激光加工就是利用其所具有的输出光线的高指向性和高能量,进行微小孔及狭缝等的精密加工、切割、微细焊接等。下面是我整理了激光加工技术论文,有兴趣的亲可以来阅读一下!
谈机械制造激光加工技术
摘要:激光加工就是利用其所具有的输出光线的高指向性和高能量,进行微小孔及狭缝等的精密加工、切割、微细焊接等。激光有固体激光、液体激光和气体激光等。目前,作为加工用的以固体激光为最好。
关键词:机械 制造 激光 加工 技术
激光是通过入射光子使亚稳态高能级的原子、离子或分子跃迁到低能级受激幅射(不是自发幅射)时发出的光,也可解释为“光受激幅射后发射加强”。它是由于受激发射的发光放大现象。激光具有单色性好、方向性强、能量高度集中等特性,因此在军事、工农业生产和科学研究的很多领域中得到了广泛应用。激光加工就是利用其所具有的输出光线的高指向性和高能量,进行微小孔及狭缝等的精密加工、切割、微细焊接等。激光有固体激光、液体激光和气体激光等。目前,作为加工用的以固体激光为最好。
激光加工具有以下特点:激光加工不需要加工工具,所以不存在工具损耗问题,很适宜自动化连续操作,可以在大气中进行。功率密度高,几乎能加工所有的材料,如果是透明材料(如玻璃),只要采取一些色化和打毛 措施 ,仍可加工。加工速度快,效率高,热影响区小。因不需要工具,又能聚焦成极细的光束,所以能加工深而小的微孔和窄缝(直径可小至几微米,深径比可达10以上),适合于精微加工。可通过透明材料(如玻璃)对工件进行加工。
1、激光器
气体激光器
通常用二氧化碳激光器。
二氧化碳激光器的激光管内充有二氧化碳,同时加进一些辅助气体,这些辅助气体有助于提高激光器输出功率。二氧化碳激光器是目前气体激光器中连续输出功率最大、能量转换效率最高的一种激光器,能以大功率连续输出波长的激光,而且方向性、单色性及相干性好,能聚焦成很小的光斑。缺点是设备体积大,输出瞬时功率小,而且是看不见的红外光,调整光束位置不方便。
固体激光器
包括红宝石激光器、钇铝石榴石激光器、钕玻璃(掺钕的盐酸玻璃)激光器等。固体激光器的特点是体轵小,输出能量大,可以打较大较深的孔;但其能量转换效率低,制造较难,成本高。而二氧化碳激光器则具有造价低,结构简单,工作效率高,打孔质量好等优点;不足是体积大,占地面积大。
2、影响激光加工的因素
激光主要用于各种材料的小孔、窄缝等微型加工,虽然也有生产率和表面粗糙度的要求,但主要是加工精度问题,如孔和窄缝大小、深度和几何形状等。因工艺对象的最小尺寸只有几十微米,所以加工误差一般为微米级。为此,除保证光学系统和机械方面精度外,还有光的特殊影响。
输出功率与照射时间
激光输出功率大,照射时间长,工件所获得能量大。当焦点位置一定时,激光能量越大, 加工孔就大而深,锥度小。照射时间一般为几分之一至几毫秒。激光能量一定时,照射时间太长会使热量传散到非加工区;时间太短则因能量密度过大,蚀除物的高温气体喷出,也会使激光使用效率降低。
焦距与发散角
发散角小的激光束,经短焦距的聚焦物镜以后,在焦面上可以获得更小的光斑及更高的功率密度。光斑直径小,打的孔也小,且由于功率密度大,打出的孔不仅深,而且锥度小。
焦点位置
焦点位置低,透过工件表面的光斑面积大,不仅会产生喇叭口,而且因能量密度减小而影响加工深度。焦点位置太高,同样,工作表面尖斑大,进入工件后越来越大,甚至无法继续加工。激光的实际焦点在工件表面或略低于工件表面为宜。
光斑内的能量分布
激光束经聚焦后,在焦面上的光点实际上是一个直径为d的光斑,光斑内能量分布不均。中心点的光强最大,离开中心点迅速减弱,能量以焦点为轴心对称分布,这种光束加工出来的孔是正圆形的。若激光束能量分布不对称,打出的孔也不对称。
激光的多次照射
激光照射一次,加工孔的深度大约是孔径的五倍左右,且锥度较大。激光多次照射,深度将大大增加,锥度减小,孔径几乎不变。但是,孔加工到一定深度后,由于孔内壁的反射、透射以及激光的散射或吸收及抛出力减小,排屑困难等原因,使孔前端的能量密度不断减小,加工量逐渐减少,以致不能继续加工。
第一次照射后打出一个不太深而且带锥度的孔;第二次照射后,聚焦光在第一次照射所打的孔内发散,由于光管效应,发散的光在孔壁上反射的下深入孔内,因此第二次照射后所打出的孔是原来孔形的延伸,孔径基本上不变。多次照射的焦点位置固定在工件表面,不向下移动。
工件材料
各种工件材料的吸收光谱不同,经透镜聚焦到工件上的激光能量不可能全部被吸收,有相当一部分能量被反射或透射散失,吸收效率与工件材料吸收光谱及激光波长有关。在生产实践中,应根据工件材料的性能(吸收光谱)选择激光器。对于高反射和透射率的工件表面应作打毛或黑化处理,增大对激光的吸收效率。
3、激光加工的应用
激光打孔
利用激光打微型小孔,目前已应用于火箭发动机和柴油机的燃料喷嘴加工、化学纤维喷丝头打孔、钟表及仪表的宝石轴承打孔、金刚石拉丝模加工等方面。
激光打孔不需要工具,适合于自动化连续打孔。采用超声调制的激光打孔,是把超声振动的作用与激光加工复合起来。把激光谐振腔的全反射镜安装在超声换能器变幅杆的端面上作超声振动,使输出的激光尖锋波形由不规则变为较平坦排列,调制成多个尖锋激光脉冲。由此可以增加打孔深度,改善孔壁粗糙度和提高打孔效率。
激光切割
激光切割具有如下特点:(1)可以用来切割各种高硬度、高熔点的金属或非金属材料。(2)切缝窄,可以节省贵重材料(如半导体材料等)。(3)速度快,成品率高,质量好。目前,激光切割已成功应用于半导体材料、钛板、石英、陶瓷等材料的切割加工中。
激光焊接激光焊接与激光打孔的原理稍有不同
焊接时不需要那么髙的能量密度,使工件材料气化、蚀除,只需将工件加工区烧熔粘合在一起。因此,激光焊接所需的能量密度较低,通常可用减小激光输出功率来实现。
脉冲输出的红宝石激光器和钕玻璃激光器适合于点焊;而连续输出的二氧化碳激光器和YAG激光器适合于缝焊。
激光焊接过程迅速,被焊材料不氧化,热影响区小,适合于热敏感元件焊接。
参考文献
[1]哈尔滨工业大学,上海工业大学.机床夹具设计(第二版).上海:上海科学技术出版社,1989.
[2]刘文剑等.夹具工程师手册.哈尔滨:黑龙江科学技术出版社,1992.
[3]李庆寿.机床夹具设计.北京:机械工业出版社,1984.
[4]孔巴德.机床夹具图册.北京:机械工业出版社,1984.
