首页

> 论文发表知识库

首页 论文发表知识库 问题

云计算与大数据技术课程论文题目

发布时间:

云计算与大数据技术课程论文题目

大数据只是一个时代背景,具体内容可以班忙做

我不会啊。SORRY

随着有关云计算概念、术语和技术的不断涌现和大量报道,人们在生活中越来越多的采用和实施云计算技术。由于云计算概念和技术比较新颖,涵义比较宽泛,再加上市场上一些人将云计算放大成无所不包、无所不能和无所不在的万能技术,对云计算的描述和推销多少出现了一些浮燥和炒做的嫌疑。脱离实际过分夸大或缺乏全面分析地炒做云计算不仅可能让人误解,也会使得云计算的发展不切实际,对于云计算产业在中国的成长非常不利。所以,有必要对云计算的由来和概念进行了较为全面的梳理和定义。在总结云计算技术为IT产业带来好处的同时,找出不足及局限,从而更好地发展云计算技术。1.云计算的概念云计算(Cloud Computing)是由分布式计算(Distributed Computing)、并行处理(Parallel Computing)、网格计算(Grid Computing)发展来的,是一种新兴的商业计算模型。中国网格计算、云计算专家刘鹏认为:“云计算将计算任务分布在大量计算机构成的资源池上,使各种应用系统能够根据需要获取计算力、存储空间和各种软件服务”。云计算中的“计算”是一个简单而明确的概念。“计算”系指计算应用,在我们生活中可以指一切IT应用。随着网络技术的发展,所有的信息、通信和视频应用都将整合在统一的平台之上。由此推而广之,云计算中的“计算”可以泛指一切ICT的融合应用。所以,云计算术语的关键特征并不在于“计算”,而在于“云”。2.云计算的发展模式及其特征早期云计算来之于国际上以亚马逊、和谷歌(Google)为代表的公司,并且都提供了具有显著特征,但又代表着不同模式的成功云业务。云计算按照层次将业务模式划分为3层,最顶层是软云,中间层是平云,底层是基云。在基云之下是构建云计算的基础技术。云计算的核心思想,是将大量用网络连接的计算资源统一管理和调度,构成一个计算资源池向用户按需服务。提供资源的网络被称为“云”。“云”中的资源在使用者看来是可以无限扩展的,并且可以随时获取,按需使用,随时扩展,按使用付费。这种特性经常被称为像水电一样使用IT基础设施。总的来说,云计算可以算作是网格计算的一个商业演化版。3.“云计算”促进科技协同研究环境的建立云计算的平台即服务可以把开发环境作为一种服务提供到用户端,这种服务为科学协同研究创造了一个很好的平台。通过使计算分布在大量的分布式计算机上,而非本地计算机或远程服务器中,企业数据中心的运行将与互联网更相似。这使得企业能够将资源切换到需要的应用上,根据需求访问计算机和存储系统。好比是从古老的单台发电机模式转向了电厂集中供电的模式。它意味着计算能力也可以作为一种商品进行流通,就像煤气、水电一样,取用方便,费用低廉。最大的不同在于,它是通过互联网进行传输的。4.“云计算”提升数据共享服务云计算是下一代的数据中心,随着云计算的发展,科学数据共享应用云计算的技术模式在数据挖掘、数据加工、数据利用、数据管理、数据存储、数据迁移等方面可以得到便捷的发展,使科学数据共享服务得到正真提升。5.“云计算”推进网络科技环境中的发展应用“云计算”,网络科技环境可更好地实现高性能计算、实时协同研究、远程观测、海量数据存储与传输、科技文献、实验仪器与设备、应用软件、科学数据、网络工具以及科研活动的综合协同,在云计算环境下支持位于不同地点的科技工作者实现软件资源、硬件资源和数据资源的共享,促进科学研究方式的变革,促进科学工作者的交流,从而推动科技创新的步伐。6.“云计算”是创建绿色网络环境的一个途径随着网络的发展,倡导绿色,节约能源已成为网络发展进程必须解决的问题。设备的空载,电力资源的浪费,制冷环境的扩展,引起许多网络管理部门、运行部门和政府的极大关注。云计算实现了对资源的整合,顺应了网络的发展需求。在未来我们行业网络发展中也需要把绿色网络环境的创建考虑进去,这样才能使我们的发展不走弯路。

内容如下:

