首页

> 论文发表知识库

首页 论文发表知识库 问题

有限差分方法的论文文献

发布时间:

有限差分方法的论文文献

英文wiki有Kane Shee-Gong Yee (born March 26, 1934) is a Chinese-American electrical engineer and mathematician. He is best known for introducing the finite-difference time-domain method (FDTD) in research interests include numerical electromagnetics, fluid dynamics, continuum mechanics and numerical analysis of partial differential was born on March 26, 1934 in Guangzhou, Republic of China. He received his . and . in electrical engineering from University of California, Berkeley in 1957 and 1958, respectively. He has completed his PhD in applied mathematics department at the same university under the supervision of Bernard Friedman in 1963; his dissertation involved the study of boundary value problems for Maxwell's equations. From 1959 to 1961, he was employed at Lockheed Missiles and Space Company, researching diffraction in electromagnetic 1966, Yee published a paper on the use of a finite difference staggered grids algorithm in the solution of Maxwell's equations. Yee was initially motivated by his self-studies in Fortran to develop the method. Appearing on IEEE Transactions on Antennas and Propagation, the article received little attention at the time of its release. The incorrect numerical stability conditions on Yee's paper were corrected by Dong-Hoa Lam in 1969 and Allen Taflove and Morris E. Brodwin in 1975. The method was subsequently renamed as finite-difference time-domain method in 1980. FDTD is also referred as Yee algorithm, with its specific discretized grid being known as Yee lattice or Yee 1966 and 1984, Yee became a professor of electrical engineering and mathematics at the University of Florida and later at Kansas State University. He became a consultant to Lawrence Livermore National Laboratory in 1966, working on microwave vulnerability problems at the same institute from 1984 to 1987. In 1987, he became a research scientist at Lockheed Palo Alto Research Lab, working on computational electromagnetics problems and retiring in 1996.

本文用与频率有关的时域有限差分法((FD)~2TD法),分析了在考虑人体色散特性时,脉冲电磁场与人体的作用。根据人体组织复介电常数实验原始数据在10MHz~3GHz的特性,提出一种2类组织(脂肪/骨/软骨、肌肉)简化色散模型,并与用12类组织色散模型的结果比较,验证了在分析人体内感生电流和比吸收量(SA)时,简化模型同样有效。计算结果显示,持续时间小于85ns、电场强度最大值达65kV/m的核爆炸典型脉冲作用下,人体内最大比吸收量(15ml/kg)小于ANSI/IEEE 标准限值()约三个量级。

杨顶辉

(石油大学地球科学系,北京100083)

滕吉文张中杰

(中国科学院地球物理所,北京100101)

摘要快速有效地模拟地震波在各向异性介质中的传播在现今勘探地震学中具有重要的意义。一种算法的稳定性分析对于加快计算速度非常必要。本文首先利用矩阵和向量来描述波传播方程,针对二维和三维一般各向异性介质中的弹性波方程,提出了一种快速且占用内存少的有限差分方法;然后系统地研究了二维均匀、非均匀各向异性情况下波动方程有限差分格式的稳定性条件;进一步给出了某些特殊各向异性情况下有限差分方法的稳定性具体公式。最后,本文也对三维有限差分格式的稳定性问题进行了研究。

关键词弹性波方程有限差分稳定性各向异性介质

1引言

地震波传播的数值模拟在地球科学中具有重要的意义。在各向异性地震模拟的各种方法中,基于Kennett研究工作[11,12]的反射率方法是最流行的数值技术之一。基于走时方程渐近解的射线追踪方法是模拟地震各向异性的另一种有效方法[5,6]。Kosloff等[13]利用Fourier方法模拟了地震各向异性。而Chen[7]则使用有限元方法模拟非均匀各向异性问题。虽然有限差分方法已被广泛应用于各向同性介质中的弹性波模拟,但是利用这种方法来模拟地震各向异性问题并不普遍。Tsingas等[16]利用有限差分算子发展了一种模拟算法以求解横向各向同性介质中的偏微分方程,这种算法是基于MacCormack型的分离格式[2]。Faria等[8]基于交错网格格式[17],利用有限差分算法模拟了二维横向各向同性问题。最近,Igel等[9]基于褶积算法给出了一种模拟一般地震各向异性的有限差分算法。

快速和少存贮量是有限差分方法的优点。随着大尺度波场模拟的需要和大规模并行计算的发展,复杂介质或高维(二维和三维)模型的有限差分地震模拟不可避免。虚谱法因其空间算子准确地达到Nyquist频率而深受欢迎,然而虚谱法需要富利叶变换,从而对于三维各向异性模拟非常耗时。同时,采用富利叶变换意味着每一个网格点与其它的点相互影响。在某种意义上,这与动力学的局部弹性性质不一致。因此当我们为地震模拟设计有限差分格式时,考虑差分算子的局部性是必要的。另一方面,考虑差分算子的局部性对于提高算法的并行性非常重要。因为最邻近网格点间的信息交换最快,因而对于各向异性大尺度模型波场的模拟是可行的。

基于上述原因,本文针对一般各向异性介质中的地震波传播问题,给出了一种快速且占用内存少的有限差分方法。事实上,这是算法[10,18]的一种推广。

通常地,时间推进算法被使用于地震波传播的数值模拟中,为了保证算法稳定,时间增量受算法稳定性条件的限制。选择合适的时间步长不仅能保证数值计算稳定,而且能加快计算速度。否则的话,不但会产生非物理数值振荡,甚至会导致错误的结果。合理时间增量的选取决定于差分格式和描述介质特征的介质参数或速度,换句话说,决定于差分格式的稳定性条件。因此有限差分格式的稳定性问题在数值计算中十分重要。尽管这一问题在文献[10,18]中针对某些特殊情况作过研究,但他们并没有对一般各向异性问题的有限差分格式及其稳定性做过详细、系统的研究。我们的目的就是针对这一问题给出一般的有限差分格式及其稳定性条件,进一步地给出某些特殊各向异性情况下的稳定性公式。结果表明在各向同性情况下我们的结果与Aboudi[1]的结果是一致的。

2有限差分格式

三维各向异性

各向异性介质中的运动平衡方程可成如下形式:

岩石圈构造和深部作用

其中:ρ是介质密度;fx,fy和fz分别表示力源在x,y和z方向上的分量;ux,uy和uz分别表示x,y和z方向上的位移分量。

应力应变关系为 ,其中弹性参数矩阵 ,并且ci,j=cj,i,i,j=1,2,…,6;

应力矩阵σ=(σxx,σyy,σzz,σyz,σxz,σxy)T;

应变矩阵ε=(εxx,εyy,εzz,εyz,εxz,εxy)T;

且应力与位移的关系为:

岩石圈构造和深部作用

岩石圈构造和深部作用

岩石圈构造和深部作用

那么方程(1)可写为:

岩石圈构造和深部作用

显然,A,E,Q,B+D,C+G和F+H是实的对称矩阵。在不考虑源项 的前提下,采用有限差分逼近方程(2),可得下列有限差分格式:

岩石圈构造和深部作用

其中:Δx,△y和△z分别表示x,y和z方向的空间步长,△t表示时间步长,并且,

岩石圈构造和深部作用

二维各向异性

类似地,二维各向异性介质中的波动方程可写为:

岩石圈构造和深部作用

并且有下列差分格式:

岩石圈构造和深部作用

3稳定性条件

均匀介质中二维有限差分格式的稳定性条件

均匀介质情况下格式(5)可简化为:

岩石圈构造和深部作用

根据Richtmyer和Morton的稳定性理论分析,我们令

岩石圈构造和深部作用

其中U0是一常数向量,方程(6)变为:]]

2I—2Pλ+I)U0=0

其中I表示一单位矩阵,

岩石圈构造和深部作用

其中: , , , ,

若系数行列式为0,则满足:

岩石圈构造和深部作用

定理1差分格式(6)稳定的条件是:

岩石圈构造和深部作用

其中函数F(α,β)和α,β为:

岩石圈构造和深部作用

岩石圈构造和深部作用

其中k=Δz/Δx

证明:据差分格式(6)的稳定性,方程(7)中的λ满足‖λ‖≤1。

根据(7)和引理2(见附录),有下列不等式:

岩石圈构造和深部作用

由A、Q和C+G的对称性,可知矩阵 也为对称的,则由引理3(见附录)和不等式(8),有

岩石圈构造和深部作用

由矩阵A,Q和C+G的元素的非负性,可令0≤α, ,则要使(9)成立,只须

岩石圈构造和深部作用

岩石圈构造和深部作用

并令偏导数

岩石圈构造和深部作用

根据波动方程的特性,有

‖A‖>0,‖Q‖>0,‖C+G‖>0

所以(0,0)和( , )可能为函数的极值点。显然,

f(0,0)=0

岩石圈构造和深部作用

下面我们讨论(α,β)≠(0,0)或( , )的情况:

由(11)和(12)式,如果 ,那么

岩石圈构造和深部作用

其中α,β可能是f(α,β)的极值点,故稳定性条件为:

岩石圈构造和深部作用

否则 是函数的最大值点,且稳定性条件为:

岩石圈构造和深部作用

特别地,当Δx﹦Δz时,有下列简化的稳定性条件:

岩石圈构造和深部作用

其中α和β由(13)和(14)决定,且k=1。

非均匀情况下的稳定性条件

在非均匀情况下,对于差分格式(5)的稳定性条件是难以确定的。然而根据偏微分方程的数值方法理论[15],我们可以采用“冻结系数”法[14]来分析其稳定性。进一步地,我们给出非均匀介质情况下差分格式(5)的稳定性条件。

事实上,如果介质参数函数为连续有界的,则通常我们可以近似地将一个小的计算区域看成是均匀的,那么差分格式(5)可以退化成格式(6),这样在小区域范围内,我们可以像均匀情况一样获得稳定性条件。进一步根据介质参数函数的连续有界特性,我们可以获得差分格式(5)的稳定性条件为:

如果 那么

岩石圈构造和深部作用

否则,

岩石圈构造和深部作用

其中H(α,β)、α和β为:

岩石圈构造和深部作用

某些特殊介质中差分格式的稳定性条件

显然,通过计算格式(6)中矩阵A、Q和C+G的范数,可以分别地获得各向同性和横向各向同性情况下的稳定性条件为:

各向同性

岩石圈构造和深部作用

岩石圈构造和深部作用

其中λ,μ为拉梅常数, 是P波速度。

显然,稳定性条件(15)与Aboudi[1]的结果一致。

横向各向同性

如果 那么 ≤p,否则

岩石圈构造和深部作用

其中,

岩石圈构造和深部作用

其中A,N,L,F和C为弹性常数。

类似地,我们可以获得非均匀和其它特殊各向异性介质(如:立方体各向异性、正交各向异性等介质)情况下的稳定性条件。

4三维各向异性情况下差分格式的稳定性条件

像前面二维情况一样分析可得如下稳定性条件:

定理2如果

max[k1·‖A‖+k2·‖E‖+k2·‖Q‖,f2(θ2,θ2,θ3)]≤1,那么均匀介质情况下差分格式(3)是稳定的。其中 ,函数f2(θ1,θ2,θ3)被定义为:

岩石圈构造和深部作用

其中: , , , , · , ;

并且θ1,θ2,θ3满足:

岩石圈构造和深部作用

其中:a=4k1·‖A‖,b=4k2·‖E‖,d=4k3·‖Q‖,g=4k4·‖B+D‖,e=4k5·‖C+G‖,f=4k6·‖F+H‖。

对于三维非均匀介质情况,经由“冻结系数”法可类似地分析其稳定性条件。

5总结和讨论

数值模拟地震波传播的有限差分方法是一种重要的工具,而其稳定性条件是提高计算速度的关键之一。然而对于一般二维和三维各向异性介质情况,系统深入地研究其差分格式和稳定性条件尚少,本文给出了一种快速且占有内存少的有限差分格式,并系统地分析和推导了一般均匀和非均匀各向异性情况下差分格式的稳定性条件。我们相信本文获得的结果有助于各向异性数值模拟的发展,并为有限差分方法的广泛应用提供理论依据。

参考文献

[1] simulation of seismic ~821.