点击下页还有更多>>>激光加工技术论文
传感器(英文名称:transducer/sensor)是直接作用于被测量、并能按一定规律将其转化为同种或别种量值输出的器件。这是我为大家整理的传感器技术论文 范文 ,仅供参考!传感器技术论文范文篇一 传感器及其概述 摘 要 传感器(英文名称:transducer/sensor)是直接作用于被测量、并能按一定规律将其转化为同种或别种量值输出的器件。目前,传感器转换后的信号大多是电信号,因而从狭义上讲,传感器是把外界输入的非电信号转换为电信号的装置。 【关键词】传感器 种类 新型 1 前言 传感器是测试系统的一部分,其作用类似于人类的感觉器官,也可以认为是人类感官的延伸。人们借助传感器可以去探测那些人们无法用或不便用感官直接感知的事物,如用热电偶可以测量炽热物体的温度;用超声波换能器可以测海水深度;用红外遥感器可从高空探测地面形貌、河流状态及植被的分布等。因此,可以说传感器是人们认识自然界事物的有力工具,是测量仪器与被测量物体之间的接口。通常情况下,传感器处于测试装置的输入端,是测试系统的第一个环节,其性能直接影响着整个测试系统,对测试精度有很大影响。 2 传感器的分类 按被测物理量的不同,可以分为位移、力、温度、流量传感器等;按工作的基础不同,可以分为机械式传感器、电气式传感器、光学式传感器、流体式传感器等;按信号变换特征可以分为物性型传感器和结构型传感器;根据敏感元件与被测对象直接的能量关系,可以分为能量转换型传感器与能量控制型传感器。 3 常见传感器介绍 电阻应变式传感器 电阻应变式传感器又叫电阻应变计,其敏感元件是电阻应变。应变片是在用苯酚,环氧树脂等绝缘材料浸泡过的玻璃基板上,粘贴直径为左右的金属丝或金属箔制成。敏感元件也叫敏感栅。其具有体积小、动态响应快、测量精度高、使用简单等优点。在航空、机械、建筑等各行业获得了广泛应用。电阻应变片的工作原理是基于金属的应变效应,即金属导体在外力作用下产生机械形变,其电阻值随机械变形的变化而变化。其可以分为:金属电阻应变片和半导体应变片式两类。金属应变片有金属丝式、箔式、薄膜式之分。半导体应变片具有灵敏度高(通常是丝式、箔式的几十倍)、横向效应小等优点。它们的主要区别在于:金属电阻应变片式是利用导体形变引起电阻变化,而半导体应变片式则是利用电阻率变化引起电阻的变化。 电容式传感器 电容式传感器是将被测物理量转换成电容量变化的装置,它实质是一个具有可变参数的电容器。由于电容与极距成反比,与正对面积和介质成正比,因此其可以分为极距变化型、面积变化型和介质变化型三类。极距变化型电容传感器的优点是可进行动态非接触式测量,对被测系统的影响小,灵敏度高,适用于较小位移的测量,但这种传感器有非线性特性,因此使用范围受到一定限制。面积变化型传感器的优点是输出与输入成线性关系,但与极距型传感器相比,灵敏度较低,适用于较大的直线或角位移的测量。介质变化型则多用于测量液体的高度等场合。 电感式传感器 电感式传感器是将被测物理量,如力、位移等,转换为电感量变换的一种装置,其变换是基于电磁感应原理。电感式传感器种类很多,常见的有自感式,互感式和涡流式三种。 电感式传感器具有以下特点:结构简单,传感器无活动电触点,因此工作可靠寿命长。灵敏度和分辨力高,能测出微米的位移变化。传感器的输出信号强,电压灵敏度一般每毫米的位移可达数百毫伏的输出。线性度和重复性都比较好,在一定位移范围(几十微米至数毫米)内,传感器非线性误差可达~。同时,这种传感器能实现信息的远距离传输、记录、显示和控制,它在工业自动控制系统中广泛被采用。但不足的是,它有频率响应较低,不宜快速动态测控等缺点。 磁电式传感器 磁电式传感器是把被测物理量转换为感应电动势的一种传感器,又称电磁感应式或电动力式传感器。其工作原理是一个匝数为N的线圈,当穿过它的磁通量变化时,线圈产生了感应电动势。磁通量的变化可通过多种方式来实现,如磁铁与线圈做切割磁力线运动、磁路的磁阻变化、恒定磁场中线圈面积的变化,因此可制造出不同类型的传感器用于测量速度、扭矩等。 压电式传感器 压电式传感器是一种可逆传感器,是利用某些物质的压电效应进行工作的器件。最简单的压电式传感器是在压电晶片的两个工作面上进行金属蒸镀,形成金属膜,构成两个电极。当晶片受压力时,两个极板上聚集数量相等而极性相反的电荷,形成电场。因此压电传感器可以看成是电荷发生器,又可以看作电容器。 4 新型传感器 生物传感器 生物传感器是用生物活性材料(酶、蛋白质、DNA、抗体、抗原、生物膜等)与物理化学换能器有机结合的一门交叉学科,是发展生物技术必不可少的一种先进的检测 方法 与监控方法,也是物质分子水平的快速、微量分析方法。各种生物传感器有以下共同的结构:包括一种或数种相关生物活性材料(生物膜)及能把生物活性表达的信号转换为电信号的物理或化学换能器(传感器),二者组合在一起,用现代微电子和自动化仪表技术进行生物信号的再加工,构成各种可以使用的生物传感器分析装置、仪器和系统。生物传感器的原理:待测物质经扩散作用进入生物活性材料,经分子识别,发生生物学反应,产生的信息继而被相应的物理或化学换能器转变成可定量和可处理的电信号,再经二次仪表放大并输出,便可知道待测物浓度。 激光传感器 激光传感器:利用激光技术进行测量的传感器。它由激光器、激光检测器和测量电路组成。激光传感器是新型测量仪表,它的优点是能实现无接触远距离测量,速度快,精度高,量程大,抗光、电干扰能力强等。激光传感器原理:激光传感器工作时,先由激光发射二极管对准目标发射激光脉冲。经目标反射后激光向各方向散射。部分散射光返回到传感器接收器,被光学系统接收后成像到雪崩光电二极管上。雪崩光电二极管是一种内部具有放大功能的光学传感器,因此它能检测极其微弱的光信号,并将其转化为相应的电信号。 5 结束语 随着科技的飞速发展,人们不断提高着自身认知世界的能力。传感器在获取自然和生产领域中发挥着巨大上的作用。目前,传感器技术在发展经济、推动社会进步方面起到重要的推动作用。相信未来,传感器技术将会出现一个飞跃。 作者简介 杨天娟(1991-),女,河北省邯郸市人。现为郑州大学本科生,主要研究方向为机械工程及自动化。 作者单位 郑州大学机械工程学院 河南省郑州市 450001 传感器技术论文范文篇二 温度传感器 摘 要:温度传感器是最早开发、也是应用最广泛的一种传感器。据调查,早在1990年,温度传感器的市场份额就大大超出了 其它 传感器。从17世纪初,伽利略发明温度计开始,人们便开始了温度测量。而真正把温度转换成电信号的传感器,是1821年德国物理学家赛贝发明的,也就是我们现在使用的热电偶传感器。随后,铂电阻温度传感器、半导体热电偶温度传感器、PN结温度传感器、集成温度传感器相继而生。也使得温度传感器更加广泛的应用到我们的生产和生活中。本文主要介绍了温度传感器的分类、工作原理及应用。 关键词:温度传感器;温度;摄氏度 中图分类号:TP212 文献标识码:A 文章 编号:1674-7712 (2014) 02-0000-01 温度传感器(temperature transducer),利用物质各种物理性质随温度变化的规律把温度转换为可用输出信号。温度传感器是温度测量仪表的核心部分,品种繁多。按测量方式可分为接触式和非接触式两大类。现代的温度传感器外形非常得小,这样更加让它广泛应用在生产实践的各个领域中,也为我们的生活提供了无数的便利和功能。 一、温度的相关知识 温度是用来表征物体冷热程度的物理量。温度的高低要用数字来量化,温标就是温度的数值表示方法。常用温标有摄氏温标和热力学温标。 摄氏温标是把标准大气压下,沸水的温度定为100摄氏度,冰水混合物的温度定为0摄氏度,在100摄氏度和0摄氏度之间进行100等份,每一等份为1摄氏度。热力学温标是威廉汤姆提出的,以热力学第二定律为基础,建立温度仅与热量有关而与物质无关的热力学温标。由于是开尔文 总结 出来的,所以又称为开尔文温标。 二、温度传感器的分类 根据测量方式不同,温度传感器分为接触式和非接触式两大类。接触式温度传感器是指传感器直接与被测物体接触,从而进行温度测量。这也是温度测量的基本形式。其中接触式温度传感器又分为热电偶温度传感器、热电阻温度传感器、半导体热敏电阻温度传感器等。 非接触式温度传感器是测量物体热辐射发出的红外线,从而测量物体的温度,可以进行遥测。 三、温度传感器的工作原理 (一)热电偶温度传感器。热电偶温度传感器结构简单,仅由两根不同材料的导体或半导体焊接而成,是应用最广泛的温度传感器。 热电偶温度传感器是根据热电效应原理制成的:把两种不同的金属A、B组成闭合回路,两接点温度分别为t1和t2,则在回路中产生一个电动势。 热电偶也是由两种不同材料的导体或半导体A、B焊接而成,焊接的一端称为工作端或热端。与导线连接的一端称为自由端或冷端,导体A、B称为热电极,总称热电偶。测量时,工作端与被测物相接触,测量仪表为电位差计,用来测出热电偶的热电动势,连接导线为补偿导线及铜导线。 从测量仪表上,我们观测到的便是热电动势,而要想知道物体的温度,还需要查看热电偶的分度表。 为了保证温度测量结果足够精确,在热电极材料的选择方面也有严格的要求:物理、化学稳定性要高;电阻温度系数小;导电率高;热电动势要大;热电动势与温度要有线性或简单的函数关系;复现性好;便于加工等。根据我们常用的热电极材料,热电偶温度传感器可分为标准化热电偶和非标准化热电偶。铂铑-铂热电偶是常用的标准化热电偶,熔点高,可用于测量高温,误差小,但价格昂贵,一般适用于较为精密的温度测量。铁-康铜为常用的非标准化热电偶,测温上限为600摄氏度,易生锈,但温度与热电动势线性关系好,灵敏度高。 (二)电阻式温度传感器。热电偶温度传感器虽然结构简单,测量准确,但仅适用于测量500摄氏度以上的高温。而要测量-200摄氏度到500摄氏度的中低温物体,就要用到电阻式温度传感器。 电阻式温度传感器是利用导体或者半导体的电阻值随温度变化而变化的特性来测量温度的。大多数金属在温度升高1摄氏度时,电阻值要增加到。电阻式温度传感器就是要将温度的变化转化为电阻值的变化,再通过测量电桥转换成电压信号送至显示仪表。 (三)半导体热敏电阻。半导体热敏电阻的特点是灵敏度高,体积小,反应快,它是利用半导体的电阻值随温度显著变化的特性制成的。可分为三种类型:(1)NTC热敏电阻,主要是Mn,Co,Ni,Fe等金属的氧化物烧结而成,具有负温度系数。(2)CTR热敏电阻,用V,Ge,W,P等元素的氧化物在弱还原气氛中形成烧结体,它也是具有负温度系数的。(3)PTC热敏电阻,以钛酸钡掺和稀土元素烧结而成的半导体陶瓷元件,具有正温度系数。也正是因为PTC热敏电阻具有正温度系数,也制作成温度控制开关。 (四)非接触式温度传感器。非接触式温度传感器的测温元件与被测物体互不接触。目前最常用的是辐射热交换原理。这种测温方法的主要特点是:可测量运动状态的小目标及热容量小或变化迅速的对象,也可用来测量温度场的温度分布,但受环境温度影响比较大。 四、温度传感器的应用举例 (一)温度传感器在汽车上的应用。温度传感器的作用是测量发动机的进气,冷却水,燃油等的温度,并把测量结果转换为电信号输送给ECU.对于所有的汽油机电控系统,进气温度和冷却水温度是ECU进行控制所必须的两个温度参数,而其他的温度参数则随电控系统的类型及控制需要而不尽相同。进气温度传感器通常安装在空气流量计或从空气滤清器到节气门体之间的进气道或空气流量计中,水温传感器则布置在发动机冷却水路,汽缸盖或机体上上的适当位置.可以用来测量温度的传感器有绕线电阻式,扩散电阻式,半导体晶体管式,金属芯式,热电偶式和半导体热敏电阻式等多种类型,目前用在进气温度和冷却水温度测量中应用最广泛的是热敏电阻式温度传感器。 (二)利用温度传感器调节卫生间的温度。温度传感器还能调节卫生间内的温度,尤其是在洗澡的时候,能自动调节卫生间内的温度是很有必要的。通过温湿度传感器和气体传感器就能很好的控制卫生间内的环境从而使我们能够拥有一个舒适的生活。现在大部分旅馆和一些公共场所都实现了自动调节,而普通家庭的卫生间都还是人工操作,尚未实现自动调节这主要是一般客户不知道能够利用传感器实现自动化,随着未来人们的进一步了解,普通家庭的卫生间也能实现自动调节。 参考文献: [1]周琦.集成温度传感器的设计[D].西安电子科技大学,2007.