1、大数据对商业模式影响

2、大数据下地质项目资金内部控制风险

3、医院统计工作模式在大数据时代背景下改进

4、大数据时代下线上餐饮变革

5、基于大数据小微金融

大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。

在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。

大数据与云计算结课论文题目

深度嵌入聚类算法研究 基于机器视觉的行人重识别算法的分析与实现 基于动力学模型的属性网络重叠社团发现 基于Spring-Boot框架的一体化运维监控应用的研究与实现 Android系统中基于手写密码与笔迹信息的综合认证技术研究 公交线路准点预测方法研究 基于深度学习的医学图像分割算法研究 基于CNN的高速公路流量预测 服务器安全防护与管理综合平台实现 JavaScript全栈视频播放系统设计与实现快速行人检测算法的研发 基于数据挖掘的药物分子筛选方法研究 基于消息队列的自定义审批流程管理系统设计与实现 基于CRF的初等数学命名实体识别 基于多尺度 CNN的图片语义分割研究 基于图像分割技术的连通区域提取算法的研究 基于背景因素推理的目标关系识别算法研究与实现 基于智能移动设备的非接触式人机交互系统设计与实现 分布式数据库物理查询计划调度优化算法研究 基于遮挡的人脸特征提取算法研究与实现 表情识别应用系统的设计与实现 基于CloudSim的云计算与大数据系统的可靠性仿真研究 多源数据库数据采集系统设计与实现 基于Android和WiFi的无线自组织网络P2P通信系统设计与实现 矩阵分解中的流形结构学习研究 基于无监督的OSN恶意账号检测 深度学习在基于视频的人体动作识别上的应用 用户评分的隐式成分信息的研究 线性规划求解算法的实现与应用 基于freeRTOS的嵌入式操作系统分析与实验设计 基于深度强化学习的信息检索的研究与实现 CPM语言编译链接系统的实现 基于SSD的Pascal Voc数据集目标检测设计与实现 复杂网络关键节点识别算法比较研究 基于对抗网络和知识表示的可视问答 基于FPGA实现存储器及虚拟存储器管理 匿名可信身份共享区块链的设计与实现 基于图像的场景分类算法的设计与实现 恶意APK静态检测技术研究与实现 车辆再识别技术研究

大数据只是一个时代背景,具体内容可以班忙做

本科学位论文是侧重于动手能力的,所以称为毕业设计,大数据处理类的,如果真的去搭建云平台是稍微有些不太好做,毕竟咱们个人的计算机终端是不够的,所以我觉得侧重于大数据安全,有一些算法,简单仿真,或者基于hadoop对某个行业的数据进行下分析计算也是没问题,到实例部分其实你用数据挖掘的方法去做,结果差不多

计算机网络技术专业毕业论文题目

你是不是在为选计算机网络技术专业毕业论文题目烦恼呢?以下是我为大家整理的关于计算机网络技术专业毕业论文题目,希望大家喜欢!

