首页

> 论文发表知识库

首页 论文发表知识库 问题

计算机与哲学论文题目

发布时间:

计算机与哲学论文题目

这个看你熟悉什么方向的去定,然后就是看你熟悉那种语言,比如:c#,java,PHP,c,c++等等还有就是功能那些都是需要确定好的,然后就是框架那些了,一般框架就有MVC,ssm,ssh等等我的建议是你最好选择网站或者系统类的选题为佳

计算机论文题目

随着大科学时代的到来及科技水平的高速发展,计算机科学与技术已经渗透到我国经济、社会的各个领域,这些都有利于全球经济的发展,还极大地推动了社会的进步,

1、基于物联网的煤矿井下监测网络平台关键技术研究

2、基于抽象状态自动机和π演算的UML动态语义研究

3、基于多种数据源的中文知识图谱构建方法研究

4、基于矩阵化特征表示和Ho-Kashyap算法的分类器设计方法研究

5、基于博弈论的云计算资源调度方法研究

6、基于合约的泛型Web服务组合与选择研究

7、本体支持的Web服务智能协商和监测机制研究

8、基于神经网络的不平衡数据分类方法研究

9、基于内容的图像检索与推荐技术研究

10、物联网技术及其在监管场所中的应用

11、移动图书馆的研发与实现

12、图书馆联机公共目录查询系统的研究与实现

13、基于O2O模式的外卖订餐系统

14、网络时代个人数据与隐私保护的调查分析

15、微信公众平台CMS的设计与实现

16、环保部门语义链网络图形化呈现系统

17、BS结构计量信息管理系统设计与研究

18、基于上下文的天然气改质分析控制系统的设计与实现

19、基于增量学习和特征融合的多摄像机协作监控系统目标匹配方法研究

20、无线自组网络密钥管理及认证技术的研究

21、基于CDMI的云存储框架技术研究

22、磨损均衡在提高SSD使用寿命中的应用与改进

23、基于.NET的物流管理软件的设计与实现

24、车站商铺信息管理系统设计与实现

25、元数据模型驱动的合同管理系统的设计与实现

26、安睡宝供应与销售客户数据管理与分析系统

27、基于OpenCV的人脸检测与跟踪算法研究

28、基于PHP的负载均衡技术的研究与改进

29、协同药物研发平台的构建及其信任机制研究

30、光纤网络资源的智能化管理方法研究

31、基于差异同步的云存储研究和实践

32、基于Swift的云存储产品优化及云计算虚拟机调度算法研究

33、基于Hadoop的重复数据删除技术研究

34、中文微博情绪分析技术研究

35、基于协议代理的内控堡垒主机的设计与实现

36、公交车辆保修信息系统的研究与设计

37、基于移动互联网的光纤网络管理系统设计与开发

38、基于云平台的展馆综合管理系统

39、面向列表型知识库的组织机构实体链接方法研究

40、Real-time Hand Gesture Recognition by Using Geometric Feature

41、基于事件的社交网络核心节点挖掘算法的研究与应用

42、线性判别式的比较与优化方法研究

43、面向日志分类的蚁群聚类算法研究

44、基于决策树的数据挖掘技术在电信欠费管理中的应用与研究

45、基于信任关系与主题分析的微博用户推荐技术

46、微博用户兴趣挖掘技术研究

47、面向多源数据的信息抽取方法研究

48、基于本体约束规则与遗传算法的BIM进度计划自动生成研究

49、面向报关行的通关服务软件研究与优化

50、云应用开发框架及云服务推进策略的研究与实践

51、复杂网络社区发现方法以及在网络扰动中的影响

52、空中交通拥挤的识别与预测方法研究

53、基于RTT的端到端网络拥塞控制研究

54、基于体系结构的无线局域网安全弱点研究

55、物联网中的RFID安全协议与可信保障机制研究

56、机器人认知地图创建关键技术研究

57、Web服务网络分析和社区发现研究

58、基于球模型的三维冠状动脉中心线抽取方法研究

59、认知无线网络中频谱分配策略的建模理论与优化方法研究

60、传感器网络关键安全技术研究

61、任务关键系统的软件行为建模与检测技术研究

62、基于多尺度相似学习的图像超分辨率重建算法研究

63、基于服务的信息物理融合系统可信建模与分析

64、电信机房综合管控系统设计与实现

65、粒子群改进算法及在人工神经网络中的应用研究

66、污染源自动监控数据传输标准的研究与应用

67、一种智能力矩限制器的设计与研究

68、移动IPv6切换技术的研究

69、基于移动Ad hoc网络路由协议的改进研究

70、机会网络中基于社会关系的数据转发机制研究

71、嵌入式系统视频会议控制技术的研究与实现

72、基于PML的物联网异构信息聚合技术研究

73、基于移动P2P网络的广播数据访问优化机制研究

74、基于开放业务接入技术的业务移动性管理研究

75、基于AUV的UWSN定位技术的研究

76、基于隐私保护的无线传感网数据融合技术研究

77、基于DIVA模型语音生成和获取中小脑功能及其模型的研究

78、无线网络环境下流媒体传送技术的研究与实现

79、异构云计算平台中节能的任务调度策略研究

80、PRAM模型应用于同步机制的研究

81、云计算平台中虚拟化资源监测与调度关键技术研究

82、云存储系统中副本管理机制的研究

83、嵌入式系统图形用户界面开发技术研究

84、基于多维管理的呼叫中心运行系统技术研究

85、嵌入式系统的流媒体播放器设计与性能优化

86、基于组合双向拍卖的云资源调度算法的研究

87、融入隐私保护的特征选择算法研究

88、济宁一中数字化校园系统的设计与实现

89、移动合作伙伴管理系统的设计与实现

90、黄山市地税局网络开票系统的设计与应用

91、基于语义的领域信息抽取系统

92、基于MMTD的图像拼接方法研究

93、基于关系的垃圾评论检测方法

94、IPv6的过渡技术在终端综合管理系统中的实现与应用

95、基于超声波测距与控制的运动实验平台研发

96、手臂延伸与抓取运动时间协调小脑控制模型的研究

97、位置可视化方法及其应用研究

98、DIVA模型中定时和预测功能的研究

99、基于蚁群的Ad Hoc路由空洞研究

100、基于定向天线的Ad Hoc MAC协议的研究

101、复杂网络社区发现方法以及在网络扰动中的影响

102、空中交通拥挤的识别与预测方法研究

103、基于RTT的端到端网络拥塞控制研究

104、基于体系结构的无线局域网安全弱点研究

105、物联网中的RFID安全协议与可信保障机制研究

106、机器人认知地图创建关键技术研究

107、Web服务网络分析和社区发现研究

108、基于球模型的`三维冠状动脉中心线抽取方法研究

109、认知无线网络中频谱分配策略的建模理论与优化方法研究

110、传感器网络关键安全技术研究

111、任务关键系统的软件行为建模与检测技术研究