[2] and fourth-order accurate finite-difference scheme for the computation of elastic ~1132.

[3] and anisotropic reflectivity technique:(a),72,755~756.

[4] and anisotropic reflectivity technique:anomalous arrivels from an anisotropic upper (b),72,767~782.

[5] rays and ray intensities in inhomogeneous anisotropic ~13.

[6] and modelling and inversion of travel-times of seismic body waves in inhomogeneous anisotropic ~51.

[7] numerical model of elastic wave in anisotropic inhomogeneous media:finite element 54th SEG Annual Meeting Expanded Abstracts,Houston,~632.

[8] and modelling in transversely isotropic ~289.

[9] and wave propagation through finite-difference ~1216.

[10] and seismograms:A finite-difference ~27.

[11] reflection seismograms for an elastic ~321.

[12] wave propagation in stratified University Press,1983.

[13] and modelling by a Fourier ~1412.

[14]陆金甫,顾丽珍,陈景良.偏微分方程差分方法.北京:高等教育出版社,1988.

[15] and methods for initial value York:Interscience,1967.

[16] and wave propagation in transversely isotropic media using finite ~949.

[17] wave propagation in heterogeneous media:Velocity-stress finite-difference ~901.

[18] al..Simulation of 3-component seismic records in a 2-dimensional transversely isotropic media with ~56.

附录:引理

引理1对于实系数方程λ2—2dλ+1=0,|d|≤1是它的根λ满足∣λ|≤1的充分必要条件。

引理1的证明参见文献[14]。

引理2若A∈Rn×n且A=A′,I是一个单位矩阵,则对于下列方程

∣λ2I—2Aλ+I∣=0,

‖A‖≤1是方程的根λ满足∣λ|≤1的充分必要条件。

证明:充分性

因为A为实对称矩阵,存在T-1、T∈Rn×n使得

T-1AT=diag(d1,d2,…,dn)

根据引理2中的方程及上述等式,可获得

(λ2—2d1λ+1)…(λ2—2dnλ+1)=0

由‖A‖≤1和ρ(A)≤‖A‖,有‖ρ(A)‖≤1

根据 ,有

故对满足方程的任一根λ有∣λ∣≤1。

必要条件:因∣λ∣≤1且A为实对称矩阵,故由引理1可获得:

∣di∣≤1,i=1,2,…,n

即ρ(A)≤1。

又因A为正矩阵,所以ρ(A)=‖A‖,即‖A‖≤1。

引理3如果A∈Rn×n,并且A=A′,那么

(i)如果‖I—A‖≤1,则‖A‖≤2;

(ii)如果‖A‖≥0,则‖A‖≤2是‖I—A‖≤1成立的充分必要条件。

证明:(i)因为A为实对称矩阵,故存在T-1、T∈Rn×n使得T-1AT=diag(d1,d2,…,dn)≡D

根据‖I—A‖≤1,有‖T(I—D)T-1‖≤1

显然,I—D为一正规矩阵,所以‖T(I—D)T-1‖=‖I-D‖≤1

所以, ,即‖D‖≤2。

又因为A为正规矩阵,所以

‖A‖=‖TDT-1‖=‖D‖,即‖A‖≤2

(ii)必要条件已在(i)中证明,下面证明充分条件。

由(i)的证明过程可知:

‖A‖=‖D‖

因为‖A‖≤2并且‖A‖≥0,有0≤‖D‖≤2,即max∣di|≤2

所以我们可获得 。

即:‖I—D‖=‖T-1(I—A)T‖≤1

由A的对称性可得‖I—A‖≤1。

有限差分方法的国外论文文献

杨顶辉

(石油大学地球科学系,北京100083)

滕吉文张中杰

(中国科学院地球物理所,北京100101)

摘要快速有效地模拟地震波在各向异性介质中的传播在现今勘探地震学中具有重要的意义。一种算法的稳定性分析对于加快计算速度非常必要。本文首先利用矩阵和向量来描述波传播方程,针对二维和三维一般各向异性介质中的弹性波方程,提出了一种快速且占用内存少的有限差分方法;然后系统地研究了二维均匀、非均匀各向异性情况下波动方程有限差分格式的稳定性条件;进一步给出了某些特殊各向异性情况下有限差分方法的稳定性具体公式。最后,本文也对三维有限差分格式的稳定性问题进行了研究。

关键词弹性波方程有限差分稳定性各向异性介质

1引言

地震波传播的数值模拟在地球科学中具有重要的意义。在各向异性地震模拟的各种方法中,基于Kennett研究工作[11,12]的反射率方法是最流行的数值技术之一。基于走时方程渐近解的射线追踪方法是模拟地震各向异性的另一种有效方法[5,6]。Kosloff等[13]利用Fourier方法模拟了地震各向异性。而Chen[7]则使用有限元方法模拟非均匀各向异性问题。虽然有限差分方法已被广泛应用于各向同性介质中的弹性波模拟,但是利用这种方法来模拟地震各向异性问题并不普遍。Tsingas等[16]利用有限差分算子发展了一种模拟算法以求解横向各向同性介质中的偏微分方程,这种算法是基于MacCormack型的分离格式[2]。Faria等[8]基于交错网格格式[17],利用有限差分算法模拟了二维横向各向同性问题。最近,Igel等[9]基于褶积算法给出了一种模拟一般地震各向异性的有限差分算法。

快速和少存贮量是有限差分方法的优点。随着大尺度波场模拟的需要和大规模并行计算的发展,复杂介质或高维(二维和三维)模型的有限差分地震模拟不可避免。虚谱法因其空间算子准确地达到Nyquist频率而深受欢迎,然而虚谱法需要富利叶变换,从而对于三维各向异性模拟非常耗时。同时,采用富利叶变换意味着每一个网格点与其它的点相互影响。在某种意义上,这与动力学的局部弹性性质不一致。因此当我们为地震模拟设计有限差分格式时,考虑差分算子的局部性是必要的。另一方面,考虑差分算子的局部性对于提高算法的并行性非常重要。因为最邻近网格点间的信息交换最快,因而对于各向异性大尺度模型波场的模拟是可行的。

基于上述原因,本文针对一般各向异性介质中的地震波传播问题,给出了一种快速且占用内存少的有限差分方法。事实上,这是算法[10,18]的一种推广。

通常地,时间推进算法被使用于地震波传播的数值模拟中,为了保证算法稳定,时间增量受算法稳定性条件的限制。选择合适的时间步长不仅能保证数值计算稳定,而且能加快计算速度。否则的话,不但会产生非物理数值振荡,甚至会导致错误的结果。合理时间增量的选取决定于差分格式和描述介质特征的介质参数或速度,换句话说,决定于差分格式的稳定性条件。因此有限差分格式的稳定性问题在数值计算中十分重要。尽管这一问题在文献[10,18]中针对某些特殊情况作过研究,但他们并没有对一般各向异性问题的有限差分格式及其稳定性做过详细、系统的研究。我们的目的就是针对这一问题给出一般的有限差分格式及其稳定性条件,进一步地给出某些特殊各向异性情况下的稳定性公式。结果表明在各向同性情况下我们的结果与Aboudi[1]的结果是一致的。

2有限差分格式

三维各向异性

各向异性介质中的运动平衡方程可成如下形式:

岩石圈构造和深部作用

其中:ρ是介质密度;fx,fy和fz分别表示力源在x,y和z方向上的分量;ux,uy和uz分别表示x,y和z方向上的位移分量。

应力应变关系为 ,其中弹性参数矩阵 ,并且ci,j=cj,i,i,j=1,2,…,6;

应力矩阵σ=(σxx,σyy,σzz,σyz,σxz,σxy)T;

应变矩阵ε=(εxx,εyy,εzz,εyz,εxz,εxy)T;

且应力与位移的关系为:

岩石圈构造和深部作用

岩石圈构造和深部作用

岩石圈构造和深部作用

那么方程(1)可写为:

岩石圈构造和深部作用

显然,A,E,Q,B+D,C+G和F+H是实的对称矩阵。在不考虑源项 的前提下,采用有限差分逼近方程(2),可得下列有限差分格式:

岩石圈构造和深部作用

其中:Δx,△y和△z分别表示x,y和z方向的空间步长,△t表示时间步长,并且,

岩石圈构造和深部作用

二维各向异性

类似地,二维各向异性介质中的波动方程可写为:

岩石圈构造和深部作用

并且有下列差分格式:

岩石圈构造和深部作用

3稳定性条件

均匀介质中二维有限差分格式的稳定性条件

均匀介质情况下格式(5)可简化为:

岩石圈构造和深部作用

根据Richtmyer和Morton的稳定性理论分析,我们令

岩石圈构造和深部作用

其中U0是一常数向量,方程(6)变为:]]

2I—2Pλ+I)U0=0

其中I表示一单位矩阵,

岩石圈构造和深部作用

其中: , , , ,

若系数行列式为0,则满足:

岩石圈构造和深部作用

定理1差分格式(6)稳定的条件是:

岩石圈构造和深部作用

其中函数F(α,β)和α,β为:

岩石圈构造和深部作用

岩石圈构造和深部作用

其中k=Δz/Δx

证明:据差分格式(6)的稳定性,方程(7)中的λ满足‖λ‖≤1。

根据(7)和引理2(见附录),有下列不等式:

岩石圈构造和深部作用

由A、Q和C+G的对称性,可知矩阵 也为对称的,则由引理3(见附录)和不等式(8),有

岩石圈构造和深部作用

由矩阵A,Q和C+G的元素的非负性,可令0≤α, ,则要使(9)成立,只须

岩石圈构造和深部作用

岩石圈构造和深部作用

并令偏导数

岩石圈构造和深部作用

根据波动方程的特性,有

‖A‖>0,‖Q‖>0,‖C+G‖>0

所以(0,0)和( , )可能为函数的极值点。显然,

f(0,0)=0

岩石圈构造和深部作用

下面我们讨论(α,β)≠(0,0)或( , )的情况:

由(11)和(12)式,如果 ,那么

岩石圈构造和深部作用

其中α,β可能是f(α,β)的极值点,故稳定性条件为:

岩石圈构造和深部作用

否则 是函数的最大值点,且稳定性条件为:

岩石圈构造和深部作用

特别地,当Δx﹦Δz时,有下列简化的稳定性条件:

岩石圈构造和深部作用

其中α和β由(13)和(14)决定,且k=1。

非均匀情况下的稳定性条件

在非均匀情况下,对于差分格式(5)的稳定性条件是难以确定的。然而根据偏微分方程的数值方法理论[15],我们可以采用“冻结系数”法[14]来分析其稳定性。进一步地,我们给出非均匀介质情况下差分格式(5)的稳定性条件。

事实上,如果介质参数函数为连续有界的,则通常我们可以近似地将一个小的计算区域看成是均匀的,那么差分格式(5)可以退化成格式(6),这样在小区域范围内,我们可以像均匀情况一样获得稳定性条件。进一步根据介质参数函数的连续有界特性,我们可以获得差分格式(5)的稳定性条件为:

如果 那么

岩石圈构造和深部作用

否则,

岩石圈构造和深部作用

其中H(α,β)、α和β为:

岩石圈构造和深部作用

某些特殊介质中差分格式的稳定性条件

显然,通过计算格式(6)中矩阵A、Q和C+G的范数,可以分别地获得各向同性和横向各向同性情况下的稳定性条件为:

各向同性

岩石圈构造和深部作用

岩石圈构造和深部作用

其中λ,μ为拉梅常数, 是P波速度。

显然,稳定性条件(15)与Aboudi[1]的结果一致。

横向各向同性

如果 那么 ≤p,否则

岩石圈构造和深部作用

其中,

岩石圈构造和深部作用

其中A,N,L,F和C为弹性常数。

类似地,我们可以获得非均匀和其它特殊各向异性介质(如:立方体各向异性、正交各向异性等介质)情况下的稳定性条件。

4三维各向异性情况下差分格式的稳定性条件

像前面二维情况一样分析可得如下稳定性条件:

定理2如果

max[k1·‖A‖+k2·‖E‖+k2·‖Q‖,f2(θ2,θ2,θ3)]≤1,那么均匀介质情况下差分格式(3)是稳定的。其中 ,函数f2(θ1,θ2,θ3)被定义为:

岩石圈构造和深部作用

其中: , , , , · , ;

并且θ1,θ2,θ3满足:

岩石圈构造和深部作用

其中:a=4k1·‖A‖,b=4k2·‖E‖,d=4k3·‖Q‖,g=4k4·‖B+D‖,e=4k5·‖C+G‖,f=4k6·‖F+H‖。

对于三维非均匀介质情况,经由“冻结系数”法可类似地分析其稳定性条件。

5总结和讨论

数值模拟地震波传播的有限差分方法是一种重要的工具,而其稳定性条件是提高计算速度的关键之一。然而对于一般二维和三维各向异性介质情况,系统深入地研究其差分格式和稳定性条件尚少,本文给出了一种快速且占有内存少的有限差分格式,并系统地分析和推导了一般均匀和非均匀各向异性情况下差分格式的稳定性条件。我们相信本文获得的结果有助于各向异性数值模拟的发展,并为有限差分方法的广泛应用提供理论依据。

参考文献

[1] simulation of seismic ~821.

[2] and fourth-order accurate finite-difference scheme for the computation of elastic ~1132.

[3] and anisotropic reflectivity technique:(a),72,755~756.

[4] and anisotropic reflectivity technique:anomalous arrivels from an anisotropic upper (b),72,767~782.

[5] rays and ray intensities in inhomogeneous anisotropic ~13.

[6] and modelling and inversion of travel-times of seismic body waves in inhomogeneous anisotropic ~51.

[7] numerical model of elastic wave in anisotropic inhomogeneous media:finite element 54th SEG Annual Meeting Expanded Abstracts,Houston,~632.

[8] and modelling in transversely isotropic ~289.

[9] and wave propagation through finite-difference ~1216.

[10] and seismograms:A finite-difference ~27.

[11] reflection seismograms for an elastic ~321.

[12] wave propagation in stratified University Press,1983.

[13] and modelling by a Fourier ~1412.

[14]陆金甫,顾丽珍,陈景良.偏微分方程差分方法.北京:高等教育出版社,1988.

[15] and methods for initial value York:Interscience,1967.

[16] and wave propagation in transversely isotropic media using finite ~949.

[17] wave propagation in heterogeneous media:Velocity-stress finite-difference ~901.

[18] al..Simulation of 3-component seismic records in a 2-dimensional transversely isotropic media with ~56.

附录:引理

引理1对于实系数方程λ2—2dλ+1=0,|d|≤1是它的根λ满足∣λ|≤1的充分必要条件。

引理1的证明参见文献[14]。

引理2若A∈Rn×n且A=A′,I是一个单位矩阵,则对于下列方程

∣λ2I—2Aλ+I∣=0,

‖A‖≤1是方程的根λ满足∣λ|≤1的充分必要条件。

证明:充分性

因为A为实对称矩阵,存在T-1、T∈Rn×n使得

T-1AT=diag(d1,d2,…,dn)

根据引理2中的方程及上述等式,可获得

(λ2—2d1λ+1)…(λ2—2dnλ+1)=0

由‖A‖≤1和ρ(A)≤‖A‖,有‖ρ(A)‖≤1

根据 ,有

故对满足方程的任一根λ有∣λ∣≤1。

必要条件:因∣λ∣≤1且A为实对称矩阵,故由引理1可获得:

∣di∣≤1,i=1,2,…,n

即ρ(A)≤1。

又因A为正矩阵,所以ρ(A)=‖A‖,即‖A‖≤1。

引理3如果A∈Rn×n,并且A=A′,那么

(i)如果‖I—A‖≤1,则‖A‖≤2;

(ii)如果‖A‖≥0,则‖A‖≤2是‖I—A‖≤1成立的充分必要条件。

证明:(i)因为A为实对称矩阵,故存在T-1、T∈Rn×n使得T-1AT=diag(d1,d2,…,dn)≡D

根据‖I—A‖≤1,有‖T(I—D)T-1‖≤1

显然,I—D为一正规矩阵,所以‖T(I—D)T-1‖=‖I-D‖≤1

所以, ,即‖D‖≤2。

又因为A为正规矩阵,所以

‖A‖=‖TDT-1‖=‖D‖,即‖A‖≤2

(ii)必要条件已在(i)中证明,下面证明充分条件。

由(i)的证明过程可知:

‖A‖=‖D‖

因为‖A‖≤2并且‖A‖≥0,有0≤‖D‖≤2,即max∣di|≤2

所以我们可获得 。

即:‖I—D‖=‖T-1(I—A)T‖≤1

由A的对称性可得‖I—A‖≤1。

国外与考研决策相关的文献有:《组织设计: 考研选择决策研究》、《研究生招生选择决策影响因素研究》、《考研决策研究:一种实证分析法》等。

很多的,可以看 国外研究生论文期刊参考资料 [1].国外研究生学术,国外工程管理硕士专业学位(MEM)设置对我国的启示,《国外论文参考文献格式:国外蒙学文献》 ,英文论文参考文献等文献的,有一定参考价值的。

英文wiki有Kane Shee-Gong Yee (born March 26, 1934) is a Chinese-American electrical engineer and mathematician. He is best known for introducing the finite-difference time-domain method (FDTD) in research interests include numerical electromagnetics, fluid dynamics, continuum mechanics and numerical analysis of partial differential was born on March 26, 1934 in Guangzhou, Republic of China. He received his . and . in electrical engineering from University of California, Berkeley in 1957 and 1958, respectively. He has completed his PhD in applied mathematics department at the same university under the supervision of Bernard Friedman in 1963; his dissertation involved the study of boundary value problems for Maxwell's equations. From 1959 to 1961, he was employed at Lockheed Missiles and Space Company, researching diffraction in electromagnetic 1966, Yee published a paper on the use of a finite difference staggered grids algorithm in the solution of Maxwell's equations. Yee was initially motivated by his self-studies in Fortran to develop the method. Appearing on IEEE Transactions on Antennas and Propagation, the article received little attention at the time of its release. The incorrect numerical stability conditions on Yee's paper were corrected by Dong-Hoa Lam in 1969 and Allen Taflove and Morris E. Brodwin in 1975. The method was subsequently renamed as finite-difference time-domain method in 1980. FDTD is also referred as Yee algorithm, with its specific discretized grid being known as Yee lattice or Yee 1966 and 1984, Yee became a professor of electrical engineering and mathematics at the University of Florida and later at Kansas State University. He became a consultant to Lawrence Livermore National Laboratory in 1966, working on microwave vulnerability problems at the same institute from 1984 to 1987. In 1987, he became a research scientist at Lockheed Palo Alto Research Lab, working on computational electromagnetics problems and retiring in 1996.

有限差分法研究材料论文英文文献

1、在 Ei Compendex 和 INSPEC 数据库中,把“文献处理类型”(Treatment type)限定在“General review”或“Litereture review”,检索出来的都是综述性的文章。

2、如果在ScienceDirect或SpringerLink数据库中检索,则可在一个检索框中输入“review”,配合其他检索词即可。

拓展资料:

英语论文的写作,主要用于参加国际学术研讨会,促进中外学术文化交流;在国际学术刊物上发表,在国际上共享科研成果,英语论文也是达到学术交流的目的;另外英语论文还包括英语相关专业人员必要地用英语撰写学术报告或毕业论文等等。不同的学科或专业领域、不同的刊物对英语论文的内容、格式等有不同的要求,不同领域的研究论文在文体和语言特点上既有许多共性,也不乏各自特点。

参考资料来源:百度百科-英文论文

1、在 Ei Compendex 和 INSPEC 数据库中,把“文献处理类型”(Treatment type)限定

在“General review”或“Litereture review”,检索出来的都是综述性的文章。

2、如果在ScienceDirect或SpringerLink数据库中检索,则可在一个检索框中输入“review”,配

合其他检索词即可。

拓展资料:

review article:综述论文(包括元分析) 通过对已发表材料的组织、综合和评价,以及对当前研

究进展的考察来澄清问题。

总结以前的研究,使读者了解研究的现状; 辨明文献中各种关系、矛盾、差距及不一致之处; 建

议解决问题的后续步骤。 综述论文的组织形式是按逻辑关系而不是按研究进程来组织的。

参考资料:百度百科-review article

毕业论文中英文摘要的主要内容

转眼间大学生活即将结束,大学毕业前都要通过最后的毕业论文,毕业论文是一种比较重要的检验学生学习成果的形式,那么你有了解过毕业论文吗?以下是我为大家收集的毕业论文中英文摘要的主要内容,希望能够帮助到大家。