1. 基于移动互联网下服装品牌的推广及应用研究

2. 基于Spark平台的恶意流量监测分析系统

3. 基于MOOC翻转课堂教学模式的设计与应用研究

4. 一种数字货币系统P2P消息传输机制的设计与实现

5. 基于OpenStack开放云管理平台研究

6. 基于OpenFlow的软件定义网络路由技术研究

7. 未来互联网试验平台若干关键技术研究

8. 基于云计算的海量网络流量数据分析处理及关键算法研究

9. 基于网络化数据分析的社会计算关键问题研究

10. 基于Hadoop的网络流量分析系统的研究与应用

11. 基于支持向量机的移动互联网用户行为偏好研究

12. “网络技术应用”微课程设计与建设

13. 移动互联网环境下用户隐私关注的影响因素及隐私信息扩散规律研究

14. 未来互联网络资源负载均衡研究

15. 面向云数据中心的虚拟机调度机制研究

16. 基于OpenFlow的数据中心网络路由策略研究

17. 云计算环境下资源需求预测与优化配置方法研究

18. 基于多维属性的社会网络信息传播模型研究

19. 基于遗传算法的云计算任务调度算法研究

20. 基于OpenStack开源云平台的网络模型研究

21. SDN控制架构及应用开发的研究和设计

22. 云环境下的资源调度算法研究

23. 异构网络环境下多径并行传输若干关键技术研究

24. OpenFlow网络中QoS管理系统的研究与实现

25. 云协助文件共享与发布系统优化策略研究

26. 大规模数据中心可扩展交换与网络拓扑结构研究

27. 数据中心网络节能路由研究

28. Hadoop集群监控系统的设计与实现

29. 网络虚拟化映射算法研究

30. 软件定义网络分布式控制平台的研究与实现

31. 网络虚拟化资源管理及虚拟网络应用研究

32. 基于流聚类的网络业务识别关键技术研究

33. 基于自适应流抽样测量的网络异常检测技术研究

34. 未来网络虚拟化资源管理机制研究

35. 大规模社会网络中影响最大化问题高效处理技术研究

36. 数据中心网络的流量管理和优化问题研究

37. 云计算环境下基于虚拟网络的资源分配技术研究

38. 基于用户行为分析的精确营销系统设计与实现

39. P2P网络中基于博弈算法的优化技术研究

40. 基于灰色神经网络模型的网络流量预测算法研究

41. 基于KNN算法的Android应用异常检测技术研究

42. 基于macvlan的Docker容器网络系统的设计与实现

43. 基于容器云平台的网络资源管理与配置系统设计与实现

44. 基于OpenStack的SDN仿真网络的研究

45. 一个基于云平台的智慧校园数据中心的设计与实现

46. 基于SDN的数据中心网络流量调度与负载均衡研究

47. 软件定义网络(SDN)网络管理关键技术研究

48. 基于SDN的数据中心网络动态负载均衡研究

49. 基于移动智能终端的医疗服务系统设计与实现

50. 基于SDN的网络流量控制模型设计与研究

51. 《计算机网络》课程移动学习网站的设计与开发

52. 数据挖掘技术在网络教学中的应用研究

53. 移动互联网即时通讯产品的用户体验要素研究

54. 基于SDN的负载均衡节能技术研究

55. 基于SDN和OpenFlow的流量分析系统的研究与设计

56. 基于SDN的网络资源虚拟化的研究与设计

57. SDN中面向北向的`控制器关键技术的研究

58. 基于SDN的网络流量工程研究

59. 基于博弈论的云计算资源调度方法研究

60. 基于Hadoop的分布式网络爬虫系统的研究与实现

61. 一种基于SDN的IP骨干网流量调度方案的研究与实现

62. 基于软件定义网络的WLAN中DDoS攻击检测和防护

63. 基于SDN的集群控制器负载均衡的研究

64. 基于大数据的网络用户行为分析

65. 基于机器学习的P2P网络流分类研究

66. 移动互联网用户生成内容动机分析与质量评价研究

67. 基于大数据的网络恶意流量分析系统的设计与实现

68. 面向SDN的流量调度技术研究

69. 基于P2P的小额借贷融资平台的设计与实现

70. 基于移动互联网的智慧校园应用研究

71. 内容中心网络建模与内容放置问题研究

72. 分布式移动性管理架构下的资源优化机制研究

73. 基于模糊综合评价的P2P网络流量优化方法研究

74. 面向新型互联网架构的移动性管理关键技术研究

75. 虚拟网络映射策略与算法研究

76. 互联网流量特征智能提取关键技术研究

77. 云环境下基于随机优化的动态资源调度研究

78. OpenFlow网络中虚拟化机制的研究与实现

79. 基于时间相关的网络流量建模与预测研究

80. B2C电子商务物流网络优化技术的研究与实现

81. 基于SDN的信息网络的设计与实现

82. 基于网络编码的数据通信技术研究

83. 计算机网络可靠性分析与设计

84. 基于OpenFlow的分布式网络中负载均衡路由的研究

85. 城市电子商务物流网络优化设计与系统实现

86. 基于分形的网络流量分析及异常检测技术研究

87. 网络虚拟化环境下的网络资源分配与故障诊断技术

88. 基于中国互联网的P2P-VoIP系统网络域若干关键技术研究

89. 网络流量模型化与拥塞控制研究

90. 计算机网络脆弱性评估方法研究

91. Hadoop云平台下调度算法的研究

92. 网络虚拟化环境下资源管理关键技术研究

93. 高性能网络虚拟化技术研究

94. 互联网流量识别技术研究

95. 虚拟网络映射机制与算法研究

96. 基于业务体验的无线资源管理策略研究

97. 移动互联网络安全认证及安全应用中若干关键技术研究

98. 基于DHT的分布式网络中负载均衡机制及其安全性的研究

99. 高速复杂网络环境下异常流量检测技术研究