你好,很高兴为你解答。红外粉尘传感器(包括神荣,GE,夏普等品牌)和激光粉尘传感器(包括诺方电子,四方光电,攀藤科技等品牌),两者有很大区别。首先从价格上激光传感器比红外普遍价格要高一些。然后从结构上,激光粉尘传感器结构复杂,光源为激光二极管,气流流动进出一般都有专门设计,采样空气通过风扇或鼓风机推动,输出一般为串口输出,像SDS011还有PWM输出以节省上位机串口资源。红外则相对简单。功能上激光粉尘传感器检测数据与专业仪器相比非常接近,数据可信度已经比较高了,而传统红外粉尘传感器数据表现差距较大。感谢采纳!谢谢!(*^__^*)
最常见的就是安装粉尘浓度监测仪,实时进行粉尘浓度的检测。
粉尘检测系统可分为检测端、显示报警端和连锁控制端。其中检测端为激光粉尘检测仪,装于高处用于检测环境中粉尘含量。显示端为二次仪表控制器,用于显示粉尘浓度值及超标报警。联锁控制段为控制车间排风、喷淋等安全系统,实现当爆炸粉尘浓度超标时自动启动安全装置。AGA6050粉尘仪就可以实现此功能。
这个看你们使用的是哪种的了,有静电吸附式的,有激光原理的,我在网上找的有AGA6050防爆激光粉尘仪,原理,是激光后向散射原理
粉尘仪一般是指测试粉尘浓度的仪器,一般特指空气中粉尘浓度的测量设备。粉尘浓度分为质量浓度和数浓度两种,测量质量浓度的简称粉尘仪,测量数浓度的叫做激光粒子计数器。一般狭义的粉尘仪可以测出空气中悬浮粉尘的浓度,比如在职业健康领域、工业生产领域及环保领域常提到的可吸入颗粒物、、PM10等概念都是使用粉尘仪进行测试的。按照测量方法又常见的压电天平法、光散射法、称重法等等。具体要看你们厂里粉尘仪是什么类型的,才能更好的了解其工作原理。不过一般的工厂用便携粉尘仪都是光散射法,是根据mi氏散射原理来测量粉尘浓度。
现在做的好些的话,可以看下天津康卓奈斯的意大利品牌EVO,硬件和软件技术等相关产品的引进,研发,制作 ,销售及服务他们都有做的
faro的三维激光扫描仪,重量(主机+脚架+相机) 5+数码相机 内置7000万像素扫描速度 976000点/秒视场角 360° × 305°测距范围 "120m @ 90% 50m @ 18%"最高分辨率 mm @ ≤50 m; mm @ ≤25 m数据存储 一机配双32G SD卡,最大支持2TB SD卡形成模型表面的精度 1mm 激光类型 相位式激光等级 3R(IEC 60825-1)工作时间 10h/2块操作方式 彩色触摸屏存储温度 -25°C~+65°C感光 "明亮的阳光下和完全黑暗的情况下"尺寸 100mm × 200mm × 240mm配套软件 FAROscene FAROscene LT后续处理可以使用geomagic的studio或者 qualify,应用还不错,价格也不贵,现在作为比较成熟的相位式大空间三位激光扫描仪,80多万已经很便宜了
我觉得FARO的强项是在接触式的测量方面,例如他们gage等等,而他们的激光扫描这个觉得没有handyscan的使用,效果也一般般,关键还要配合他们的关节臂一起用,价格太贵了。外形倒是不错,但实用性一般。他们的数据一般的逆向软件可以可以使用。
国内法如关节臂做的比较好
《模具工业》2001. No . 4 总 242 40激 光 加 工 技 术 在 模 具 制 造 中 的 应 用江苏理工大学(江苏镇江 212013) 张 莹 周建忠 戴亚春[摘要]随着激光加工技术的日趋成熟和工业用大功率激光设备价格的逐渐下降 ,给产品和模具的制造工艺带来了新的变革 ,在模具制造、 模具表面强化与维修、 取代模具等 3个方面 ,就激光优化模具制造工艺作了较为详细的分析和探讨。关键词 模具 激光 工艺优化[ Abstract ]Wi t h t he mat uri ng of t he las e r p r oces si ng t echnology and t he dec r easi ng of p rice of t hei ndus t rial la r ge - p owe r las e r e quipme nt , a new i nnovat ion was br ought t o t he manuf act uri ngt echnology of t he p r oduct s and t he dies and moulds . A r elat ively de t ailed analysis and dis cus sionwas made on t he las e r op t imized manuf act uri ng p r oces s f or dies and moulds f r om t hr e e asp ect s ofmanuf act uri ng , s urf ace r ei nf orceme nt and mai nt e nance , and s ubs t i t ut ive dies or moulds .Key words die and mould , las e r , t echnological p r oces s op t imizat ion1 引 言激烈的市场竞争使制造企业对快速响应市场需求和一次制造成功等要求日益迫切。而在常规制造系统中 , 产品生产所需大量模具的设计、制造和装配调试不仅耗费大量资金 , 更严重的是延长了产品生产的准备时间 , 从而延长了新产品开发周期 ,形成制造过程中的瓶颈。因此 , 如何快速有效地制造出高质量、低成本的模具及产品 , 就成为人们不断探索的课题。随着激光加工技术的日趋成熟和工业用大功率激光器设备价格的下降 , 给产品和模具制造工艺带来了重大变革。本文在模具制造、模具表面强化与维修、取代模具等 3个方面 , 就激光加工在模具制造中的应用作一些探讨。2 模具制造2. 1 模具的激光叠加制造1982年 ,日本东京大学的中川教授等人提出用薄片叠加法制造拉伸模 , 1985年 , 美国加州某公司推出了模具的激光叠加制造法 , 并获得专利 , 其工艺流程见图 1 ,原理为将激光切割的多层薄板叠加 ,并使其形状逐渐发生变化 , 最终获得所需的模具立体几何形状。日本在冲模的激光叠加制造方面已达到实用阶段 ,所制的凸、 凹模质量高 ,加工尺寸精度— — —— — —— — —— — —— — —— — ——收稿日期:2000年8月10日已达 ±0. 01mm ,切割厚度为 12mm。 经激光切割后 ,在切口表面形成深 0. 1~0. 2mm、 硬度为 800HV 的硬化层 ,用来冲裁 1mm 厚的钢板 ,单凭自冷硬化层就可冲压 10 000 件 , 如在激光切割后再经火焰淬火 ,则可冲压 3~5万件。 由于各薄板间的连接简单 ,故用叠加法制作冲模 ,成本可降低一半 ,生产周期大大缩短。用来制造复合模、落料模和级进模等都取得了显著的经济效益。图 1 激光叠加模具制造工艺流程由模具 CAD 和激光切割相结合构成一个完整的模具 CAD/ CAM 系统 ,实现板料切割的 FMS ,适用于多品种小批量生产。用激光切割的薄板来叠加合成任意三维曲面的制造系统 , 不仅为在塑性加工和模具领域中实行 FMS 提供了思路 , 而且对于内部结构复杂的模具制造 ,如型孔、 中孔体及复杂的冷却管道等 ,也是快速而经济的制造模具的有效方法 ,并且能带动其他技术如固相扩散等的发展。2. 2 快速模具制造模具 CAD三维设计二维外形NC 程序激光切割去除梯级创层面精加工成形模具装配薄片连结精加工NC 程序模 具 制 造 技 术《模具工业》2001. No . 4 总 242 41快速成型制造技术(RPM)是 80年代后期出现的一项制造技术 , 目前 RPM 技术已发展了十几种工艺方法。基于 RPM 技术快速制造模具的方法多为间接制模法 , 即利用 RPM 原型间接地翻制模具。(1) 软质简易模具 (如汽车覆盖件模具) 的制作。采用硅橡胶、低熔点合金等将原型准确复制成模具 , 或对原型表面用金属喷涂法或物理蒸发沉积法镀上一层熔点极低的合金来制作模具。这些简易模具的寿命为 50~5 000件 ,由于其制造成本低 ,制作周期短 , 特别适用于产品试制阶段的小批量生产。(2) 钢质模具制作。RPM 原型 — — — 三维砂轮— — — 整体石墨电极 — — — 钢模 ,一个中等大小、 较为复杂的电极一般 4~8h 即可完成。 美国福特汽车公司用此技术制造汽车覆盖件模具取得了满意的效果 ,与传统机械加工制作模具相比 , 快速模具制造省去了耗时、 昂贵的 CNC加工 ,加工成本及周期大大降低 ,具有广阔的应用前景。3 模具表面强化与修复为提高模具的使用寿命 , 常常需对模具表面进行强化处理。常用的模具表面强化处理工艺有化学处理 (如渗碳、 碳氮共渗等) 、 表层复合处理 (如堆焊、 热喷涂、 电火花表面强化、 PVD 和 CVD 等) 以及表面加工强化处理(如喷丸等) 。这些方法大多工艺较为复杂 , 处理周期较长 , 且处理后存在较大的变形。采用激光技术来强化和修复模具 , 具有柔性大 , 表面硬度高 , 工艺周期短 , 工作环境洁净等优点 ,因此具有很强的生命力。3. 