1.摘要的作用

摘要也就是内容提要,是论文中不可缺少的一部分。论文摘要是一篇具有独立性的短文,有其特别的地方。它是建立在对论文进行总结的基础之上,用简单、明确、易懂、精辟的语言对全文内容加以概括,留主干去枝叶,提取论文的主要信息。作者的观点、论文的主要内容、研究成果、独到的见解,这些都应该在摘要中体现出来。好的摘要便于索引与查找,易于收录到大型资料库中并为他人提供信息。因此摘要在资料交流方面承担着至关重要的作用。

2.书写摘要的基本规范和原则

(1)论文摘要分为中文摘要和外文(一般为英文)摘要。摘要在篇幅方面的限定,不同的学校和机构有不同的要求,通常中文摘要不超过300字,英文摘要不超过250个实词,中英文摘要应一致。毕业论文摘要可适当增加篇幅。

(2)多向指导教师请教,并根据提供的意见及时修改,以期达到更高水平。

(3)摘要是完整的短文,具有独立性,可以单独使用。即使不看论文全文的内容,仍然可以理解论文的主要内容、作者的新观点和想法、课题所要实现的目的、采取的方法、研究的结果与结论。

(4)叙述完整,突出逻辑性,短文结构要合理。

(5)要求文字简明扼要,不容赘言,提取重要内容,不含前言、背景等细节部分,去掉旧结论、原始数据,不加评论和注释。采用直接表述的方法,删除不必要的文学修饰。摘要中不应包括作者将来的计划以及与此课题无关的内容,做到用最少的文字提供最大的信息量。

(6)摘要中不使用特殊字符,也不使用图表和化学结构式,以及由特殊字符组成的数学表达式,不列举例证。

3.摘要的四要素

目的、方法、结果和结论称为摘要的四要素。

(1)目的:指出研究的范围、目的、重要性、任务和前提条件,不是主题的简单重复。

(2)方法:简述课题的工作流程,研究了哪些主要内容,在这个过程中都做了哪些工作,包括对象、原理、条件、程序、手段等。

(3)结果:陈述研究之后重要的新发现、新成果及价值,包括通过调研、实验、观察取得的数据和结果,并剖析其不理想的局限部分。

(4)结论:通过对这个课题的研究所得出的重要结论,包括从中取得证实的正确观点,进行分析研究,比较预测其在实际生活中运用的意义,理论与实际相结合的价值。

4.撰写步骤

摘要作为一种特殊的陈述性短文,书写的步骤也与普通类型的文章有所不同。摘要的写作时间通常在论文的完成之后,但也可以采用提早写的方式,然后再边写论文边修改摘要。首先,从摘要的四要素出发,通读论文全文,仔细将文中的重要内容一一列出,特别是每段的主题句和论文结尾的归纳总结,保留梗概与精华部分,提取用于编写摘要的关键信息。然后,看这些信息能否完全、准确的回答摘要的四要素所涉及的问题,并要求语句精炼。若不足以回答这些问题,则重新阅读论文,摘录相应的内容进行补充。最后,将这些零散信息,组成符合语法规则和逻辑规则的完整句子,再进一步组成通畅的短文,通读此短文,反复修改,达到摘要的要求。

5.关于英文摘要

(1)英文摘要的写作方法要依据公认的写作规范。

(2)尽量使用简单句,避免句型单调,表达要求准确完整。

(3)正确使用冠词。

(4)使用标准英语书写,避免使用口语,应使用易于理解的常用词,不用生僻词汇。

(5)作者所做工作用过去时,结论用现在时。

(6)多使用主动语态。

6.关键词

关键词是为了文献标引工作从报告、论文中选出来用以表示全文主题内容信息目的单词术语。每篇报告、论文选取3~8个词作为关键词,以显着的字符另起一行,排在摘要的左方。如有可能,尽量用《汉语主题词表》等词表提供的'规范词。为了国际交流,应标注与中文对应的英文关键词。

关键词是主题词中的一类。主题词是一种新型检索词汇,多用于计算机网络检索。

关键词分为中文关键词和与之对应的英文关键词,分别置于中文摘要和英文摘要之下。为便于他人的检索,不能使用过于宽泛的词语。选择关键词既可以从论文的各级标题入手,也可以从论文本身的内容选取,将选出的关键词按照所涉及领域的范围从大到小顺序列出。

【论文摘要格式】

论文摘要是文章的内容不加诠释和评论的简短陈述。为了国际交流,还应有外文(多用英文)摘要。摘要是在文章全文完成之后提炼出来的,具有短、精、完整三大特点。摘要应具有独立性的自含性、即不阅读原文的全文.就能获得必要的信息。摘要中有数据、有结论、是一篇完整的短文.可以独立使用,也可以引用,还可以用于工艺推广。其内容应该包含与报告论文同等量的主要信息.以供读者确定有无必要阅读原论文全文,也可提供给文摘第二次文献采用。摘要一般应说明研究工作目的、实验方法、结果和最终结论等.而重点是结果和结论。中文摘要一般不宜超过300字,外文摘要不宜超过250个实词。除了实在迫不得已,摘要中不用图、表、化学结构式、非公知公用的符号和术语。摘要可用另页置于题名页(页上无正文)之前,学术论文的摘要一般置于题名和作者之后,论文正文之前。

论文摘要又称概要、内容提要。摘要是以提供文献内容梗概为目的,不加评论和补充解释,简明、确切地记述文献重要内容的短文。其基本要素包括研究目的、方法、结果和结论。具体地讲就是研究工作的主要对象和范围,采用的手段和方法,得出的结果和重要的结论,有时也包括具有情报价值的其它重要的信息。摘要应具有独立性和自明性,并且拥有与文献同等量的主要信息,即不阅读全文,就能获得必要的信息。摘要不容赘言,故需逐字推敲。内容必须完整、具体、使人一目了然。英文摘要虽以中文摘要为基础,但要考虑到不能阅读中文的读者的需求,实质性的内容不能遗漏。为此,我国的科技期刊近年来陆续采用结构式摘要,明确写出目的、方法、结果和结论四部分。

a.目的(Objective):简明指出此项工作的目的,研究的范围。

b.方法(Methods):简要说明研究课题的基本做法,包括对象(分组及每组例数、对照例数或动物只数等)、材料和方法(包括所用药品剂量,重复次数等)。统计方法特殊者需注明。

c.结果(Results):简要列出主要结果(需注明单位)、数据、统计学意义(P值)等,并说明其价值和局限性。

d.结论(Conclusion):简要说明从该项研究结果取得的正确观点、理论意义或实用价值、推广前景。

中、英文摘要前需标明中、英文文题,作者姓名(至多3名)及作者单位(邮政编码)。英文摘要应隔行打字,以便修改。

【论文摘要范文】

【论文题目】

机动车尾气污染防治对策与城市交通改善研究

【中文摘要】

本论文通过分析机动车尾气污染产生的原因,论述了采取多种防治对策以旨在减少机动车的尾气污染排放,同时对城市交通改善问题进行了深入的研究。本文首先论述了我国由于机动车尾气排放造成的城市大气污染的严重形势。论述了机动车尾气污染的产生原因。通过总结国内外机动车污染控制的发展历程、经验及教训,作者从两方面重点论述了控制机动车尾气污染的途径。其一是从机动车本身入手,在机动车生产、检验、维护保养以及采用新技术等方面对机动车加以改造,力争从尾气排放污染源加以控制;其次,作者根据我国交通的具体状况,详细分析了城市交通改善与机动车尾气排放的关系,根据翔实的数据:说明了在我国交通拥堵是造成机动车尾气污染的最主要原因。在科学交通管理的原则指导下,作者详细论述了科学交通管理的卞要措施,特别分析了对路口的交通控制策略的仿真优化过程,通过仿真结果表明,对路口的交通控制策略的优化将对尾气排放产生非常重大的影响,可以显著地减少污染排放总量。因此作者认为,科学交通管理是控制城市机动车尾气污染排放的根本出路。

