初一数学小论文今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做!!!想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了!想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法!想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!数学小论文:《容易忽略的答案》大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
呵呵不要说我教坏你给你两篇我用了N次的范文哈《容易忽略的答案》大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。关于“0”0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。
“写什么?怎样写?”这是每个学写小论文的同学都会碰到的问题。一篇好论文的产生,对于它的作者来说是一次创造性的劳动。创造性的劳动对劳动者的要求是很高的。其创作的素材、水平,乃至创作的灵感……,绝不是轻易可以得到的,它们需要作者在自己的学习与生活实践中,去进行长期的积累与思考。从我校征集的论文来看,作者中有的是在平时十分注意对课本知识进行归纳整理、拓展延伸,学习中有许多意想不到的收获;有的是从课外阅读中得到收获与启发后,获得灵感、得以选题;……更有甚者是,有的作者在生活中发现问题注意观察、探究,并与自己的数学学习相联系,对观察、探究的结果进行思考、归纳、总结,升华为理论,写出了令人叫绝的好论文。综观获奖论文的小作者们,他们大多是数学学习的有心人。好论文的作者不仅要有较好的数学感悟,还要有良好的文学修养、综合素养。写小论文的关键,首先就是选题,大家的选题要从自己最熟悉的、最想写的内容入手。下面我结合我校同学部分获奖论文的选题,进行一点简单的选题分析。论文按内容分类,大概有以下几种:①勤于实践,学以致用,对实际问题建立数学模型,再利用模型对问题进行分析、预测;如:探究大桥的热胀冷缩度②对生活中普遍存在而又扰人心烦的小事,提出了巧妙的数学方法来解决它;如: 一台饮水机创造的意想不到的实惠③对数学问题本身进行研究,探索规律,得出了解决问题的一般方法如: 分式“家族”中的亲缘探究如: 纸飞机里的数学④对自己数学学习的某个章节、或某个内容的体会与反思如: “没有条件”的推理如: 小议“黄金分割”如: 奇妙的正五角星① 课题要小而集中,要有针对性;② 见解要真实、独特,有感而发,富有新意;③ 要用自己的语言表述自己要表达的内容(四) 评价数学小论文的标准什么样的数学小论文算是好的论文呢?标准很多,但我以为一篇好的数学小论文必须有以下三个特征——新、真、美。“新”,指的就是选题要有独特的视角,写的内容不是简单地重复别人的东西、不是单纯地下载一段。文字,最好是自己原创的,至少要有自己的创造、自己的观点,属于自己的思想;“真”,指的就是内容要实在、言之有理,既不能空洞无味、也不能冗长拖沓,文章要紧扣主题,力求做到准确、精练,尽量地体现数学的严谨性与科学性;“美”,指的就是语言通顺、文笔流畅,文章要给人以美的享受。当然,从第二届时代数学学习“时代之星”实践与创新论文大赛的名称来看,既有实践又有创新的论文肯定更容易受到评委们的亲睐,所以,我希望同学们更加贴近生活、注意观察、去寻找、去发现,把生活与数学联系起来,把学习撰写论文、争取写出好的论文,作为对自己数学学习的一种评价、一种补充、一种提高,这样你学写小论文的目的就对了,你就会将数学小论文越写越好。“梅花香自苦寒来”,只要肯下大工夫、只要肯吃的起苦,不断地去思考、去揣摸,去学习,好的数学论文就一定会在你的手中诞生。总之,学习撰写论文、争取写出好的论文,对于我们每一位同学来说,始终是一个锻炼自己、提高能力的极好的方式。我相信我校初一、初二的同学们一定会在老师的组织与指导下积极参与第二届《时代数学学习》“时代之星”实践与
刘徽 刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产.《九章算术》约成书于东汉之初,共有246个问题的解法.在许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列,但因解法比较原始,缺乏必要的证明,而刘徽则对此均作了补充证明.在这些证明中,显示了他在多方面的创造性的贡献.他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的立方根.在代数方面,他正确地提出了正负数的概念及其加减运算的法则;改进了线性方程组的解法.在几何方面,提出了割圆术,即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法.他利用割圆术科学地求出了圆周率π=的结果.刘徽在割圆术中提出的割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣,这可视为中国古代极限观念的佳作.《海岛算经》一书中, 刘徽精心选编了九个测量问题,这些题目的创造性、复杂性和富有代表性,都在当时为西方所瞩目.刘徽思想敏捷,方法灵活,既提倡推理又主张直观.他是我国最早明确主张用逻辑推理的方式来论证数学命题的人.刘徽的一生是为数学刻苦探求的一生.他虽然地位低下,但人格高尚.他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富.贾宪贾宪,中国古代北宋时期杰出的数学家。曾撰写的《黄帝九章算法细草》(九卷)和《算法斆古集》(二卷)(斆xiào,意:数导)均已失传。 他的主要贡献是创造了贾宪三角和增乘开方法,增乘开方法即求高次幂的正根法。目前中学数学中的混合除法,其原理和程序均与此相仿,增乘开方法比传统的方法整齐简捷、又更程序化,所以在开高次方时,尤其显出它的优越性,这个方法的提出要比欧洲数学家霍纳的结论早七百多年。秦九韶秦九韶(约1202--1261),字道古,四川安岳人。先后在湖北,安徽,江苏,浙江等地做官,1261年左右被贬至梅州,(今广东梅县),不久死于任所。他与李冶,杨辉,朱世杰并称宋元数学四大家。早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的《数书九章》。《数书九章》全书凡18卷,81题,分为九大类。其最重要的数学成就----“大衍总数术”(一次同余组解法)与“正负开方术(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。李冶李冶(1192----1279),原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回乡。1248年撰成《测圆海镜》,其主要目的是说明用天元术列方程的方法。“天元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某“,可以说是符号代数的尝试。李冶还有另一步数学著作《益古演段》(1259)也是讲解天元术的。朱世杰朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”(莫若、祖颐:《四元玉鉴》后序)。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算术启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创造有“四元术”(多元高次方程列式与消元解法)、“垛积术”(高阶等差数列求和)与“招差术”(高次内插法).祖冲之祖冲之(公元429~500年)祖籍是现今河北省涞源县,他是南北朝时代的一位杰出科学家。他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。 祖冲之在数学方面的主要成就是关于圆周率的计算,他算出的圆周率为<π<,这一结果的重要意义在于指出误差的范围,是当时世界最杰出的成就。祖冲之确定了两个形式的π值,约率355/173(≈)密率22/7(≈),这两个数都是π的渐近分数。祖暅祖暅,祖冲之之子,同其父祖冲之一起圆满解决了球面积的计算问题,得到正确的体积公式。现行教材中著名的“祖暅原理”,在公元五世纪可谓祖暅对世界杰出的贡献。杨辉杨辉,中国南宋时期杰出的数学家和数学教育家。在13世纪中叶活动于苏杭一带,其著作甚多。 他著名的数学书共五种二十一卷。著有《详解九章算法》十二卷(1261年)、《日用算法》二卷(1262年)、《乘除通变本末》三卷(1274年)、《田亩比类乘除算法》二卷(1275年)、《续古摘奇算法》二卷(1275年)。 杨辉的数学研究与教育工作的重点是在计算技术方面,他对筹算乘除捷算法进行总结和发展,有的还编成了歌决,如九归口决。 