动力吸振器的研究与设计基于CPLD的金相抛光机自动控制系统设计基于文本指令的嵌入式数控系统软件开发定点倾转式电炉及阀控缸角位移控制系统研发二辊矫直机矫直辊CAD/CAM系统的研究和开发聚合物配制站自动化控制系统设计及实现模块化理论在企业中的应用研究Cryostats智能测控系统的设计、研制及其网络化研究机械设计过程中信息集成技术的研究汽车车锁锁芯自动装配系统的研制开发高速加工工具系统研究基于双系统控制的YX-C46-SK数控化改造数控加工实验教学系统的研究与开发新型镀铬量检测分析仪的研究水润滑高速高精密主轴研究长安汽车发动机缸体机械加工自动线总体设计与研究

机器视觉蔬菜检测论文

智慧温室大棚蔬菜种植自动控制系统的具体应用论文

在日常学习、工作生活中,说到论文,大家肯定都不陌生吧,论文写作的过程是人们获得直接经验的过程。怎么写论文才能避免踩雷呢?以下是我为大家收集的智慧温室大棚蔬菜种植自动控制系统的具体应用论文,仅供参考,希望能够帮助到大家。

摘要:

传统的农业种植模式已经很难满足现代生活模式与需求,以传统塑料大棚为例,不仅产量很低,也会带来较大的污染,且人员管理非常繁琐,不利于蔬菜种植效益的提升。智慧温室大棚蔬菜种植模式优势较多,相比于传统塑料大棚能够大幅度扩展蔬菜种植发展空间,也改变了现代农业、新型农村的格局。该文简述了智慧温室大棚蔬菜种植的优势,然后分析了智慧温室大棚建设方案,最后介绍了智慧温室大棚蔬菜种植自动控制系统的具体应用。

关键词 :

智慧温室;大棚蔬菜;种植技术;

引言:

在传统农业发展模式下,农民的浇水、施肥和打药等农业劳动过程主要借助已有经验进行。在温室大棚蔬菜种植中,需要关注浇水的时机,准确把控农药浓度,且保证温湿度、光照、氮元素等处于适宜的状态。由于无法量化指标,通常依赖于人为判断,因而经常发生误差,也无法提高温室大棚蔬菜种植的产量和质量。要想解决传统农业中低效率、低产能等现象,需要积极引入智慧温室大棚蔬菜种植技术,将各影响因素进行有效控制,改进环境条件,促进蔬菜的正常生长。

1、传统大棚蔬菜种植的危害气体

传统大棚蔬菜种植会释放很多有害气体,如氮气,引起有害气体含量超标的原因较多,主要包括人员操作不当、肥料质量不合格等因素。若是施肥方法不科学,施用含量超标的肥料,将引起氮气排放的增加,当温室大棚内氮气含量超出一定限度后,将导致叶片枯死,特别是对黄瓜、西红柿、西葫芦等蔬菜来说,对氮气更加敏感。此外,还会存在亚硝酸气体,当土壤呈弱酸性后,即pH值未超过5,某些菌体的作用效果将持续减弱,形成大量的亚硝酸气体。亚硝酸气体含量的增加,会让蔬菜绿叶发生白色斑点,黄瓜、西葫芦、青椒和西芹等蔬菜对亚硝酸气体较为敏感[1].冬季严寒,很多农民常用煤球升温取暖,在燃料不充分燃烧的情况下,将形成大量一氧化碳等有毒气体,温室大棚中碳元素也会超标,不利于蔬菜产量与质量的提升。

在预防过程中主要采取以下措施:

(1)做到施肥的科学性。温室大棚中施用的有机肥必须需要发酵腐热,以优质化肥为主,尿素要与过磷钙混施。基肥要深施15~20cm,追施化肥深度至少为12cm,施后及时覆土浇水。

(2)通风换气。在天气条件较好的情况下,要根据温度要求及时通风换气,遇到雨雪天气时也应该做好通风换气工作。

(3)农膜与地膜不能产生毒性,温室大棚中废旧塑料品等需第一时间清理干净。

2、智慧温室大棚蔬菜种植的优势

在蔬菜种植中需要控制好空气温湿度、土壤温湿度和水肥条件,才能保证蔬菜生长的品质,实现产量提高的目的。因此要通过精准化控制各项环境因素,改善温室大棚蔬菜种植品质,确保经济效益逐步提升。智慧大棚主要在温室大棚蔬菜种植中引入自动化控制系统,发挥最新生物模拟技术的作用,对棚内蔬菜生长最适宜的环境进行模拟。同时也设置了温度、湿度、二氧化碳和光照度传感器,对温室大棚内多项环境指标进行感知,并利用微机完成数据分析,实现对棚内水帘、风机和遮阳板等设施的全面监控,最终有效改善大棚内蔬菜生长环境。