112、基于多尺度相似学习的图像超分辨率重建算法研究

113、基于服务的信息物理融合系统可信建模与分析

114、电信机房综合管控系统设计与实现

115、粒子群改进算法及在人工神经网络中的应用研究

116、污染源自动监控数据传输标准的研究与应用

117、一种智能力矩限制器的设计与研究

118、移动IPv6切换技术的研究

119、基于移动Ad hoc网络路由协议的改进研究

120、机会网络中基于社会关系的数据转发机制研究

121、嵌入式系统视频会议控制技术的研究与实现

122、基于PML的物联网异构信息聚合技术研究

123、基于移动P2P网络的广播数据访问优化机制研究

124、基于开放业务接入技术的业务移动性管理研究

125、基于AUV的UWSN定位技术的研究

126、基于隐私保护的无线传感网数据融合技术研究

127、基于DIVA模型语音生成和获取中小脑功能及其模型的研究

128、无线网络环境下流媒体传送技术的研究与实现

129、异构云计算平台中节能的任务调度策略研究

130、PRAM模型应用于同步机制的研究

131、云计算平台中虚拟化资源监测与调度关键技术研究

132、云存储系统中副本管理机制的研究

133、嵌入式系统图形用户界面开发技术研究

134、基于多维管理的呼叫中心运行系统技术研究

135、嵌入式系统的流媒体播放器设计与性能优化

136、基于组合双向拍卖的云资源调度算法的研究

137、融入隐私保护的特征选择算法研究

138、济宁一中数字化校园系统的设计与实现

139、移动合作伙伴管理系统的设计与实现

140、黄山市地税局网络开票系统的设计与应用

141、基于语义的领域信息抽取系统

142、基于MMTD的图像拼接方法研究

143、基于关系的垃圾评论检测方法

144、IPv6的过渡技术在终端综合管理系统中的实现与应用

145、基于超声波测距与控制的运动实验平台研发

146、手臂延伸与抓取运动时间协调小脑控制模型的研究

147、位置可视化方法及其应用研究

148、DIVA模型中定时和预测功能的研究

149、基于蚁群的Ad Hoc路由空洞研究

150、基于定向天线的Ad Hoc MAC协议的研究

计算机毕业论文题目推荐如下:基于SpringBoot的个性化学习系统设计与实现。基于web的疫情期间物资分配管理系统的设计与实现。基于python的成都市二手房数据可视化系统的设计 基于SpringBoot的电子秤串口称重系统的设计与实现 基于Java的疫情防控服务平台的设计与实现 基于Web的开源协会服务平台的设计与实现 基于ssm的汽车租赁平台的设计与开发

基于Java的同城临期视频平台的设计与开发。基于SpringBoot的协同过滤就业系统的设计与实现。基于SpringMVC的互联网招聘求职网站的设计与实现。基于SrpingBoot+react的资源登记分享网站的设计与实现。基于Springboot的在线教育平台设计与实现。基于Springboot的货物管理系统的设计与实现

基于Springboot的医疗管理系统的设计与实现。基于Springboot的校园快递管理平台的设计与实现。基于Springboot的博课系统的设计与实现。基于web应用的互助型旅游网站系统开发基于SpringBoot的沉浸式在线视频学习系统设计与实现。基于Springboot的预约挂号系统的设计与实现。基于python的新冠疫情数据分析系统的设计与开发。

哲学与计算机的关系论文题目

科学是哲学的外在表现 哲学是科学的内在精华计算机的0和1 道家的阴与阳 计算机的网络化 儒家的天下大同科学从哲学中走出来 阐释世界的低等规律 神学解释世界的高等存在 哲学则诠释世界的根本精华

学术堂整理了二十条计算机方面的毕业论文题目,供大家参考:1、星连通圈网络和三角塔网络的若干性质研究2、中职《计算机应用基础》分层次教学研究3、基于MSP430单片机的电能质量检测仪设计4、光学遥感相机数据存储系统设计与实现5、基于单片机的级联型升压逆变器的设计及实现6、翻转课堂在职业学校《计算机应用基础》课程中的应用研究7、基于信息物理系统架构的微机接口远程实验系统设计与实现8、基于1553B总线的星务仿真系统设计9、曲面喷墨运动控制系统的研究10、项目教学法在中职计算机教学中的应用研究11、虚拟化在铁路数据中心的应用12、基于微信的学校学习支持服务的设计研究13、基于量化方法的高校师范生教学能力培养模式研究14、职业院校一体化课程教学模式研究15、应用于PowerPC处理器的乘法器设计与验证16、微项目学习在中职《计算机应用基础》课程教学中的应用研究17、信誉度约束下超边际分析的云存储资源分配研究18、机房环境监控系统的设计与实现19、计算机基础课的过程性测评系统设计20、3D打印机等层厚切片算法研究及软件实现

校园内部合理化局域网设置的研究俺们当年就有人做这个题目

数学与计算机论文题目

免费查阅文献的刊物,你可以看看(计算机科学与应用)等等这些

毕业论文是教学科研过程的一个环节,也是学业成绩考核和评定的一种重要方式。毕业论文的目的在于总结学生在校期间的学习成果,培养学生具有综合地创造性地运用所学的全部专业知识和技能解决较为复杂问题的能力并使他们受到科学研究的基本训练。标题标题是文章的眉目。各类文章的标题,样式繁多,但无论是何种形式,总要以全部或不同的侧面体现作者的写作意图、文章的主旨。毕业论文的标题一般分为总标题、副标题、分标题几种。总标题总标题是文章总体内容的体现。常见的写法有:①揭示课题的实质。这种形式的标题,高度概括全文内容,往往就是文章的中心论点。它具有高度的明确性,便于读者把握全文内容的核心。诸如此类的标题很多,也很普遍。如《关于经济体制的模式问题》、《经济中心论》、《县级行政机构改革之我见》等。②提问式。这类标题用设问句的方式,隐去要回答的内容,实际上作者的观点是十分明确的,只不过语意婉转,需要读者加以思考罢了。这种形式的标题因其观点含蓄,轻易激起读者的注重。如《家庭联产承包制就是单干吗?》、《商品经济等同于资本主义经济吗?》等。③交代内容范围。这种形式的标题,从其本身的角度看,看不出作者所指的观点,只是对文章内容的范围做出限定。拟定这种标题,一方面是文章的主要论点难以用一句简短的话加以归纳;另一方面,交代文章内容的范围,可引起同仁读者的注重,以求引起共鸣。这种形式的标题也较普遍。如《试论我国农村的双层经营体制》、《正确处理中心和地方、条条与块块的关系》、《战后西方贸易自由化剖析》等。④用判定句式。这种形式的标题给予全文内容的限定,可伸可缩,具有很大的灵活性。文章研究对象是具体的,面较小,但引申的思想又须有很强的概括性,面较宽。这种从小处着眼,大处着手的标题,有利于科学思维和科学研究的拓展。如《从乡镇企业的兴起看中国农村的希望之光》、《科技进步与农业经济》、《从“劳动创造了美”看美的本质》等。