兄弟这是我的给你用下吧。反正也毕业了,给分啊附件1:外文资料翻译译文含有非共面的2,2'-二甲基-4,4'-二苯基单元和纽结性的二苯甲撑键的高度有机可溶解的聚醚酰亚胺的合成和特征两种新的双醚酐2,2'-二甲基-4,4'-双[4-(3,4-二羧基苯氧基)]二苯基二酐(4A)和双[4-(3,4-二羧基苯氧基)苯基]二苯甲烷二酐(4B)可以由三步反应制得。首先,由4-硝基邻苯二甲腈分别与2,2'-二甲基二苯基-4,4'-二醇和双(4-羧基苯基)二苯甲烷发生硝基取代,然后双醚四腈在碱性条件下水解和随后的双醚四酸脱水。一系列的新的高度有机可溶解的聚醚酰亚胺采用常规的两步合成法由双醚二酐和各样的二胺制得。制得的聚醚酰亚胺固有粘度在-范围内。GPC测量显示这些聚合物的数均分子量和重均分子量分别高达45000和82000所有的聚合物表现出典型的无定型衍射图样。几乎所有的聚醚酰亚胺都表现出优良的溶解性以及容易在不同的溶剂中,例如N-甲基-2-吡咯烷酮,N,N-二甲基乙酰胺(DMAC),N,N-二甲基甲酰胺,吡啶,环己酮,四氢呋喃和氯仿。这些聚合物的玻璃化转变温度在224-256℃范围内。热重分析表明这些聚合物都是稳定的,在氮气下10%重量损失点在489℃以上。等温重量分析结果说明这些聚合物在350℃的静态空气中等温老化的重量损失都在-%。具有韧性和柔性的聚合物膜可以通过其DMAC溶液浇注制得。这些膜的抗张强度具有84-116MPa,抗张模量具有-。引言芳香族聚酰亚胺由于其突出的热稳定性,因具有低介电常数而有优良的电绝缘性,对常用基材具有好的黏附性,以及卓越的化学稳定性,及其在半导体和电子封装工业领域被广泛的应用。但是由于最初的聚酰亚胺是不溶不熔的,它们在许多领域的应用受到限制。因此,目前已经进行了大量的研究来寻找新的方法来绕过这些局限性.改变聚酰亚胺回避化学结构的通用方法是引入柔性基团和/或庞大的单元到聚合物主链中。聚醚酰亚胺作为芳香族的亲核取代反应产物得到迅速发展,又成为与市场需要接轨的高性能的而且能够用注射挤出工艺制造的聚合物。GeneralElectric Co.开发并商业化的Ultem 1000就是一个重要的例子,它表现出比较好的热稳定性和良好的力学性能另外还有良好的可塑性。目前的研究主要集中在一系列新的有好的溶解性的聚醚酰亚胺的合成和特性化,主要基于包含异面的2,2'-二甲基-4,4'-二苯撑单元的4A和包含二苯甲撑纽结环的双[4-(3,4-二羧基苯氧基)苯基]二苯甲烷二酐的4B。在对位键合的聚合物链中结合2,2'-二取代的二苯撑降低了聚合物分子链间的相互影响。通过2,2'-二取代将苯环加在异面构象中,减弱了分子链间的分子间力,结晶倾向明显降低,溶解性显著提高。另外获得有机可溶性的聚酰亚胺的另一个有效途径是结合取代的甲撑键,例如异丙叉[(CH3)2C=]、六氟异丙叉和二苯甲撑单元,它们提供主链上的刚性苯环间的纽结,来提高聚合物的溶解性。聚合物主链中的纽结单元的出现降低了分子链的刚性,以至提高了聚合物的溶解性。试验发现有二苯甲撑单元的聚合物比含有异丙叉和六氟异丙叉单元的聚合物有更好的热稳定性。因此,结合异面的2,2'-二甲基-4,4'-二苯撑和纽结单元的二苯甲撑可以制成具有良好热稳定性的可溶性聚醚酰亚胺。不同的结构单元对聚合物性能的影响如溶解性、热稳定性和力学性能,这里也将讨论。实验步骤材料:原料二元醇,2,2'-二甲基-4,4'-二羟基-二苯(1A)和双(4-羟基苯基)二苯甲烷(1B)分别由2,2'-二甲基-4,4'-二氨基二苯和4,4'-二氯二苯甲烷制得。DMF,DMAC和吡啶在使用前减压蒸馏纯化,醋酐用真空蒸馏纯化。单体合成:见图12,2'-二甲基-4,4'-双[4-(3,4-二腈基苯氧基)]二苯(2A)。在100mL圆底烧瓶中加入()的2,2'-二甲基-4,4'-二羟基-二苯(1A)和(70mmol)的4—硝基邻苯二腈溶解在80ml的纯DMF中。加入无水碳酸钾(),浊液在室温下搅拌两天。然后将反应的混合物加入到500ml的水中沉析,得到浅黄固体产物,用水和甲醇重复冲洗,过滤和干燥。粗产品在乙腈中重结晶得到黄色晶体双(醚二腈)(2A),产率83%,熔点227-228℃。双[4-(3,4-二腈基苯氧基)苯基]二苯(2B)。合成2B的步骤和合成2A的步骤相似,用双(4-羟基苯基)二苯甲烷替换二元醇做反应物。同样在乙腈中重结晶两次得到棕色晶体双(醚二腈)(2B),产率86%,熔点219-220℃。2,2'-二甲基-4,4'-双[4-(3,4-二羧基苯氧基)]二苯(3A)。在100ml的圆底烧瓶中将()的双(醚四腈)(2A)加入到含有()gKOH的40ml水/40ml乙醇溶液。固体双醚四腈在一个小时内溶解。回流持续两天直到不再放出氨气。在过滤和减压下除去剩下的乙醇后,用200ml水稀释然后用分析纯盐酸酸化。过滤双(醚四酸)沉淀用蒸馏水洗涤直到滤液澄清。产率在92%。反应物因为热环化脱水而产生的吸收峰在165℃附近(用DSC)。双[4-(3,4-二羧基苯氧基)苯基]二苯(3B)。3B的合成步骤类似3A,只是用2B替换双(醚四腈)做反应物。产物收率为91%,熔点138-170℃。2,2'-二甲基-4,4'-双[4-(3,4-二羧基苯氧基)]二苯酐(4A)。在100ml的原地烧瓶中,将双(醚四酸)(3A)溶解于35ml冰醋酸和25ml醋酐的溶液中,回流24小时。然后,过滤混合物放置结晶一天。过滤出沉淀物再在醋酐中重结晶。过滤得到棕色晶体,用纯甲苯洗涤并在100℃下真空中烘干24h得到双(醚二酐)(4A)。产率81%,熔点217-218℃。双[4-(3,4-二羧基苯氧基)苯基]二苯酐(4B)。4B的合成步骤类似4A,只是用3B替换双(醚四酸)做反应物。获得产率84%,熔点262℃。聚合步骤:见图二。在搅拌下缓慢地将双醚二酐(4A)(,)加入到3,3',5,5'-四甲基-2,2'-双[4-(4氨基苯氧基)苯基]丙烷(5b)()的DMAC溶液中。混合物在室温下于氩气环境下反应2h形成聚醚酰亚胺酸预聚体(A-6b)。化学亚胺化可通过将3mlDMAC、1ml酸酐和吡啶加入到上述A-6b溶液中,在室温下搅拌1h升温至100℃反应3h。接着将均匀的溶液加入到甲醇中过滤,将沉析出的黄色固体用甲醇和热水洗涤,然后在100℃下干燥24h,得到聚醚酰亚胺A-7b。在浓度为温度为30℃的条件下,聚合物在DMAC中的固有粘度是。所有其他聚醚酰亚胺用采用相似步骤来制备。表征熔点用BUCHI装置的毛细管测量(型号 BUCHI 535)。红外光谱在4000-400cm‐1范围用JASCO IR-700光谱仪测量。13C和1H的核磁共振光谱由在的炭和的质子通过JEOLEX-400获得。所有的聚醚酰亚胺的固有粘度通过Ubbelohocle粘度计测得。用Perkin-Elmer2400装置作元素分析。用(GPC)凝胶渗透色谱的方法确定质均和数均分子量。四个300*水柱(105、104、103、50埃系列)由THF(四氢呋喃)冲洗液用来作GPC(凝胶渗透色谱)分析。用UV探测器(Gillon型号116)在254nm处监测,用聚苯乙烯做标样。在室温下,与胶片样品上用Ni过滤地Cu,Ka射线的X射线(30KV,20mA)衍射仪测得广角X射线衍射图样。热解重量通过流动速率为(100cm3·min‐1)的以20℃·min‐1的加热速率加热的空气或氮气的热解重量分析仪(TGA 250)来获得。差示量热分析通过Dupont的差示量热分析仪来实现,该差示量热分析仪的加热速率是20℃·min‐1。玻璃化转变温度就是它的屈服点。抗张性能通过一个载荷为10Kg的定向拉伸机测得的应力-应变曲线决定。通过ULVAC等温重量分析仪(型号7000)来获得等温重量分析。这项研究用厚度3cm的试样在应变速率为2cm·min‐1的条件下进行,在室温下用5个胶片样品(4mm宽,5cm长,厚)来测量。结果和讨论单体合成如图1所示,二醚酐由三步合成方法制得,以二元醇(1A和1B)与4-硝基邻苯二腈在室温下碳酸钾的存在下于无水的DMF中的亲核硝基取代开始。硝基取代反应最好在低温下进行,不要在高温(高于100℃)下进行。因为在高温下得到的产品(2A和2B)往往是黑色的。获得的双(醚二腈)2A和2B各自在碱性溶液中水解得到双(醚二酸)3A和3B。2A的水解反应需要进行两天。然而,2B因为其溶解性小于2A,所以2B的水解反应还要用更长的时间等到完全水解,完全水解的溶液变得澄清。在用盐酸酸化以前必需除去残留的乙醇,如果在水溶液中有未除尽的乙醇存在,往往使反应物在酸化的时候发粘,然后双(醚二酸)环化脱水得到双醚酐4A和4B。这些合成化合物的结构可以用元素分析、IR和NMR的方法的得到确认。例如,二醚酐的红外光谱显示出环酐的特征吸收峰在1837和1767cm-1,分别归属于酐基团中的C=O地对称和部对称的伸缩振动。NMR谱数据列在实验部分。NMR光谱提供了清晰的证据,在此制备的双(醚二酐)单体与预期结构是相互关联的。聚醚酰亚胺的制备聚醚酰亚胺是用常规的两步法合成的,如流程2所示。包括开环加成聚合行成聚醚酰胺酸和随后的化学环化脱水。一般聚醚酰亚胺酸的热环化脱水反应也可在减压高温(大约300℃)下进行。然而如此热环化脱水得到的产物比化学环化脱水产物的溶解性差。因为我们研究的目的就是制得有机可溶性的PEI,在此采用了化学环化脱水。聚醚酰胺酸的预聚物是通过聚醚二酐(4A合4B)缓慢地加入到二胺溶液中反应制得。然后将脱水剂如醋酐和吡啶的混合物加到获得的粘性聚醚酰胺酸溶液中得到各种PEI。这些PEI固有粘度在-(表1)。除了聚合物A-7c,这些PEI地数均分子量(——Mn)和重均分子量(——Mw)分别在32000和52000g/mol以上。以聚苯乙烯为标样采用GPC法测量,所有的聚合物膜都可以由其DMAC溶液浇注制得。所有的聚合物膜都是坚韧的、透明的、柔软的。这些膜都经受了拉力试验。聚合物表征聚合物的结晶性用广角X-射线衍射图谱检测。所有的聚合物都在2θ=8°和40°之间表现完全非晶样式,说明聚合物是非晶的,这个发现是合理的。因为异面结构2,2'-二取代苯撑单元的存在和二苯甲撑中的苯结构减弱了分子链间的分子间力,引起了结晶度的减少。一般,聚合物主链中二苯撑单元的存在导致刚性棒聚合物有高结晶性和低溶解性。尽管如此,在4,4´-二苯撑单元上结合2,2´-二甲基取代基,可以有效地降低聚合物的堆砌效应。值得注意的是聚合物链中含有对称的取代基往往带来好的堆砌。在甲撑结构中的二苯基取代,也可以看成是聚合物主链上的对称取代。尽管如此,二苯甲撑键往往以扭结构型存在,因此聚合物分子链的刚性降低了。因而结晶性也因为聚合物含有纽结链降低了。这些PEI在一些有机溶剂中的%(w/v)的溶解度也概括到了表2中。几乎所有的PEI都溶解在这些测试的溶剂中,包括N-甲基-2-吡咯烷酮、DMAC、吡啶、环己酮、四氢呋喃、甚至氯仿在室温下溶解。这些PEI有好的溶解性可以归结为柔软的醚键,异面的二苯撑和纽结键的存在。正是这些结构降低了分子间的作用力和刚性。这些PEI溶解性的对比暗示着含有二苯甲撑的PEI比含有2,2'-二甲基-4,4'-二苯撑单元的PEI有稍好的溶解性。这就说明了扭结单元对于增加聚合物的溶解性比异面的2,2'-二甲基-4,4'-二苯撑单元更有效。这些PEI地热稳定性也在表3中列出。用DSC法测得这些PEI的玻璃化转变温度(Tg's),其值在224-256℃范围内。DSC检测中没有发现熔融吸收峰,这也证明了PEI是非晶的。显而易见含有2,2'-二甲基-4,4'-二苯撑的单元比含有纽结键的聚合物显示出更高的Tg值。这是因为有二苯撑单元的聚合物比有纽结键的表现出更高的刚性。热重分析(TG)揭示了这些PEI有优良的热稳定性。它们在450℃以上仍然保持稳定。在氮气气氛下,这些聚合物有10%重量损失的温度(Td10)可以达到489-535℃。研究发现有二苯撑单元的2,2'-二甲基-4,4'-二苯撑的聚合物比那些有二苯甲撑键的单元有更高的Td10。通过对用二胺(A-C)制得的聚合物A-7a-A-7c的比较,可以发现有2,2'-二甲基-4,4'-二苯撑单元的聚合物(A-7c)比含有不对称的特丁基取代基团的聚合物(A-7a)表现出更高的Td10,含有四甲基取代的聚合物(A-7b)在这些聚合物中(A-7a-A-7c)表现出最低的Td10。和我们以前的研究中的相似发现差不多,异面结构比特丁基取代基和四甲基取代基团赋予聚合物更好的热稳定性。另外有2,2'-二甲基-4,4'-二苯撑单元的聚合物(B-7c)比含有不对称的特丁基取代基团的聚合物(B-7a)表现出更高的Td10,含有四甲基取代基的聚合物(B-7b)在这些聚合物中(B-7a-B-7c)表现出最低的Td10。在我们以前的研究中就发现异面结构2,2'-二甲基-4,4'-二苯撑在聚合物的主链上可以提高聚合物的溶解性。因为它降低了分子间作用力和刚性,就像以前的相似结论一样,在2,2'-二甲基-4,4'-二苯撑单元上结合上甲基取代基在有效范围内牺牲了聚合物少量的热稳定性但却提高了加工性。根据以前的研究结果,在苯撑单元上有四甲基取代的聚合物比没有的,不仅有效地提高了聚合物的溶解性还提高了聚合物的热氧稳定性。这些聚合物的IGA测试结果说明了异面二苯撑结构的聚合物比哪些有二苯甲撑纽结结构的聚合物有更高的热稳定性。IGA的结果说明了这些PEI有好的热氧稳定性,一般地,IGA结果与TGA数据相仿。特别地在静止的空气中350℃下进行20h的恒温老化,聚合物重量损失在-%(表3),通过重量损失值的对比发现,有2,2'-二甲基-4,4'-二苯撑单元的聚酰亚胺要比含有二苯甲撑单元的有稍高的热稳定性。2,2'-二甲基-4,4'-二苯撑的聚合物有较少的重量损失,包括PEI在空气中主链中的甲基结构被氧化生成(C=O)结构导致增重。通过热稳定性的对比,所有的这些聚酰亚胺都比我们以前报告过的聚酰亚胺热稳定性好。这些聚酰亚胺可以被称为新的高性能工程塑料。这两系列在DMAC溶液中用溶液浇注的方法得到的PEI膜的机械性能概括在表4中。这些坚韧有弹性的膜抗张强度在84-116MPa,断裂伸长率在6-12%,初始模量为-。这些膜有强而韧的物理性能,可以总结出含有2,2'-二甲基-4,4'-二苯撑单元的聚合物膜比有纽结的二苯甲撑键的强度大,这是非常合理的。在PEI中有4,4'-二苯撑单元表现出棒状结构以致聚合物链比纽结键有更高的刚性。通过对这些聚合物的机械性能的对比,聚酰亚胺A-7b-A-7c也比商业化的聚酰亚胺Ultem 1000(105MPa)有更高的抗张强度。所有这些聚酰亚胺的机械性能也必我们以前的报告中提到的要高。结论含有异面2,2'-二甲基-4,4'-二苯撑单元和含有扭结性的二苯甲撑键的两种新的双醚二酐用三步方法成功制得。一系列有适当的分子量的PEI用这些双醚二酐单体和不同的二胺制得。这些PEI可以很容易在多种有机溶剂中溶解,包括常用的有机溶剂如环己酮和氯仿。另一方面这些PEI有好的热稳定性和机械性能。因此这些新的可溶性的PEI可以被认为是新的高性能的工程塑料。这里提供的结果也说明了含有2,2'-二甲基-4,4'-二苯撑单元的聚合物比那些有扭结性二苯甲撑键的聚合物表现出更高的热稳定性和机械性能。然而,后者比前者有更好的溶解性。