在科技进步与发展过程中,各种智慧大棚控制系统得到了广泛应用,实行精细化管理模式,温室大棚内的茄子、辣椒、黄瓜和西红柿等蔬菜都能快速生长,能够帮助种植户创造丰厚利润,也促进了智慧温室大棚的发展。在智慧大棚控制系统中主要应用了物联网技术,设置农业物联网传感器,管理中物联网系统能够有效采集实施环境数据,其中包含了光照、空气温度、湿度和二氧化碳浓度等信息,在网络支持下向控制平台传输[2].系统结合获得的数据信息完成智能判断,远程控制温室大棚中的各项设备,达到及时调节棚内环境的目的,确保满足大棚内蔬菜生长的要求。在温室大棚蔬菜种植中引入智慧大棚控制系统,大幅度提升了温室大棚生产自动化和管理智能化水平。

智慧大棚控制系统除了可以在温室环境方面实现精准管理以外,还具备大面积统一管理的优势。在系统运行过程中,能够为温室大棚蔬菜种植提供精细化的智慧管控服务,实现对设施农业管理效果的不断优化。这样不仅能让温室大棚管理效率大幅度提升,也有效减少了管理成本的投入,为大棚蔬菜种植创造了诸多便利,能够达到增产增收的目的,温室大棚蔬菜种植也能逐步发展为稳定型和持续增收型产业。在中国加快推进乡村振兴战略实施的过程中,智慧大棚控制系统将在农业智能化发展中发挥越来越大的作用,为农业全面升级打牢基础。

3、智慧温室大棚建设方案

在智慧温室大棚建设过程中,需要由多个环境监测节点完成组网,才能实时采集环境信息,达到精准控制的目的。在各环境监测节点上需要安装传感器,控制设备主要有补光照明设备、排风设备、灌溉设备以及报警设备等。各节点也设置2节干电池保证电能供应,因为节点功耗不高,所以电池使用寿命很长,在智慧温室大棚中供电非常安全与便利。各传感器获得的数据向上位机传输过程中,上位机除了可以实时显示、控制与存储,并自动生成温度、湿度和光照等环节因素变化曲线图以外,也可以借助网关与Internet服务器进行连接,达到手机远程监测和控制等目的。建设智慧温室大棚后,能够实现对温室大棚蔬菜生长情况的远程视频监控,也能将相关信息实时存储下来,为农业生产科学化管理创造条件。

在智慧温室大棚功能设计上,主要包括以下几点:

(1)身份识别功能。借助RFID射频识别技术将个人信息显示在上位机,用户在系统刷卡登记后才能完成相应操作。

(2)自动报警功能。要想农业生产更加安全可靠,在大棚中发生烟雾、明火以后,利用烟雾传感器与火焰传感器进行检测,能够第一时间让蜂鸣器报警得到控制,在GPRS模块支持下为用户发送短信或者是打电话,并在屏幕上清晰完整呈现大棚报警信息。

(3)远程监控功能。登录网页端,即实现对智慧温室大棚蔬菜种植的远程监控。

(4)无线信息采集与传输功能。为提高大棚蔬菜种植的产量与质量,要实时监测和控制大棚内蔬菜生长环境。环境监测节点主要由光照、空气温度、土壤温湿度以及二氧化碳传感器等构成,能够精确采集相关信息数据[3].

(5)定时防治病虫害功能。利用臭氧发生器,能够在高压、高频电等电离作用下,让空气内氧气转化为臭氧,并定时进行杀菌,达到对温室大棚蔬菜种植中的病虫害防治功能。这种方式不仅具有安全、高效等优点,还降低了成本与农药使用量,能够达到无污染、无残留的要求,不断推动智慧温室大棚蔬菜种植增值提效。