高中数学在计算机中的运用及思考论文

摘要: 目前我们高中数学在计算机中的教学实践并没有对学生起到实质性效果,主要原因还是由于高中生对计算机使用方法不当及数学基础理论知识不扎实,因此我们高中生在计算机中的运用及思考得到的效果并没有太大的提高。本文对我们目前高中数学在计算机中的运用及思考进行了详细的分析与论述。

关键词: 高中数学;计算机;运用;思考

目前我们高中生针对高中数学在计算机中的运用及思考进行了分析,高中生利用计算机学习数学时存在着诸多问题,例如:学生死学数学,利用计算机学习数学得到的效果不明显、缺少建设性、学生对学习数学产生厌烦感、学生在课堂效率较低等诸多问题,主要原因是因为:学生自身没有理解数学、学生要对自身存在问题改善进而提高。目前我们高中生对高中数学在计算机中的运用及思考的方法一直在不停地改进,但是由于学生本身对数学基础较低的影响,因此我们高中生的高中数学在计算机中运用及思考并没有收到太大的效果。

1加强学生对高中数学在计算机中的运用

计算机在生活中随处可见与我们高中生的关系更是密不可分,休闲时它是我们最好的伙伴。但是我们对于计算机的了解远远不够深刻,只停留在表面。这就需要老师对我们进一步的教导,加强我们将高中数学应用于计算机领域的能力。我们对于高中数学的理解过于浅薄,单纯的认为它偏理论化与实际接轨不大。实际上高中数学可以应用在计算机的部分有很多。在研究数学平面曲线时可以借助几何画板演示圆锥与平面的截面图。从动态上揭示了当截面与圆锥的任意一条母线平行时,截线是抛物线。当截面与圆锥的两条母线平行时,截线是双曲线。因此,在知识迁移,分析概括,疑难解析,巩固提高时运用多媒体是最恰当的选择。还有线性代数的思想贯穿于计算机图形学。事实上,只要牵涉到几何数值表示法,就常常抽象出例如x,y,z坐标之类的数值,我们称之为矢量。图形学自始至终离不开矢量和矩阵。用矢量和矩阵来描述旋转,平移,或者缩放是再好不过了。高中和大学都有线性代数的课程。只要想在计算机图形学领域工作,就应该打下坚实的线性代数基础。同时在私下时我们高中生也要自主去利用计算机来练习数学题目,这样的练习可以有助于懂得抓住知识的重点,掌握到正确的学习方法,在生活实践当中进行摸索,为老师上课内容而做好准备,打下坚实的基础。

2高中数学与计算机的关系

高中数学与计算机是相辅相成的关系,高中数学作为计算机的理论支撑,可以说没有高中数学就没有计算机的研发,而没有计算机的协助就没有高中数学的进一步发展。高中数学在计算机中的运用及思考在长期传统方式引导下,从最基本的函数理论到应用计算,高中数学包括了绝大部分数学知识的基础概论。高中数学在计算机中的运用快速扩展的背景下构建的高中数学高效课堂的策略的实施对我们综合运用能力要求较高,同时对老师的计算机水平要求更高,但是由于老师计算机水平不够,我们高中生对计算机理解能力就会出现很多问题,就会出现以下问题:学生就会曲解数学在计算机中的运用及思考的学习目标、分不清计算机与高中数学的主次,导致了许多学生一味地重视计算理论,但却忽略很多重要的高中数学理论的实际经验,这样就是学生没有处理好高中数学与计算机的关系,这就是高中生对高中数学在计算机中的.运用及思考并没有完全理解,所以利用计算机来提高数学学习效率,但收到效果并不明显。如果想利用计算机来提高数学学习效率,并收到的效果明显,就要利用两者的联系,建造两者的规律。把握规律,将两者同时推向一个新的高峰。

3加强学生对高中数学在计算机中的思考能力

高中数学在计算机中的运用及思考的学习有效性方法应当具有方向性,并主要以学生为主体,老师为引导。对高中数学在计算机中的运用及思考时高中生的思考方向性一定要有明确的方向性,在使用计算机来学习高中数学内容时要注重对计算机的思考能力。学生根据自己的思考能力的高低来制定科学而合理的学习规划,将数学在计算机中的思考的有效性、合理性运用到学生自己制定学习方案当中。同时想要学习好计算机,就必须学习好数学这门基础课程。既能使课堂上固有的专业数学公式理论知识得到巩固,又能充分的使我们高中生对现实生活中提高数学的表达能力和加深理解看法,这样可以使我们学生理解和把握数学公式理论知识的重点以及如何运用计算机更好的学习数学具有较好效果,无论是书本的了解还是生活实事的了解都有加深。最终达到提高思考能力的目的。通过我们对高中数学的深度思考,激发出我们对高中数学在计算机中的运用与思考的兴趣,有了兴趣的加入,学生对数学在计算机中的运用及思考能力提高才会事半功倍。对于我们来说思考是最好的工具。如果我们对数学只是在应付老师留的作业或者停留在成绩的表面,而不进行深入的思考,那么我们的数学应用能力提高就会很困难。因此,在老师对我们进行数学在计算机中的运用与思考的教学过程中最为主要的任务就是采用合理化、科学化、全面化的教学方法来提高我们对数学的思考能力,从而拓宽数学在计算机领域的应用范围。

4结语

目前我们高中生对高中数学在计算机中的运用及思考的方法在不停地改进,构建高效率的高中数学在计算机中的运用及思考学习方案,使我们高中生对高中数学在计算机中的运用以及思考能力得到提高,为学习数学带来很多方便、教师与学生共同进步、学生对数学兴趣浓厚,丰富学习方式。数学方法的合理运用,可以为计算机学习带来很多方便.越来越多的计算机程序需要应用数学推导、归纳。高中数学使用计算机可以更好对我们学生采用正确方式对知识进行引导,培养学生的自主学习能力同时为社会培养更多复合型人才,促进我国数学教育和计算机领域的双赢。本文对高中数学在计算机中的运用、高中数学与计算机的关系、加强学生对高中数学在计算机中的思考能力等方面进行了详细的分析与论述。

作者:张天然 单位:华中师大一附中高三(7)班

参考文献:

[1]颜东鑫.高中数学习题课教学有效性的调查研究[D].重庆师范大学,2014,12.

[2]孙文晋.导学案教学在高中数学中的实践与思考[D].河南大学,2014,09.

[3]牟方平.浅析高中数学在计算机中的运用及思考[J].新课程(教师),2010,06.

[4]彭爱辉.高中数学课程中的算法及其教学设计研究[D].贵州师范大学,2004,13.

[5]包财花.高中地理教材中数学知识的研究[D].内蒙古师范大学,2013,06.