用双重差分方法写的论文题目

出现这种结果是由于冲击的净效应很小。双差分模型的形式也比较简单,本质上是线性回归。d是分组的虚拟变量。 研究事件和政策影响时,受冲击影响,个体I属于实验组,D=1,反之个体I属于对照组,D=0。 t是时间的虚拟变量,在发生一个事件或策略时,碰撞前T=0,碰撞后T=1。 D*T是群虚拟变量与时间虚拟变量的相互作用项,其系数反映了冲击的净效应。

百度知道双重差分模型显著但是系数小JinLaiOumask超过40用户采纳过TA的回答第一部分 模型简介1、模型应用背景2、模型运用前提条件3、稳健性检验第二部分 经典论文分析1、民族地区转移支付、公共支出差异与经济发展差距2、基于多期双重差分的分位回归及其应用第三部分 双重差分模型(DID)stata实例操作1、变量构造和基本命令2、平行趋势检验第四部分 经典论文推荐第五部分 专题预览估计政策效应常用的方法有:工具变量法、断点回归、倾向得分匹配法、双重差分法、合成控制法等。我们在这里介绍双重差分法。第一部分 模型简介1、模型应用背景现代计量经济学和统计学的发展为我们的研究提供了可行的工具。倍差法来源于计量经济学的综列数据模型,是政策分析和工程评估中广为使用的一种计量经济方法。主要是应用于在混合截面数据集中,评价某一事件或政策的影响程度。该方法的基本思路是将调查样本分为两组,一组是政策或工程作用对象即“作用组”,一组是非政策或工程作用对象即“对照组”。根据作用组和对照组在政策或工程实施前后的相关信息,可以计算作用组在政策或工程实施前后某个指标(如收入)的变化量(收入增长量),同时计算对照组在政策或工程实施前后同一指标的变化量。然后计算上述两个变化量的差值(即所谓的“倍差值”)。这就是所谓的双重差分估计量(Difference in Differences,简记DD或DID),因为它是处理组差分与控制组差分之差。该法最早由Ashenfelter(1978)引入经济学,而国内最早的应用或为周黎安、陈烨(2005)。2、模型运用前提条件 使用前提(1)政策不能是“一刀切”类型,即存在受政策影响的实验组和不受政策影响的对照组(2)至少两年的面板数据,如果是截面数据一般也别考虑了 模型前提(1)平行趋势(CT)假设:处理组和对照组有共同趋势,在政策干预之前,处理组和控制组的结果效应的趋势应该是一样的。(2)SUTVA条件:政策干预只影响处理组,不会对控制组产生交互影响,或者政策干预不会产生外溢效应;(3)线性形式条件:潜在结果变量同处理变量和时间变量满足线性条件。由此可见DID的使用条件较为严苛,并不能随意使用。3、稳健性检验为了证明所有的效应是由政策实施所引起的,必须做稳健性检验,主要体现在两个方面: 平行趋势检验如果是多

你好,经过我查阅相关资料得知双重差分模型显著但是系数小是因为:使用观测数据模拟实验研究设计,其基本思路是将调查样本分为两组:一组为被政策影响组,即实验组,一组为未被政策影响组,即对照组。首先计算实验组在政策前后某个指标的变化量,再计算对照组在政策前后同一指标的变化量,然后计算上述两个变量的差值,从而反映政策的净影响。

***统计方法的应用

论文写作方法有文献分析法

调查法 调查法是科学研究中最常用的方法之一。它是有目的、有计划、有系统地搜集有关研究对象现实状况或历史状况的材料的方法。调查方法是科学研究中常用的基本研究方法,它综合运用历史法、观察法等方法以及谈话、问卷、个案研究、测验等科学方式,对教育现象进行有计划的、周密的和系统的了解,并对调查搜集到的大量资料进行分析、综合、比较、归纳,从而为人们提供规律性的知识。 调查法中最常用的是问卷调查法,它是以书面提出问题的方式搜集资料的一种研究方法,即调查者就调查项目编制成表式,分发或邮寄给有关人员,请示填写答案,然后回收整理、统计和研究。 观察法 观察法是指研究者根据一定的研究目的、研究提纲或观察表,用自己的感官和辅助工具去直接观察被研究对象,从而获得资料的一种方法。科学的观察具有目的性和计划性、系统性和可重复性。在科学实验和调查研究中,观察法具有如下几个方面的作用:①扩大人们的感性认识。②启发人们的思维。③导致新的发现。 实验法 实验法是通过主支变革、控制研究对象来发现与确认事物间的因果联系的一种科研方法。其主要特点是:第一、主动变革性。观察与调查都是在不干预研究对象的前提下去认识研究对象,发现其中的问题。而实验却要求主动操纵实验条件,人为地改变对象的存在方式、变化过程,使它服从于科学认识的需要。第二、控制性。科学实验要求根据研究的需要,借助各种方法技术,减少或消除各种可能影响科学的无关因素的干扰,在简化、纯化的状态下认识研究对象。第三,因果性。实验以发现、确认事物之间的因果联系的有效工具和必要途径。 文献研究法 文献研究法是根据一定的研究目的或课题,通过调查文献来获得资料,从而全面地、正确地了解掌握所要研究问题的一种方法。文献研究法被子广泛用于各种学科研究中。其作用有:①能了解有关问题的历史和现状,帮助确定研究课题。②能形成关于研究对象的一般印象,有助于观察和访问。③能得到现实资料的比较资料。④有助于了解事物的全貌。 实证研究法 实证研究法是科学实践研究的一种特殊形式。其依据现有的科学理论和实践的需要,提出设计,利用科学仪器和设备,在自然条件下,通过有目的有步骤地操纵,根据观察、记录、测定与此相伴随的现象的变化来确定条件与现象之间的因果关系的活动。主要目的在于说明各种自变量与某一个因变量的关系。 定量分析法 在科学研究中,通过定量分析法可以使人们对研究对象的认识进一步精确化,以便更加科学地揭示规律,把握本质,理清关系,预测事物的发展趋势。 定性分析法 定性分析法就是对研究对象进行“质”的方面的分析。具体地说是运用归纳和演绎、分析与综合以及抽象与概括等方法,对获得的各种材料进行思维加工,从而能去粗取精、去伪存真、由此及彼、由表及里,达到认识事物本质、揭示内在规律。 跨学科研究法 运用多学科的理论、方法和成果从整体上对某一课题进行综合研究的方法,也称“交叉研究法”。科学发展运动的规律表明,科学在高度分化中又高度综合,形成一个统一的整体。据有关专家统计,现在世界上有2000多种学科,而学科分化的趋势还在加剧,但同时各学科间的联系愈来愈紧密,在语言、方法和某些概念方面,有日益统一化的趋势。 个案研究法 个案研究法是认定研究对象中的某一特定对象,加以调查分析,弄清其特点及其形成过程的一种研究方法。个案研究有三种基本类型:(1)个人调查,即对组织中的某一个人进行调查研究;(2)团体调查,即对某个组织或团体进行调查研究;(3)问题调查,即对某个现象或问题进行调查研究。 功能分析法 功能分析法是社会科学用来分析社会现象的一种方法,是社会调查常用的分析方法之一。它通过说明社会现象怎样满足一个社会系统的需要(即具有怎样的功能)来解释社会现象。 数量研究法 数量研究法也称“统计分析法”和“定量分析法”,指通过对研究对象的规模、速度、范围、程度等数量关系的分析研究,认识和揭示事物间的相互关系、变化规律和发展趋势,借以达到对事物的正确解释和预测的一种研究方法。 模拟法(模型方法) 模拟法是先依照原型的主要特征,创设一个相似的模型,然后通过模型来间接研究原型的一种形容方法。根据模型和原型之间的相似关系,模拟法可分为物理模拟和数学模拟两种。 探索性研究法 探索性研究法是高层次的科学研究活动。它是用已知的信息,探索、创造新知识,产生出新颖而独特的成果或产品。 信息研究方法 信息研究方法是利用信息来研究系统功能的一种科学研究方法。美国数学、通讯工程师、生理学家维纳认为,客观世界有一种普遍的联系,即信息联系。当前,正处在“信息革命”的新时代,有大量的信息资源,可以开发利用。信息方法就是根据信息论、系统论、控制论的原理,通过对信息的收集、传递、加工和整理获得知识,并应用于实践,以实现新的目标。信息方法是一种新的科研方法,它以信息来研究系统功能,揭示事物的更深一层次的规律,帮助人们提高和掌握运用规律的能力。 经验总结法 经验总结法是通过对实践活动中的具体情况,进行归纳与分析,使之系统化、理论化,上升为经验的一种方法。总结推广先进经验是人类历史上长期运用的较为行之有效的领导方法之一。 描述性研究法 描述性研究法是一种简单的研究方法,它将已有的现象、规律和理论通过自己的理解和验证,给予叙述并解释出来。它是对各种理论的一般叙述,更多的是解释别人的论证,但在科学研究中是必不可少的。它能定向地提出问题,揭示弊端,描述现象,介绍经验,它有利于普及工作,它的实例很多,有带揭示性的多种情况的调查;有对实际问题的说明;也有对某些现状的看法等。 数学方法 数学方法就是在撇开研究对象的其他一切特性的情况下,用数学工具对研究对象进行一系列量的处理,从而作出正确的说明和判断,得到以数字形式表述的成果。科学研究的对象是质和量的统一体,它们的质和量是紧密联系,质变和量变是互相制约的。要达到真正的科学认识,不仅要研究质的规定性,还必须重视对它们的量进行考察和分析,以便更准确地认识研究对象的本质特性。数学方法主要有统计处理和模糊数学分析方法。 思维方法 思维方法是人们正确进行思维和准确表达思想的重要工具,在科学研究中最常用的科学思维方法包括归纳演绎、类比推理、抽象概括、思辩想象、分析综合等,它对于一切科学研究都具有普遍的指导意义。 系统科学方法 20世纪,系统论、控制论、信息论等横向科学的迅猛发展,为发展综合思维方式提供了有力的手段,使科学研究方法不断地完善。而以系统论方法、控制论方法和信息论方法为代表的系统科学方法,又为人类的科学认识提供了强有力的主观手段。它不仅突破了传统方法的局限性,而且深刻地改变了科学方法论的体系。这些新的方法,既可以作为经验方法,作为获得感性材料的方法来使用,也可以作为理论方法,作为分析感性材料上升到理性认识的方法来使用,而且作为后者的作用比前者更加明显。它们适用于科学认识的各个阶段,因此,我们称其为系统科学方法。