他在《续古摘奇算法》中介绍了各种形式的纵横图及有关的构造方法,同时垛积术是杨辉继沈括隙积术后,关于高阶等差级数的研究。杨辉在纂类中,将《九章算术》246个题目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分、叠积、盈不足、方程、勾股等九类。 他非常重视数学教育的普及和发展,在《算法通变本末》中,杨辉为初学者制订的习算纲目是中国数学教育史上的重要文献。赵爽赵爽,三国时期东吴的数学家。曾注《周髀算经》,他所作的《周髀算经注》中有一篇《勾股圆方图注》全文五百余字,并附有云幅插图(已失传),这篇注文简练地总结了东汉时期勾股算术的重要成果,最早给出并证明了有关勾股弦三边及其和、差关系的二十多个命题,他的证明主要是依据几何图形面积的换算关系。 赵爽还在《勾股圆方图注》中推导出二次方程 (其中a>0,A>0)的求根公式 在《日高图注》中利用几何图形面积关系,给出了重差术的证明。(汉代天文学家测量太阳高、远的方法称为重差术)。华罗庚华罗庚,中国现代数学家。1910年11月12日生于江苏省金坛县。1985年6月12日在日本东京逝世。华罗庚1924年初中毕业之后,在上海中华职业学校学习不到一年,因家贫辍学,他刻苦自修数学,1930年在《科学》上发表了关于代数方程式解法的文章,受到专家重视,被邀到清华大学工作,开始了数论的研究,1934年成为中华教育文化基金会研究员。1936年作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。1946年应苏联普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。1948年始,他为伊利诺伊大学教授。 1924年金坛中学初中毕业,后刻苦自学。1930年后在清华大学任教。 1936年赴英国剑桥大学访问、学习。1938年回国后任西南联合大学教授。1946年赴美国,任普林斯顿数学研究所研究员、普林斯顿大学和伊利诺斯大学教授,1950年回国。 历任清华大学教授,中国科学院数学研究所、应用数学研究所所长、名誉所长,中国数学学会理事长、名誉理事长,全国数学竞赛委员会主任,美国国家科学院国外院士,第三世界科学院院士,联邦德国巴伐利亚科学院院士,中国科学院物理学数学化学部副主 任、副院长、主席团成员,中国科学技术大学数学系主任、副校长,中国科协副主席,国务院学位委员会委员等职。曾任一至六届全国人大常务委员,六届全国政协副主席。 曾被授予法国南锡大学、香港中文大学和美国伊利诺斯大学荣誉博士学位。主要从事解 析数论、矩阵几何学、典型群、自守函数论、多复变函数论、偏微分方程、高维数值积 分等领域的研究与教授工作并取得突出成就。40年代,解决了高斯完整三角和的估计这 一历史难题,得到了最佳误差阶估计(此结果在数论中有着广泛的应用);对.哈 代与.李特尔伍德关于华林问题及E.赖特关于塔里问题的结果作了重大的改进,至 今仍是最佳纪录。 代数方面,证明了历史长久遗留的一维射影几何的基本定理;给出 了体的正规子体一定包含在它的中心之中这个结果的一个简单而直接的证明,被称为嘉 当-布饶尔-华定理。其专著《堆垒素数论》系统地总结、发展与改进了哈代与李特尔伍 德圆法、维诺格拉多夫三角和估计方法及他本人的方法,发表40余年来其主要结果仍居 世界领先地位,先后被译为俄、匈、日、德、英文出版,成为20世纪经典数论著作之一。其专著《多个复变典型域上的调和分析》以精密的分析和矩阵技巧,结合群表示论,具体给出了典型域的完整正交系,从而给出了柯西与泊松核的表达式。这项工作在 调和分析、复分析、微分方程等研究中有着广泛深入的影响,曾获中国自然科学奖一等 奖。倡导应用数学与计算机的研制,曾出版《统筹方法平话》、《优选学》等多部著作 并在中国推广应用。与王元教授合作在近代数论方法应用研究方面获重要成果,被称为 “华-王方法”。在发展数学教育和科学普及方面做出了重要贡献。发表研究论文200多 篇,并有专著和科普性著作数十种。陈景润数学家,中国科学院院士。1933 年5月22日生于福建福州。1953年毕业于厦门大学数学系。1957年进入中国科学院数学研究所并在华罗庚教授指导下从事数论方面的研究。历任中国科学院数学研究所研究员、所学术委员会委员兼贵阳民族学院、河南大学、青岛大学、华中工学院、福建师范大学等校教授,国家科委数学学科组成员,《数 学季刊》主编等职。主要从事解析数论方面的研究,并在哥德巴赫猜想研究方面取得国 际领先的成果。这一成果国际上誉为“陈氏定理”,受到广泛引用。这项工作,使之与王 元教授、潘承洞教授共同获得1978年国家自然科学奖一等奖。其后对上述定理又作了改 进,并于1979年初完成论文《算术级数中的最小素数》,将最小素数从原有的80推进到 16 ,受到国际数学界好评。对组合数学与现代经济管理、科学实验、尖端技术、人类 生活密切关系等问题也作了研究。发表研究论文70余篇,并有《数学趣味谈》、《组合数学》等著作。
初中学生的七年级数学学习随着我国新课程标准的实施以及素质教育的不断深入,初中七年级数学处于数学学习的过渡阶段,培养学生的自主学习能力对其未来的学习与发展具有重要意义。下面是我为大家整理的,供大家参考。
摘要:对刚进入七年级的学生来说,这个时段是适应中学数学教学、缩短小学学习与中学学习距离的过渡期。如果一开始学生就对数学不感兴趣,甚至害怕数学,那么会直接影响到今后的学习。要让七年级新生爱上数学课,就要求教师做学生喜欢的教师,要教给学生正确的学习方法,课堂教学要有更高的艺术性,在课堂上能吸引学生,让学生产生浓厚的兴趣,才能达到预期的教学效果。
关键词:生活教育;喜欢;第一节数学课;学习乐园
中图分类号: 文献标识码:A 文章编号:1992-7711***2014***01-0007
著名的人民教育家陶行知说:“治学以兴趣为主,兴趣愈多,则从事弥力,从事弥力则成效愈著。”《数学课程标准》也明确指出,数学教学要重视激发和培养学生学习数学的兴趣,学生一旦对数学产生浓厚的兴趣,就乐于接触它,变“苦学”为“乐学”。下面,结合工作实践,笔者就如何让七年级新生喜欢上数学课问题谈点浅见。
一、做一名学生喜欢的数学教师
陶行知先生说:“真教育是心心相印的活动,唯独从心里发出来,才能打动心灵的深处。”只有师生情感融洽,学生才会敢想、敢问、敢说,才会愿学,才会学有所成。在课堂教学中,笔者总是微笑地面对学生,从不板著脸上课,更不对学生大声训斥,把他们当成自己的朋友或孩子来看待,力求做到尊重每一位学生。
在数学教学中,笔者十分强调理论联络实际。例如,学习有理数加减混合运算,笔者举这样的例子:现在老师存摺上有100元,下午存入300元,明天取出50元,后天取出100元后,存摺上还有多少元?通过这道题的计算,你知道存摺上的余额是如何计算吗?若余额为负数说明什么?让学生去计算、去思考,培养他们的数学学习兴趣,激发他们的数学学习热情,让他们感受到生活中处处有数学知识,学习数学知识充满著无穷的乐趣。
陶行知先生说:“待学生如亲子弟”。教师要得到学生的爱,她必须爱她所教的每一位学生,将其当作自己的孩子;教师要有宽广的胸怀、积极的情绪、平易近人的态度、笑容可掬的表情,要善于营造一种和谐、愉快、亲切、友好的气氛;要爱学生成长过程中的每一微小“闪光点”,要爱他们具有极大的可塑性,要爱他们在教育过程中的主体能动性,要爱他们成长过程中孕育出来的一串串教育劳动成果。教师的爱要一视同仁,持之以恒;爱要以爱动其心,以严导其行;爱要以理解、尊重、信任为基础。只有这样的爱,才能爱出师生间的“师生谊”,才真正得到学生的喜爱。
二、上好开学的第一节数学课
俗话说:“良好的开端是成功的一半。”小学生进入中学后,数学不再是单纯的计算,而是数学进一步内容拓宽、知识更一步深化,加上部分学生还未脱离教师的“哺乳”时期,没有自觉“摄取”的能力,致使有些学生因不会学习或学不得法而成绩逐渐下降,久而久之失去学习信心和兴趣,开始陷入厌学的困境,因此设计好开学第一节数学课非常重要。
第一,课前,教师最好是修饰一下自己,着装大方得体,有亲和力。第一节课最好不要多讲正课,可以讲一些和正课相关联的知识及其生活实用性,让学生产生一种急切求知的欲望。若教师进入课堂就讲课,因为学生还不熟悉教师,对教师还有很多的神秘感,上来就讲课,学生也会因为对教师感兴趣的程度大于对教学内容的程度,导致教学效果不佳。上第一节课要做自我介绍,要有一个漂亮的出彩的亮相,可以介绍自己的过人之处和自认为是闪光点和值得骄傲的地方。这个开场白是最吸引学生的,有助于学生了解教师的过去、教师的长处,促进师生友谊的建立。让学生在你的自我介绍里,感受智慧之美,拼搏之美,进取之美。要让学生感觉教师是一个博学的教师,聪慧的教师,从心里敬佩的教师。
第二,要让学生掌握初中数学学习方法,首先,七年级学生往往不善于预习,也不知道预习起什么作用,预习仅是流于形式,粗略地看一遍,看不出问题和疑点。笔者要求学生预习时应做到:一粗读,先粗略浏览教材的有关内容,知道本节所要讲的内容。二细读,对重要概念、公式、法则、定理反复阅读、体会、思考,注意知识的形成过程,对难以理解的概念作标记,以便带着问题去听课。三做练习,通过练习检验预习效果。