你可以在数学建模方面找下

计算机与科学概论论文题目

专科还是本科

学术堂最新整理了十五个好写的计算机专业毕业论文题目,供大家参考:1、星连通圈网络和三角塔网络的若干性质研究2、中职《计算机应用基础》分层次教学研究3、基于MSP430单片机的电能质量检测仪设计4、光学遥感相机数据存储系统设计与实现5、基于单片机的级联型升压逆变器的设计及实现6、翻转课堂在职业学校《计算机应用基础》课程中的应用研究7、基于信息物理系统架构的微机接口远程实验系统设计与实现8、基于1553B总线的星务仿真系统设计9、曲面喷墨运动控制系统的研究10、项目教学法在中职计算机教学中的应用研究11、虚拟化在铁路数据中心的应用12、基于微信的学校学习支持服务的设计研究13、基于量化方法的高校师范生教学能力培养模式研究14、职业院校一体化课程教学模式研究15、应用于PowerPC处理器的乘法器设计与验证

很多设计希望能帮你

学术堂整理了十五个好写的计算机科学与技术专业毕业论文题目供大家进行参考:1、多媒体课件开发工具对比研究2、信息技术教学方法研究3、中小学信息技术课程标准研究4、网络环境下教学评价系统研究5、利用网络技术支持课堂教学改革6、网络环境下教与学的研究与实现7、小学信息技术课程教学内容与方法探讨8、基于FLASH的多媒体课件设计与开发9、中学信息技术教育对学生文化素养的影响现状与对策10、新课程改革下中学信息技术课改情况调查分析11、信息技术环境下的教师素质和能力、角色与地位12、信息技术与课程整合的研究13、中学新课程对信息技术教师的素质要求研究14、多媒体课件或网络课件制作15、多媒体教学软件的设计与制作

计算机与数学文化论文题目

1、论文题目:要求准确、简练、醒目、新颖。2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录)3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。5、论文正文:(1)引言:引言又称前言、序言和导言,用在论文的开头。引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。〈2)论文正文:正文是论文的主体,正文应包括论点、论据、论证过程和结论。主体部分包括以下内容:a.提出-论点;b.分析问题-论据和论证;c.解决问题-论证与步骤;d.结论。论文提纲也可以用最简单的格式和分类,简单明了地说明论文的目的、依据和意义,甚至是两句话。这种提纲往往是用于科学论文,而且在对于各种概念有相互联系而不是孤立的出来讨论的情况下。如果总要分出1、2、3......点来写的话,往往会变成“八股文”的模式,这样的论文往往是应付式的论文,其真正的科学价值会大打折扣。6编写步骤编辑(一)确定论文提要,再加进材料,形成全文的概要论文提要是内容提纲的雏型。一般书、教学参考书都有反映全书内容的提要,以便读者一翻提要就知道书的大概内容。我们写论文也需要先写出论文提要。在执笔前把论文的题目和大标题、小标题列出来,再把选用的材料插进去,就形成了论文内容的提要。(二)原稿纸页数的分配写好毕业论文的提要之后,要根据论文的内容考虑篇幅的长短,文章的各个部分,大体上要写多少字。如计划写20页原稿纸(每页300字)的论文,考虑序论用1页,本论用17页,结论用1—2页。本论部分再进行分配,如本论共有四项,可以第一项3—4页,第二项用4—5页,第三项3—4页,第四项6—7页。有这样的分配,便于资料的配备和安排,写作能更有计划。毕业论文的长短一般规定为5000—6000字,因为过短,问题很难讲透,而作为毕业论文也不宜过长,这是一般大专、本科学生的理论基础、实践经验所决定的。(三)编写提纲论文提纲可分为简单提纲和详细提纲两种。简单提纲是高度概括的,只提示论文的要点,如何展开则不涉及。这种提纲虽然简单,但由于它是经过深思熟虑构成的,写作时能顺利进行。没有这种准备,边想边写很难顺利地写下去。编写要点编写毕业论文提纲有两种方法:一、标题式写法。即用简要的文字写成标题,把这部分的内容概括出来。这种写法简明扼要,一目了然,但只有作者自己明白。毕业论文提纲一般不能采用这种方法编写。二、句子式写法。即以一个能表达完整意思的句子形式把该部分内容概括出来。这种写法具体而明确,别人看了也能明了,但费时费力。毕业论文的提纲编写要交与指导教师阅读,所以,要求采用这种编写方法。详细提纲举例详细提纲,是把论文的主要论点和展开部分较为详细地列出来。如果在写作之前准备了详细提纲,那么,执笔时就能更顺利。下面仍以《关于培育和完善建筑劳动力市场的思考》为例,介绍详细提纲的写法:上面所说的简单提纲和详细提纲都是论文的骨架和要点,选择哪一种,要根据作者的需要。如果考虑周到,调查详细,用简单提纲问题不是很大;但如果考虑粗疏,调查不周,则必须用详细提纲,否则,很难写出合格的毕业论文。总之,在动手撰写毕业论文之前拟好提纲,写起来就会方便得多。

毕业论文主要目的是培养学生综合运用所学知识和技能,理论联系实际,独立分析,解决实际问题的能力,你知道本科数学论文题目都有哪些吗?接下来我为你推荐本科数学毕业论文题目,仅供参考。

本科数学毕业论文题目

★浅谈奥数竟赛的利与弊

★浅谈中学数学中数形结合的思想

★浅谈高等数学与中学数学的联系,如何运用高等数学于中学数学教学中 ★浅谈中学数学中不等式的教学

★中数教学研究

★XXX课程网上教学系统分析与设计

★数学CAI课件开发研究

★中等职业学校数学教学改革研究与探讨

★中等职业学校数学教学设计研究

★中等职业学校中外数学教学的比较研究

★中等职业学校数学教材研究

★关于数学学科案例教学法的探讨

★中外著名数学家学术思想探讨

★试论数学美

★数学中的研究性学习

★数字危机

★中学数学中的化归方法

★高斯分布的启示

★a二+b二≧二ab的变形推广及应用

★网络优化

★泰勒公式及其应用

★浅谈中学数学中的反证法

★数学选择题的利和弊

★浅谈计算机辅助数学教学

★论研究性学习

★浅谈发展数学思维的学习方法

★关于整系数多项式有理根的几个定理及求解方法

★数学教学中课堂提问的误区与对策

★怎样发掘数学题中的隐含条件

★数学概念探索式教学

★从一个实际问题谈概率统计教学

★教学媒体在数学教学中的作用

★数学问题解决及其教学

★数学概念课的特征及教学原则

★数学美与解题

★创造性思维能力的培养和数学教学

★教材顺序的教学过程设计创新

★排列组合问题的探讨

★浅谈初中数学教材的思考

★整除在数学应用中的探索

★浅谈协作机制在数学教学中的运用

★课堂标准与数学课堂教学的研究与实践

★浅谈研究性学习在数学教学中的渗透与实践

★关于现代中学数学教育的思考

★在中学数学教学中教材的使用

★情境教学的认识与实践

★浅谈初中代数中的二次函数

★略论数学教育创新与数学素质提高

★高中数学“分层教学”的初探与实践

★在中学数学课堂教学中如何培养学生的创新思维

★中小学数学的教学衔接与教法初探

★如何在初中数学教学中进行思想方法的渗透

★培养学生创新思维全面推进课程改革

★数学问题解决活动中的反思

★数学:让我们合理猜想

★如何优化数学课堂教学

★中学数学教学中的创造性思维的培养

★浅谈数学教学中的“问题情境”

