首页

> 论文发表知识库

首页 论文发表知识库 问题

分块矩阵的应用论文答辩题目

发布时间:

分块矩阵的应用论文答辩题目

本文把数字矩阵的初等变换推广到分块矩阵中,并且运用分块初等变换求矩阵的逆、矩阵的行列式、矩阵的秩是高等代数中常见的问题。而对于高阶矩阵而言,这些问题的求解过于困难,因此用分块矩阵的初等变换来解决有关分块矩阵的问题比较方便,本文总结如何使用初等变换求矩阵的逆、矩阵的行列式、矩阵的秩。关键词:分块矩阵 初等变换 分块初等变换目 录引言 11矩阵初等变换及矩阵分块的相关概念 矩阵的初等变换 初等变换 分块矩阵 分块初等变换 分块初等矩阵 2 应用分块初等变换求解行列式 3 应用分块初等变换求矩阵的逆 4 应用分块初等变换求矩阵的秩 6结束语 参考文献 致 谢 引言利用分块矩阵处理阶数较高的矩阵,是一种常用的方法,在证明相关问题时能带来很多方便,在矩阵的应用中, 矩阵的初等变换起着关键作用. 关于矩阵初等变换的应用, 本文归纳了初等变换在求分块矩阵的秩, 矩阵的逆, 矩阵的行列式中的方法。

1、数学中的研究性学习2、数字危机3、中学数学中的化归方法4、高斯分布的启示5、a2+b2≧2ab的变形推广及应用6、网络优化7、泰勒公式及其应用8、浅谈中学数学中的反证法9、数学选择题的利和弊10、浅谈计算机辅助数学教学11、论研究性学习12、浅谈发展数学思维的学习方法13、关于整系数多项式有理根的几个定理及求解方法14、数学教学中课堂提问的误区与对策15、中学数学教学中的创造性思维的培养16、浅谈数学教学中的“问题情境”17、市场经济中的蛛网模型18、中学数学教学设计前期分析的研究19、数学课堂差异教学20、浅谈线性变换的对角化问题21、圆锥曲线的性质及推广应用22、经济问题中的概率统计模型及应用23、通过逻辑趣题学推理24、直觉思维的训练和培养25、用高等数学知识解初等数学题26、浅谈数学中的变形技巧27、浅谈平均值不等式的应用28、浅谈高中立体几何的入门学习29、数形结合思想30、关于连通性的两个习题31、从赌博和概率到抽奖陷阱中的数学32、情感在数学教学中的作用33、因材施教 因性施教34、关于抽象函数的若干问题35、创新教育背景下的数学教学36、实数基本理论的一些探讨37、论数学教学中的心理环境38、以数学教学为例谈谈课堂提问的设计原则39、不等式证明的若干方法40、试论数学中的美41、数学教育与美育42、数学问题情境的创设43、略谈创新思维44、随机变量列的收敛性及其相互关系45、数字新闻中数学应用46、微积分学的发展史47、利用几何知识求函数最值48、数学评价应用举例49、数学思维批判性50、让阅读走进数学课堂51、开放式数学教学52、浅谈中学数列中的探索性问题53、论数学史的教育价值54、思维与智慧的共享——从建构主义到讨论法教学55、微分方程组中的若干问题56、由“唯分是举”浅谈考试改革57、随机变量与可测函数58、二阶变系数齐次微分方程的求解问题59、一种函数方程的解法60、积分中值定理的再讨论对原函数存在条件的试探分块矩阵的若干初等运算 函数图像中的对称性问题 泰勒公式及其应用微分中值定理的证明和应用一元六次方程的矩阵解法‘数学分析’对中学数学的指导作用 “1”的妙用“数形结合”在解题中的应用 “数学化”及其在数学教学中的实施 “一题多解与一题多变”在培养学生思维能力中的应用 《几何画板》与数学教学 《几何画板》在圆锥曲线中的应用举例 Cauchy中值定理的证明及应用 Dijkstra最短路径算法的一点优化和改进 Hamilton图的一个充分条件 HOLDER不等式的推广与应用 n阶矩阵m次方幂的计算及其应用 R积分和L积分的联系与区别 Schwarz积分不等式的证明与应用 Taylor公式的几种证明及若干应用 Taylor公式的若干应用 Taylor公式的应用 Taylor公式的证明及其应用 Vandermonde行列式的应用及推广

