20世纪初发展出来,由大气中氮制氨的化学方法。是化学方法方面最重要的发明之一,因为它使大气中氮的固定成为可能,从而还能由将转化为硝酸来生产肥料(和炸药)所需的硝酸盐。哈伯()在理论的实验上证明,如何维持来自空气的氮和来自水中的氢在适当的温度和压力,并在有催化剂的情况下反应。博施()还证明如何在工业规模上实现这种方法。总反应是3H2+n2=2NH3
硕士论文的参考文献格式及其范例
参考文献是在学术研究过程中,对某一著作或论文的整体的参考或借鉴。征引过的文献在注释中已注明,不再出现于文后参考文献中。那么,硕士论文的参考文献格式是怎么样的呢?以下是我收集整理了硕士论文的参考文献格式及其范例,供大家参考借鉴,希望可以帮助到有需要的`朋友。
参照我国国家标准 GB7714 -2005《文后参考文献着录规则》,参考文献按被引用的先后顺序排列于文末,书写格式如下:
杂志: [序号]作者. ( 不超过 3 位者全部列出,之间以逗号分隔,3 位以上者,写出前 3 位作者,后加“等”或“et al”,英文作
者姓在前,名缩写于后) . 文题[J]. 期刊名( 外文期刊按 Index Medicus 缩写) ,年,卷( 期) : 起页 - 止页.
例 1: [1]王林,杨建荣,于志平,等. 新时期牙科诊所的构建初探[J]. 口腔医学,2003,23( 1) : 63 -64.
专着: [序号]作者. 书名[M]. 版次( 第 1 版可省略) . 出版地: 出版单位,年份: 起页 - 止页.
例 2: [2]武忠弼. 病理学[M]. 3 版. 北京的: 人民卫生出版社,1993: 7 -22.
1.期刊论文
[1]周庆荣,张泽廷,朱美文,等.固体溶质在含夹带剂超临界流体中的溶解度[J].化工学报,1995,46(3):317-323
[2]Dobbs J M, Wong J M. Modification of supercritical fluid phasebehavior using polor coselvent[J]. Ind Eng Chem
Res, 1987,26:56
[3]刘仲能,金文清.合成医药中间体4-甲基咪唑的研究[J].精细化工,2002(2):103-105
[ 4 ] Mesquita A C, Mori M N, Vieira J M, et al . Vinyl acetatepolymerization by ionizing radiation[J].Radiation Physics and Chemistry,2002, 63:465
2.专著
[1]蒋挺大.亮聚糖[M].北京的:化学工业出版社,
[2]Kortun G. Reflectance Spectroscopy[M]. New York: Spring-Verlag,1969
3.论文集
[1]郭宏,王熊,刘宗林.膜分离技术在大豆分离蛋白生产中综合利用的研究[C].//余立新.第三届全国膜和膜过程学术报告会议论文集.北京的:高教出版社,
[2]Eiben A E, vander Hauw J 3-SAT with adaptive geneticalgorithms [C].//Proc 4th IEEE ConfEvolutionary Press,
4.学位论文
[1]陈金梅.氟石膏生产早强快硬水泥的试验研究(D).西安:西安建筑科学大学,2000
[ 2 ] Chrisstoffels L A J . Carrier-facilitated transport as a mechanistic tool in supramolecular chemistry[D].The Netherland:
5.专利文献
[1]Hasegawa, Toshiyuki, Yoshida,et Coating composition[P].EP
[2] 仲前昌夫, 佐藤寿昭. 感光性树脂[ P ].日本, 特开平