★市场经济中的蛛网模型

★中学数学教学设计前期分析的研究

★数学课堂差异教学

★一种函数方程的解法

★浅析数学教学与创新教育

★数学文化的核心—数学思想与数学方法

★漫话探究性问题之解法

★浅论数学教学的策略

★当前初中数学教学存在的问题及其对策

★例谈用“构造法”证明不等式

★数学研究性学习的探索与实践

★数学教学中创新思维的培养

★数学教育中的科学人文精神

★教学媒体在数学教学中的应用

★“三角形的积化和差”课例大家评

★谈谈类比法

★直觉思维在解题中的应用

★数学几种课型的问题设计

★数学教学中的情境创设

★在探索中发展学生的创新思维

★精心设计习题提高教学质量

★对数学教育现状的分析与建议

★创设情景教学生猜想

★反思教学中的一题多解

★在不等式教学中培养学生的探究思维能力

★浅谈数学学法指导

★中学生数学能力的培养

★数学探究性活动的内容形式及教学设计

★浅谈数学学习兴趣的培养

★浅谈课堂教学的师生互动

★新世纪对初中数学的教材的思考

★数学教学的现代研究

★关于学生数学能力培养的几点设想

★在数学教学中培养学生创新能力的尝试

★积分中值定理的再讨论

★二阶变系数齐次微分方程的求解问题

★浅谈培养学生的空间想象能力

★培养数学能力的重要性和基本途径 ★课堂改革与数学中的创新教育

★如何实施中学数学教学中的素质教育 ★数学思想方法在初中数学教学中的渗透 ★浅谈数学课程的设计

★培养学生学习数学的兴趣

★课堂教学与素质教育探讨

★数学教学要着重培养学生的读书能力 ★数学基础知识的教学和基本能力的培养 ★初中数学创新教育的实施

★浅谈数学教学中培养学生的数学思维能力 ★谈数学教学中差生的转化问题

★谈中学数学概念教学中如何实施探索式教学 ★把握学生心理激发数学学习兴趣

★数学教学中探究性学习策略

★论数学课堂教学的语言艺术

★数学概念的教与学

★优化课堂教学推进素质教育

★数学教学中的情商因素

★浅谈创新教育

★培养学生的数学兴趣的实施途径

★论数学学法指导

★学生能力在数学教学中的培养

★浅论数学直觉思维及培养

★论数学学法指导

★优化课堂教学焕发课堂活力

★浅谈高初中数学教学衔接

★如何搞好数学教育教学研究

★浅谈线性变换的对角化问题

本科数学毕业论文范文:高等数学教学中体现数学建模思想的方法

生产计划是对生产全过程进行合理规划的有效手段,是一个十分繁复的过程,以下是我搜集整理的一篇探究高等数学教学中体现数学建模思想的方法的范文,欢迎阅读参考。

1数学建模在煤矿安全生产中的意义

在瓦斯系统的研究过程中,应用数学建模的手段为矿井瓦斯构建数学模型,可以为采煤方案的设计和通风系统的建设提供很大的帮助;尤其是对于我国众多的中小型煤矿而言,因为资金有限而导致安全设施不完善,有的更是没有安全项目的投入,仅仅建设了极为少量的给风设备,通风系统并不完善。这些煤矿试图依靠通风量来对瓦斯体积分数进行调控,这是十分困难的,对瓦斯体积分数进行预测更是不可能的。很多小煤矿使用的仍旧是十分原始的采煤方法,没有相关的规划;当瓦斯等有害气体体积分数升高之后就停止挖掘,体积分数下降之后又继续进行开采。这种开采方式的工作效率十分低下。

只要设计一个充分合理的通风系统的通风量,与采煤速度处于一个动态的平衡状态,就可以在不延误煤炭开采的同时将矿井内的瓦斯气体体积分数控制在一个安全的范围之内。这样不仅可以保障工人的安全,还可以保证煤炭的开采效率,每个矿井都会存在着这样的一个平衡点,这就对矿井瓦斯涌出量判断的准确性提出更高的要求。

2煤矿生产计划的优化方法

生产计划是对生产全过程进行合理规划的有效手段,是一个十分繁复的过程,涉及到的约束因素很多,条理性很差。为了成功解决这个复杂的问题,现将常用的生产计划分为两个大类。

基于数学模型的方法

(1)数学规划方法这个规划方法设计了很多种各具特点的手段,根据生产计划做出一个虚拟的模型,在这里主要讨论的是处于静止状态下所产生的问题。从目前取得的效果来看,研究的方向正在逐渐从小系统向大系统推进,从过去的单个层次转换到多个层次。

(2)最优控制方法这种方式应用理论上的控制方法对生产计划进行了研究,而在这里主要是针对其在动态情况下的问题进行探讨。

基于人工智能方法

(1)专家系统方法专家系统是一种将知识作为基础的为计算机编程的系统,对于某个领域的繁复问题给出一个专家级别的解决方案。而建立一个专家系统的关键之处在于,要预先将相关专家的知识等组成一个资料库。其由专家系统知识库、数据库和推理机制构成。

(2)专家系统与数学模型相结合的方法常见的有以下几种类型:①根据不同情况建立不同的数学模型,而后由专家系统来进行求解;②将复杂的问题拆分为多个简单的子问题,而后针对建模的子问题进行建模,对于难以进行建模的问题则使用专家系统来进行处理。在整体系统中两者可以进行串行工作。

3煤矿安全生产中数学模型的优化建立

根据相关数据资料来进行模拟,而后再使用系统分析来得出适合建立哪种数学模型。取几个具有明显特征的采矿点进行研究。在煤矿挖掘的过程中瓦斯体积分数每时每刻都在变化,可以通过通风量以及煤炭采集速度来保证矿中瓦斯体积分数处在一个安全的范围之内。假设矿井分为地面、地下一层与地下二层工作面,取地下一层两个矿井分别为矿井A、矿井B,地下二层分别为矿井C、矿井D.然后对其进行分析。

建立简化模型

模型构建表达工作面A瓦斯体积分数x·1=a1x1+b1u1-c1w1-d1w2(1)式中x1---A工作面瓦斯体积分数;u1---A工作面采煤进度;w1---A矿井所对应的空气流速;w2---相邻B工作面的空气流速;a1、b1、c1、d1---未知量系数。

很明显A工作面的通风量对自身瓦斯体积分数所产生的影响要显着大于B工作面的风量,从数学模型上反映出来就是要求c1>d1.同样的B工作面(x·2)和工作面A所在的位置很相似,也就应该具有与之接近的数学关系式