最小公倍数和公因数

分块矩阵的应用论文模板

[1]毛纲源. 一类特殊分块矩阵为循环矩阵的循环分块矩阵的几个性质[J]. 应用数学,1995,(3). [2]游兆永,姜宗乾,. 分块矩阵的对角占优性[J]. 西安交通大学学报,1984,(3). [3]曹重光. 体上分块矩阵群逆的某些结果[J]. 黑龙江大学自然科学学报,2001,(3). [4]庄瓦金. 非交换主理想整环上分块矩阵的秩[J]. 数学研究与评论,1994,(2). [5]曹礼廉,李芳芸,柴跃廷. 一种用于MRP的分块矩阵方法[J]. 高技术通讯,1997,(7). [6]逄明贤. 分块矩阵的Cassini型谱包含域[J]. 数学学报,2000,(3). [7]杨月婷. 一类分块矩阵的谱包含域[J]. 数学研究,1998,(4). [8]何承源. R-循环分块矩阵求逆的快速傅里叶算法[J]. 数值计算与计算机应用,2000,(1). [9]马元婧,曹重光. 分块矩阵的群逆[J]. 哈尔滨师范大学自然科学学报,2005,(4). [10]游兆永,黄廷祝. 两类分块矩阵的性质与矩阵正稳定和亚正定判定[J]. 工程数学学报,1995,(2).

最有可能问的是:1. 分块矩阵的初等变换 与 矩阵初等变换 的异同.2. 分块矩阵初等变换需注意什么. 3. 利用分块矩阵初等变换, 你得到了什么新的结论, 或对已有结论的证明有什么大的改进满意请采纳^_^

百度文库有篇很好的,直接搜“毕业论文分块矩阵的应用”就行了。

分块矩阵的应用论文开题报告

我们可以对矩阵进行任意划分,叫做 分块 。每个块的大小是任意的没有必要都是方阵 如果是两个分块矩阵相加,只有相同划分的矩阵才能相加与矩阵的数乘一模一样 如果是两个分块矩阵相加,只有相同划分的矩阵才能相乘 假设我们有矩阵:可得:其中 都是方阵其余位置为 0,称 A 为 分块对角矩阵 。 现在我们来说它的性质: 主对角线与副对角线上对角阵的总结: 其中第四条与第五条有一个口诀:

还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法

分块矩阵是一个矩阵, 它是把矩阵分别按照横竖分割成一些小的子矩阵 。 然后把每个小矩阵看成一个元素。如果分块矩阵的非零子矩阵都在对角线上,就称为对角分块矩阵。分块矩阵仍满足矩阵的乘法和加法。任何方阵都可以通过相似变换, 变为约当标准型。 约当标准型是最熟知的分块矩阵。利用分块矩阵可以简化很多有关矩阵性质的证明。