其次,在小学,教师一般采用直观形象到抽象概括的教学方法,通过讲解、演示、操作等过程建构新知,节奏慢、坡度小。很多学生认为学数学就是做作业,多做练习,课本成了“习题集”。到初中后,由于学科的增加和学习内容的抽象,课堂知识容量增大,教学进度较快,演示、操作减少,抽象的思维活动增加,很多学生深感不适应。因此,要教会学生处理好课堂“听”、“思”、“记”的关系。“听”每节重点、难点剖析***尤其是预习中的问题***,“听”例题解法的思路和数学思想方法的体现。“思”是指多思、勤思,随听随思,并善于大胆提出问题。“记”就是记要点、记疑问、记解题思路和方法;记小结、记课后思考题。可以说“听”是“思”的基础,“思”是“听”的深层次掌握,是学习方法的核心和本质的内容,会思考才会学习,“记”是为“听”和“思”服务的。掌握好这三者的关系,就能使课堂这一数学学习主要环节达到较完美的境界。
三、让数学课堂变成学生学习的乐园
陶行知曾以《假如我重新做一个小孩》为题,阐明儿童教育应该包括的内容,其中有句发人深思的话,“我要多玩玩”。七年级学生活泼好动,不喜欢单调的重复和机械的练习。我们要传承陶行知先生的教育思想,尊重学生的年龄特点、心理特点,灵活地运用教法,把枯燥的数学学习变成了学生学习的乐园。
1. 在“做数学”中体验数学学习的乐趣。练习是使学生掌握知识,形成技能、发展智力的重要手段。课堂练习设计得好,不仅巩固新知识而且可以增添学生学习数学的兴趣。因此,在设计练习时,笔者力求设计各种情节有趣、形式新颖的练习形式。例如:引入负数后,七年级新生的计算出错,很多是符号出错,笔者就设计了如下快速抢答题,1×***-5***= ;1÷***-5***= ;1+***-5***= ;1-***-5*** = ;-1+***-5*** = ;-1-***-5*** = ;-1×***-5*** = ;-1÷***-5*** = ;***-3***= ;***-2***= -2= -2= 。要求回答对的,就通过。回答错的,教师点拨后,出题再做,对了,就编题给同学做,大受学生喜欢,学习的热情非常高涨。平时笔者还根据不同的教学内容设计不同型别、不同层次的练习题,满足学生不同层次的需求,照顾不同层次的学生,使学生始终保持高昂的学习热情。 2. 在合作交流中体验数学学习的乐趣。充满活力的数学课堂,应该是对学生具有吸引力、亲和力的“磁性”课堂。合作学习的情景来源于教师有目的地创造,在数学课堂教学中教师若能自然地创设合作学习的情境,不仅能让学生产生合作的冲动和交流的愿望,还能激发学生的学习兴趣。例如:在教学“数轴”时,让学生以小组为单位,讨论学校要在校门公路旁植树,每隔3米植一棵树,问在21米长的公路旁植树最多可植几棵树?有学生可能会得出:21÷3=7,可植树7棵;有学生结合数轴就很直观了,可植树8棵。经过大家讨论得到结论为:这类题要结合数轴,要注意考虑线段的端点,否则容易出错。再如,为让学生能找到正方体展开图的相对面,笔者让同桌合作将展开图折起来。在这个过程中,学生始终处于积极的探究性活动中,让同学们感到合作的力量,得到成功体验的机会。感受到学习过程的快乐,同时获得了数学思想和方法,产生学习数学的兴趣,树立学好数学的自信心。
3. 合理评价,让学生体验成功的乐趣。苏霍姆林斯基说过“你在任何时候也不要给学生打不及格的分数,请记住:成功的欢乐是一种巨大的情绪力量。”这启示我们教师在教学中应改变以往的评价方式,以鼓励性评价为主,让每一个学生都能抬起头来学习。例如,有一次笔者出示口算“3+***-6***”,一个学生,回答说:3+***-6***=3。笔者没有直接“宣判”对或错,而是说:“非常接近标准答案,你能再想一想吗?”这位学生放松地想了想,答:“3+***-6***=-3。”“你再编一编类似的题目,考考其他同学。”该生自己改正了自己的错误,体面地坐下了,自尊心得到了保护。每个孩子都有被人赏识的渴望,都希望得到别人的赞扬,宽容和鼓励。在教学中,要多鼓励表扬,让学生尝到成功的喜悦。教师的眼神、笑容、一个手势等对学生都是一种鼓励,让学生感受到自己被尊重,被信任。所以,每次学生回答后,笔者常用“你很聪明,你的回答对了!”“你真了不起,发现了同学出错的地方!”等这些充满 *** 、充满鼓励的语言来评价学生,保护了学生学习的积极性,使他们觉得学数学是快乐的,从而喜爱上数学课。
此外,教师还可以运用故事、比赛、表演等活动形式,保持学生学习数学的兴趣,陶冶学生情操,使学生愉快学习,从而形成稳定而持久的学习乐趣。
七年级数学是中学数学的基础,如果七年级新生能爱上数学课,就可以提高中学数学教学质量。为了使七年级学生尽快适应中学数学教学、顺利完成学习任务,必须从七年级学生的特点出发,让七年级学生对数学感兴趣,为以后学习奠定基础。
参考文献:
[1] 普天明,黄永明.数学教学方法的更新探索[J].课程教材教学研究***中教研究***,2005***Z1***.
[2] 陈芝红.初中数学教学方法新探[J].浙江教育科学,2007***6***.
【摘 要】常听家长说我的小孩小学数学都要考八十几分九十几分,现在上了初中孩子连及格都成问题。究其原因,学生没能适应初中阶段的学习.有些知识在成人看来很简单,在学生眼里却很难理解,所以我们做教师的,走进孩子的内心,从学生的角度思考问题,帮助孩子们搞好六七年级的衔接,以适应初中阶段的学习
【关键词】适应;衔接;策略
有关策略的含义,目前在学界有着多种不同的表述,其中“策略是旨在达到某种目的而对步骤与方法、技巧等所作的优化组合、精巧安排”。它点出了策略的本质属性,为帮助孩子们顺利度过六七年级的过渡期,根据个人经验,以生为本从孩子的角度出发展开教学,有利于帮助孩子们尽快适应初中阶段的学习.
一、上课适当放慢速度,帮助孩子们适应“课堂容量小到课堂容量大”的过渡
小学阶段教学内容较少,初中阶段教学内容较多,课堂容量显然加大.一般来说,小学老师教态较亲切,课内提问次数较多,有时一堂课内每位学生都可能有被问一次的机会,问题多半讲得较细,有时还可反复讲,反复练.,所以大部分的小学生在老师的帮助下是基本可以掌握好小学的有关知识的.,而初中阶段学习科目和每节课的授课内容都比小学多,课内外的时间都比较紧,课内提问,练习,辅导,讲解都不可能像小学那样频繁,那么细,初一新生基本上还具有小学生的学习心理,跟不上老师的步伐,导致学习掉队,所以我们初一教师开始一段时间不能操之过急,应顺应小学教师的教法,教学的内容少一些,进度慢一些,在具体讲授每节课知识时,做到形象、直观、对比、有趣等,课堂上尽可能多提问,但要提到要害处,,多启发、多表扬、多练习,引导学生逐步进入初中学习轨道。
二、做好翻译工作,帮助孩子们“学会对符号语言的理解认识”
由小学具体的数到初中用字母表示数这一飞跃,也是学生感到困难的地方。学生对表示数的字母作用产生片面认识,老师在教学中必须设法使学生真正理解用字母表示数的意义及目的,让学生知道字母表示数最本质的东西。由于负数的引入引出了绝对值等概念,数的运算出现了符号法则。成为学生学习的又一难点,如何让学生很自然地把有理数的运算与非负有理数的运算统一起来,是老师在教学中必须着力解决的。比如a>0,对七年级的学生不明白是什么意思,老师要具体翻译为字母a表示的是正数,a=a这个式子在七年级学生眼里有些茫然,老师要具体翻译为一个数的绝对值等于它的相反数,这样学生才明确原来这个数可以是0也可以是负数,诸如这样的符号语言式子较多,老师要不厌其烦的将他们翻译成中文语言让学生逐步学会认识理解,从而学会数学符号语言的认识与表述。
三、用数形结合思想帮助孩子适应“形象思维到抽象思维的过渡”
小学几何中对图形的性质和位置关系没有深入的研究,而初中几何就是通过研究几何图形的性质来研究物体的形状、大小和位置的,几何图形是研究几何命题的必需的直观工具,对于初中生来说,图形的形象思维比抽象思维更容易接受。因此,在几何教学中,要充分利用图形帮助学生克服抽象思维的困难。例如:已知a>0,b<0,a>b,比较a,-a,b. -b的大小。学生认为没告诉具体数值无法比较,聪明一点的孩子可以用特值法,但对结论的正确与否自己没把握,这是一个代数问题,数形结合仍然适用。教师指导学生画出数轴,在数轴上根据a、b的位置标出-a、-b的位置,再根据“数轴上的数从左往右越来越大”进行比较,在直观图形下,学生一目了然,进一步加深了对相反数和有理数比较大小的理解,同时通过具体的例子感受数形结合思想可以转化问题的难度。
刚进入七年级学习的学生,对知识的理解更多地停留在感性认识的层面上,因此,更要重视学生由感性认识向理性认识的过渡。在数学知识的形成与应用上,不要对学生的理解持较高的要求,要尽可能地让学生经历整个知识的发生过程,理解知识的形成过程。有时要动手画图,有时还要让孩子们动手操作拼图,苏霍姆林斯基说“儿童的智慧在他们的手指尖上。”通过动手操作把抽象的东西转化为具体的,学生就理解了,这样就能使学生学习变得自然、轻松、高效。
四、教师规范书写的展示帮助孩子们适应“单纯的数字运算到规范书写”要求的过渡.