关于学术论文写作的研究方法

在学位论文写作的过程中,我们经常要运用各种方法,对于写作方法的掌握和运用程度,很大程度上决定了内容写作的质量。学术论文写作的研究方法包括调查法、文献研究法以及实验法等等,下面是我分享的学术论文写作的研究方法,欢迎阅读!

调查法

调查法是指通过书面或口头回答问题的方式,了解被试的心理活动的方法。调查法的主要特点是,以问题的方式要求被调查者针对问题进行陈述的方法。根据研究的需要,可以向被调查者本人作调查,也可以向熟悉被调查者的人作调查。调查法可以分为书面调查和口头调查两种。

观察法

观察法是指研究者根据一定的研究目的、研究提纲或观察表,用自己的感官和辅助工具去直接观察被研究对象,从而获得资料的一种方法。科学的观察具有目的性和计划性、系统性和可重复性。常见的观察方法有:核对清单法;级别量表法;记叙性描述。

实验法

实验法是研究者有意改变或设计的社会过程中了解研究对象的外显行为。实验法的依据是自然和社会中现象和现象之间相当普遍存在着的一种相关关系——因果关系。实验法有实验室实验法与自然实验法两种。

文献研究法

文献研究法主要指搜集、鉴别、整理文献,并通过对文献的研究形成对事实的科学认识的方法。文献法是一种古老、而又富有生命力的科学研究方法。内容分析法通过对文献的定量分析,统计描述来实现对事实的科学认识。

实证研究法

实证研究法是认识客观现象,向人们提供实在、有用、确定、精确的知识研究方法,其重点是研究现象本身“是什么”的问题。实证研究法试图超越或排斥价值判断,只揭示客观现象的内在构成因素及因素的普遍联系,归纳概括现象的本质及其运行规律。

定量分析法

定量分析法是对社会现象的数量特征、数量关系与数量变化进行分析的方法。在企业管理上,定量分析法是以企业财务报表为主要数据来源,按照某种数理方式进行加工整理,得出企业信用结果。

定性分析法

定性分析法亦称非数量分析法,主要依靠预测人员的丰富实践经验以及主观的判断和分析能力,推断出事物的性质和发展趋势的分析方法,属于预测分析的一种基本方法。定性分析法主要是解决研究对象“有没有”、“是不是”的问题。

跨学科研究法

运用多学科的理论、方法和成果从整体上对某一课题进行综合研究的方法,也称“交叉研究法”。科学发展运动的规律表明,科学在高度分化中又高度综合,形成一个统一的整体。

个案研究法

个案研究法是指对某一个体、某一群体或某一组织在较长时间里连续进行调查,从而研究其行为发展变化的全过程,这种研究方法也称为案例研究法。

数量研究法

数量研究法也称“统计分析法”和“定量分析法”,指通过对研究对象的规模、速度、范围、程度等数量关系的分析研究,认识和揭示事物间的相互关系、变化规律和发展趋势,借以达到对事物的正确解释和预测的一种研究方法。

探索性研究法

探索性研究社会调查的一个研究方式。对所研究的现象或问题进行初步了解,获得初步印象和感性认识,为今后的深入研究提供基础和方向。

描述性研究法

描述性研究法是一种简单的研究方法,又称为描述流行病学(descriptive epidemiology),是流行病学研究方法中最基本的类型,主要用来描述人群中疾病或健康状况及暴露因素的分布情况,目的是提出病因假设,为进一步调查研究提供线索,是分析性研究的基础;还可以用来确定高危人群,评价公共卫生措施的效果等。

思维方法

思维方法是人们正确进行思维和准确表达思想的重要工具,在科学研究中最常用的科学思维方法包括归纳演绎、类比推理、抽象概括、思辩想象、分析综合等,它对于一切科学研究都具有普遍的指导意义。

系统科学方法

系统科学方法是指用系统科学的理论和观点,把研究对象放在系统的形式中,从整体和全局出发,从系统与要素、要素与要素、结构与功能以及系统与环境的对立统一关系中,对研究对象进行考察、分析和研究,以得到最优化的处理与解决问题的一种科学研究方法。

知识扩展:学术论文写作的九阶段

1、思考论文雏形

在正式开始之前,花5到10分钟来沉淀心灵吧!写下任何盘旋在您脑海中的事情,无论是需要完成的差事或是所担心的事,而呈现方式则随个人喜好,条列式、树状式、或日记型式都可以(写日记可以帮助人们理解自己脑袋在想什么)。

有时候我们会被一些枝微末节的小事所困惑,所以坐下来,写下任何想到的事情,如此便能屏除那些让人分心的想法,甚至想到一些对文章有帮助的点子。无论如何,在开始写作前先把脑袋净空;在开始写作后也可以将笔记本放在旁边,随时写下那些出现脑海里零零散散的想法。

2、查询资料并且做笔记

不要只是阅读资料,要主动且专注地做笔记。做笔记最好的方法之一是1950年代被提出来的 Cornell Note Taking System 。Cornell笔记页分为三个区块,右边较大的区块为笔记区,让您一边看书/听课一边写下笔记;左边的小区块则用来记录重要的主题以及相关的想法、问题等;下方小区块则用来写下简短的摘要。

3、脑力激荡与构思

您不一定会需要这个阶段。假设您已经做好文献探讨并整理好手中的笔记,那您应该十分清楚自己想论述的各个论点,接下来要做的只是将各部份的笔记组合成一篇文章。

有时候我们会遇到难题而被卡住,或是在一个段落里要结合很多不同的想法,这时就需要其他方法来帮助我们澄清思绪、架构文章。首先进行脑力激荡,给自己五分钟时间,快速且毫不犹豫地写下任何与研究主题相关的点子,不要花时间过度思考某一个点,即使毫无章法,仍要写下任何想得到的东西。此外,在您完成论文写作前,请不要丢弃这个随手的笔记,有些想法在当下或许看似无关,但却可能在之后忽然变得极具意义。

4、以心智图构思架构

以心智图的方式呈现脑力激荡所得到的结果,藉此整合想法并建立文章架构。心智图法为Tony Buzan于1970年代所提出的一种辅助思考的工具,Buzan强调图上的每一个主题都存在着关联性,由一个中心主题出发,在延长线上衍生更多新的想法。心智图能刺激您的思考,藉此激发更多想法,并帮助您厘清复杂的概念。

5、整合心智图并开始安排段落架构

在完成资料搜集和脑力激荡后,便可以开始写下一些简短的文字,这些文字就像会议摘要一样,为一篇论文的基本架构。在参考过许多不同的方法后,我们选出七个重点做为文章架构基础。在您开始撰写文章或其中一个章节前,请先浏览以下七点并各写下一个句子。

焦点:广义上的重要事实或相关故事

文献:有什么已经被研究过了?

缺口:有什么是缺少的?

迫切性:为什么这个东西现在很重要?

问题:有什么是需要被探讨的?

方法:该如何进行研究?

意涵:有什么实际上或哲学上的影响?