1 激光相变硬化激光相变硬化 (激光淬火) 是利用激光辐照到金属表面 , 使其表面以很高的升温速度达到相变温度 (但低于熔化温度) 而形成奥氏体 ,当激光束离开后 , 利用金属表面本身热传导而发生自淬火 , 使金属表面发生马氏体转变 , 形成硬度高、抗磨损的表层 , 从而使金属表面得到强化。所用设备为三轴联动的数控激光加工机。影响激光强化的主要因素有激光功率、光斑尺寸和扫描速度。在强化过程中要对这些参数进行优化 , 并对具体材料选择合适的激光处理参数。对于CrWMn、 Cr12MoV、 Cr12、 T10A 及 Cr-Mo 铸铁等的常用模具材料 , 在激光处理后 , 其组织性能较常规热处理普遍改善。 例如 ,CrWMn 钢在常规加热时易在奥氏体晶界上形成网状的二次碳化物 , 显著增加工件脆性 ,降低冲击韧性 ,使用在模具刃口或关键部位寿命较低。采用激光淬火后可获得细马氏体和弥散分布的碳化物颗粒 ,清除网状 ,并获得最大硬化层深度以及最大硬度 1 017. 2HV。Cr12MoV 钢激光淬火后的硬度、抗塑性变形和抗粘磨损能力均较常规热处理有所提高。对 T8A 钢制造的凸模和Cr12Mo 钢制造的凹模 ,激光硬化深 0. 12mm ,硬度1 200HV , 寿命提高 4~6倍 , 既由冲压 2万件提高到 10~14万件。 对于 T10钢 ,激光淬火后可获得硬度 1 024HV、 深 0. 55mm 的硬化层;对于 Cr12 ,激光淬火后可获得硬度 1 000HV、 深 0. 4mm 的硬化层 ,使用寿命均得到了较大的提高。3. 2 激光涂覆激光涂覆是用激光在基体表面覆盖一层薄的具有一定性能的涂覆材料 , 这类材料可以是金属或合金 ,也可以是非金属 ,还可以是化合物及其混合物。在涂覆过程中 , 涂覆层在激光作用下与基体表面通过熔合迅速结合在一起。它与激光合金化的主要区别在于经激光作用后涂层的化学成分基本上不变化 , 基体的成分基本上不进入涂层内。激光涂覆工艺实用的材料范围很广 , 正在研究的母体材料有低碳钢、 合金钢、 铸铁、 镍铬钛耐热合金等 ,研究的添加材料有钴基合金、 铁基合金和镍基合金等。采用激光技术在有送粉器的 2kW CO2 激光器上 , 对 4Cr5MoV1Si 钢基体表面涂覆一层由镍基高温合金和 WC + W2C 粒子组成的高温耐磨合金粉末 ,在激光功率 P = 1 500W ,送粉量为 10g/ min ,工件移动速度为 2~3mm/ s 条件下 ,获得多道搭接的大面积高温耐磨合金。 在试验温度为 600℃ 时 ,硬度为 550~580HV0 .2 ; 在温度为 950℃时 , 硬度为100~200HV0 .2。 可见在 1 000℃ 左右高温下 ,涂覆层仍有很高的强硬性 , 是较理想的高温模具耐磨合金。另外 , 采用激光涂覆方法来修复已磨损的冲模及拉伸模等 ,可大大延长模具的使用寿命 ,降低模具的使用成本。3. 3 激光堆焊对于一些汽车覆盖件冲裁修边模具 , 为提高使用寿命 ,节省优质模具材料 ,刃口往往采用在较差的基体材料上堆焊一层性能优异的合金。 过去 ,堆焊大多采用人工氧 — 乙炔火焰堆焊法 ,这种方法虽然设备《模具工业》2001. No . 4 总 242 42费用低 ,但功率密度不高(102~103W/ cm 2) ,且难以进行精确控制 , 因而堆焊质量和生产率都较低。70年代以来 , 开发成功了等离子粉末堆焊技术 , 由于其具有较高的功率密度且控制性能也较好 , 因而得到了广泛的应用。但等离子堆焊存在着电极寿命短、 堆焊层母材稀释率较高等问题。80年代以来出现的激光堆焊法与使用同一材料的氧 —乙炔火焰堆焊法相比 ,激光堆焊层组织细微、 致密 ,不良品率仅为前者的 1/ 10。激光堆焊的速度快 ,生产率比氧— 乙炔火焰堆焊高 1. 75倍 , 而堆焊的材料使用量仅为其 1/ 2。而且激光堆焊层的室温硬度比氧 — 乙炔火焰堆焊的高 50HV 左右。 激光堆焊质量与激光的光束模式、 功率及堆焊速度等因素有关。4 激光加工替代模具冲压加工4. 1 激光切割替代薄板件的冲裁模激光切割替代钣金件及汽车车身制造中的冲裁修边模大有可为。三维激光切割技术 , 由于其本身具有加工灵活和保证质量的特性 , 在 80 年代就开始在汽车车身制造中应用。切割时只需用平直的支撑块来支撑工件 , 因此夹具的制作不仅成本低而且快速。由于与 CAD/ CAM 技术相结合 ,切割过程易于控制 , 可实现连续生产和并行加工 , 从而实现高效率的切割生产。切割板材所使用的激光器主要有两大类 , 即CO2 激光器和 Nd : YA G激光器 ,功率为 100~1 500W , 因为功率小于 1 500W 的激光器其振动模式为单模 , 切缝宽度为 0. 1~0. 2mm , 切割面也很整洁 ,而输出功率大于 1 500W 时激光器的振动模式为多模 , 割缝宽度近 1mm , 切割面质量较差。因 Nd :YA G的激光可通过光导纤维输送 , 比较灵活方便 ,适用于机器人手执激光喷嘴配程序控制进行精确操作 , 因此在三维切割时大多采用。影响激光切割工件质量的主要因素有切割速度、焦点位置、辅助气体压力、 激光输出功率及模式。美国福特和通用汽车公司以及日本的丰田、日产等汽车公司 , 在汽车生产线上普遍采用激光切割技术 , 它不必采用各种规格的金属模具 , 除了快速方便地切割各种不同形状的坯料外 , 还用来大量切割加工因规格不同需要更改的零件安装孔位置 , 如汽车标志灯、 车架、 车身两侧装饰线等。通用汽车公司生产的卡车仅车门就有直径为 <2. 8~<39mm 的20种孔 , 公司采用 Rofin- Sinar 的 500W 激光器通过光纤连接到装在机械手的焊头上 , 用以切割这些孔 ,1min 就完成一扇门开孔的加工 ,孔边缘光滑 ,背面平整 。<2. 8mm 孔的公差为 0. 03~0. 08mm ,<12mm 孔的公差为 - 0. 25mm~ + 0. 03mm。该公司生产的卡车和客车有 89 种孔径和孔位配置不同的底盘 ,经过优化设计 ,现在只需要冲压 5种不同的底盘 ,然后再由激光切割出配置不同的孔 ,简化了工艺 ,提高了效率 ,降低了成本。我国自然科学基金委在 1997 年把大功率 CO2及 YA G激光三维焊接和切割理论与技术作为重点项目进行资助 , 国家产学研激光技术中心的课题组成员对此进行了系统的研究 , 为在我国汽车车身制造业中应用三维激光立体加工技术做出了很大贡献。该中心为一汽轿车公司、宝山钢铁公司等国有大型企业的技术改造开展了重大工程项目攻关 , 其中开发红旗加长型轿车覆盖件的三维激光制造工艺技术 , 在我国轿车生产中是首次采用。在汽车用薄厚钢板激光大拼板拼接工艺试验研究中首次采用了激光切割替代精裁工艺技术 , 取得了较好的技术经济效果。三维激光切割在车身装配后的加工也十分有用 ,例如开行李架固定孔、 顶盖滑轨孔、 天线安装孔、修改车轮挡泥板形状等。在新车试制中用于切割轮廓和修正 ,既缩短了试制周期又节省了模具 ,充分体现出采用激光切割加工的优点。4. 2 激光打标替代冲模打标企业在其生产的零部件上常常需要打上企业自己的标志或特定的符号与数字 , 以往的方法是使用冲模打标或用铸模成型 , 打标质量不高。采用数控激光机打标不仅速度快 , 而且克服了冲模打标中常见的毛边、尖锐的边缘和畸变。由于采用计算机控制 , 因此可以打出任意复杂的图案 , 省去了模具设计、 制造及调试等环节 ,大大缩短了产品的开发制造周期 , 同时也降低了成本。因激光打标机所需功率小 ,成本低 ,打出的标记美观、 漂亮 ,现已为大多数企业所采用。4. 3 激光成形替代弯曲模成形金属板料的激光成形技术是一种利用聚焦光束以一定的速度扫描金属板料表面 (扫描速度应足够快以防止表面熔化) ,使热作用区内的材料产生明显的温度梯度 ,导致非均匀分布的热应力 ,从而使板料塑性变形的方法。与常规成形方法相比 , 激光成形《模具工业》2001. No . 4 总 242 43具有许多优点: ① 属于无模成形 ,生产周期短 ,柔性大 , 可不受加工环境限制 , 通过优化激光加工工艺参数 , 精确控制热作用区域以及热应力的分布 , 将板料无模成形; ② 因其是一种仅靠热应力而不用模具使板料变形的塑性加工方法 , 因此属无外力成形; ③ 为非接触式成形 ,所以不存在模具制作、 磨损和润滑等问题 ,也不存在贴模、 回弹现象 ,成形精度高; ④ 可使板料通过复合成形得到形状复杂的异形件(如球形件、 锥形件和抛物形件等) 。激光成形机理的实质就是弯曲机理。当激光加热板料时 , 一方面在激光作用区及其周围产生热应力 , 同时降低了被加热区域板料的屈服极根 , 从而使热应力作用区的热态材料产生非均匀的塑性变形 ,实现板料的弯曲成形。试验表明 ,激光每扫描一道次 ,金属板料可弯曲 1° ~5° ,不同的扫描轨迹和工艺参数组合能够产生不同的成形效果和不同程度的变形量 , 即可得到各种复杂形状的工件。图 2表示在工艺参数为激光速功率 1. 5kW , 激光束直径5. 4mm , 材料 SUS304 , 厚 1mm , 碳涂覆面的条件下 ,激光扫面速度与材料弯曲角之间的变化关系。图 2 激光扫描速度对弯曲角的影响现在世界上许多国家都投入较大的人力、物力对激光成形技术进行专项研究 , 在某些领域现已开始了初步的工业应用。