小学数学多是单纯的数字运算,对学生的书写格式要求不高,而重庆市近些年的数学中考150分的题目,有80分需要过程表述,可见随着年级的增高对书写格式的要求也在不断增加。初一学生很多时候做解答题只写答案,要么就是几个数字摆在那儿,没有必要的叙述和步骤,只满足于写对答案,而不苛求于解题过程的合理性与逻辑性。所以教师要一步一步把过程详细的展示给学生看,让学生在观摩中逐步学会规范的过程书写。从学生的实际出发,加强对学习困难生的个别辅导,作业的检查和批改做到及时评价,及时矫正。讲课时要有意放慢进度,概念应从学生的生活实际引入,深入浅出地讲,同时,针对七年级学生的注意力不能长时间集中,不适应单一的教学法的特点,方法上要讲练结合,严格统一书写格式。让学生通过感知―---概括―---应用的思维过程加强对知识的理解,从而引导学生发现真理,掌握规律,学会运用,学会书写。
五、进行学法指导,引导学生逐步学会自主学习,帮助孩子们适应“知识难度加大”的过渡
初中生活对七年级新生具有新鲜感,在心理上普遍存在着一种上进的愿望,教师应抓住这个契机,激发学生的学习热情。在学习能力方面,他们的记忆力较强,但理解力较差,习惯于具体思维而不习惯于抽象思维,不善于独立思考,对老师有依赖心理。教师要根据学生的实际认识水平,尽量做到按基本知识、基本技能和基本思想方法三个方面考察学生,使大多数学生学习数学能变被动为主动。首先要指导学生如何听课做笔记,如何搞知识小结,习题归类,以及作业的书写格式,做题规范等等。其次要引导学生学会读数学书,课前读书能使学生找出疑点,抓注重点;课后读书能弥补课堂上探索知识时的不足,还能深化所学知识。再次要教会学生如何订正错题,逐步在较高的层次上学会知识概括等等。通过实际例子的思维过程引导,让学生感悟转化思想。让学生感悟在研究数学问题时,将未解决的问题转化成已解决的问题,将复杂的问题转化成简单的问题,将数量问题转化成图形问题或将图形问题转化成数量问题等等。
作为教师从学生实际出发,了解每个学生的基础知识、学习方法、性格特点和心理活动等多方面的情况,在中、小学数学知识间架起衔接的桥梁,以生为本从学生的角度展开教学,帮助学生顺利过渡。
杨辉三角是一个由数字排列成的三角形数表,一般形式如下: 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 … … … … … 杨辉三角最本质的特征是,它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两个数之和。其实,中国古代数学家在数学的许多重要领域中处于遥遥领先的地位。中国古代数学史曾经有自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页。杨辉,字谦光,北宋时期杭州人。在他1261年所著的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图。而这样一个三角在我们的奥数竞赛中也是经常用到,最简单的就是叫你找规律。现在要求我们用编程的方法输出这样的数表。 同时 这也是多项式(a+b)^n 打开括号后的各个项的二次项系数的规律 即为 0 (a+b)^0 (0 nCr 0) 1 (a+b)^1 (1 nCr 0) (1 nCr 1) 2 (a+b)^2 (2 nCr 0) (2 nCr 1) (2 nCr 2) 3 (a+b)^3 (3 nCr 0) (3 nCr 1) (3 nCr 2) (3 nCr 3) . ... ... ... ... ... 因此 杨辉三角第x层第y项直接就是 (y nCr x) 我们也不难得到 第x层的所有项的总和 为 2^x (即(a+b)^x中a,b都为1的时候) [ 上述y^x 指 y的 x次方;(a nCr b) 指 组合数] 其实,中国古代数学家在数学的许多重要领域中处于遥遥领先的地位。中国古代数学史曾经有自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页。 杨辉,字谦光,北宋时期杭州人。在他1261年所著的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图。 而这样一个三角在我们的奥数竞赛中也是经常用到,最简单的就是叫你找规律。具体的用法我们会在教学内容中讲授。 在国外,这也叫做"帕斯卡三角形". 还有小故事: (一)失之毫厘,谬以千里 1967年8月23日,苏联的联盟一号宇宙飞船在返回大气层时,突然发生了恶性事故——减速降落伞无法打开。苏联中央领导研究后决定:向全国实况转播这次事故。当电视台的播音员用沉重的语调宣布,宇宙飞船在两小时后将坠毁,观众将目睹宇航员弗拉迪米·科马洛夫殉难的消息后,举国上下顿时被震撼了,人们都沉浸在巨大的悲痛之中。 在电视上,观众们看到了宇航员科马洛夫镇定自若的形象。他面带微笑地对母亲说:“妈妈,您的图像我在这里看得清清楚楚,包括您头上的每根白发,您能看清我吗?” “能,能看清楚。儿啊,妈妈一切都很好,你放心吧!” 这时,科马洛夫的女儿也出现在电视屏幕上,她只有12岁。科马洛夫说:“女儿,你不要哭。”“我不哭……”女儿已泣不成声,但她强忍悲痛说:“爸爸,你是苏联英雄,我想告诉你,英雄的女儿会像英雄那样生活的!” 科马洛夫叮嘱女儿说:“你学习时,要认真对待每一个小数点。联盟一号今天发生的一切,就是因为地面检查时忽略了一个小数点……” 时间一分一秒地过去了,距离宇宙飞船坠毁的时间只有7分钟了。科马洛夫向全国的电视观众挥挥手说:“同胞们,请允许我在这茫茫的太空中与你们告别。” 即使是一个小数点的错误,也会导致永远无法弥补的悲壮告别。 古罗马的恺撒大帝有句名言:“在战争中,重大事件常常就是小事所造成的后果。” 换成我们中国的警句大概就是“失之毫厘,谬以千里”吧。 (二)一个故事引发的数学家 陈景润一个家喻户晓的数学家,在攻克歌德巴赫猜想方面作出了重大贡献,创立了著名的“陈氏定理”,所以有许多人亲切地称他为“数学王子”。但有谁会想到,他的成就源于一个故事。 1937年,勤奋的陈景润考上了福州英华书院,此时正值抗日战争时期,清华大学航空工程系主任留英博士沈元教授回福建奔丧,不想因战事被滞留家乡。几所大学得知消息,都想邀请沈教授前进去讲学,他谢绝了邀请。由于他是英华的校友,为了报达母校,他来到了这所中学为同学们讲授数学课。 一天,沈元老师在数学课上给大家讲了一故事:“200年前有个法国人发现了一个有趣的现象:6=3+3,8=5+3,10=5+5,12=5+7,28=5+23,100=11+89。每个大于4的偶数都可以表示为两个奇数之和。因为这个结论没有得到证明,所以还是一个猜想。大数学欧拉说过:虽然我不能证明它,但是我确信这个结论是正确的。 它像一个美丽的光环,在我们不远的前方闪耀着眩目的光辉。……”陈景润瞪着眼睛,听得入神。 从此,陈景润对这个奇妙问题产生了浓厚的兴趣。课余时间他最爱到图书馆,不仅读了中学辅导书,这些大学的数理化课程教材他也如饥似渴地阅读。因此获得了“书呆子”的雅号。 兴趣是第一老师。正是这样的数学故事,引发了陈景润的兴趣,引发了他的勤奋,从而引发了一位伟大的数学家。 (三)为科学而疯的人 由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度。在1874—1876年期间,不到30岁的年轻德国数学家康托尔向神秘的无穷宣战。他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应。这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”,后来几年,康托尔对这类“无穷集合”问题发表了一系列文章,通过严格证明得出了许多惊人的结论。 康托尔的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂。有人说,康托尔的集合论是一种“疾病”,康托尔的概念是“雾中之雾”,甚至说康托尔是“疯子”。来自数学权威们的巨大精神压力终于摧垮了康托尔,使他心力交瘁,患了精神分裂症,被送进精神病医院。 真金不怕火炼,康托尔的思想终于大放光彩。1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托尔的工作“可能是这个时代所能夸耀的最巨大的工作。”可是这时康托尔仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦。1918年1月6日,康托尔在一家精神病院去世。 康托尔(1845—1918),生于俄国彼得堡一丹麦犹太血统的富商家庭,10岁随家迁居德国,自幼对数学有浓厚兴趣。23岁获博士学位,以后一直从事数学教学与研究。他所创立的集合论已被公认为全部数学的基础。 (四)数学家的“健忘” 我国数学家吴文俊教授六十寿辰那天,仍如往常,黎明即起,整天浸沉在运算和公式中。 有人特地选定这一天的晚间登门拜门拜访,寒暄之后,说明来意:“听您夫 人说,今天是您六十大寿,特来表示祝贺。” 吴文俊仿佛听了一件新闻,恍然大悟地说:“噢,是吗?我倒忘了。” 来人暗暗吃惊,心想:数学家的脑子里装满了数字,怎么连自己的生日也记不住? 其实,吴文俊对日期的记忆力是很强的。他在将近花甲之年的时候,又先攻 了一个难题——“机器证明”。这是为了改变了数学家“一支笔、一张纸、一个脑袋”的劳动方式,运用电子计算机来实现数学证明,以便数学家能腾出更多的时间来进行创造性的工作,他在进行这项课题的研究过程中,对于电子计算机安装的日期、为计算机最后编成三百多道“指令”程序的日期,都记得一清二楚。 后来,那位祝寿的来客在闲谈中问起他怎么连自己生日也记不住的时候,他知着回答: “我从来不记那些没有意义的数字。在我看来,生日,早一天,晚一天,有 什么要紧?所以,我的生日,爱人的生日,孩子的生日,我一概不记,他从不想 要为自己或家里的人庆祝生日,就连我结婚的日子,也忘了。但是,有些数字非记不可,也很容易记住……” (五)苹果树下的例行出步 1884年春天,年轻的数学家阿道夫·赫维茨从哥廷根来到哥尼斯堡担任副教授,年龄还不到25岁,在函数论方面已有出色的研究成果.希尔伯特和闽可夫斯基很快就和他们的新老师建立了密切的关系.他们这三个年轻人每天下午准5点必定相会去苹果树下散步.希尔伯特后来回忆道:“日复一日的散步中,我们全都埋头讨论当前数学的实际问题;相互交换我们对问题新近获得的理解,交流彼此的想法和研究计划.”在他们三人中,赫维茨有着广泛“坚实的基础知识,又经过很好的整理,”所以他是理所当然的带头人,并使其他两位心悦诚服.当时希尔伯特发现,这种学习方法比钻在昏暗的教室或图书馆里啃书本不知要好多少倍,这种例行的散步一直持续了整整八年半之久.以这种最悠然而有趣的学习方式,他们探索了数学的“每一个角落”,考察着数学世界的每一个王国,希尔伯特后来回忆道:“那时从没有想到我们竟会把自己带到那么远!”三个人就这样“结成了终身的友谊.” (六)报效祖国宏愿--华罗庚的故事 同学们都知道,华罗庚是一位靠自学成才的世界一流的数学家。他仅有初中文凭,因一篇论文在《科学》杂志上发表,得到数学家熊庆来的赏识,从此华罗庚北上清华园,开始了他的数学生涯。 1936年,经熊庆来教授推荐,华罗庚前往英国,留学剑桥。20世纪声名显赫的数学家哈代,早就听说华罗庚很有才气,他说:"你可以在两年之内获得博士学位。"可是华罗庚却说:"我不想获得博士学位,我只要求做一个访问者。""我来剑桥是求学问的,不是为了学位。"两年中,他集中精力研究堆垒素数论,并就华林问题、他利问题、奇数哥德巴赫问题发表18篇论文,得出了著名的"华氏定理",向全世界显示了中国数学家出众的智慧与能力。 1946年,华罗庚应邀去美国讲学,并被伊利诺大学高薪聘为终身教授,他的家属也随同到美国定居,有洋房和汽车,生活十分优裕。当时,不少人认为华罗庚是不会回来了。新中国的诞生,牵动着热爱祖国的华罗庚的心。1950年,他毅然放弃在美国的优裕生活,回到了祖国,而且还给留美的中国学生写了一封公开信,动员大家回国参加社会主义建设。他在信中坦露出了一颗爱中华的赤子之心:"朋友们!梁园虽好,非久居之乡。归去来兮……为了国家民族,我们应当回去……"虽然数学没有国界,但数学家却有自己的祖国。 华罗庚从海外归来,受到党和人民的热烈欢迎,他回到清华园,被委任为数学系主任,不久又被任命为中国科学院数学研究所所长。从此,开始了他数学研究真正的黄金时期。他不但连续做出了令世界瞩目的突出成绩,同时满腔热情地关心、培养了一大批数学人才。为摘取数学王冠上的明珠,为应用数学研究、试验和推广,他倾注了大量心血。 据不完全统计,数十年间,华罗庚共发表了152篇重要的数学论文,出版了9部数学著作、11本数学科普著作。他还被选为科学院的国外院士和第三世界科学家的院士。 (七)、中西文化交流之倡导者 莱布尼兹对中国、的科学、文化和哲学思想十分关注,是最早研究中国文化和中国哲学的德国人。他向耶酥会来华传教士格里马尔迪了解到了许多有关中国的情况,包括养蚕纺织、造纸印染、冶金矿产、天文地理、数学文字等等,并将这些资料编辑成册出版。他认为中西相互之间应建立一种交流认识的新型关系。在《中国近况》一书的绪论中,莱布尼兹写道:“全人类最伟大的文化和最发达的文明仿佛今天汇集在我们大陆的两端,即汇集在欧洲和位于地球另一端的东方的欧洲——中国。”“中国这一文明古国与欧洲相比,面积相当,但人口数量则已超过。”“在日常生活以及经验地应付自然的技能方面,我们是不分伯仲的。我们双方各自都具备通过相互交流使对方受益的技能。在思考的缜密和理性的思辩方面,显然我们要略胜一筹”,但“在时间哲学,即在生活与人类实际方面的伦理以及治国学说方面,我们实在是相形见拙了。”在这里,莱布尼兹不仅显示出了不带“欧洲中心论”色彩的虚心好学精神,而且为中西文化双向交流描绘了宏伟的蓝图,极力推动这种交流向纵深发展,是东西方人民相互学习,取长补短,共同繁荣进步。莱布尼兹为促进中西文化交流做出了毕生的努力,产生了广泛而深远的影响。他的虚心好学、对中国文化平等相待,不含“欧洲中心论”偏见的精神尤为难能可贵,值得后世永远敬仰、效仿。
初中生要论文?