100. 基于移动互联网技术的移动图书馆系统研建

101. 基于连接度量的社区发现研究

102. 面向可信计算的分布式故障检测系统研究

103. 社会化媒体内容关注度分析与建模方法研究

104. P2P资源共享系统中的资源定位研究

105. 基于Flash的三维WebGIS可视化研究

106. P2P应用中的用户行为与系统性能研究

107. 基于MongoDB的云监控设计与应用

108. 基于流量监测的网络用户行为分析

109. 移动社交网络平台的研究与实现

110. 基于 Android 系统的 Camera 模块设计和实现

111. 基于Android定制的Lephone系统设计与实现

112. 云计算环境下资源负载均衡调度算法研究

113. 集群负载均衡关键技术研究

114. 云环境下作业调度算法研究与实现

115. 移动互联网终端界面设计研究

116. 云计算中的网络拓扑设计和Hadoop平台研究

117. pc集群作业调度算法研究

118. 内容中心网络网内缓存策略研究

119. 内容中心网络的路由转发机制研究

120. 学习分析技术在网络课程学习中的应用实践研究

云计算技术课程论文题目

我给你一个题目,如果你写出来了,我保你论文得优秀。因为当年我就是选这个题目得的优秀。刚才我在网上搜了一下,网上还是没有与这个系统相关的论文。 《高考最低录取分数线查询系统》基本思想很简单,现在的高考分数线查询是很繁琐的,需要先把分数查出来,然后根据录取指南再找你的分数能被录取的学校,高考过的都知道,高考报考指南是一本多么厚的书。所以,这个系统的思想就是:你用所有高校近十年的录取分数线建立一个数据库,然后开发一个系统,当你输入查询命令的时候(查询命令可以用1,2,3这三个数来代替,用flog实现;输入1,查询的是符合你所输入的分数以下的所有高校信息;输入2,查询的是符合你所输入分数段之间的所有高校信息;输入3,查询大于你所给的分数线的高校信息。)当然,你可以再加上一些附加的功能。大致思想就这些。 郑州今迈网络部竭诚为你解答,希望我的答案能帮到你!

题目列出来就不错了。内容估计要花钱买吧

随着有关云计算概念、术语和技术的不断涌现和大量报道,人们在生活中越来越多的采用和实施云计算技术。由于云计算概念和技术比较新颖,涵义比较宽泛,再加上市场上一些人将云计算放大成无所不包、无所不能和无所不在的万能技术,对云计算的描述和推销多少出现了一些浮燥和炒做的嫌疑。脱离实际过分夸大或缺乏全面分析地炒做云计算不仅可能让人误解,也会使得云计算的发展不切实际,对于云计算产业在中国的成长非常不利。所以,有必要对云计算的由来和概念进行了较为全面的梳理和定义。在总结云计算技术为IT产业带来好处的同时,找出不足及局限,从而更好地发展云计算技术。1.云计算的概念云计算(Cloud Computing)是由分布式计算(Distributed Computing)、并行处理(Parallel Computing)、网格计算(Grid Computing)发展来的,是一种新兴的商业计算模型。中国网格计算、云计算专家刘鹏认为:“云计算将计算任务分布在大量计算机构成的资源池上,使各种应用系统能够根据需要获取计算力、存储空间和各种软件服务”。云计算中的“计算”是一个简单而明确的概念。“计算”系指计算应用,在我们生活中可以指一切IT应用。随着网络技术的发展,所有的信息、通信和视频应用都将整合在统一的平台之上。由此推而广之,云计算中的“计算”可以泛指一切ICT的融合应用。所以,云计算术语的关键特征并不在于“计算”,而在于“云”。2.云计算的发展模式及其特征早期云计算来之于国际上以亚马逊、和谷歌(Google)为代表的公司,并且都提供了具有显著特征,但又代表着不同模式的成功云业务。云计算按照层次将业务模式划分为3层,最顶层是软云,中间层是平云,底层是基云。在基云之下是构建云计算的基础技术。云计算的核心思想,是将大量用网络连接的计算资源统一管理和调度,构成一个计算资源池向用户按需服务。提供资源的网络被称为“云”。“云”中的资源在使用者看来是可以无限扩展的,并且可以随时获取,按需使用,随时扩展,按使用付费。这种特性经常被称为像水电一样使用IT基础设施。总的来说,云计算可以算作是网格计算的一个商业演化版。3.“云计算”促进科技协同研究环境的建立云计算的平台即服务可以把开发环境作为一种服务提供到用户端,这种服务为科学协同研究创造了一个很好的平台。通过使计算分布在大量的分布式计算机上,而非本地计算机或远程服务器中,企业数据中心的运行将与互联网更相似。这使得企业能够将资源切换到需要的应用上,根据需求访问计算机和存储系统。好比是从古老的单台发电机模式转向了电厂集中供电的模式。它意味着计算能力也可以作为一种商品进行流通,就像煤气、水电一样,取用方便,费用低廉。最大的不同在于,它是通过互联网进行传输的。4.“云计算”提升数据共享服务云计算是下一代的数据中心,随着云计算的发展,科学数据共享应用云计算的技术模式在数据挖掘、数据加工、数据利用、数据管理、数据存储、数据迁移等方面可以得到便捷的发展,使科学数据共享服务得到正真提升。5.“云计算”推进网络科技环境中的发展应用“云计算”,网络科技环境可更好地实现高性能计算、实时协同研究、远程观测、海量数据存储与传输、科技文献、实验仪器与设备、应用软件、科学数据、网络工具以及科研活动的综合协同,在云计算环境下支持位于不同地点的科技工作者实现软件资源、硬件资源和数据资源的共享,促进科学研究方式的变革,促进科学工作者的交流,从而推动科技创新的步伐。6.“云计算”是创建绿色网络环境的一个途径随着网络的发展,倡导绿色,节约能源已成为网络发展进程必须解决的问题。设备的空载,电力资源的浪费,制冷环境的扩展,引起许多网络管理部门、运行部门和政府的极大关注。云计算实现了对资源的整合,顺应了网络的发展需求。在未来我们行业网络发展中也需要把绿色网络环境的创建考虑进去,这样才能使我们的发展不走弯路。