式中x2---B工作面瓦斯体积分数;

u2---B工作面采煤进度;

w1---B矿井所对应的空气流速;

w2---相邻A工作面的空气流速;

a2、b2、c2、d2---未知量系数。

CD工作面(x·3、x·4)都位于B2层的位置,其工作面瓦斯体积分数不只受到自身开采进度情况的影响,还受到上层AB通风口开阔度的影响。在这里,C、D工作面瓦斯体积分数就应该和各个通风口的通风量有着密不可分的联系;于是C、D工作面瓦斯体积分数可以表示为【3】

式中x3、x4---C、D工作面的瓦斯体积分数;

e1、e2---A、B工作面的瓦斯体积分数;

a3、b3、c3、d3---未知量系数:

f1、f2---A、B工作面的瓦斯绝对涌出量。

系统简化模型的辨识这个简化模型其实就是对于参数的最为初步的求解,也就是在一段时间内的实际测量所得数据作为流通量,对上面方程组进行求解操作。而后得到数学模型,将实际数据和预测数据进行多次较量,再加入相关人员的长期经验(经验公式)。修正之后的模型依旧使用上述的方法来进行求解,因为A、B工作面基本不会受C、D工作面的影响。

模型的转型及其离散化

因为这个项目是一个矿井安全模拟系统,要对数学模型进行离散型研究,这是使用随机数字进行试数求解的关键步骤。离散化之后的模型为【1】

在使用原始数据来对数学模型进行辨识的过程中,ui表示开采进度,以t/d为单位,相关风速单位是m/s,k为工作面固定系数,h为4个工作面平均深度。为了便于将该系统转化为计算机语言,把开采进度ui从初始的0~1000t/d范围,转变为0~1,那么在数字化采煤中进度单位1即表示1000t/d,如果ui=就表示每日产煤量500t.诸如此类,工作面空气流通速度wi的原始取值范围是0~4m/s,对其进行数字化,其新数值依旧是0~1,也就表示这wi取1时表示风速为4m/s,若表示通风口的开通程度是,也就是通风口打开一半(2m/s),wi如果取1则表示通风口开到最大。

依照上述分析来进行数字化转换,数据都会产生变化,经过计算之后可以得到新的参数数据,在计算的过程之中使用0~1的数据是为了方便和计算机语言的转换,在进行仿真录入时在0~1之间的一个有效数字就会方便很多。开采进度ui的取值范围0~1表示的是每日产煤数量区间是0~1000t,而风速wi取值0~1所表示的是风速取值在0~4m/s这个区间之内。

模型的应用效果及降低瓦斯体积分数的措施

以上对煤矿生产中的常见问题进行了相关分析,发现伴随着时间的不断增长瓦斯涌体积分数等都会逐渐衰减,一段时间后就会变得微乎其微,这就表明这类资料存在着一个衰减周期,经过长期观测发现衰减周期T≈18h.而后,又研究了会对瓦斯涌出量产生影响的其他因素,发现在使用炮采这种方式时瓦斯体积分数会以几何数字的速度衰减,使用割煤手段进行采矿时瓦斯会大量涌出,其余工艺在采煤时并不会导致瓦斯体积分数产生剧烈波动。瓦斯的涌出量伴随着挖掘进度而提升,近乎于成正比,而又和通风量成反比关系。因为新矿的瓦斯体积分数比较大,所以要及时将煤运出,尽量缩短在煤矿中滞留的时间,从而减小瓦斯涌出总量。

综上所述,降低工作面瓦斯体积分数常用手段有以下几种:①将采得的煤快速运出,使其在井中停留的时间最短;②增大工作面的通风量;③控制采煤进度,同时也可以控制瓦斯的涌出量。

4结语

应用数学建模的手段对矿井在采矿过程中涌出的瓦斯体积分数进行了模拟及预测,为精确预测矿井瓦斯体积分数提供了一个新的思路,对煤矿安全高效生产提供了帮助,有着重要的现实意义。

参考文献:

[1]陈荣强,姚建辉,孟祥龙.基于芯片控制的煤矿数控液压站的设计与仿真[J].科技通报,2012,28(8):103-106.

[2]陈红,刘静,龙如银.基于行为安全的煤矿安全管理制度有效性分析[J].辽宁工程技术大学学报:自然科学版,2009,28(5):813-816.

[3]李莉娜,胡新颜,刘春峰.煤矿电网谐波分析与治理研究[J].煤矿机械,2011,32(6):235-237.

这里是一个很好的计算机,他可以给你导出什么论文都可以给你导出来,导读计算好的

大学数学论文范文

导语:无论是在学校还是在社会中,大家都写过论文,肯定对各类论文都很熟悉吧,论文是探讨问题进行学术研究的一种手段。怎么写论文才能避免踩雷呢?以下是我收集整理的论文,希望对大家有所帮助。

论文题目: 大学代数知识在互联网络中的应用

摘要: 代数方面的知识是数学工作者的必备基础。本文通过讨论大学代数知识在互联网络对称性研究中的应用,提出大学数学专业学生检验自己对已学代数知识的掌握程度的一种新思路,即思考一些比较前沿的数学问题。

关键词: 代数;对称;自同构

一、引言与基本概念

《高等代数》和《近世代数》是大学数学专业有关代数方面的两门重要课程。前者是大学数学各个专业最重要的主干基础课程之一,后者既是对前者的继续和深入,也是代数方面研究生课程的重要先修课程之一。这两门课程概念众多,内容高度抽象,是数学专业学生公认的难学课程。甚至,很多学生修完《高等代数》之后,就放弃了继续学习《近世代数》。即使对于那些坚持认真学完这两门课程的学生来讲,也未必能做到“不仅知其然,还知其所以然”,而要做到“知其所以然,还要知其不得不然”就更是难上加难了。众所周知,学习数学,不仅逻辑上要搞懂,还要做到真正掌握,学以致用,也就是“学到手”。当然,做课后习题和考试是检验是否学会的一个重要手段。然而,利用所学知识独立地去解决一些比较前沿的数学问题,也是检验我们对于知识理解和掌握程度的一个重要方法。这样做,不仅有助于巩固和加深对所学知识的理解,也有助于培养学生的创新意识和自学能力。笔者结合自己所从事的教学和科研工作,在这方面做了一些尝试。

互连网络的拓扑结构可以用图来表示。为了提高网络性能,考虑到高对称性图具有许多优良的性质,数学与计算机科学工作者通常建议使用具有高对称性的图来做互联网络的模型。事实上,许多著名的网络,如:超立方体网络、折叠立方体网络、交错群图网络等都具有很强的对称性。而且这些网络的构造都是基于一个重要的代数结构即“群”。它们的对称性也是通过其自同构群在其各个对象(如:顶点集合、边集合等)上作用的传递性来描述的。