波兰基础技术研究所的HFrackiewicz 教授利用激光成形先后制造出了筒形件、 球形件、 波纹管和金属管的扩口缩口、 弯曲成形等;德国学者 MGeiger 等将激光成形与其他加工工序复合运用于汽车制造业 , 进行了汽车覆盖件的柔性校平和其他成形件的成形 , 而且对弯曲成形过程进行计算机闭环控制 , 提高了成形精度。德国Trumpf 公司于 1997 年开发了商品化激光成形多用机床 Trumat ic L 3030。 相信随着研究的不断深入以及其他相关技术的发展 , 激光成形技术将逐趋成熟 ,进入实用化阶段。5 结束语激光加工技术作为一种先进的加工工艺 , 在国外各行业已得到了广泛的应用 ,我国机械行业在 “九五”期间也将其作为十大技术之一。国家自然科学基金委也把激光加工工艺和激光加工设备的研究作为重点研究项目进行资助 , 并明确指出其主要应用领域应该在汽车制造业。模具作为一种工具 , 其生产周期、质量和成本直接影响产品的制造过程和销售。而激光作为一种万能加工工具 , 在减少模具制造装备 ,缩短模具制造周期 ,降低制造成本和保证模具质量等方面具有很大的优势。如何在实际生产中应用激光加工技术来优化模具制造工艺 , 对传统的模具制造工艺进行改进和组合 , 需要我们做出不断的努力。参 考 文 献1 陈大明 ,徐有容 . 模具钢表面激光熔覆硬面合金层改性研究.金属热处理 ,1998 , (1)2 李懦荀 ,平雪良.连续激光强化模具刃口的工艺研究.电加工 ,1995 , (6)3 孙中发 . 我国激光产业发展对策.上海交通大学学报 ,1997 , (10)4 曹 能 ,冯 梅.激光加工技术在汽车工业中的应用 ,宝钢技术 ,1998 , (3)5 管延锦 ,孙升.激光快速成形与制造技术及其在汽车工业中的应用.汽车工艺与材料 ,1999 , (9)6 A Domenico . 加工汽车车身部件的三维激光切割技术 .机电信息 ,1999 , (6)7 周建忠 ,袁国定.应用激光强化技术提高覆盖件模具寿命.模具工业 ,2000 , (4)8 胡晓峰 . 基于数控激光切割的快速制模方法研究 . 江苏理工大学硕士论文 , M Geiger ,F Voll tert sen. Flexible St raightening ofcar Body Shells by laser .10 Bob Trving. Welding Tailorde Blanks. Welding Jou-rnal ,1995 , (8)11 M Geiger . Synergy of laser Material Porcessing andMetal Forming. Annals of t he CIRP ,1994 ,43(2)12 H Arnet ,F Vollert sen. Extending Laset bendingfor t he generation of convex shapes. Porc . Inst . Engrs. ,1995 , (209)13 Trumf Lt d. The heat is on for laser profiler . SheetMetal Indust ries ,1997 , (1)
摘要:机电一体化是现代科学技术发展的必然结果。文章概述机电一体化的核心技术,分析机电一体化发展进程,提出机电一体化向智能化迈进的趋势。关键词:机电一体化;核心技术;发展进程;发展趋势机电一体化技术是面向应用的跨学科技术,是机械、微电子、信息和控制技术等有机融合、相互渗透的结果。今天机电一体化技术发展飞速,机电一体化产品更日新月异。一、机电一体化的核心技术1.机械技术:是机电一体化的基础,机械技术的着眼点在于如何与机电一体化技术相适应,利用其高、新技术来更新概念,实现结构上、材料上、性能上变更,满足减小重量、缩小体积、提高精度、提高刚度及改善性能要求。2.计算机与信息技术:其中信息交换、存取、运算、判断与决策、人工智能技术、专家系统技术、神经网络技术均属于计算机信息处理技术。3.系统技术:即以整体概念组织应用各种相关技术,从全局角度和系统目标出发,将总体分解成相互关联的若干功能单元,接口技术是系统技术中一个重要方面,是实现系统各部分有机连接的保证。4.自动控制技术:其范围很广,在控制理论指导下,进行系统设计,设计后的系统仿真,现场调试,控制技术包括如高精度定位控制、速度控制、自适应控制、自诊断校正、补偿、再现、检索等。5.传感检测技术:是系统的感受器官,是实现自动控制、自动调节的关键环节。其功能越强,系统的自动化程序就越高。6.伺服传动技术:包括电动、气动、液压等各种类型的传动装置,伺服系统是实现电信号到机械动作的转换装置与部件、对系统的动态性能、控制质量和功能有决定性的影响。二、机电一体化的发展进程1.数控机床问世:自从1952年美国第1台数控铣床问世至今已50个年头。我国数控机床制造业在80年代曾有过高速发展阶段,尤其是在1999年后,国家向国防工业及关键民用工业部门投入大量技改资金,使数控设备制造市场一派繁荣。2.微电子技术的发展:我国的集成电路产业起步于1965年,经过30多年发展,已初步形成包括设计、制造、包装业共同发展的产业结构。3.可编程序控制器(PLC)的应用于工业:上世纪60年代后期,美国汽车制造业开发一种Modular DigitalController(MODICON)取代继电控制盘。MODICON是世界上第一种投入商业生产的年代是PLC崛起,并首先在汽车工业获得大量应用。80年代是它走向成熟,全面采用微电子及微处理器技术。90年代又开始了PLC的第三个发展时期。90年代后期进入了第四阶段。其特征是:在保留PLC功能的前提下,采用面向现场总线网络的体系结构,采用开放的通信接口,如以太网、高速串口;采用各种相关的国际工业标准和一系列的事实上的标准;从而使PLC和DCS这些原来处于不同硬件平台的系统,正随着计算技术、通信技术和编程技术的发展,趋向于建立同一硬件平台,运用同一个操作系统、同一个编程系统,执行不同的DCS和PLC功能。这就是真正意义上的EIC三电一体化。4.激光技术、模糊技术、信息技术等新技术的出现:以激光技术为首的光电子技术是未来信息技术发展的关键技术,它集中了固体物理、波导光学、材料科学、微细加工和半导体科学技术的科研成就,成为电子技术与光子技术自然结合与扩展、具有强烈应用背景的新兴交叉学科,对于国家经济、科技和国防都具有重要的战略意义。三、机电一体化向智能化迈进20世纪90年代后期,各主要发达国家开始了机电一体化技术向智能化方向迈进的新阶段。一方面,光学、通信技术等进入了机电一体化,微细加工技术也在机电一体化中崭露头角,出现了光机电一体化和微机电一体化等新支;另一方面,对机电一体化系统的建模设计、分析和集成方法,机电一体化的学科体系和发展趋势都进行了深入研究。同时,由于人工智能技术、神经网络技术及光纤技术等领域取得的巨大进步,为机电一体化技术开辟了发展的广阔天地,也为产业化发展提供了坚实的基础。未来机电一体化的主要发展方向有:1.智能化:是21世纪机电一体化技术发展的一个重要发展方向,是在控制理论的基础上,吸收人工智能、运筹学、计算机科学、模糊数学、心理学、生理学和混沌动力学等新思想、新方法,模拟人类智能,使它具有判断推理、逻辑思维、自主决策等能力,以求得到更高的控制目标。2.网络化:20世纪90年代,计算机技术等的突出成就是网络技术。机电一体化新产品一旦研制出来,只要其功能独到,质量可靠,很快就会畅销全球。因此,机电一体化产品无疑将朝着网络化方向发展。3.微型化:兴起于20世纪80年代末,指的是机电一体化向微型机器和微观领域发展的趋势。国外称其为微电子机械系统(MEMS),泛指几何尺寸不超过1立方厘米的机电一体化产品,并向微米、纳米级发展。微机电一体化产品体积小、耗能少、运动灵活,在生物医疗、军事、信息等方面具有不可比拟的优势。4.绿色化:机电一体化产品的绿色化主要是指,使用时不污染生态环境,报废后能回收利用。绿色产品在其设计、制造、使用和销毁的生命过程中,符合特定的环境保护和人类健康的要求,对生态环境无害或危害极少,资源利用率极高。设计绿色的机电一体化产品,具有远大的发展前途。5.系统化:其表现特征之一就是系统体系结构进一步采用开放式和模式化的总线结构。系统可以灵活组态,进行任意剪裁和组合,同时寻求实现多子系统协调控制和综合管理。表现特征之二是通信功能的大大加强,特别是“人格化”发展引人注目,即未来的机电一体化更加注重产品与人的关系。一是如何赋予机电一体化产品人的智能、情感、人性显得越来越重要,特别是对家用机器人,其高层境界就是人机一体化。另一层含义是模仿生物机理,研制各种机电一体化产品。结束语:当然,机电一体化的发展不是孤立的,与机电一体化相关的技术还有很多,并随着科学技术的发展,各种技术相互融合的趋势将越来越明显,机电一体化技术的发展与应用也将更加广阔。参考文献:[1]王静。浅析机电一体化技术的现状和发展趋势[J].同煤科技。2006.(4)[2]石美峰。机电一体化技术的发展与思考[J].山西焦煤科技。2007.(3)
应用很广的. 激光美容,激光医疗等. 工业应用更广:鞋业,手袋,制帽,贺卡,亚克力,中纤板木板,PVC,PC板等. 五金,电子电器,塑胶,手机按键,眼镜,刀具,电工开关面板,灯饰配件,钮扣,MP3/MP4五金外壳等.