初一的作文应多观察身边,应仔细、认真,还要有良好的心态。反复练习,这样可能会进步!
数学家庭中的一对孪生兄弟――浅谈轴对称图形的应用数学的世界真可谓是浩瀚无比。由点到线,由线到面,由面到体。无不蕴藏着丰富的知识。我记得曾经有一句著名的格言:数学比科学大得多,因为它是科学的语言。可想而知,数学的伟大与魅力了吧!然而,在数学的大家庭中。有一对兄弟深深的吸引了我,他们的形状,他们的关系,他们的普遍性,让人觉得他们一直在我们的身边,离我们很近很近。他们就是轴对称图形。轴对称图形是一个一定要沿着某直线折叠后,直线两旁的部分互相重合的图形,之所以说到他们的关系是因为他们两个总是被一条直线所连着,好似一对分不开的兄弟,关系十分的密切。把他们拉在一起的这条直线就是他们的对称轴。当然这条对称轴就像一个公正的法官。左右两边的长度、面积、大小等,都一点儿也不差,唯一不同的就是他们所朝的方向。在数学的课本上,我们看见过他们的身影,我们也接触和了解过他们。但是他们给我印象更多的,却是他们在日常生活中所扮演、组成的图形或者可以说是事物。一、生活当中的轴对称图形1、自然界中的轴对称图形当我漫步在街头时,我时常看见飞来飞去的蝴蝶。当一只蝴蝶停留在花朵上,张合着翅膀时,我发现如果将蝴蝶两只触角的中点与尾部相连接,连接好的线段所在的那一条直线就是其对称轴。而右边的翅膀就像是左边的翅膀沿着对称轴翻过去的图形。跟蝴蝶一样是轴对称图形的动物还有很多。比如蜻蜓、飞蛾等。如果到了秋天,远看稻田,金黄的一片,不禁使人感觉到又是一个丰收的季节。就在这个令人喜悦的季节里,我行走在田边的小路上,随手捡起了一片金黄的树叶,仔细的观察了一下,发现其实树叶也有对称轴。如果我们将树叶中间的那根经,当成是其左右两边的对称轴,那将树叶右边部分沿着这条对称轴对折过去,正好与左边的一半树叶重合。2、商标中的轴对称图形有一次,我跟我的家人去中国银行取钱,我无意间发现中国银行的标志也是一个轴对称图形。这个图形的对称轴有两条。第一条是图标中两竖相连接所形成的,而另一条就是方框上下两条横线连接的线段的中点,所在的那一条直线就是其第二条对称轴。和中国银行一样的还有中国联通、中国农业银行以及奔驰汽车等轴对称图形。但是如果大家觉得前面几个例子,平时都没有注意到的话,那么下面说到的这个例子大家肯定熟悉的不得了。这个例子就是商标,我先来举一个吧。平时我最大的兴趣就是吃零食。所以我对“旺旺”这个商标熟悉的不得了。我发现在旺旺这个商标当中,将其头发上的一个中点到两脚脚后跟之间的线段的中点,想连接的线段所在的那一条直线就是其对称轴。也正是这条对称轴将旺旺这个图标分成了相等的两份。像旺旺这样具有对称轴的商标还有很多。比如:五粮液的商标、麦当劳的商标、CONVERSE(匡威)的商标等等。而且这些图形都是我们日常生活中常见的,这也不告诉了我们,只要我们认真、仔细的观察生活,数学的无处不在吗。二、建筑当中的轴对称图形说了生活中较为普通也较常见的轴对称图形后,也应该说说在建筑方面关于轴对称的宏伟建筑了。像我们中国的天安门城楼。如果用线段连接天安门城楼的左右两边,这条线段的中点所在的直线就是对称轴了,这条对称轴不就把天安门城楼分成了相同的两份了吗?法国的埃菲尔铁塔,是法国标志性建筑之一。它的对称轴就是把铁塔底部的两边相连接。连接后的线段的中点与塔尖的点相连接的线段所在那一条直线了。还有一些建筑也利用了轴对称的方法,他们在建筑的前方建了一个很大的水池,使建筑倒映在水中,从而形成了轴对称的效果,也增大了空间,使原本的建筑更美观,更加壮观。像泰姬陵,它不就是建筑与轴对称图形相结合的最好例子吗。在地球的另一边,有一座建筑物深深地影响着整个世界的历史,这座建筑物就是白宫。这是一座位于美国华盛顿的著名行政大楼。白宫著名的背后,轴对称起了极其重要的作用。白宫它的对称轴就是顶部的点与底部左右两边线段的中点,相连接的线段所在的那一条直线。对了,还有我们每个人家里都会有门,一些建筑师为了使门显得更加大气,更加庄重。就把门进行设计,使门的左右两边相同,古代衙门的大门和一些官府府邸的大门也设计成了轴对称的形式。使大门显得更加有气势,愈发显的威严。从中我们也不难发现,只要懂得轴对称图形,善于利用轴对称图形,就能使轴对称图形溶入到方方面面。三、文学当中的轴对称图形1、文字中的轴对称图形每个人都知道,我们中华民族有着5000年的悠久文化。这么多年的文化所沉淀下来的瑰宝可谓是数不胜数。剪纸是我们民族十分古老的民间艺术之一。就是在这艺术品当中也不乏有轴对称的应用。让我来举个例子吧。我还记得以前我奶奶教我剪繁体的“喜”字时,首先是将红纸对折一下,之后用剪刀在纸上挥舞了一会。打开刚刚对折的纸时,出现了一个“喜”字,当时我看了之后,心里那个高兴啊,惊奇啊,但是就是不知道为什么会这样。现在长大了,我也知道了其实在剪“喜”字的过程当中,也运用了轴对称。还有许多剪纸作品,也正是因为有了轴对称的存在,使其更加精致、美观。当然我们现在所写的简体字中,也有轴对称。如“丰”“目”“尖”等。文字的对称轴较为好找,横一横,竖一竖,基本上就能够找到。其实有时候,对称轴也具有复制的功能,它能够把一个字,分成与其相同的两个字,像“二”如果把它的对称轴当作是第一横的中点和第二横的中点,所连接成的线段所在的直线的话。那么左右两边的图案,不是可以近似的看成两个二吗?此时轴对称就具有复制的功能,但是在我的眼里它还具有另一个功能。就拿这个“一”来说吧。与前面相同,也是画竖下来的对称轴。画好之后,要把这条对称轴当成这个字原有的,那么你就会发现。“一”与这条对称轴就组成了一个“十”字。这就是在我眼里轴对称图形的第二个功能。能够使一个字变成另外一个字。2、文学中的轴对称图形刚刚说的都是文字当中轴对称的应用。那由字所组成的句子呢?其实仔细推敲一下,也有。我记得我以前与同学们都在玩一个游戏,就是一个人说出一句话,另一个人马上就得把这个句子反着读出来。在整个游戏过程当中,有一句话给我留下了深刻的印象“上海自来水来自海上”当我们把这个句子反着读一便时,就会发现它与正着读的语序一模一样。再仔细看一看,这又是一个关于轴对称的应用。这么来说吧,如果我们把“上海自来水来自海上”中的水字不看,那么两个“来”字的中点所在的那一条直线,就可以把这句话分成相等的两等份,这不就证明了句子当中也有轴对称的应用吗?这一系列的例子,也让我们看出了轴对称在文学方面所做出的成就,它能使一些作品更加完美,有画龙点睛的作用。也能使文字变化起来,使句子顺口起来。给文字与句子带来更多的趣味,也给文学添上了十分美丽的一笔。四、奥运当中的轴对称图形2008年北京奥运会即将来临。在这个令全中国人都兴奋起来,令全世界人都以不同形式参与进来的盛会中。我们也不难发现轴对称图形——奥运五环旗。我们可以把奥运五环旗(如图一),黄、绿两环相接触的地方点A与黑环上的点B相连接,此时对称轴就是线段A、B所在的那一条直线。在奥运会上有奥运五环旗当然也会有奥运吉祥物,2008年北京奥运会的吉祥物是奥运福娃。仔细看看我们的奥运福娃不禁让人喜欢的不得了。尤其是福娃晶晶更是惹人喜爱。他的憨厚,他的朴实,无不给人亲近的感觉。图二就是福娃晶晶在举重的画面。如果大家看一下图二这张图片,就会发现如果把这张图片中的点A与下端的点B相连接。那么这条线段所在的那一条直线就是福娃晶晶的对称轴。想不到吧,原来奥运福娃也是轴对称图形。还有在奥运会上,当各国的国旗徐徐上升时,又引发了我对轴对称图形的联想。像英国的国旗,它的对称轴就是国旗上下两边线段的中点,所连成的线段所在的那一条直线。像这样的国旗还有很多。如加拿大国旗、意大利国旗等等。轴对称图形的千变万化,使我眼花缭乱,头晕目眩。在它每一次变化中,都可以发现许多的惊喜。轴对称变化它也无处不在,它存在于各个角落,这也给我们研究它带来了很多的便利。在研究轴对称图形的过程中,我懂得了只有我们用心观察,才能发现数学。只有我们认识数学,在生活中善于利用数学,我们才能将数学溶入到方方面面。而且只有我们将数学溶入到方方面面,我们才能更加好的去研究数学。其实数学的世界真的好大好大。此时我真想将自己变成大山伫立在数学当中。变成流水穿梭与数学之中,化为白云漂浮在数学之中,成为鸟儿翱翔与数学之中。真诚的希望大家用发现美的眼睛,去发现数学!感受数学!