[3]Yamaguchi K, Hayashi A. Plant growth promotor and productionthereof [P].Jpn,
[4]厦门大学.二烷氨基乙醇羧酸酯的制备方法[P].中国发明专利,
6.技术标准文献
[1]ISO 1210-1982,塑料--小试样接触火焰法测定塑料燃烧性[S]
[2]GB 2410-80,透明塑料透光率及雾度实验方法[S]
7.报纸
[1]陈志平.减灾设计研究新动态[N].科技日报,1997-12-12(5)
8.报告
[1]中国机械工程学会.密相气力输送技术[R].北京的:1996
9.电子文献
[1]万锦柔.中国大学学报论文文摘(1983-1993)[DB/CD].北京的:中国百科全书出版社,1996
20世纪初发展出来,由大气中氮制氨的化学方法。是化学方法方面最重要的发明之一,因为它使大气中氮的固定成为可能,从而还能由将转化为硝酸来生产肥料(和炸药)所需的硝酸盐。哈伯()在理论的实验上证明,如何维持来自空气的氮和来自水中的氢在适当的温度和压力,并在有催化剂的情况下反应。博施()还证明如何在工业规模上实现这种方法。总反应是3H2+N2=2NM3
合成氨:由氮和氢在高温高压和催化剂存在下直接合成的氨
德国化学家哈伯(, 1868-1934)从1902年开始研究由氮气和氢气直接合成氨。于1908年申请专利,即“循环法”,在此基础上,他继续研究,于1909年改进了合成,氨的含量达到6%以上。这是目前工业普遍采用的直接合成法。反应过程中为解决氢气和氮气合成转化率低的问题,将氨产品从合成反应后的气体中分离出来,未反应气和新鲜氢氮气混合重新参与合成反应。合成氨反应式如下:N2+3H2≒2NH3(该反应为可逆反应,等号上反应条件为:"高温 高压",下为:"催化剂")合成氨的主要原料可分为固体原料、液体原料和气体原料。经过近百年的发展,合成氨技术趋于成熟,形成了一大批各有特色的工艺流程,但都是由三个基本部分组成,即原料气制备过程、净化过程以及氨合成过程。
生产能力和产量:合成氨是化学工业中产量很大的化工产品。消费和用途:合成氨主要消费部门为化肥工业,用于其他领域的(主要是高分子化工、火炸药工业等)非化肥用氨,统称为工业用氨。原料:合成氨主要原料有天然气、石脑油、重质油和煤等。生产方法:生产合成氨的方法主要区别在原料气的制造,其中最广泛采用的为蒸汽转化法和部分氧化法(见合成氨原料气)。
水煤浆气化技术论文篇二 德士古水煤浆气化技术的特点及应用 【摘要】水煤浆气化技术在我国由来已久,近年来,德士古水煤浆气化技术在我国的发展更为的迅速,其技术应用的范围也在不断的扩大,德士古水煤浆气化技术具有很多优点,因此,其应用还有待于进一步开发。本文将从以下几个方面来分析德士古水煤浆气化技术的特点及应用。 【关键词】德士古水煤浆气化技术;特点;应用;分析 中图分类号:X752 文献标识码:A 文章编号: 一、前言 目前,国内水煤浆气化的应用还存在一定的问题,选用何种技术成为了主要的关注点,因此,研究德士古水煤浆气化技术的特点及其在我国的应用具有很深远的现实意义。 二、煤气化原理及发展趋势 1、煤气化的原理 煤的气化反应是指气化剂(空气、水蒸气、富氧空气、工业氧气以及其相应混合物等)与碳质原料之间以及反应产物与原料、反应产物之间的化学反应。在气化炉内,煤炭要经历干燥、热解、气化和燃烧过程。 (一)湿煤中水分蒸发的过程: (二)热解(干馏)是煤受热后自身发生的一系列物理化学变化过程。一般来讲,热解的形式为:煤 煤气(CO2,CO,CH4,H2O,H2,NH3, H2S)+焦油+焦炭 (三)气化与燃烧过程。仅考虑煤的主要元素碳的反应,这些反应如下: a.碳-氧间的反应; b.碳-水蒸气间的反应; c.甲烷生成反应; 需要指出的是,以上所列诸反应为煤气化和燃烧过程的基本化学反应,不同过程可由上述或其中部分反应以串联或平行的方式组合而成。 2、煤气化技术的发展趋势 现代煤炭气化技术发展趋势如下: (一)气化压力向高压发展。