参考:Gerald Graff, Barbara Kamler and Pat Thomson, Karen Kelsky, Inger Mewburn

6、在简述中加入想法,并填入段落架构

如果手边有已经整理过的笔记,请直接将它们合并成一个新的档案,并尽快将每个笔记间不足的地方填补起来。若先前没有留下任何笔记,则尽可能地一次写下所有想说的论点。

这个阶段是利用写作来反思您在研究中所获得的东西。在此阶段所写下的东西并非是要呈现给读者的内容,而仅是为了帮助自己思考。对许多人来说,要一直到这个阶段他们才能真正厘清自己的思绪、明白自己将如何架构眼前的研究论文。

例如,您可能想将某现象与理论作连结,但直到开始写作才了解此连结背后的意涵,并真正将理论与现象结合。此步骤的重要性在于,透过写作来帮助您重新整理脑海中的想法,厘清先前想不通或未曾发现的盲点。

尽可能加快此阶段写作的速度,以确认您是否已收集足够的想法和论点来写作文章。如果您能一口气将脑海中的想法写成粗略的草稿,便能立刻得知已完成的研究是否能与您所欲论述的观点或手中的写作结合,或者发现这些论点仍然不足,需要更多阅读或做进一步思考。只要尽可能写下您的想法,任何形式都可以,不需要过度思考或着墨。

在这个阶段不需要对自己太过严格。在您尝试一边思考一边写作、拟稿的当下,所要做的就仅是写下脑中所有的想法;此时您该做的并非花时间写下完美的草稿,而只是快速的写作,不需要回头修改任何写下的内容,因为还不是时候。在此阶段,请让您的思绪自由奔驰,不需要对写下的内容进行任何批判,也不需要反覆检查,写完就进入下一步骤。

7、开始进行写作

前面一个阶段可被视为thinking writing 阶段,接下来则是doing writing 阶段。在经过前面几个阶段后,您已经成功写下脑中的想法,也看过一遍,在这当中找到可以被论述的论点,手边也有足够的资料来发展、铺陈,接着便是时候改变写作型态了。在此阶段,写作不再是为了帮助思考,而是用来向读者展示、论述或证明您的想法及观点。检视您先前写下的每一个简短、粗糙的句子,设法把您初步的想法转变为意思清晰、明确的陈述句,使读者能直接接收您所欲传达的内容。

当进行到某一程度,或卡在某个点上的时候,您可以问问自己:我现在在做什么?是否已达成目的?想想自己在这个阶段遇到什么问题和困难,并写下答案。在经过不断的反思后,您将发现写下的答案都能在写作中派上用场。在写作过程中,您可能会碰上指导教授无法替您解决的、根本的问题,因此得学着自己解决。

8、自我检视与检讨

在批判阶段,您开始审阅、编辑前面写好的文章内容。假设您在没有过度思考的前提下写出了大量文字,现在该做的便是提出问题,并依答案精简您写好的文章,使其更具条理及连贯性。此阶段您可以尽可能的挑剔,大胆删去不相干的内容,使段落与段落间更加紧密。

9、精简化并舍去冗文赘字

Killing your darlings被用来指称编辑时最残忍的部分,意即删除您很喜欢、但却没有实际贡献的文字。Darlings指的是过于累赘、或是因为作者个人偏好而出现的句子或段落。在小说中,这可能是指某个角色、或是一些优美但却对故事发展没有帮助的文句。在学术写作中则是指离题的段落/句子,或是某个很吸引您但却扭曲文章论点的部分。

在此阶段您可采用以下两步骤:

1、将考虑拿掉的文字先划上删除线,然后重新阅读不含删除线的文章内容,随后再确认是否正式删除划线部分文字。

2、将删除的文字另存至一个新的档案中,开一个新的.资料夹来保存在此次写作中没派上用场的文字和资料。在每次写作过程中,都会有许多未使用但却很重要的资料,当中甚至包含在文章撰写初期出现的、有价值的想法。

在处理这些文字时请保持谨慎,写作学术论文是为了清楚传达您的论点,而为了达成此目的,您必须尽可能排除任何可能模糊文章焦点的内容。

学术论文的撰写方法

1、实践法

现在很多高校研究生步入了一个认识误区,这也是他们临近毕业没有取得丰硕的科研成果和具有较强的科研能力的重要原因。他们习惯性地认为,研究生期间,读的书多了,积累的知识多了,临近毕业时,自然就会有很强的科研能力,自然也就可以写出高水平的学术论文和毕业论文来。其实,如果研究生不加选择的、盲目性的读书,学到的很多知识是没有用的。因此,研究生应有选择的读经典著作。仅此还不够,众所周知,科研的能力是需要长期锻炼和培养的,而绝非仅仅是知识积累的结果。有的人读了一辈子书,却是“两脚书橱”,思想观念落伍,没有将所学知识转化为研究成果,对后人也无所裨益。

就研究生而言,平时读的书很多,但是由于不注意练笔,结果眼高手低,到毕业时也写不出像样的学术论文去公开发表。这种现象应引起高度重视和深思。笔者认为,研究生在读书过程中,要充分利用图书馆、网络,搜集相关研究资料,分类存储以备后用。同时,注意围绕热点或自己关注的问题,写心得体会、研究综述和学术评论等文章,善于借鉴学术界有创新意义的学术观点并尝试运用到自己的写作实践中。

2、模仿法

研究生在学术论文写作中遇到最大的困难就是,不知如何选题,不知如何搜集和运用资料,不知如何搭建论文框架结构,也不知写些什么内容,总之不知如何下手。因此,此方法特别适用于初学论文写作者。在实践中,有研究生反映,很多学术大家的论文,艰深难懂,看后产生了畏惧写作的心理,有的反映,看了一线教师教研论文,觉得简单,但又不会写,因为缺乏实践经验;还有的反映,论文创新太难,误认为创新就是“全新”,由此不敢写作。其实,就创新而言,不等于“全新”。创新的要点很多,包括题目的创新、结构的创新、思路的创新、观点的创新、参考资料的创新以及研究方法的创新等诸多方面,对于一篇文章具备的创新点越多,其创新性也就越强。我们研究生在写作时,不要盲目追求“全新”,先低标准要求自己,找一篇同类或类似的文章(和自己研究水平相当或略高于)做参照。可以在行文结构、语言风格等方面进行模仿,而后逐步修改,走模仿到创新之路。

3、切块法

作为导师,要积极鼓励研究生参加调研课题和书稿的撰写工作。一般而言,一个课题或一部书稿,都有明确的结题或完稿的时间限定。这种紧迫性就要求参与者必须潜心读书,严格要求自己,认真撰写出高质量的研究成果来。不论是结项或是著作出版,都要经过有关部门鉴定和认可,这无形中给参与者增加了压力,也增加了科研的动力。之所以提倡研究生参与课题或书稿的编写,原因之一就是“切块法”得到广泛的运用。也即,当研究生在搜集资料撰写研究报告或书稿的过程中,可以从中抽出有价值、有新意的部分,独立成篇,用于发表。由于是在接受重要任务中写出的文章。因此很容易发表在比较权威的杂志上。

4、作业法

目前,在读研究生的专业基础课、专业方向课方面的作业,一般都是以学术论文的形式出现的。然而,很多研究生在做作业时,有一种敷衍、应付的心理,东拼西凑,既糊弄了任课教师,同时也欺自己。笔者认为,研究生要认真对待每一份课程作业,认真选题,搜集资料,按照发表的水平来撰写论文。这样的作业,如果比较成熟,可以随时按照某刊物的要求修改调整并投稿;如果不成熟,则实行冷处理的方法,停放一段时间,等待有新的思考、新的资料、新的观点时再及时补充到该作业(论文)之中,并逐步达到发表水平。

一、调查法

调查法是科学研究中最常用的方法之一。它是有目的、有计划、有系统地搜集有关研究对象现实状况或历史状况的材料的方法。

调查方法是科学研究中常用的基本研究方法,它综合运用历史法、观察法等方法以及谈话、问卷、个案研究、测验等科学方式,对教育现象进行有计划的、周密的和系统的了解,并对调查搜集到的大量资料进行分析、综合、比较、归纳,从而为人们提供规律性的知识。

二、观察法

观察法是指研究者根据一定的研究目的、研究提纲或观察表,用自己的感官和辅助工具去直接观察被研究对象,从而获得资料的一种方法。

科学的观察具有目的性和计划性、系统性和可重复性。在科学实验和调查研究中,观察法具有如下几个方面的作用:扩大人们的感性认识;启发人们的思维;导致新的发现。

三、实验法

实验法是通过主支变革、控制研究对象来发现与确认事物间的因果联系的一种科研方法。其主要特点是:第一、主动变革性。观察与调查都是在不干预研究对象的前提下去认识研究对象,发现其中的问题。

而实验却要求主动操纵实验条件,人为地改变对象的存在方式、变化过程,使它服从于科学认识的需要。

第二、控制性。科学实验要求根据研究的需要,借助各种方法技术,减少或消除各种可能影响科学的无关因素的干扰,在简化、纯化的状态下认识研究对象。第三,因果性。实验以发现、确认事物之间的因果联系的有效工具和必要途径。

四、文献研究法(查找文献法)

文献研究法是根据一定的研究目的或课题,通过调查文献来获得资料,从而全面地、正确地了解掌握所要研究问题的一种方法。文献研究法被广泛用于各种学科研究中。

其作用有:能了解有关问题的历史和现状,帮助确定研究课题;能形成关于研究对象的一般印象,有助于观察和访问;能得到现实资料的比较资料;有助于了解事物的全貌。

五、实证研究法

实证研究法是科学实践研究的一种特殊形式。其依据现有的科学理论和实践的需要,提出设计,利用科学仪器和设备,在自然条件下,通过有目的有步骤地操纵,根据观察、记录、测定与此相伴随的现象的变化来确定条件与现象之间的因果关系的活动。主要目的在于说明各种自变量与某一个因变量的关系。

参考资料来源:百度百科-研究方法

论文的研究方法:规范研究法,实证研究法,案例分析法,比较分析法,思维方法,内容分析法,文献分析法,数学方法。

一、规范研究法

会计理论研究的一般方法,它是根据一定的价值观念或经济理论对经济行为人的行为结果及产生这一结果的制度或政策进行评判,回答经济行为人的行为应该是什么的分析方法。

二、实证研究法

实证研究法是认识客观现象,向人们提供实在、有用、确定、精确的知识研究方法,其重点是研究现象本身“是什么”的问题。实证研究法试图超越或排斥价值判断,只揭示客观现象的内在构成因素及因素的普遍联系,归纳概括现象的本质及其运行规律。

三、案例分析法

案例分析法是指把实际工作中出现的问题作为案例,交给受训学员研究分析,培养学员们的分析能力、判断能力、解决问题及执行业务能力的培训方法,具体说来:

四、比较分析法

是通过实际数与基数的对比来提示实际数与基数之间的差异,借以了解经济活动的成绩和问题的一种分析方法。在科学探究活动中常常用到,他与等效替代法相似。

五、思维方法

思维方法是人们正确进行思维和准确表达思想的重要工具,在科学研究中最常用的科学思维方法包括归纳演绎、类比推理、抽象概括、思辩想象、分析综合等,它对于一切科学研究都具有普遍的指导意义。

六、内容分析法

内容分析法是一种对于传播内容进行客观,系统和定量的描述的研究方法。其实质是对传播内容所含信息量及其变化的分析,即由表征的有意义的词句推断出准确意义的过程。内容分析的过程是层层推理的过程。

七、文献分析法

文献分析法主要指搜集、鉴别、整理文献,并通过对文献的研究,形成对事实科学认识的方法。文献分析法是一项经济且有效的信息收集方法,它通过对与工作相关的现有文献进行系统性的分析来获取工作信息。一般用于收集工作的原始信息,编制任务清单初稿。

八、数学方法

数学方法就是在撇开研究对象的其他一切特性的情况下,用数学工具对研究对象进行一系列量的处理,从而作出正确的说明和判断,得到以数字形式表述的成果。科学研究的对象是质和量的统一体,它们的质和量是紧密联系,质变和量变是互相制约的。

要达到真正的科学认识,不仅要研究质的规定性,还必须重视对它们的量进行考察和分析,以便更准确地认识研究对象的本质特性。数学方法主要有统计处理和模糊数学分析方法。

相关百科

热门百科

首页
发表服务