呵呵不要说我教坏你给你两篇我用了N次的范文哈《容易忽略的答案》大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。关于“0”0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。
很多人都以为阿拉伯数字是阿拉伯人发明的,可是我一直对他很怀疑,果不出我所料,今天数学课上老师介绍了阿拉伯数字的真正的来历.原来这是一个误会!阿拉伯数字真正的发明者是印度人,因为当时阿拉伯人的航海业很发达 ,他们把数字从印度传到了阿拉伯,欧洲人从他们的书上了解了这种简便的记数方法,就认为是他们发明的,所以称它为阿拉伯数字,后来这个误会又传到了中国. 最后,我很想对印度人说:"谢谢你们给我们人类带来了这么大的方便,就因为这样,我很喜欢数学.不仅数字王国很神奇,而且数学的历史知识更是丰富
初一数学小论文今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做!!!想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了!想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法!想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!数学小论文:《容易忽略的答案》大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
课堂教学是学生在校期间学习文化科学知识的主阵地,也是对学生进行思想品德教育的主渠道。现在,学校实行五天制工作,带来了一定的压力。由于每堂课的时间的减少和每门课总学时的减少,确实给教师带来了很大的麻烦,给原来教熟了的老套路、老方法提出了挑战。对于减时不减量这一矛盾,除了对教材的内容进行重新修订调整外,对教师来说,最迫切的问题,就是如何提高四十分钟的课堂教学教育的效率,尽量在有限的时间里,出色地完成教学任务。 1 有明确的教学目标 布鲁姆在他的《教育目标分类学》一书中,将教学目标分为三大领域,即认知领域、情感领域和动作技能领域。因此,在备课时要围绕这些目标选择教学的策略、方法、媒体,进行必要的内容重组。在数学教学中,要通过师生的共同努力,使学生在知识、能力、技能、心理、思想品德等方面达到预定的目标,以提高学生的综合素质。如《复数的引入》这一课是整个复数这一章的第一课,在备课时应注意,通过这一课的教学,使学生能利用辩证唯物主义的观点来解释复数的形成和发展,体会到矛盾是事物发展的动力,矛盾的解决推动着事物的发展。引伸到现实生活中,就是当我们遇到矛盾时,也要勇于面对矛盾,要有解决矛盾的决心和信心,促进矛盾的转化和解决,同时也就提高了自己分析问题和解决问题的能力。 2 能突出重点、化解难点 每一堂课都要有一个重点,而整堂的教学都是围绕着这个重点来逐步展开的。为了让学生明确本堂课的重点、难点,教师在上课开始时,可以在黑板的一角将这些内容简短地写出来,以便引起学生的重视。讲授重点内容,是整堂课的教学高潮。教师要通过声音、手势、板书等的变化或应用模型、投影仪等直观教具,刺激学生的大脑,使学生能够兴奋起来,对所学内容在大脑中刻下强烈的印象,激发学生的学习兴趣,提高学生对新知识的接受能力。如解析几何第二章的《椭圆》第一课时,其教学的重点是掌握椭圆的定义和标准方程,难点是椭圆方程的化简。教师可从太阳、地球、人造地球卫星的运行轨道,谈到圆形台面的直观图、圆萝卜的切片、阳光下圆盘在地面上的影子等等,让学生对椭圆有一个直观的了解。为了强调椭圆的定义,教师事先准备好一根细线及两根钉子,在给出椭圆在数学上的严格定义之前,教师先在黑板上取两个定点(两定点之间的距离小于细线的长度),再让两名学生按教师的要求在黑板上画一个椭圆。画好后,教师再在黑板上取两个定点(两定点之间的距离大于细线的长度),然后再请刚才两名学生按同样的要求作图。学生通过观察两次作图的过程,总结出经验和教训,教师因势利导,让学生自己得出椭圆的严格的定义。这样,学生对这一定义就会有深刻的了解,尤其是上台板演的那两位的同学,更是终生难忘了。在进一步求轨迹方程时,学生容易得出这样一个结果:但化简却遇到了麻烦。这时教师可以适当提示:化简含有根号的式子时,我们通常有什么方法?学生回答:可以两边平方。教师问:是直接平方好呢还是恰当整理后再平方?学生通过实践,发现对于这个方程,直接平方不利于化简,而整理后再平方,最后能得到圆满的结果。这样,椭圆方程的化简这一难点也就迎刃而解了。同时也解决了将要遇到的求双曲线的标准方程时的化简问题。 3 要善于应用现代化教学手段 随着科学技术的飞速发展,三机一幕进入了寻常教室。对教师来说,掌握现代化的教学手段显得尤为重要和迫切。现代化教学手段,其显著的特点,一是能有效地增大每一堂课的课容量,从而把原来四十五分钟的内容在四十分钟中就加以解决;二是减轻教师板书的工作量,使教师能有精力讲深讲透所举例子,提高讲解效率;三是直观性强,容易激发起学生的学习兴趣,有利于提高学生的学习主动性。四是有利于对整堂课所学内容进行回顾和小结。在课临近结束时,教师引导学生总结本堂课的内容,学习的重点和难点。同时通过投影仪,同步地将内容在瞬间跃然“幕”上,使学生进一步理解和掌握本堂课的内容。在课堂教学中,对于板演量大的内容,如立体几何中的一些几何图形、一些简单但数量较多的小问答题、文字量较多应用题,复习课中章节内容的总结、选择题的训练等等都可以借助于投影仪来完成。对于有条件的学校,还可以自编电脑课件,借助电脑来生动形象地展示所教内容。如讲授正弦曲线、余弦曲线的图形、棱锥体积公式的推导过程都可以用电脑来演示。 4 根据具体内容,选择恰当的教学方法 每一堂课都有每一堂课的教学任务,目标要求。教师能随着教学内容的变化,教学对象的变化,教学设备的变化,灵活应用教学方法。数学教学的方法很多,对于新授课,我们往往采用讲授法来向学生传授新知识。而在立体几何中,我们还时常穿插演示法,来向学生展示几何模型,或者验证几何结论。如在教授立体几何之前,要求学生每人用铅丝做一个立方体的几何模型,观察其各条棱之间的相对位置关系,各条棱与正方体对角线之间、各个侧面的对角线之间所形成的角度。这样在讲授空间两条直线之间的位置关系时,就可以通过这些几何模型,直观地加以说明。此外,我们还可以结合课堂内容,灵活采用谈话、读书指导、作业、练习等多种教学方法。有时,在一堂课上,要同时使用多种教学方法。俗话说:“教无定法,贵要得法”。只要能激发学生的学习兴趣,提高学生的学习积极性,有助于学生思维能力的培养,有利于所学知识的掌握和运用,都是好的教学方法。 5 对学生在课堂上的表现,要及时加以总结,适当给予鼓励 在教学过程中,教师要随时了解学生的对所讲内容的掌握情况。如在讲完一个概念后,让学生复述;讲完一个例题后,将解答擦掉,请中等水平学生上台板演。有时,对于基础差的学生,可以对他们多提问,让他们有较多的锻炼机会,同时教师根据学生的表现,及时进行鼓励,培养他们的自信心,让他们能热爱数学,学习数学。 6 充分发挥学生为主体,教师为主导的作用,调动学生的学习积极性 学生是学习的主体,教师要围绕着学生展开教学,在教学过程中,自始至终让学生唱主角,使学生变被动学习为主动学习,让学生成为学习的主人,教师成为学习的领路人。 7 处理好课堂的偶发事件,及时调整课堂教学 尽管教师对每一堂课都作了充分的准备,但有时也可能遇到一些预料不到的事情。如一次我在讲授《复数的概念》第二课时时,有“两复数不全是实数时,不能比较大小”这一结论,但没有证明。教学计划中也没有证明的要求。在课间当带到这个问题的时,有一位成绩较好的学生要求我写出解答。我就因势利导,向学生介绍了数的大小比较的原则,并利用这一原则说明了“i>0”不能成立的原因。然后,话锋一转,对那位同学说,关于详细的证明的过程,我在课后再跟你面谈。这样,虽然增加了课时的内容,但也保护了学生的学习主动性和积极性,满足了学生的求知欲。 8 要精讲例题,多做课堂练习,腾出时间让学生多实践 根据课堂教学内容的要求,教师要精选例题,可以按照例题的难度、结构特征、思维方法等各个角度进行全面剖析,不片面追求例题的数量,而要重视例题的质量。解答过程视具体情况,可以由教师完完整整写出,也可部分写出,或者请学生写出。关键是讲解例题的时候,要能让学生也参与进去,而不是由教师一个人承包,对学生进行满堂灌。教师应腾出十来分钟时间,让学生做做练习或思考教师提出的问题,或解答学生的提问,以进一步强化本堂课的教学内容。若课堂内容相对轻松,也可以指导学生进行预习,提出适当的要求,为下一次课作准备。晕,采纳吧
初一的作文应多观察身边,应仔细、认真,还要有良好的心态。反复练习,这样可能会进步!