我不会啊。SORRY

云计算与大数据技术论文知网

第三集-大数据与云计算。科技视野

最近很火的云计算遇上了新潮的大数据,于是关于云计算与大数据直接的关系大家是众说纷纭,现在北京开运联合对于云计算和大数据关系做以下三点认识。

第一,云计算与大数据之间是相辅相成,相得益彰的关系。大数据挖掘处理需要云计算作为平台,而大数据涵盖的价值和规律则能够使云计算更好的与行业应用结合并发挥更大的作用。云计算将计算资源作为服务支撑大数据的挖掘,而大数据的发展趋势是对实时交互的海量数据查询、分析提供了各自需要的价值信息。

互联网是个神奇的大网,大数据开发和软件定制也是一种模式,这里提供最详细的报价,如果你真的想做,可以来这里,这个手机的开始数字是一八七中间的是三儿零最后的是一四二五零,按照顺序组合起来就可以找到,我想说的是,除非你想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了。

第二,云计算与大数据的结合将可能成为人类认识事物的新的工具。实践证明人类对客观世界的认识是随着技术的进步以及认识世界的工具更新而逐步深入。过去人类首先认识的是事物的表面,通过因果关系由表及里,由对个体认识进而找到共性规律。现在将云计算和大数据的结合,人们就可以利用高效、低成本的计算资源分析海量数据的相关性,快速找到共性规律,加速人们对于客观世界有关规律的认识。

第三,大数据的信息隐私保护是云计算大数据快速发展和运用的重要前提。没有信息安全也就没有云服务的安全。产业及服务要健康、快速的发展就需要得到用户的信赖,就需要科技界和产业界更加重视云计算的安全问题,更加注意大数据挖掘中的隐私保护问题。从技术层面进行深度的研发,严防和打击病毒和黑客的攻击。同时加快立法的进度,维护良好的信息服务的环境。