4、智慧温室大棚蔬菜种植自动控制系统

在农业自动化发展过程中,除了应用计算机技术以外,也涉及微电子技术、通信技术和光电技术等,尤其对蔬菜种植自动控制系统而言,它们是智慧温室大棚蔬菜种植中需要重点关注的.内容。对该系统而言,主要结合蔬菜温室控制要求建设的远程监控管理系统,属于可扩展、可操作的硬件与软件系统。利用无线通信方式与蔬菜温室管理中心的计算机联网,能够让蔬菜温室单元得到实时调节与控制。

蔬菜种植自动控制系统主要构成如下:

(1)无线传感器,分别为温湿度传感器,土壤温湿度传感器、光传感器和二氧化碳传感器等设备。

(2)控制器,主要有温湿度控制器、光强控制器和土壤温湿度控制器等,可以集中处理各传感器传输的数据信息,并由计算机发出相应的控制指令。

(3)触摸屏,能够显示各种数据,以及风机、加湿、加热电磁阀等现场设备的远程控制,各种数据报表的打印等。

(4)遥控终端,通常包括手机、计算机等。

对蔬菜种植自动控制系统功能来说,包括以下几点:

(1)检测系统:设置多种无线传感器,将蔬菜生长环境中的温度、湿度、pH值、光照强度、土壤养分和二氧化碳浓度等物理参数及时采集起来。

(2)信息传输系统:利用本地无线网络、互联网、移动通信网络等通信网络,为数据传输、转换等创造有利条件,能够提高智慧温室大棚内环境信息传输效率。

(3)信息通过无线网络传输系统和信息路由设备传输到控制中心,各节点能够自由匹配,任意监控,互不干扰。

(4)控制系统:增加摄像头,对各温室大棚进行监测,并借助监控计算机对环境调整的全过程进行监控。蔬菜生长环境信息数据等进行实时监测,将各节点数据采集起来,通过存储、管理后能够动态呈现各测点信息。同时结合掌握的信息数据自动灌溉、施肥、喷施、降温和补光等,发挥历史数据存储、查询、报警和打印等作用[4].

(5)远程控制系统:移动电话终端用户能够了解蔬菜棚的工作状态,借助手机实时发布指挥控制设备。

蔬菜种植自动化控制系统不仅安全可靠,适应性也很强,能够提高蔬菜种植智能化水平,为绿色健康蔬菜种植奠定了良好基础。蔬菜自动种植控制系统融合处理大量的农业信息,确保技术人员可以完成多个蔬菜棚环境的监控与智能管理,让蔬菜生长环境得到改善,真正实现增产、提高质量、调节生长周期、提高经济效益等目标,也达到集约化农业生产、高产、优质、高效、生态、安全的目的[5].

5、结语

总之,近年来人民生活水平不断提高,在蔬菜栽培自动化控制系统建设与应用上有着更高的要求,产品附加值越来越高,经济效益也不断提升。通过光照、温度、湿度、二氧化碳、土壤等监测与自动化控制,推动现代农业发展再上新台阶,也是智能技术在农业生产中作用的体现。实行智慧温室大棚蔬菜种植技术,为蔬菜种植技术提供量化指标作为参照,这样蔬菜种植产量与品质得到保障,可操作性也大幅度提升,不仅可以实现增产创收的目的,也为产业链的形成创造了有利条件。

参考文献

[1]胡琼香基于物联网的智慧温室大棚蔬菜种植技术[J]江西农业,2019(14):13-17.

[2]刘欣"互联网+"设施蔬菜智慧决策管理系统设计与验证[J.江苏科技信息,2018,35(29):62-64.

[3]孙通农业气象物联网在蔬菜大棚中的应用[J]现代农业科技2020(16):164-171.

[4]何淑红设施大棚蔬菜生产技术与发展趋势研究[J].农村实用技术2020(08):11-12.

[5]胆温室大棚蔬菜种植技术试析[J]农民致富之友,2020(13):50-50.