初一?一般写写实数虚数有理数无理数之类的或者平面几何,像黄金分割,直角三角形之类的,度受百科很多的,我们以前都是网上到处借鉴来写起来的。好搞定的啦~像我们高一现在五篇论文一个寒假,数化物还有历史地理TAT,初一数学小case的啦~一般论文,现在高一的写也没提什么要求,顶多是拿去比赛用的论文才搞什么标题几号字,正文几号字之类的。初一数学,只要有观点,再拉堆题目论证,最后写点冠冕堂皇的话来作结论,就好了。方便的,我现在物理化学论文一晚上静下心就能写好。哎初一啊好轻松啊,真是怀念呐~~感伤。。。
在用瓷砖铺成的地面或墙面上,相邻的地砖或瓷砖平整地贴合在一起,整个地面或墙面没有一点空隙。例如,三角形。三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形。通过实验和研究,我们知道,三角形的内角和是180度,外角和是360度。用6个正三角形就可以铺满地面。 再来看正四边形,它可以分成2个三角形,内角和是360度,一个内角的度数是90度,外角和是360度。用4个正四边形就可以铺满地面。 正五边形呢?它可以分成3个三角形,内角和是540度,一个内角的度数是108度,外角和是360度。它不能铺满地面。 六边形,它可以分成4个三角形,内角和是720度,一个内角的度数是120度,外角和是360度。用3个正四边形就可以铺满地面。 七边形,它可以分成5个三角形,内角和是900度,一个内角的度数是900/7度,外角和是360度。它不能铺满地面。 由此,我们得出了。n边形,可以分成(n-2)个三角形,内角和是(n-2)*180度,一个内角的度数是(n-2)*180÷2度,外角和是360度。若(n-2)*180÷2能整除360,那么就能用它来铺满地面,若不能,则不能用其铺满地面。 我们不但可以用一种正多边形铺满地面,我们还可以用两种、三种等更多的图形组合起来铺满地面。 例如:正三角形和正方形、正三角形和六方形、正方形和正八边形、正五边形和正八边形、正三角形和正方形和正六边形…… 现实生活中,我们已经看到了用正多边形拼成的各种图案,实际上,有许多图案往往是用不规则的基本图形拼成的。
数学的三大特点严谨性、抽象性、广泛的应用性所谓数学的严谨性,指数学具有很强的逻辑性和较高的精通性,一般以公理化体系来体现。 什么是公理化体系呢?指得是选用少数几个不加定义的概念和不加逻辑证明的命题为基础,推出一些定理,使之成为数学体系,在这方面,古希腊数学家欧几里得是个典范,他所著的《几何原本》就是在几个公理的基础上研究了平面几何中的大多数问题。在这里,哪怕是最基本的常用的原始概念都不能直观描述,而要用公理加以确认或证明。 中学数学和数学科学在严谨性上还是有所区别的,如,中学数学中的数集的不断扩充,针对数集的运算律的扩充并没有进行严谨的推证,而是用默认的方式得到,从这一点看来,中学数学在严谨性上还是要差很多,但是,要学好数学却不能放松严谨性的要求,要保证内容的科学性。 比如,等差数列的通项是通过前若干项的递推从而归纳出通项公式,但要予以确认,还需要用数学归纳法进行严格的证明。 数学的抽象性表现在对空间形式和数量关系这一特性的抽象。它在抽象过程中抛开较多的事物的具体的特性,因而具有十分抽象的形式。它表现为高度的概括性,并将具体过程符号化,当然,抽象必须要以具体为基础。 至于数学的广泛的应用性,更是尽人皆知的。只是在以往的教学、学习中,往往过于注重定理、概念的抽象意义,有时却抛却了它的广泛的应用性,如果把抽象的概念、定理比作骨骼,那么数学的广泛应用就好比血肉,缺少哪一个都将影响数学的完整性。高中数学新教材中大量增加数学知识的应用和研究性学习的篇幅,就是为了培养同学们应用数学解决实际问题的能力。 二、高中数学的特点往往有同学进入高中以后不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈。为什么会这样呢?让我们先看看高中数学和初中数学有些什么样的转变吧。 1、理论加强2、课程增多3、难度增大4、要求提高三、掌握数学思想高中数学从学习方法和思想方法上更接近于高等数学。学好它,需要我们从方法论的高度来掌握它。我们在研究数学问题时要经常运用唯物辩证的思想去解决数学问题。数学思想,实质上就是唯物辩证法在数学中的运用的反映。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,初步公理化思想,数形结合思想,运动思想,转化思想,变换思想。 例如,数列、一次函数、解析几何中的直线几个概念都可以用函数(特殊的对应)的概念来统一。又比如,数、方程、不等式、数列几个概念也都可以统一到函数概念。 再看看下面这个运用"矛盾"的观点来解题的例子。 已知动点Q在圆x2+y2=1上移动,定点P(2,0),求线段PQ中点的轨迹。 分析此题,图中P、Q、M三点是互相制约的,而Q点的运动将带动M点的运动;主要矛盾是点Q的运动,而点Q的运动轨迹遵循方程x02+y02=1①;次要矛盾关系:M是线段PQ的中点,可以用中点公式将M的坐标(x,y)用点Q的坐标表示出来。 x=(x0+2)/2 ②y=y0/2 ③显然,用代入的方法,消去题中的x0、y0就可以求得所求轨迹。 数学思想方法与解题技巧是不同的,在证明或求解中,运用归纳、演绎、换元等方法解题问题可以说是解题的技术性问题,而数学思想是解题时带有指导性的普遍思想方法。在解一道题时,从整体考虑,应如何着手,有什么途径?就是在数学思想方法的指导下的普遍性问题。 有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。只有在解题思想的指导下,灵活地运用具体的解题方法才能真正地学好数学,仅仅掌握具体的操作方法,而没有从解题思想的角度考虑问题,往往难于使数学学习进入更高的层次,会为今后进入大学深造带来很有麻烦。 在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。 要打赢一场战役,不可能只是勇猛冲杀、一不怕死二不怕苦就可以打赢的,必须制订好事关全局的战术和策略问题。解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。一般地,在解题中所采取的总体思路,是带有原则性的思想方法,是一种宏观的指导,一般性的解决方案。 中学数学中经常用到的数学思维策略有: 以简驭繁、数形结全、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅如果有了正确的数学思想方法,采取了恰当的数学思维策略,又有了丰富的经验和扎实的基本功,一定可以学好高中数学。 四、学习方法的改进身处应试教育的怪圈,每个教师和学生都不由自主地陷入"题海"之中,教师拍心某种题型没讲,高考时做不出,学生怕少做一道题,万一考了损失太惨重,在这样一种氛围中,往往忽视了学习方法的培养,每个学生都有自己的方法,但什么样的学习方法才是正确的方法呢?是不是一定要"博览群题"才能提高水平呢? 现实告诉我们,大胆改进学习方法,这是一个非常重大的问题。 (一) 学会听、读我们每天在学校里都在听老师讲课,阅读课本或者资料,但我们听和读对不对呢? 让我们从听(听讲、课堂学习)和读(阅读课本和相关资料)两方面来谈谈吧。 学生学习的知识,往往是间接的知识,是抽象化、形式化的知识,这些知识是在前人探索和实践的基础上提炼出来的,一般不包含探索和思维的过程。因此必须听好老师讲课,集中注意力,积极思考问题。弄清讲得内容是什么?怎么分析?理由是什么?采用什么方法?还有什么疑问?只有这样,才可能对教学内容有所理解。 听讲的过程不是一个被动参预的过程,在听讲的前提下,还要展开来分析:这里用了什么思想方法,这样做的目的是什么?为什么老师就能想到最简捷的方法?这个题有没有更直接的方法? "学而不思则罔,思而不学则殆",在听讲的过程中一定要有积极的思考和参预,这样才能达到最高的学习效率。 阅读数学教材也是掌握数学知识的非常重要的方法。只有真正阅读和数学教材,才能较好地掌握数学语言,提高自学能力。一定要改变只做题不看书,把课本当成查公式的辞典的不良倾向。阅读课本,也要争取老师的指导。阅读当天的内容或一个单元一章的内容,都要通盘考虑,要有目标。 比如,学习反正弦函数,从知识上来讲,通过阅读,应弄请以下几个问题: (1) 是不是每个函数都有反函数,如果不是,在什么情况下函数有反函数? (2)正弦函数在什么情况下有反函数?若有,其反函数如何表示? (3)正弦函数的图象与反正弦函数的图象是什么关系? (4)反正弦函数有什么性质? (5)如何求反正弦函数的值? (二) 学会思考爱因斯坦曾说:"发展独立思考和独立判断的一般能力应当始终放在首位",勤于思考,善于思考,是对我们学习数学提出的最基本的要求。一般来说,要尽力做到以下两点。 1、善于发现问题和提出问题2、善于反思与反求