矩阵应用毕业论文

据我所知,矩阵可以解高次方程,在线性代数中也有运用。

百度文库有篇很好的,直接搜“毕业论文分块矩阵的应用”就行了。

什么叫作矩阵矩阵乘法是线性代数中最常见的运算之一,它在数值计算中有广泛的应用。若A和B是2个nn的矩阵,则它们的乘积C=AB同样是一个nn的矩阵。A和B的乘积矩阵C中的元素C[i,j]定义为:若依此定义来计算A和B的乘积矩阵C,则每计算C的一个元素C[i,j],需要做n个乘法和n-1次加法。因此,求出矩阵C的n2个元素所需的计算时间为0(n3)。60年代末,Strassen采用了类似于在大整数乘法中用过的分治技术,将计算2个n阶矩阵乘积所需的计算时间改进到O(nlog7)=O()。首先,我们还是需要假设n是2的幂。将矩阵A,B和C中每一矩阵都分块成为4个大小相等的子矩阵,每个子矩阵都是n/2n/2的方阵。由此可将方程C=AB重写为:(1)由此可得:C11=A11B11 A12B21(2)C12=A11B12 A12B22(3)C21=A21B11 A22B21(4)C22=A21B12 A22B22(5)如果n=2,则2个2阶方阵的乘积可以直接用(2)-(3)式计算出来,共需8次乘法和4次加法。当子矩阵的阶大于2时,为求2个子矩阵的积,可以继续将子矩阵分块,直到子矩阵的阶降为2。这样,就产生了一个分治降阶的递归算法。依此算法,计算2个n阶方阵的乘积转化为计算8个n/2阶方阵的乘积和4个n/2阶方阵的加法。2个n/2n/2矩阵的加法显然可以在c*n2/4时间内完成,这里c是一个常数。因此,上述分治法的计算时间耗费T(n)应该满足:这个递归方程的解仍然是T(n)=O(n3)。因此,该方法并不比用原始定义直接计算更有效。究其原因,乃是由于式(2)-(5)并没有减少矩阵的乘法次数。而矩阵乘法耗费的时间要比矩阵加减法耗费的时间多得多。要想改进矩阵乘法的计算时间复杂性,必须减少子矩阵乘法运算的次数。按照上述分治法的思想可以看出,要想减少乘法运算次数,关键在于计算2个2阶方阵的乘积时,能否用少于8次的乘法运算。Strassen提出了一种新的算法来计算2个2阶方阵的乘积。他的算法只用了7次乘法运算,但增加了加、减法的运算次数。这7次乘法是:M1=A11(B12-B22)M2=(A11 A12)B22M3=(A21 A22)B11M4=A22(B21-B11)M5=(A11 A22)(B11 B22)M6=(A12-A22)(B21 B22)M7=(A11-A21)(B11 B12)做了这7次乘法后,再做若干次加、减法就可以得到:C11=M5 M4-M2 M6C12=M1 M2C21=M3 M4C22=M5 M1-M3-M7以上计算的正确性很容易验证。例如:C22=M5 M1-M3-M7=(A11 A22)(B11 B22) A11(B12-B22)-(A21 A22)B11-(A11-A21)(B11 B12)=A11B11 A11B22 A22B11 A22B22 A11B12-A11B22-A21B11-A22B11-A11B11-A11B12 A21B11 A21B12=A21B12 A22B22由(2)式便知其正确性。至此,我们可以得到完整的Strassen算法如下:procedureSTRASSEN(n,A,B,C);beginifn=2thenMATRIX-MULTIPLY(A,B,C)elsebegin将矩阵A和B依(1)式分块;STRASSEN(n/2,A11,B12-B22,M1);STRASSEN(n/2,A11 A12,B22,M2);STRASSEN(n/2,A21 A22,B11,M3);STRASSEN(n/2,A22,B21-B11,M4);STRASSEN(n/2,A11 A22,B11 B22,M5);STRASSEN(n/2,A12-A22,B21 B22,M6);STRASSEN(n/2,A11-A21,B11 B12,M7);;end;end;其中MATRIX-MULTIPLY(A,B,C)是按通常的矩阵乘法计算C=AB的子算法。Strassen矩阵乘积分治算法中,用了7次对于n/2阶矩阵乘积的递归调用和18次n/2阶矩阵的加减运算。由此可知,该算法的所需的计算时间T(n)满足如下的递归方程:按照解递归方程的套用公式法,其解为T(n)=O(nlog7)≈O()。由此可见,Strassen矩阵乘法的计算时间复杂性比普通矩阵乘法有阶的改进。有人曾列举了计算2个2阶矩阵乘法的36种不同方法。但所有的方法都要做7次乘法。除非能找到一种计算2阶方阵乘积的算法,使乘法的计算次数少于7次,按上述思路才有可能进一步改进矩阵乘积的计算时间的上界。但是Hopcroft和Kerr(197l)已经证明,计算2个22矩阵的乘积,7次乘法是必要的。因此,要想进一步改进矩阵乘法的时间复杂性,就不能再寄希望于计算22矩阵的乘法次数的减少。或许应当研究33或55矩阵的更好算法。在Strassen之后又有许多算法改进了矩阵乘法的计算时间复杂性。目前最好的计算时间上界是O()。而目前所知道的矩阵乘法的最好下界仍是它的平凡下界Ω(n2)。因此到目前为止还无法确切知道矩阵乘法的时间复杂性。关于这一研究课题还有许多工作可做。关于应用简单一点的表格,像考试分数求和复杂一点的魔方的解决方法,用矩阵代换方法

LZ是文科生吧

矩阵的分解及其应用论文开题报告

相乘的形式设为A*B,A的行对应B的列,对应元素分别相乘;相乘的结果行还是A的行、列还是B的列;A的列数必须等于B的行数。在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合 ,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。

可以说是最简单的矩阵分解方法,将矩阵A分解成L(下三角)矩阵和U(上三角)矩阵的乘积。其实就是高斯消元法的体现,U矩阵就是利用高斯消元法得到的,而消元过程用到的初等变换矩阵乘积就是L矩阵。需要注意的是,L矩阵可以是置换过的矩阵,即一个下三角矩阵和一个置换矩阵的乘积(可以参考MATLAB中LU分解的函数lu)。