下面介绍一些相关的概念。一个图G是一个二元组(V,E),其中V是一个有限集合,E为由V的若干二元子集组成的集合。称V为G的顶点集合,E为G的边集合。E中的每个二元子集{u,v}称为是图G的连接顶点u与v的一条边。图G的一个自同构f是G的顶点集合V上的一个一一映射(即置换),使得{u,v}为G的边当且仅当{uf,vf}也为G的边。图G的全体自同构依映射的合成构成一个群,称为G的全自同构群,记作Aut(G)。图G称为是顶点对称的,如对于G的任意两个顶点u与v,存在G的自同构f使得uf=v。图G称为是边对称的,如对于G的任意两条边{u,v}和{x,y},存在G的自同构f使得{uf,vf}={x,y}。

设n为正整数,令Z2n为有限域Z2={0,1}上的n维线性空间。由《近世代数》知识可知,Z2n的加法群是一个初等交换2群。在Z2n中取出如下n个单位向量:

e1=(1,0,…,0),e2=(0,1,0,…,0),en=(0,…,0,1)。

●n维超立方体网络(记作Qn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei,其中1≤i≤n。

●n维折叠立方体网络(记作FQn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei(1≤i≤n)或者v-u=e1+…+en。

●n维交错群图网络(记作AGn)是一个以n级交错群An为顶点集合的图,对于AGn的任意两个顶点u和v,{u,v}是AGn的一条边当且仅当vu-1=ai或ai-1,这里3≤i≤n,ai=(1,2,i)为一个3轮换。

一个自然的问题是:这三类网络是否是顶点对称的?是否边对称的?但值得我们注意的是,这些问题都可以利用大学所学的代数知识得到完全解决。

二、三类网络的对称性

先来看n维超立方体网络的对称性。

定理一:n维超立方体网络Qn是顶点和边对称的。

证明:对于Z2n中的任一向量x=(x1,…,xn),如下定义V(Qn)=Z2n上面的一个映射:f(x):u→u+x,u取遍V(Qn)中所有元素。容易验证f(x)是一个1-1映射。(注:这个映射在《高等代数》中已学过,即所谓的平移映射。)而{u,v}是Qn的一条边,当且仅当v-u=ei(1≤i≤n),当且仅当vf(x)-uf(x)=ei(1≤i≤n),当且仅当{v(fx),u(fx)}是Qn的一条边。所以,f(x)也是Qn的一个自同构。这样,任取V(Qn)中两个顶点u和v,则uf(v-u)=v。从而说明Qn是顶点对称的。

下面证明Qn是边对称的。只需证明:对于Qn的任一条边{u,v},都存在Qn的自同构g使得{ug,vg}={0,e1},其中0为Z2n中的零向量。事实上,{uf(-u),vf(-u)}={0,v-u},其中v-u=ei(1≤i≤n)。显然,e1,…,ei-1,ei,ei+1,…,en和ei,…,ei-1,e1,ei+1,…,en是Z2n的两组基向量。由《高等代数》知识可知存在Z2n上的可逆线性变换t使得t对换e1和ei而不动其余向量。此时易见,若{a,b}是Qn的一条边,则a-b=ej(1≤j≤n)。若j=1,则at-bt=ei;若j=i,则at-bt=e1;若j≠1,i,则at-bt=ej;所以{at,bt}也是Qn的一条边。由定义可知,t是Qn的一个自同构。进一步,{0t,(v-u)t}={0,e1},即{uf(-u)t,vf(-u)t}={0,e1}。结论得证。

利用和定理一相似的办法,我们进一步可以得到如下定理。

定理二:n维折叠立方体网络FQn是顶点和边对称的。

最后,来决定n维交错群图网络的对称性。

定理三:n维交错群图网络AGn是顶点和边对称的。

证明:首先,来证明AGn是顶点对称的。给定An中的一个元素g,如下定义一个映射:R(g):x→xg,其中x取遍An中所有元素。容易验证R(g)为AGn顶点集合上上的一个1-1映射。(注:这个映射在有限群论中是一个十分重要的'映射,即所谓的右乘变换。)设{u,v}是AGn的一条边,则vu-1=ai或ai-1,这里1≤i≤n。易见,(vg)(ug)-1=vu-1。所以,{vR(g),uR(g)}是AGn的一条边。因此,R(g)是AGn的一个自同构。这样,对于AGn的任意两个顶点u和v,有uR(g)=v,这里g=u-1v。这说明AGn是顶点对称的。

下面来证明AGn是边对称的。只需证明对于AGn的任一条边{u,v},都存在AGn的自同构g使得{ug,vg}={e,a3},其中e为An中的单位元。给定对称群Sn中的一个元素g,如下定义一个映射:C(g):x→g-1xg,其中x取遍An中所有元素。由《近世代数》知识可知,交错群An是对称群Sn的正规子群。容易验证C(g)是AGn的顶点集合上的一个1-1映射。(注:这个映射其实就是把An中任一元素x变为它在g下的共轭。这也是有限群论中一个十分常用的映射。)令x=(1,2),y(j)=(3,j),j=3,…,n。下面证明C(x)和C(y(j))都是AGn的自通构。取{u,v}为AGn的任一条边,则vu-1=ai或ai-1。从而,vC(x)(u-1)C(x)=(x-1vx)(x-1u-1x)=x-(1vu-1)x=ai-1或ai。

因此,{uC(x),vC(x)}也是AGn的一条边。从而说明C(x)是AGn的自通构。同理,若j=i,有vC(y(j))(u-1)C(y(j))=a3-1或a3;若j≠i,则有vC(y(j))(u-1)C(y(j))=ai-1或ai。这说明{uC(y(j)),vC(y(j))}也是AGn的一条边,从而C(y(j))是AGn的自通构。现在,对于AGn的任一条边{u,v},令g=u-1,则{uR(g),vR(g)}={e,vu-1}={e,ai}或{e,ai-1}。若i=3,则{e,a3-1}C(x)={e,a3}。而若i≠3,则{e,ai}C(y(j))={e,a3}而{e,ai-1}C(y(j))={e,a3-1}。由此可见,总存在AGn的自同构g使得{ug,vg}={e,a3},结论得证。

至此,完全决定了这三类网络的对称性。不难看出,除了必要的图论概念外,我们的证明主要利用了《高等代数》和《近世代数》的知识。做为上述问题的继续和深入,有兴趣的同学还可以考虑以下问题:

1、这些网络是否具有更强的对称性?比如:弧对称性?距离对称性?