有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。 我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。 1、三角形很稳定,许多支架都是三角形的许多支架用三个脚支撑用了一个数学公理三点确定一个平面 2、一些人在木门上钉斜条,是为了克服四边形的不稳定性。卷闸门也是一样的道理。 3、河南登封观星台、南京中山陵都是中心对称图形 4、蚊帐的孔是六边形的~ 5、筷子是圆锥型的。光碟是圆形的。 6、电线是线段冰箱是长方体门是长方形轮胎是圆形地球是圆形 数学是一门很有用的学科。自从人类出现在地球上那天起,人们便在认识世界、改造世界的同时对数学有了逐渐深刻的了解。早在远古时代,就有原始人“涉猎计数”与“结绳记事”等种种传说。可见,“在早期一些古代文明社会中已产生了数学的开端和萌芽”(
初一数学小论文浅谈多媒体技术在教学中的作用 一个有经验的教师在编写教案时,都要明确教学目的、重点、难点、课时安排和教学过程等,甚至对自己的语言、表情、和板书等都有所考虑,对于教具、实物、模型和实验都要事先做好准备。其目的在于让学生明确和接受所要讲解的知识。有了多媒体技术,这一切都变得更容易实现了。因为用多媒体来辅助教学,以逼真、生动的画面,动听悦耳的音响来创造教学的文体化情景,使抽象的教学内容具体化、清晰化,使学生的思维活跃,兴趣盎然地参与教学活动,有助于学生发挥学习的主动性,从而优化教学过程。具体的说,在现在各科的课堂教学中,多媒体技术有如下几点作用: 一、调整学生情绪,激发学习兴趣 兴趣是由外界事物的刺激而引起的一种情绪状态,它是学生学习的主要动力。然而许多的教学内容通常本身较为枯燥无味,这就需要每位教师善于采用不同的教学手段,以激发学生的兴趣。根据心理学规律和小学生学习特点,有意注意持续的时间很短,加之课堂思维活动比较紧张,时间一长,学生极易感到疲倦,就很容易出现注意力不集中,学习效率下降等,这时适当地选用合适的多媒体方式来刺激学生,吸引学生,创设新的兴奋点,激发学生思维动力,以使学生继续保持最佳学习状态。 如在教学“长方形的面积”时,老是运用公式计算面积,学生感觉比较厌倦,为了吸引学生注意力,活跃课堂气氛,拓宽学生思路,运用多媒体出示了一道“智慧爷爷”出的思考题:把一个正方形裁成两个完全相同的长方形,裁成的两个长方形周长之和与正方形周长有何变化?把两个完全相同的长方形拼成一个正方形,它们的周长又有何变化?先让学生根据题意想象,然后再电脑演示。演示过程中,画面不断闪烁,使学生清楚地感受到了周长的变化。同学们一看,兴趣来了。最后让学生互相讨论,就这样让学生在开放自由的情况下解决了该题,同时培养了学生的想像力。 二、形象导入新课,创设学习情景 导入新课,是课堂教学的重要一环。“好的开始是成功的一半”,在课的起始阶段,迅速集中学生的注意力,把他们思绪带进特定的学习情境中,激发起学生浓厚的学习兴趣和强烈的求知欲,对一堂课教学的成败与否起着至关重要的作用。运用电教媒体导入新课,可有效地开启学生思维的闸门,激发联想,激励探究,使学生的学习状态由被动变为主动,使学生在轻松愉悦的氛围中学到知识。 如低年级学生,他们的定向能力尚处在较低的层次,他们的注意状态仍然取决于教学的直观性和形象性,很容易被新异的刺激活动而兴奋起来。针对这些情况,运用多媒体,激起学生的学习兴趣。教《锄禾》这课,在导入新课时,可以用一组“动画”:“太阳火辣辣地炙烤着大地,辛勤的农民手拿锄头用力地耕种,大颗大颗的汗珠从额头滚落下来,滴入稻田里。”此情此景,学生已有深刻的感性认识,随后,我又在图画上方出示古诗,诗句和图相对照,激起学生思维的层层涟漪。对于刚才“明于心而不明于口”的心理状态,立刻解决带点字锄、汗、粒等的解释已是一触即发了。 三、突出学习重点,突破学习难点 传统的教学往往在突出教学重点,突破教学难点问题上花费大量的时间和精力,即使如此,学生仍然感触不深,易产生疲劳感甚至厌烦情绪。突出重点,突破难点的有效方法是变革教学手段。由于多媒体形象具体,动静结合,声色兼备,所以恰当地加以运用,可以变抽象为具体,调动学生各种感官协同作用,解决教师难以讲清,学生难以听懂的内容,从而有效地实现精讲,突出重点,突破难点,取得传统教学方法无法比拟的教学效果。 如在教学“圆柱的体积”一课时,为了让学生更好地理解和掌握圆柱体积计算公式推导这一重点,电脑演示把一个圆柱体的底面平均分成若干等份(平均分成16等份、32等份……),然后把圆柱切开,通过动画拼成一个近似的长方体(平均分的份数越多,就越接近于长方体)。反复演示几遍,让学生自己感觉并最后体会到这个近似的长方体的体积与原来的圆柱的体积是完全相等的。再问学生还发现了什么?通过动画演示体会到这个近似的长方体的底面积、高与圆柱的底面积、高的关系,从而推导出求圆柱的体积公式,使得这课的重难点轻易地突破,大大提高了教学效率,培养了学生的空间想象能力。 四、增强训练密度,提高教学效果 在练习巩固中,由于运用多媒体教学,省去了板书和擦拭的时间,能在较短的时间内向学生提供大量的习题,练习容量大大增加。这时可以预先拟好题目运用电脑设置多种题型全方位,多角度、循序渐进的突出重难点。当学生出错后(电脑录音)耐心地劝他不要灰心,好好想想再来一次,这符合小学生争强好胜的性格,生动有趣地复习巩固了新识。 总之,恰当地选准多媒体的运用与课堂教学的最佳结合点,要考虑各层次学生的接受能力和反馈情况,适时适量的运用多媒体,适当增强课件的智能化。就能较好地激发学生的兴趣,使学生独立地、创造性地完成学习任务,这样的教学才可以说是得多媒体教学之精髓了。
有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。 我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。 1、三角形很稳定,许多支架都是三角形的许多支架用三个脚支撑用了一个数学公理三点确定一个平面 2、一些人在木门上钉斜条,是为了克服四边形的不稳定性。卷闸门也是一样的道理。 3、河南登封观星台、南京中山陵都是中心对称图形 4、蚊帐的孔是六边形的~ 5、筷子是圆锥型的。光碟是圆形的。 6、电线是线段冰箱是长方体门是长方形轮胎是圆形地球是圆形 数学是一门很有用的学科。自从人类出现在地球上那天起,人们便在认识世界、改造世界的同时对数学有了逐渐深刻的了解。早在远古时代,就有原始人“涉猎计数”与“结绳记事”等种种传说。可见,“在早期一些古代文明社会中已产生了数学的开端和萌芽”(引自《古今数学思想》第一册P1——作者注)。“在BC3000年左右巴比伦和埃及数学出现以前,人类在数学上没有取得更多的进展”,而“在BC600—BC300年间古希腊学者登场后”,数学便开始“作为一名有组织的、独立的和理性的学科”(引自《古今数学思想》第一册P1——作者注)登上了人类发展史的大舞台。 如今,数学知识和数学思想在工农业生产和人们日常生活中有极其广泛的应用。譬如,人们购物后须记账,以便年终统计查询;去银行办理储蓄业务;查收各住户水电费用等,这些便利用了算术及统计学知识。此外,社区和机关大院门口的“推拉式自动伸缩门”;运动场跑道直道与弯道的平滑连接;底部不能靠近的建筑物高度的计算;隧道双向作业起点的确定;折扇的设计以及黄金分割等,则是平面几何中直线图形的性质及解Rt三角形有关知识的应用。由于这些内容所涉及的高中数学知识不是很多,在此就不赘述了。 由此可见,古往今来,人类社会都是在不断了解和探究数学的过程中得到发展进步的。数学对推动人类文明起了举足轻重的作用。 例如:在教学“求两个数的最小公倍数”时,课始,我创设了这样一个情景:皇塘每6分钟有一辆中巴车开往常州(向东),8分钟有一辆中巴车开往丹阳(向北)。现在刚好有两辆中巴车同时分别开往常州和丹阳,问再过几分钟,又有两辆中巴同时开往常州和丹阳?数学在我们得生活当中是无处不在到,小到买菜的讨价还价,大到火箭的设计......其实我们在学习数学得过程中是为了培养自己得逻辑判断能力,让自己得思维更严谨,我们在学校学习数学,不单单只是为了去记住一个公式,而是在学习这个公式得推倒得过程中渐渐得培养了自己得思维逻辑能力,可以说,一个人的数学学好了,对于一件事得判断能力会大大增强,所以学好数学,不单单只是为了应付考试,而是在学习一项在社会生存得基本技能.