云计算与大数据概述云计算(cloud computing)是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。云是网络、互联网的一种比喻说法。过去在图中往往用云来表示电信网,后来也用来表示互联网和底层基础设施的抽象。狭义云计算指IT基础设施的交付和使用模式,指通过网络以按需、易扩展的方式获得所需资源;广义云计算指服务的交付和使用模式,指通过网络以按需、易扩展的方式获得所需服务。这种服务可以是IT和软件、互联网相关,也可是其他服务。它意味着计算能力也可作为一种商品通过互联网进行流通。大数据(big data),或称海量数据,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据的4V特点:Volume、Velocity、Variety、Veracity。从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式计算架构。它的特色在于对海量数据的挖掘,但它必须依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术。大数据管理,分布式进行文件系统,如Hadoop、Mapreduce数据分割与访问执行;同时SQL支持,以Hive+HADOOP为代表的SQL界面支持,在大数据技术上用云计算构建下一代数据仓库成为热门话题。从系统需求来看,大数据的架构对系统提出了新的挑战:1、集成度更高。一个标准机箱最大限度完成特定任务。2、配置更合理、速度更快。存储、控制器、I/O通道、内存、CPU、网络均衡设计,针对数据仓库访问最优设计,比传统类似平台高出一个数量级以上。3、整体能耗更低。同等计算任务,能耗最低。4、系统更加稳定可靠。能够消除各种单点故障环节,统一一个部件、器件的品质和标准。5、管理维护费用低。数据藏的常规管理全部集成。6、可规划和预见的系统扩容、升级路线图。云计算与大数据的关系简单来说:云计算是硬件资源的虚拟化,而大数据是海量数据的高效处理。虽然从这个解释来看也不是完全贴切,但是却可以帮助对这两个名字不太明白的人很快理解其区别。当然,如果解释更形象一点的话,云计算相当于我们的计算机和操作系统,将大量的硬件资源虚拟化后在进行分配使用。可以说,大数据相当于海量数据的“数据库”,通观大数据领域的发展我们也可以看出,当前的大数据发展一直在向着近似于传统数据库体验的方向发展,一句话就是,传统数据库给大数据的发展提供了足够大的空间。大数据的总体架构包括三层:数据存储,数据处理和数据分析。数据先要通过存储层存储下来,然后根据数据需求和目标来建立相应的数据模型和数据分析指标体系对数据进行分析产生价值。而中间的时效性又通过中间数据处理层提供的强大的并行计算和分布式计算能力来完成。三者相互配合,这让大数据产生最终价值。不看现在云计算发展情况,未来的趋势是:云计算作为计算资源的底层,支撑着上层的大数据处理,而大数据的发展趋势是,实时交互式的查询效率和分析能力,借用Google一篇技术论文中的话:“动一下鼠标就可以在妙极操作PB级别的数据”,确实让人兴奋不能止。

大数据,云计算,看起来都是非常高大上的东西,还是切合点实际,先落地再说吧。我们公司数据量比较大,用的是国产的FineBI软件,还不错!

大数据技术与计算机论文题目

计算机毕业论文选题方向简单

一、比较好写的计算机毕业论文题目:

1、计算机专业本科毕业设计现状的分析与对策研究

2、提高毕业论文(设计)质量的教学管理方法之研究——以兰州商学院长青学院计算机科学与技术专业为例

3、高职院校计算机类专业毕业设计教学中需要注意的几个问题

4、计算机模拟在材料成型及控制工程专业毕业设计中的应用

5、土木工程专业学生在毕业设计中合理利用计算机问题探讨

6、毕业设计中计算机应用能力培养的研究

7、关于提高计算机专业毕业设计质量的探讨

8、计算机专业毕业设计教学改革与学生创新能力培养

9、基于CDIO的计算机专业毕业设计教学模式研究

10、提高开放教育计算机专业毕业设计质量的探索

11、提高学分制下计算机专业的毕业设计(论文)质量的思考和策略

12、建筑工程专业计算机辅助毕业设计的教学改革

13、适应计算机技术的发展,本科毕业设计的有效改革——毕业设计的几点体会

14、计算机发展对建筑工程专业毕业设计的影响

15、做好计算机专业毕业设计教学环节的探索与实践

学术堂整理了十五个和大数据有关的毕业论文题目,供大家进行参考:1、大数据对商业模式影响2、大数据下地质项目资金内部控制风险3、医院统计工作模式在大数据时代背景下改进4、大数据时代下线上餐饮变革5、基于大数据小微金融6、大数据时代下对财务管理带来机遇和挑战7、大数据背景下银行外汇业务管理分析8、大数据在互联网金融领域应用9、大数据背景下企业财务管理面临问题解决措施10、大数据公司内部控制构建问题11、大数据征信机构运作模式监管12、基于大数据视角下我国医院财务管理分析13、大数据背景下宏观经济对微观企业行为影响14、大数据时代建筑企业绩效考核和评价体系15、大数据助力普惠金融

校园内部合理化局域网设置的研究俺们当年就有人做这个题目

内容如下:

1、大数据对商业模式影响

2、大数据下地质项目资金内部控制风险

3、医院统计工作模式在大数据时代背景下改进

4、大数据时代下线上餐饮变革

5、基于大数据小微金融

大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。

在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。

相关百科

热门百科

首页
发表服务