2、完全决定这些网络的全自同构群。

实际上,利用与上面证明相同的思路,结合对图的局部结构的分析,利用一些组合技巧,这些问题也可以得到解决。

三、小结

大学所学代数知识在数学领域中的许多学科、乃至其他领域都有重要的应用。笔者认为任课教师可以根据自己所熟悉的科研领域,选取一些与大学代数知识有紧密联系的前沿数学问题,引导一些学有余力的学生开展相关研究,甚至可以吸引一些本科生加入自己的课题组。当然,教师要给予必要的指导,比如讲解相关背景知识、必要的概念和方法等。指导学生从相对简单的问题入手,循序渐进,由易到难,逐步加深对代数学知识的系统理解,积累一些经验,为考虑进一步的问题奠定基础。

结束语

本文所提到的利用《高等代数》和《近世代数》的知识来研究网络的对称性就是笔者在教学工作中曾做过的一些尝试。在该方面,笔者指导完成了由三名大三学生参加的国家级大学生创新实验项目一项。这样以来,学生在学习经典数学知识的同时,也可以思考一些比较前沿的数学问题;学生在巩固已学知识的同时,也可以激发其学习兴趣,训练学生的逻辑思维,培养学生的创新思维,以及独立发现问题和解决问题的能力。

【摘要】

随着数学文化的普及与应用,学术界开始重视对于数学文化的相关内容进行挖掘,这其中数学史在阶段我国大学数学教学之中,具有着重要的意义。从实现大学数学皎月的两种现象进行分析,在揭示数学本质的基础上,着重分析数学史在我国大学数学教育之中的重要作用,强调在数学教学之中利用数学史进行启发式教学活动。本文从数学史的角度,对于大学数学教学进行全面的分析,从中分析出适合我国大学数学教育的主要意义与作用。

【关键词】

数学史;大学数学教育;作用

一、引言

数学史是数学文化的一个重要分支,研究数学教学的重要部分,其主要的研究内容与数学的历史与发展现状,是一门具有多学科背景的综合性学科,其中不仅仅有具体的数学内容,同时也包含着历史学、哲学、宗教、人文社科等多学科内容。这一科目,距今已经有二千年的历史了。其主要的研究内容有以下几个方面:

第一,数学史研究方法论的相关问题;

第二,数学的发展史;

第三,数学史各个分科的历史;

第四,从国别、民族、区域的角度进行比较研究;

第五,不同时期的断代史;

第六、数学内在思想的流变与发展历史;

第七,数学家的相关传记;

第八,数学史研究之中的文献;

第九,数学教育史;

第十,数学在发展之中与其他学科之间的关系。

二、数学史是在大学数学教学之中的作用

数学史作为数学文化的重要分支,对于大学数学教学来说,有着重要的作用。利用数学史进行教学活动,由于激发学生的学习兴趣,锻炼学生的思维习惯,强化数学教学的有效性。

笔者根据自身的教学经验,进行了如下总结:首先,激发学生的学习兴趣,在大学数学的教学之中应用数学史,进行课堂教学互动,可以最大限度的弱化学生在学习之中的困难,将原本枯燥、抽象的数学定义,转变为简单易懂的生动的事例,具有一定的指导意义,也更便于学生理解。

从学生接受性的角度来讲,数学史促进了学生的接受心理,帮助学生对于数学概念形成了自我认知,促进了学生对于知识的透彻掌握,激发了学生兴趣的产生。其次,锻炼学生的创新思维习惯,数学史实际意义上来说,有很多讲授数学家在创新思维研发新的理论的故事,这些故事从很多方面对于当代大学生据有启迪作用。例如数学家哈密顿格拉斯曼以及凯利提出的不同于普通代数的具有某种结构的规律的代数的方法代开了抽象代数的研究时代。用减弱或者勾去普通代数的各种各样的假设,或者将其中一个或者多个假定代之一其他的假定,就有更多的体系可以被研究出来。这种实例,实际上让学生从更为根本的角度对于自己所学的代数的思想进行了了解,对于知识的来龙去脉也有了一定的认识,针对这些过程,学生更容易产生研究新问题的思路与方法。

再次,认识数学在社会生活之中的广泛应用,在以往的大学数学教学之中,数学学科往往是作为一门孤立的学科而存在的,其研究往往是形而上的研究过程,人们对于数学的理解也是枯燥的,是很难真正了解到其内涵的。但是数学史的应用,与其在大学数学教学之中的应用,可以让学生了解到更多的在社会生活之中的数学,在数学的教学之中使得原本枯燥的理论更加贴近生活,更加具有真实性,将原本孤立的学科,拉入到了日常生活之中。从这一点上来说,数学史使得数学更加符合人类科学的特征。

三、数学史在大学数学教学之中的应用

第一,在课堂教学之中融入数学史,以往枯燥的数学课堂教学,学生除了记笔记验算,推导以外,只能听老师讲课,课堂内容显得比较生硬,教师针对数学史的作用,可以在教学之中融入数学史,在教学活动之中将数学家的个人传记等具有生动的故事性的数学史内容,进行讲解,提高学生对于课堂教学的兴趣。例如一元微积分学的相关概念,学生在普通的课堂之中,很难做到真正意义的掌握,而更具教学大纲,多数老师的教学设计是:极限——导数与微分——不定积分——定积分。这种传统的教学方式虽然比较呼和学生的一般认知规律,但是却忽视了其产生与又来,教师在教学之中可穿插的讲授拗断——莱布尼茨公式的又来,将微积分艰难的发展史以故事的形式呈现出来,更加便于学生理解的同时也激发了学生的学习热情。

第二,利用数学方法论进行教学,数学方法论是数学史的之中的有机组成部分,而方法论的探索对于大学数学教学来说,也具有着重要的意义,例如在极限理论的课堂教学来说,除了单纯的对于极限的相关概念进行讲解的基础上,也可以将第二次数学危机以及古希腊善跑英雄阿基里斯永远追不上乌龟等相关故事,融入到课堂之中。这种让学生带着疑问的听课方式,更进一步促进了学生对于教学内容的兴趣,全面的促进了学生在理解之中自然而然的形成了理解极限的形成思想,并逐渐的享受自身与古代数学家的共鸣,从而促进自身对于数学的理解,提高学生的学习兴趣,进一步提高课堂的教学效果。所以,在大学数学课堂教学之中,融入数学史的相关内容,不仅具有积极的促进作用,同时在实践之中,也具有一定的可操作性。这种教学模式与方法对于提高我国大学数学教学的质量有着积极的推动作用,同时也更进一步推动了大学数学教学改革的进行。

作为工科类大学公共课的一种,高等数学在学生思维训练上的培养、训练数学思维等上发挥着重要的做用。进入新世纪后素质教育思想被人们越来越重视,如果还使用传统的教育教学方法,会让学生失去学习高等数学的积极性和兴趣。以现教育技术为基础的数学建模,在实际问题和理论之间架起沟通的桥梁。在实际教学的过程中,高数老师以课后实验着手,在高等数学教学中融入数学建模思想,使用数学建模解决实际问题。

一、高等数学教学的现状

(一)教学观念陈旧化

就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

(二)教学方法传统化

教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

二、建模在高等数学教学中的作用

对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

三、将建模思想应用在高等数学教学中的具体措施

(一)在公式中使用建模思想

在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

(二)讲解习题的时候使用数学模型的方式

课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

(三)组织学生积极参加数学建模竞赛

一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

四、结束语

高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。

相关百科

热门百科

首页
发表服务