之前也是为论文苦恼了半天,网上的范文和能搜到的资料,大都不全面,一般能有个正文就不错了,而且抄袭的东西肯定不行的,关键是没有数据和分析部分,我好不容易搞出来一篇,结果还过不了审。 还好后来找到文方网,直接让专业人士帮忙,效率很高,核心的部分帮我搞定了,也给了很多参考文献资料。哎,专业的事还是要找专业的人来做啊,建议有问题参考下文方网吧 下面是之前文方网王老师发给我的题目,分享给大家: 基于深度学习的无人机地面小目标算法研究 基于视觉的智能汽车面向前方车辆的运动轨迹预测技术研究 模拟射击训练弹着点检测定位技术研究 基于深度卷积神经网络的空中目标识别算法的研究 基于可见光图像的飞行器多目标识别及位置估计 无人驾驶车辆手势指令识别研究与实现 车载毫米波雷达目标检测技术研究 基于多传感融合的四足机器人建图方法 中老年人群跌倒风险评估的数据采集系统 基于深度学习的视觉SLAM闭环检测方法研究 真实图片比较视觉搜索任务的年龄效应及对策研究 室内复杂场景下的视觉SLAM系统构建与研究 基于双目内窥镜的软组织图像三维重建 学习资源画面色彩表征影响学习注意的研究 毫米波雷达与机器视觉双模探测关键技术的研究 语义地图及其关键技术研究 多重影响因素下的语音识别系统研究 基于卷积神经网络的自主空中加油识别测量技术研究 基于视觉语义的深度估计、实例分割与重建 重复视觉危险刺激——本能恐惧反应的“二态型”调控机制研究 低成本视觉下的三维物体识别与位姿估计 面向非规则目标的3D视觉引导抓取方法及系统研究 基于物体识别地理配准的跨视频行人检测定位技术研究 基于结构光的非刚体目标快速三维重建关键技术研究 基于机器视觉的动物交互行为与认知状态分析系统 关于单目视觉实时定位与建图中的优化算法研究 动态场景下无人机SLAM在智慧城市中的关键技术研究 面向视觉SLAM的联合特征匹配和跟踪算法研究 基于深度学习的显著物体检测 基于平面波的三维超声成像方法与灵长类动物脑成像应用研究 基于物体检测和地理匹配的室内融合定位技术研究 基于多模态信息融合的人体动作识别方法研究 基于视觉惯性里程计的SLAM系统研究 基于语义信息的图像/点云配准与三维重建 基于种子点选取的点云分割算法研究 基于深度学习的场景文字检测与识别方法研究 基于运动上下文信息学习的室内视频烟雾预警算法研究 基于深度学习的垃圾分类系统设计与实现 面向手机部件的目标区域检测算法的设计与实现 电路板自动光照检测系统的设计与实现 基于机器视觉的工件识别与定位系统的设计与实现 基于深度学习的物件识别定位系统的设计与实现 基于视觉四旋翼无人机编队系统设计及实现 基于视觉惯导融合的四旋翼自主导航系统设计与实现 面向城市智能汽车的认知地图车道层生成系统 基于深度学习的智能化无人机视觉系统的设计与仿真 基于知识库的视觉问答技术研究 基于深度学习的火灾视频实时智能检测研究 结构化道路车道线检测方法研究 基于机器视觉的带式输送机动态煤量计量研究 基于深度学习的小目标检测算法研究 基于三维激光与视觉信息融合的地点检索算法研究 动态环境下仿人机器人视觉定位与运动规划方法研究 瓷砖铺贴机器人瓷砖空间定位系统研究 城市街景影像中行人车辆检测实现 基于无线信号的身份识别技术研究 基于移动机器人的目标检测方法研究 基于深度学习的机器人三维环境对象感知 基于特征表示的扩展目标跟踪技术研究 基于深度学习的目标检测方法研究 基于深度学习的复杂背景下目标检测与跟踪 动态扩展目标的高精度特征定位跟踪技术研究 掩模缺陷检测仪的图像处理系统设计 复杂场景下相关滤波跟踪算法研究 基于多层级联网络的多光谱图像显著性检测研究 基于深度结构特征表示学习的视觉跟踪研究 基于深度网络的显著目标检测方法研究 基于深度学习的电气设备检测方法研究 复杂交通场景下的视频目标检测 基于多图学习的多模态图像显著性检测算法研究 基于面部视频的非接触式心率检测研究 单幅图像协同显著性检测方法研究 轻量级人脸关键点检测算法研究 基于决策树和最佳特征选择的神经网络钓鱼网站检测研究 基于深度学习的场景文本检测方法研究 RGB-D图像显著及协同显著区域检测算法研究 多模态融合的RGB-D图像显著目标检测研究 基于协同排序模型的RGBT显著性检测研究 基于最小障碍距离的视觉跟踪研究 基于协同图学习的RGB-T图像显著性检测研究 基于图学习与标签传播优化模型的图像协同显著性目标检测 姿态和遮挡鲁棒的人脸关键点检测算法研究 基于多模态和多任务学习的显著目标检测方法研究 基于深度学习的交通场景视觉显著性区域目标检测 基于生物视觉机制的视频显著目标检测算法研究 基于场景结构的视觉显著性计算方法研究 精神分裂症患者初级视觉网络的磁共振研究 基于fMRI与TMS技术研究腹侧视觉通路中结构优势效应的加工 脑机接口游戏神经可塑性研究 基于YOLOV3算法的FL-YOLO多目标检测系统 基于深度与宽度神经网络显著性检测方法研究 基于深度学习的零件识别系统设计与研究 基于对抗神经网络的图像超分辨算法研究 基于深度学习复杂场景下停车管理视觉算法的研究与实现 镍电解状态视觉检测与分析方法研究 跨界训练对提升舞者静态平衡能力的理论与方法研究 施工现场人员类型识别方法的研究与实现 基于深度学习的自然场景文字检测方法研究 基于嵌入式的交通标志识别器的设计 基于视觉感知特性与图像特征的图像质量评价