第六课 激光的基础知识相信激光这名词对大家来说一点也不陌生。在日常生活中,我们常常接触到激光,例如在课堂上我们所用的激光指示器,与及在计算机或音响组合中用来读取光盘资料的光驱等等。在工业上,激光常用于切割或微细加工。在军事上,激光被用来拦截导弹。科学家也利用激光非常准确地测量了地球和月球的距离,涉及的误差只有几厘米。激光的用途那么广泛,究竟它有哪些特点,又是如何产生的呢?以下我们将会阐释激光的基本特点和基本原理。激光的特性高亮度、高方向性、高单色性和高相干性是激光的四大特性。(1)激光的高亮度:固体激光器的亮度更可高达 1011W/cn2Sr 。不仅如此,具有高亮度的激光束经透镜聚焦后,能在焦点附近产生数千度乃至上万度的高温,这就使其可能可加工几乎所有的材料。(2)激光的高方向性:激光的高方向性使其能在有效地传递较长距离的同时,还能保证聚焦得到极高的功率密度,这两点都是激光加工的重要条件。(3)激光的高单色性:由于激光的单色性极高,从而保证了光束能精确地聚焦到焦点上,得到很高的功率密度。(4)激光的高相干性:相干性主要描述光波各个部分的相位关系。正是激光具有如上所述的奇异特性因此在生活、工业加工、军事、科研等领域中得到了广泛地应用。激光产生原理激光的发展有很长的历史,它的原理早在 1917 年已被著名的物理学家爱因斯坦发现,但要直到 1958 年激光才被首次成功制造。激光英文名是 Laser,即 Light Amplification by the Stimulated Emission of Radiation 的缩写。激光的英文全名已完全表达了制造激光的主要过程。但在阐释这个过程之前,我们必先了解物质的结构,与及光的辐射和吸收的原理。物质由原子组成。图一是一个碳原子的示意图。原子的中心是原子核,由质子和中子组成。质子带有正电荷,中子则不带电。原子的外围布满着带负电的电子,绕着原子核运动。有趣的是,电子在原子中的能量并不是任意的。描述微观世界的量子力学告诉我们,这些电子会处于一些固定的「能级」,不同的能级对应于不同的电子能量。为了简单起见,我们可以如图一所示,把这些能级想象成一些绕着原子核的轨道,距离原子核越远的轨道能量越高。此外,不同轨道最多可容纳的电子数目也不同,例如最低的轨道 (也是最近原子核的轨道) 最多只可容纳 2 个电子,较高的轨道则可容纳 8 个电子等等。事实上,这个过份简化了的模型并不是完全正确的 [1],但它足以帮助我们说明激光的基本原理。电子可以透过吸收或释放能量从一个能级跃迁至另一个能级。例如当电子吸收了一个光子 [2] 时,它便可能从一个较低的能级跃迁至一个较高的能级 (图二 a)。同样地,一个位于高能级的电子也会透过发射一个光子而跃迁至较低的能级 (图二 b)。在这些过程中,电子吸收或释放的光子能量总是与这两能级的能量差相等。由于光子能量决定了光的波长,因此,吸收或释放的光具有固定的颜色。当原子内所有电子处于可能的最低能阶时,整个原子的能量最低,我们称原子处于基态。图一显示了碳原子处于基态时电子的排列状况。当一个或多个电子处于较高的能阶时,我们称原子处于受激态。前面说过,电子可透过吸收或释放在能阶之间跃迁。跃迁又可分为三种形式:(1)自发吸收 - 电子透过吸收光子从低能阶跃迁到高能阶 (图二 a)。(2)自发辐射 - 电子自发地透过释放光子从高能阶跃迁到较低能阶 (图二 b)。(3)受激辐射 - 光子射入物质诱发电子从高能阶跃迁到低能阶,并释放光子。入射光子与释放的光子有相同的波长和相,此波长对应于两个能阶的能量差。一个光子诱发一个原子发射一个光子,最后就变成两个相同的光子 (图二 c)。激光基本上就是由第三种跃迁机制所产生的。产生激光还有一个巧妙之处,就是要实现所谓粒子数反转的状态。以红宝石激光为例 (图三),原子首先吸收能量,跃迁至受激态。原子处于受激态的时间非常短,大约 10-7秒后,它便会落到一个称为亚稳态的中间状态。原子停留在亚稳态的时间很长,大约是 10-3秒或更长的时间。电子长时间留在亚稳态,导致在亚稳态的原子数目多于在基态的原子数目,此现象称为粒子数反转。粒子数反转是产生激光的关键,因为它使透过受激辐射由亚稳态回到基态的原子,比透过自发吸收由基态跃迁至亚稳态的原子为多,从而保证了介质内的光子可以增多,以输出激光。激光器的结构激光器一般包括三个部分。1、激光工作介质激光的产生必须选择合适的工作介质,可以是气体、液体、固体或半导体。在这种介质中可以实现粒子数反转,以制造获得激光的必要条件。显然亚稳态能级的存在,对实现粒子数反转世非常有利的。现有工作介质近千种,可产生的激光波长包括从真空紫外道远红外,非常广泛。2、激励源为了使工作介质中出现粒子数反转,必须用一定的方法去激励原子体系,使处于上能级的粒子数增加。一般可以用气体放电的办法来利用具有动能的电子去激发介质原子,称为电激励;也可用脉冲光源来照射工作介质,称为光激励;还有热激励、化学激励等。各种激励方式被形象化地称为泵浦或抽运。为了不断得到激光输出,必须不断地“泵浦”以维持处于上能级的粒子数比下能级多。3、谐振腔有了合适的工作物质和激励源后,可实现粒子数反转,但这样产生的受激辐射强度很弱,无法实际应用。于是人们就想到了用光学谐振腔进行放大。所谓光学谐振腔,实际是在激光器两端,面对面装上两块反射率很高的镜。一块几乎全反射,一块光大部分反射、少量透射出去,以使激光可透过这块镜子而射出。被反射回到工作介质的光,继续诱发新的受激辐射,光被放大。因此,光在谐振腔中来回振荡,造成连锁反应,雪崩似的获得放大,产生强烈的激光,从部分反射镜子一端输出。下面以红宝石激光器为例来说明激光的形成。工作物质是一根红宝石棒。红宝石是掺入少许3价铬离子的三氧化二铝晶体。实际是掺入质量比约为的氧化铬。由于铬离子吸收白光中的绿光和蓝光,所以宝石呈粉红色。1960年梅曼发明的激光器所产用的红宝石是一根直径、长约8cm的圆棒。两端面是一对平行平面镜,一端镀上全反射膜,一端有10%的透射率,可让激光透出。红宝石激光器中,用高压氙灯作“泵浦”,利用氙灯所发出的强光激发铬离子到达激发态E3,被抽运到E3上的电子很快(~10-8s)通过无辐射跃迁到E2。E2是亚稳态能级,E2到E1的自发辐射几率很小,寿命长达10-3s,即允许粒子停留较长时间。于是,粒子就在E2上积聚起来,实现E2和E1两能级上的粒子数反转。从E2到E1受激发射的波长是的红色激光。由脉冲氙灯得到的是脉冲激光,每一个光脉冲的持续时间不到1ms,每个光脉冲能量在10J以上;也就是说,每个脉冲激光的功率可超过10kW的数量级。注意到上述铬离子从激发到发出激光的过程中涉及到三条能级,故称为三能级系统。由于在三能级系统中,下能级E1是基态,通常情况下积聚大量原子,所以要达到粒子数反转,要有相当强的激励才行。从上面的叙述中我们注意到,激光器要工作必须具备三个基本条件,即激光物质、光谐振器和泵浦源,其基本结构如图四所示。通过泵浦源将能量输入激光物质,使其实现粒子数反转,由自发辐射产生的微弱的光在激光物质中得以放大,由于激光物质两端放置了反射镜,有一部分符合条件的光就能够反馈回来再 参加激励,这时被激励的光就产生振荡,经过多次激励,从右端反射镜中投射出来的光就是单色性、方向性、相干性都很好的高亮度的激光。不同类型的激光器在发光物质、反射镜以及泵浦源等方面所用材料有所区别,下文提到的各种激光器也正是基于这些不同进行分类的。激光器的种类对激光器有不同的分类方法,一般按工作介质的不同来分类,在可以分为固体激光器、气体激光器、液体激光器和半导体激光器。1、固体激光器一般讲,固体激光器具有器件小、坚固、使用方便、输出功率大的特点。这种激光器的工作介质是在作为基质材料的晶体或玻璃中均匀掺入少量激活离子,除了前面介绍用红宝石和玻璃外,常用的还有钇铝石榴石(YAG)晶体中掺入三价钕离子的激光器,它发射1060nm的近红外激光。固体激光器一般连续功率可达100W以上,脉冲峰值功率可达109W。2、气体激光器气体激光器具有结构简单、造价低;操作方便;工作介质均匀,光束质量好;以及能长时间较稳定地连续工作的有点。这也是目前品种最多、应用广泛的一类激光器,占有市场达60%左右。其中,氦-氖激光器是最常用的一种。3、半导体激光器半导体激光器是以半导体材料作为工作介质的。