加油吧,少年

怎么写开题报告呢?首先要把在准备工作当中搜集的资料整理出来,包括课题名称、课题内容、课题的理论依据、参加人员、组织安排和分工、大概需要的时间、经费的估算等等。第一是标题的拟定。课题在准备工作中已经确立了,所以开题报告的标题是不成问题的,把你研究的课题直接写上就行了。比如我曾指导过一组同学对伦教的文化诸如“伦教糕”、伦教木工机械、伦教文物等进行研究,拟定的标题就是“伦教文化研究”。第二就是内容的撰写。开题报告的主要内容包括以下几个部分:一、课题研究的背景。 所谓课题背景,主要指的是为什么要对这个课题进行研究,所以有的课题干脆把这一部分称为“问题的提出”,意思就是说为什么要提出这个问题,或者说提出这个课题。比如我曾指导的一个课题“伦教文化研究”,背景说明部分里就是说在改革开放的浪潮中,伦教作为珠江三角洲一角,在经济迅速发展的同时,她的文化发展怎么样,有哪些成就,对居民有什么影响,有哪些还要改进的。当然背景所叙述的内容还有很多,既可以是社会背景,也可以是自然背景。关键在于我们所确定的课题是什么。二、课题研究的内容。课题研究的内容,顾名思义,就是我们的课题要研究的是什么。比如我校黄姝老师的指导的课题“佛山新八景”,课题研究的内容就是:“以佛山新八景为重点,考察佛山历史文化沉淀的昨天、今天、明天,结合佛山经济发展的趋势,拟定开发具有新佛山、新八景、新气象的文化旅游的可行性报告及开发方案。”三、课题研究的目的和意义。课题研究的目的,应该叙述自己在这次研究中想要达到的境地或想要得到的结果。比如我校叶少珍老师指导的“重走长征路”研究课题,在其研究目标一栏中就是这样叙述的:1、通过再现长征历程,追忆红军战士的丰功伟绩,对长征概况、长征途中遇到了哪些艰难险阻、什么是长征精神,有更深刻的了解和感悟。2、通过小组同学间的分工合作、交流、展示、解说,培养合作参与精神和自我展示能力。3、通过本次活动,使同学的信息技术得到提高,进一步提高信息素养。四、课题研究的方法。在“课题研究的方法”这一部分,应该提出本课题组关于解决本课题问题的门路或者说程序等。一般来说,研究性学习的课题研究方法有:实地调查考察法(通过组织学生到所研究的处所实地调查,从而得出结论的方法)、问卷调查法(根据本课题的情况和自己要了解的内容设置一些问题,以问卷的形式向相关人员调查的方法)、人物采访法(直接向有关人员采访,以掌握第一手材料的方法)、文献法(通过查阅各类资料、图表等,分析、比较得出结论)等等。在课题研究中,应该根据自己课题的实际情况提出相关的课题研究方法,不一定面面俱到,只要实用就行。五、课题研究的步骤。课题研究的步骤,当然就是说本课题准备通过哪几步程序来达到研究的目的。所以在这一部分里应该着重思考的问题就是自己的课题大概准备分几步来完成。一般来说课题研究的基本步骤不外乎是以下几个方面:准备阶段、查阅资料阶段、实地考察阶段、问卷调查阶段、采访阶段、资料的分析整理阶段、对本课题的总结与反思阶段等。六、课题参与人员及组织分工。这属于对本课题研究的管理范畴,但也不可忽视。因为管理不到位,学生不能明确自己的职责,有时就会偷懒或者互相推诿,有时就会做重复劳动。因此课题参与人员的组织分工是不可少的。最好是把所有的参与研究的学生分成几个小组,每个小组通过民主选举的方式推选出小组长,由小组长负责本小组的任务分派和落实。然后根据本课题的情况,把相关的研究任务分割成几大部分,一个小组负责一个部分。最后由小组长组织人员汇总和整理。七、课题的经费估算。一个课题要开展,必然需要一些经费来启动,所以最后还应该大概地估算一下本课题所需要 的资金是多少,比如搜集资料需要多少钱,实地调查的外出经费,问卷调查的印刷和分发的费用,课题组所要占用的场地费,有些课题还需要购买一些相关的材料,结题报告等资料的印刷费等等。所谓“大军未动,粮草先行”,没有足够的资金作后盾,课题研究势必举步维艰,捉襟见肘,甚至于半途而废。因此,课题的经费也必须在开题之初就估算好,未雨绸缪,才能真正把本课题的研究做到最好。

相关百科

热门百科

首页
发表服务