机器视觉玻璃检测论文

嘉铭机器视觉检测系统官员选型技巧主要有这几点

⒈ 基于机器视觉的仪表板总成智能集成测试系统EQ140-Ⅱ汽车仪表板总成是中国某汽车公司生产的仪表产品,仪表板上安装有速度里程表、水温表、汽油表、电流表、信号报警灯等,其生产批量大,出厂前需要进行一次质量终检。检测项目包括:检测速度表等五个仪表指针的指示误差;检测24个信号报警灯和若干照明9灯是否损坏或漏装。一般采用人工目测方法检查,误差大,可靠性差,不能满足自动化生产的需要。基于机器视觉的智能集成测试系统,改变了这种现状,实现了对仪表板总成智能化、全自动、高精度、快速质量检测,克服了人工检测所造成的各种误差,大大提高了检测效率。整个系统分为四个部分:为仪表板提供模拟信号源的集成化多路标准信号源、具有图像信息反馈定位的双坐标CNC系统、摄像机图像获取系统和主从机平行处理系统。⒉ 金属板表面自动控伤系统金属板如大型电力变压器线圈扁平线收音机朦胧皮等的表面质量都有很高的要求,但原始的采用人工目视或用百分表加控针的检测方法不仅易受主观因素的影响,而且可能会绘被测表面带来新的划伤。金属板表面自动探伤系统利用机器视觉技术对金属表面缺陷进行自动检查,在生产过程中高速、准确地进行检测,同时由于采用非接角式测量,避免了产生新划伤的可能。其工作原理图如图8-6所示;在此系统中,采用激光器作为光源,通过针孔滤波器滤除激光束周围的杂散光,扩束镜和准直镜使激光束变为平行光并以45度的入射角均匀照明被检查的金属板表面。金属板放在检验台上。检验台可在X、Y、Z三个方向上移动,摄像机采用TCD142D型2048线陈CCD,镜头采用普通照相机镜头。CCD接口电路采用单片机系统。主机PC机主要完成图像预处理及缺陷的分类或划痕的深度运算等,并可将检测到的缺陷或划痕图像在显示器上显示。CCD接口电路和PC机之间通过RS-232口进行双向通讯,结合异步A/D转换方式,构成人机交互式的数据采集与处理。该系统主要利用线阵CCD的自扫描特性与被检查钢板X方向的移动相结合,取得金属板表面的三维图像信息。⒊ 汽车车身检测系统英国ROVER汽车公司800系列汽车车身轮廓尺寸精度的100%在线检测,是机器视觉系统用于工业检测中的一个较为典型的例子,该系统由62个测量单元组成,每个测量单元包括一台激光器和一个CCD摄像机,用以检测车身外壳上288个测量点。汽车车身置于测量框架下,通过软件校准车身的精确位置。测量单元的校准将会影响检测精度,因而受到特别重视。每个激光器/摄像机单元均在离线状态下经过校准。同时还有一个在离线状态下用三坐标测量机校准过的校准装置,可对摄像顶进行在线校准。检测系统以每40秒检测一个车身的速度,检测三种类型的车身。系统将检测结果与人、从CAD模型中撮出来的合格尺寸相比较,测量精度为±。ROVER的质量检测人员用该系统来判别关键部分的尺寸一致性,如车身整体外型、门、玻璃窗口等。实践证明,该系统是成功的,并将用于ROVER公司其它系统列汽车的车身检测。⒋ 纸币印刷质量检测系统:该系统利用图像处理技术,通过对纸币生产流水线上的纸币20多项特征(号码、盲文、颜色、图案等)进行比较分析,检测纸币的质量,替代传统的人眼辨别的方法。⒌ 智能交通管理系统:通过在交通要道放置摄像头,当有违章车辆(如闯红灯)时,摄像头将车辆的牌照拍摄下来,传输给中央管理系统,系统利用图像处理技术,对拍摄的图片进行分析,提取出车牌号,存储在数据库中,可以供管理人员进行检索。⒍金相分析:金相图象分析系统能对金属或其它材料的基体组织、杂质含量、组织成分等进行精确、客观地分析,为产品质量提供可靠的依据。⒎ 医疗图像分析:血液细胞自动分类计数、染色体分析、癌症细胞识别等。 ⒏ 瓶装啤酒生产流水线检测系统:可以检测啤酒是否达到标准的容量、啤酒标签是否完整⒐ 大型工件平行度、垂直度测量仪:采用激光扫描与CCD探测系统的大型工件平行度、垂直度测量仪,它以稳定的准直激光束为测量基线,配以回转轴系,旋转五角标棱镜扫出互相平行或垂直的基准平面,将其与被测大型工件的各面进行比较。在加工或安装大型工件时,可用该认错器测量面间的平行度及垂直度。⒑ 螺纹钢外形轮廓尺寸的探测器件:以频闪光作为照明光源,利用面阵和线阵CCD作为螺纹钢外形轮廓尺寸的探测器件,实现热轧螺纹钢几何参数在线测量的动态检测系统。⒒轴承实时监控:视觉技术实时监控轴承的负载和温度变化,消除过载和过热的危险。将传统上通过测量滚珠表面保证加工质量和安全操作的被动式测量变为主动式监控。⒓ 金属表面的裂纹测量:用微波作为信号源,根据微波发生器发出不同波涛率的方波,测量金属表面的裂纹,微波的波的频率越高,可测的裂纹越狭小。