目前较成熟的是砷化镓激光器,发射840nm的激光。另有掺铝的砷化镓、硫化铬硫化锌等激光器。激励方式有光泵浦、电激励等。这种激光器体积小、质量轻、寿命长、结构简单而坚固,特别适于在飞机、车辆、宇宙飞船上用。在70年代末期,由于光纤通讯和光盘技术的发展大大推动了半导体激光器的发展。4、液体激光器常用的是染料激光器,采用有机染料为工作介质。大多数情况是把有机染料溶于溶剂中(乙醇、丙酮、水等)中使用,也有以蒸气状态工作的。利用不同染料可获得不同波长激光(在可见光范围)。染料激光器一般使用激光作泵浦源,例如常用的有氩离子激光器等。液体激光器工作原理比较复杂。输出波长连续可调,且覆盖面宽是它的优点,使它也得到广泛应用。激光简史和我国的激光技术自爱因斯坦1917年提出受激辐射概念后,足足经过了40年,直到1958年,美国两位微波领域的科学家汤斯()和肖洛()才打破了沉寂的局面,发表了著名论文《红外与光学激射器》,指出了受激辐射为主的发光的可能性,以及必要条件事实现“粒子数反转”。他们的论文史在光学领域工作的科学家马上兴奋起来,纷纷提出各种实现粒子数反转的实验方案,从此开辟了崭新的激光研究领域。同年苏联科学家巴索夫和普罗霍罗夫发表了《实现三能级粒子数反转和半导体激光器建议》论文,1959年9月汤斯又提出了制造红宝石激光器的建议……1960年5月15日加州休斯实验室的梅曼()制成了世界上第一台红宝石激光器,获得了波长为的激光。梅曼是利用红宝石进体做发光材料,用发光密度很高的脉冲氙灯做激发光源(如图所示),实际他的研究早在1957年就开始了,多年的努力终于活动了历史上第一束激光。1964年,汤斯、巴索夫和普罗霍夫由于对激光研究的贡献分享了诺贝尔物理学奖。中国第一台红宝石激光器于1961年8月在中国科学院长春光学精密机械研究所研制成功。这台激光器在结构上比梅曼所设计的有了新的改进,尤其是在当时我国工业水平比美国低得多,研制条件十分困难,全靠研究人员自己设计、动手制造。在这以后,我国的激光技术也得到了迅速发展,并在各个领域得到了广泛应用。1987年6月,1012W的大功率脉冲激光系统——神光装置,在中国科学院上海光学精密机械研究所研制成功,多年来为我国的激光聚变研究作出了很好的贡献。思考题:1、激光和我们生活中普通光有什么区别?2、请列举你生活中用到激光的地方。第二章 光学谐振腔本章主要讲授光学谐振腔的构成和作用;光学谐振腔的模式;光学谐振腔的几何分析方法和衍射理论分析方法;平行平面腔模的迭代解法;稳定球面镜共焦腔;一般稳定球面腔及等价共焦腔;非稳定谐振腔。重点:学会写一些光学系统的传播矩阵;能判断一个腔是否稳定;掌握实现多纵模、单纵模振荡的方法;选择单模的方法如FP法、复合腔法、并能给出相应的模间距;弄清开腔模建立过程。难点:孔阑传输线概念。一、光学谐振腔的构成最简单的光学谐振腔是在激活介质两端恰当地放置两个镀有高反射率的反射镜构成。常用的基本概念:光轴:光学谐振腔中间垂直与镜面的轴线孔径:光学谐振腔中起着限制光束大小、形状的元件,大多数情况下,孔径是激活物质的两个端面,但一些激光器中会另外放置元件以限制光束为理想的形状。二、光学谐振腔的种类谐振腔的开放程度,闭腔、开腔、气体波导腔开放式光学谐振腔(开腔)通常可以分为稳定腔、非稳定腔反射镜形状,球面腔与非球面腔,端面反射腔与分布反馈腔反射镜的多少,两镜腔与多镜腔,简单腔与复合腔三、光学谐振腔的作用提供光学正反馈作用 :使得振荡光束在腔内行进一次时,除了由腔内损耗和通过反射镜输出激光束等因素引起的光束能量减少外,还能保证有足够能量的光束在腔内多次往返经受激活介质的受激辐射放大而维持继续振荡。影响谐振腔的光学反馈作用的两个因素:组成腔的两个反射镜面的反射率;反射镜的几何形状以及它们之间的组合方式。产生对振荡光束的控制作用:有效地控制腔内实际振荡的模式数目,获得单色性好、方向性强的相干光,可以直接控制激光束的横向分布特性、光斑大小、谐振频率及光束发散角,可以控制腔内光束的损耗,在增益一定的情况下能控制激光束的输出功率。四、光学谐振腔的模式(波型)1. 纵模-纵向的稳定场分布,激光器中出现的纵模数有两个因素决定,工作原子自发辐射的荧光线宽越大,可能出现的纵模数越多;激光器腔长越大,相邻纵模的频率间隔越小,同样的荧光谱线线宽内可以容纳的纵模数越多。2. 横模-横向X-Y面内的稳定场分布。横模(自再现模): 在腔反射镜面上经过一次往返传播后能“自再现”的稳定场分布。3. 激光模式的测量方法。横模的测量方法:在光路中放置一个光屏;拍照;小孔或刀口扫描方法获得激光束的强度分布,确定激光横模的分布形状。纵模的测量方法:法卜里-珀洛F-P扫描干涉仪测量,实验中利用球面扫描干涉仪。五、平行平面腔Fox-Li数值迭代法平行平面腔的优点是:光束方向性好,模体积大,容易获得单模模振荡,缺点是:谐振腔调整精度要求高,衍射损耗和几何损耗都比较大,其稳定性介于稳定腔与非稳定腔之间,不适用于小增益器件,在中等以上功率的激光器中仍普遍应用。谐振腔的迭代解法的思路:1. 假设在某一镜面上存在一个初始场分布,将它代入迭代公式,计算在腔内经第一次渡越而在第二个镜面上生成的场;2. 利用(1)所得到的代入迭代公式,计算在腔内经第二次渡越而在第一个镜上生成的场;3. 如此反复运算多次后,观察是否形成稳态场分布。对称矩形(方形镜)平行平面镜腔是指谐振腔镜面是平行的,并且在垂直与光轴方向上的尺度有限。条形镜平行平面腔是指镜面在某一方向上的尺度有限,而另一方向上的尺度是无限的。分析对称矩形、条形镜平行平面腔、圆形镜平行平面腔、平行平面腔的迭代解法。六、共焦腔与平行平面腔之不同1. 镜面上基模场的分布:平行平面腔基模分布在整个镜面上,呈偶对称性分布,镜面中心处振幅最大,向镜边缘振幅逐渐降低;共焦腔基模在镜面上的分布在厄米-高斯近似下,与镜的横向几何尺寸无关,仅由腔长决定;一般共焦腔模集中在镜面中心附近;2. 相位分布平行平面腔的反射镜不是等相面;而共焦腔的反射镜为等相面;3. 单程损耗平行平面腔衍射损耗远高于共焦腔的衍射损耗;4. 单程相移与谐振频率平行平面腔中横模阶次m、n的变化引起的频率改变远远小于纵模阶次q的改变对谐振频率的改变;在共焦腔中, m、n的变化或q的改变对谐振频率的影响具有相同的数量级。七、圆形镜对称共焦腔镜面模的振幅和相位分布基模在镜面上的振幅分布是高斯型的,整个镜面上没有节线在镜面中心处(r=0) 处,振幅最大。基模在镜面上的光斑半径(当基模振幅下降到中心值的1/e处与镜面中心的距离):对于高阶模,在沿辐角方向有节线,数目为p;沿半径方向有节圆,节圆数为l;p、l增加,模的光斑半径增大,并且光斑半径随着l的增大比随着 p增大来的更快;高阶模的光斑半径:振幅降低至最外面的极大值的1/e处的点与镜面中心的距离;圆形共焦镜面本身也是等相位面。八、一般稳定球面镜腔一般球面镜腔:由两个曲率半径不同的球面镜按照任意间距组成的腔一般稳定球面镜腔的模式理论:可以从光腔的衍射积分方程出发严格建立,以共焦腔的模式理论为基础,等价共焦腔的方法。一般稳定球面腔与共焦腔的等价性:根据共焦腔模式理论,任何一个共焦腔与无穷多个稳定球面腔等价;而任何一个稳定球面镜腔唯一地等价于一个共焦腔。一般稳定球面腔与共焦腔的等价性:指它们具有相同的行波场。九、非稳定谐振腔非稳定腔的优点:1. 大的可控模体积,通过扩大反射镜的尺寸,扩大模的横向尺寸;2. 可控的衍射耦合输出,输出耦合率与腔的几何参数g有关;3. 容易鉴别和控制横模;4. 易于得到单端输出和准直的平行光束。非稳定腔的缺点:1. 输出光束截面呈环状;2.光束强度分布是不均匀的,显示出某种衍射环。十、选模技术激光的优点在于它具有良好的单色性、方向性和相干性。理想的激光器输出光束应该只有一个模式,但是对于实际的激光器,如果不采取模式选择,它们的工作状态往往是多模的。含有高阶模式横模的激光束光强分布不均匀,光束发散角大。含有多纵模及多横模的激光器单色性及相干性差。在激光准直、激光加工、非线性光学、激光远程测距等领域都需要基横模激光束。在精密干涉测量,光通讯及大面积全息照相等应用中更要求激光是单横模和单纵模光束。因此,设计和改进激光器的谐振腔以获得单模输出是一个重要课题。横模的选择:在稳定腔中,基模的衍射损耗最小,随着横模阶次的增高,衍射损耗将迅速增加。谐振腔中不同的横模具有不同的衍射损耗是横模选择的物理基础。为了提高模式的鉴别能力,应该尽量增大高阶模式和基模的衍射损耗比,同时,还应该尽量增大衍射损耗在总损耗中占有的比例;衍射损耗的大小及模鉴别能力的值与谐振腔的腔型及菲涅耳系数有关。纵模的选择:一般的谐振腔中,不同的纵模具有相同的损耗,因而进行模式鉴别和选择时应可以利用不同纵模的不同增益。同时,也可以引入人为的损耗差。腔内插入F-P标准具法:调整F-P标准具的参数,使得在增益线宽 范围内,只有一个透射峰,同时在一个透射峰谱线宽度范围内只有一个模式起振,则可以实现单纵模工作。即选模条件为:1. 选择合适的标准具光学长度,使标准具的自由光谱范围与激光器的增益线宽相当。使在增益线宽内,避免存在两个或多个标准具的透过峰。2. 选择合适的标准具界面反射率,使得被选纵模的相邻纵模由于透过率低,损耗大而被抑制。光学谐振腔的种类及功能作者:opticsky 日期:2006-09-16字体大小: 小 中 大光学谐振腔由两个或两个以上光学反射镜面组成、能提供光学正反馈作用的光学装置。两个反射镜可以是平面镜或球面镜,置于激光工作物质两端。两块反射镜之间的距离为腔长。其中一个镜面反射率接近100%,称为全反镜;另一个镜面反射率稍低些,激光由此镜输出,故称输出镜。两者有时也分别称为高反镜和低反镜。种类 按组成谐振腔的两块反射镜的形状以及它们的相对位置,可将光学谐振腔区分为:平行平面腔,平凹腔,对称凹面腔,凸面腔等。平凹腔中如果凹面镜的焦点正好落在平面镜上,则称为半共焦腔;如果凹面镜的球心落在平面镜上,便构成半共心腔。对称凹面腔中两块反射球面镜的曲率半径相同。如果反射镜焦点都位于腔的中点,便称为对称共焦腔。如果两球面镜的球心在腔的中心,称为共心腔。如果光束在腔内传播任意长时间而不会逸出腔外,则称该腔为稳定腔,否则称为不稳定腔。上述列举的谐振腔都属稳定腔。用两块凸面镜组成的谐振腔为不稳定腔。平凹腔中如腔长太长,使凹球面的球心落在腔内,则腔中除沿光轴的光线外,其它方向光束经多次反射后必然会逸出腔外,故也为不稳定腔。对称凹面腔中,如腔长太长,使两球面球心分别落在腔中心点靠近自身一侧,也是一种不稳定腔。稳定腔 光学谐振腔中任一束傍轴光束离光轴的距离,如果在它来回反射过程中不会无限增加,则这种腔必定是稳定腔。若用L代表腔长,R1、R2分别为两球面反射镜的曲率半径,则稳定腔应满足如下条件:从第一个不等式看,只有R1、R2同时大于腔长或同时小于腔长时,才能形成稳定腔。从第二个不等式看,R1和R2必须比腔长小,也不能小得太多。
发酵工程是生物技术的重要组成部分,是利用微生物的特殊功能生产激光技术在食品包装中的运用
----------------------------------------------------------------------
食品包装在包装行业里的要求是最高的,也是与人们的日常生活息息相关的,所以一直以来都受到人们的高度关注。随着生活水平的不断提高,在人们消费能力不断增长的同时,对于包装的要求也在不断的强化着。其实食品的包装对食品的销量有着不可忽视的作用,毕竟人人都喜欢看上去漂亮,使用方便的东西......
在消费品工业领域,包装一直是被特别关注的一个重要方面,尤其是食品安全更是食品包装的重中之重。但是在重视食品安全以及包装精美的外表的同时,人们往往忽略了很多细节问题,例如忽视了人们在打开食物包装时的感受。以目前最常用的封口式包装来说,常会出现问题,有些时候甚至会造成一些小伤害,比如:在打开花生或沙拉酱包装时,包装内容物很容易溢出,尤其是一些封口过紧或设计不合理的包装最容易出现这种状况。还有因为疏忽漏做了撕开线,或用机械方法做出的撕开线通常要用很大的力气才能撕开,于是在打开某些食品包装时很难控制力度。
目前先进的激光技术给了我们解决问题的方案,激光系统能够做到选择软包装中某个单独薄膜层进行划线。这样做就实现了软包装的完美易撕开效果,并且能够保持薄膜的完整性,使得外层薄膜完好不受损,从而使得我们能够有效防止包装内商品的见光和受潮等问题的出现。
其次如今先进的激光系统完全能够随意的按自由组合方式划线,例如目前很多零食包装所采用的,以按照包装上印刷图案的轮廓来划线的设计风格,这样的划线方式正是激光划线系统的优势所在。还有当包装带需要有孔时,激光系统可对包装做"通风保鲜"打孔,这是目前世界上最为领先的技术,通过打孔能增加包装内商品的保鲜期,或迎合产品经微波炉加热后对食品包装所产生的压力。现在,激光打孔线已经能够达到沿虚线撕开整个包装的效果。与螺旋刀或冲压机等机械工具不同,激光工作无须直接接触,只有极小的磨损和切割就可以提供最佳的加工方式。
激光划线技术的应用
激光划线是一种在多层复合包装材料上使用激光来实现"易撕开"效果的技术。传统工具容易将线划的太深,导致产品包装的复合层受到损坏;或者划线太浅,使得消费者需要花很大的力气来撕开包装。这里我想每个人都或多或少对打开那些"固若金汤"的食品包装而恼火的经历吧!
激光划线技术是一种更先进、灵活的技术,激光划线技术将激光能量集中在需要划线的薄膜层上,而不损坏整个薄膜。因为,复合膜例如PET、PP或PE,它们都具有不同的吸收和发射二氧化碳激光波长的特性,所以当一层薄膜吸收激光能量而消失后,其他的材料薄膜层则100%的保持完好受不到任何影响。另一方面,铝箔层或着其他镀上金属层的薄膜,则成为了阻挡激光通向其它材料层的屏障。所以这些材料的特性可以使得激光技术能在包装材料上进行精确的定位、划线。同时,撕开线通过人的人眼清晰可见,于是撕开包装对消费者来说就显得轻而易举了。此为,值得注意的是,激光划线技术对于食品包装来说是非接触式的且无磨损的过程,所以也保证了包装内的商品不会因为包装过程而受到损坏,确保了商品的稳定性与可靠性。
激光打孔技术的应用
众所周知,易腐食品的质量和保存期取决于产品包装中空气循环和包装内湿度的平衡。因此,为了达到包装具有足够的小孔,使用激光技术打孔成为了易腐食品的首选。
以目前在激光划线及激光打孔技术领域拥有领先地位的ROFIN公司为例:ROFIN公司的加工设备可以使用高脉冲的而二氧化碳激光对包装材料的各个薄膜层进行打孔作业,通过ROFIN公司的特殊技术,每个小孔周围都具有熔融,能够有效的阻止小孔的扩大并避免了对包装完整性的破坏,并能够同时拥有良好的透气、保湿效果。
目前先进的激光设备可以更具产品的产量或工艺要求来提供各种解决方案,可以提供分光器配合多个聚焦头来控制打孔的方向,通过使用多角棱镜将光速分配到多个聚焦头上来实现高速走卷。现在,最佳的软包装气候管理包装的孔径在60到300微米之间,小孔的排列可以更具实际的需要来自行改变,并且可以与印刷同步进行。激光打孔技术也适用于存在压力变化的包装,如需要通过微波加热的食品包装等等。而对于一些比较坚硬的包装材料,如PE/PE复合材料,激光打孔技术可以做出每1厘米内包含5-50个小孔的打孔线,完全可以达到沿虚线撕开包装的效果。
食品包装采用激光划线技术的优点
●只对选中的薄膜层划线,其它薄膜层不受影响
●可以自由选择划线的形状
●生产过程中损耗少,可靠性高
食品包装采用激光打孔技术的优点
●对孔的尺寸和孔的数量可以精确控制
●可以打出细孔且细孔的边缘防断裂
●可用高密度的小孔制作出沿虚线撕下的包装
●生产过程中损耗小,可靠性高
食品发酵工程
随着人们消费能力的提高,对于消费品的质量提出了更好的要求,人性化的食品包装更容易使客户接受,对于提高产品的销售情况也起着一定的作用。如今食品包装领域的激光技术已经相当的成熟,并且肯定能够在未来的市场中占据重
用物质或直接将微生物应用于工业生产的一种技术体系。这项技术包括菌种
选育、菌种生产、代谢产物的发酵以及微生物的利用技术等。到目前为止,
全世界食品工业中发酵技术产业的总产值约为2000亿美元。维生素、氨基酸
、酵母制剂、微生物多糖、环状糊精、低聚糖、不饱和脂肪酸、糖醇、核酸
类鲜味剂、有机酸味剂、低热量甜味剂和乳酸菌类等产品的开发,均是发酵
技术在食品工业领域中的新应用,这些均属于食品发酵工程的研究范围。本
书对现代发酵工程共性的关键技术、优良菌种的选育、工艺的控制与优化、
生物反应器、下游分离纯化、各类发酵产品的理论和工艺以及食品废水处理
等作了详细阐述,力求体现理论结合实际