视觉龙有很多机器视觉技术的应用实例

视觉检测在电子元件的应用:

此产品为电子产品的按钮部件,产品来料为料带模式,料带上面为双排产品。通过对每个元器件定位后,使用斑点工具检测产品固定区域的灰度值,来判断此区域有无缺胶情况。

该应用采用了视觉龙的DragonVision视觉系统方案,使用两个相机及光源配合机械设备,达到每次检测双面8个产品,每分钟检测大约1500个。当出现产品不良时,立刻报警停机,保证了产品的合格率和设备的正常运行,提高生产效率。

机器人视觉引导玩偶定位应用:

现场有两个振动盘,振动盘1作用是把玩偶振动到振动盘2中,振动盘2作用是把玩偶从反面振动为正面。该应用采用了视觉龙的VD200视觉定位系统,该系统通过判断玩偶正反面,把玩偶处于正面的坐标值通过串口发送给机器人,机器人收到坐标后运动抓取产品,当振动盘中有很多玩偶处于反面时,VD200视觉定位系统需判断反面玩偶数量,当反面玩偶数量过多时,VD200视觉系统发送指令给振动盘2把反面玩偶振成正面。

该定位系统通过玩偶表面的小孔来判断玩偶是否处于正面,计算出玩偶中心点坐标,发送给机器人。通过VD200视觉定位系统实现自动上料,大大减少人工成本,大幅提高生产效率。

机器视觉优势:机器视觉系统具有高效率、高度自动化的特点,可以实现很高的分辨率精度与速度。机器视觉系统与被检测对象无接触,安全可靠。人工检测与机器视觉自动检测的主要区别有:

机器视觉的应用领域:

•识别

标准一维码、二维码的解码

光学字符识别(OCR)和确认(OCV)

•检测

色彩和瑕疵检测

零件或部件的有无检测

目标位置和方向检测•测量

尺寸和容量检测

预设标记的测量,如孔位到孔位的距离

•机械手引导

输出空间坐标引导机械手精确定位

机器视觉系统的分类

•智能相机

•基于嵌入式

•基于PC

机器视觉系统的组成

•图像获取:光源、镜头、相机、采集卡、机械平台

•图像处理与分析:工控主机、图像处理分析软件、图形交互界面。

•判决执行:电传单元、机械单元

视觉龙DragonVision手机背光模组检测

相关百科

热门百科

首页
发表服务