气化压力由常压、低压(<)向高压() 气化发展,从而提高气化效率、碳转化率和气化炉能力。 (二)气化炉能力向大型化发展。大型化便于实现自动控制和优化操作,降低能耗和操作费用。 (三)气化温度向高温发展。气化温度高,煤中有机物质分解气化,消除或减少环境污染,对煤种适应性广。 (四)不断开发新的气化技术和新型气化炉,提高碳转化率和煤气质量,降低建设投资。目前碳转化率高达98%-99%,煤气中含CO+H2达到80%-90%。 (五)现代煤气化技术与其他先进技术联合应用。 (六)煤气化技术与先进脱硫、除尘技术相结合,实现环境友好,减少污染。 三、国内应用上存在的问题与解决措施 1.存在的问题 (一)气化效率仍然低 当前在国内,在燃烧上多采用单喷嘴直喷的模式,像德士古炉,而华东理工大学则采用多嘴对喷,后者的改进虽然增强了利用的效率,但是其对耐火砖的损坏也相应的加大了。在整个气化装置中,采用单个喷嘴时,其容量受到了限制,这就制约了水煤浆气化的转化效率。当采用多对喷嘴时,喷嘴的寿命也同时受到了考验,在雾化方面的效果仍然不能得到完全的控制。 (二)耐火砖的寿命短 水煤浆中本身存在34%左右的水,它的存在会吸收大量的热,在转化过程中,反应的进行使得化学平衡容易遭受破坏,因此,在设计上安排了耐火砖来作内衬。耐火砖专为改善水煤浆气化而来,所以,好的耐火砖将会对气化产生重要的作用。而在实际转化过程中,耐火砖十分容易损坏,当转化炉的操作温度过高时,它将直接烧坏耐火砖。 (三)煤炭质量的影响在现今的转化中,煤浆的混合制成,也对煤中含灰量和灰熔点有着特定的要求,当煤的质量不能满足水煤浆的合成时,其气化的效果将降低,同时,在进一步的燃烧中,由于可燃物含量的低下使得将要获得热能减少。 四、德士古水煤浆气化技术工艺 水煤浆制气的德士古工艺见图 1: 五、德士古水煤浆气化技术特点 德士古加压水煤浆气化工艺与第一代煤气化工艺相比,主要是提高了气化压力和温度,从而改善了技术经济指标。扩大了煤种的适应范围,该气化炉属于喷流气化,以水煤浆方式进料,其气化压力为。 主要工艺特点如下: 1、煤种适应性强,主要以烟煤为主,对煤的活性没有严格要求,但对煤的灰熔点有一定要求。 2、水煤浆用泵连续输送,故气化炉操作稳定性好,输送方便并有利于环境改善。 3、碳转化率高达96%以上,排水中无焦油、酚等污染环境的副产物产生,同时煤气中甲烷含量低,是较为理想的合成原料气。 4、气化在加压下进行,气化强度高,设备体积小,布置紧凑而且能耗较低。 5、气化炉内无转动部件,其结构简单、可靠。 6、气体在气化炉内停留时间短,仅为几秒钟,因而气化操作弹性大。 7、气化炉高温下排出之熔渣性能稳定,对环境影响小。 德士古水煤浆气化技术,与无烟煤间歇气化及鲁奇(Lurgi)气化技术相比具有明显的优越性。该法常以灰融点低活性较好的煤质为主,对煤种有较宽的适应性。适宜于作生产合成氨和甲醇的原料气。因而该技术引入我国以后,引起合成氨企业及各界人事的普遍关注。 六、德士古水煤浆气化的应用 目前我国采用该技术的在运行装置有20多家。鲁南化肥厂、上海焦化厂、陕西渭河化肥厂、安徽淮南化工厂和黑龙江浩良河化肥厂是国内使用德士古水煤浆气化炉较早的厂家,德士古水煤浆气化炉的部分应用情况见表 1。 表 1 德士古德士古水煤浆气化的应用状况 七、水煤浆气化工艺前景展望 德士古加压水煤浆气化技术虽然是比较成熟的煤气化技术,但从已投产的水煤浆加压气化装置的运行情况看,由于工程设计和操作经验的不完善,还没有达到长周期、高负荷、稳定运行的最佳状态,存在的问题还较多。 1、气化炉烧嘴运行周期较短,一般不超过 3 个月,这是造成德士古装置必须有备炉的主要原因; 2、耐火砖使用寿命国产约 1 a,进口约 2 a,导致维修费用较大; 3、单烧嘴制气,操作弹性较低;德士古加压水煤浆气化炉耐火砖的寿命问题仍然是一个难题,对于德士古水煤浆气化炉烧嘴的问题已有一些新的气化炉将单喷嘴改为对置式多喷嘴,可以增加热质传递,并且能提高碳的转化率。目前由兖矿集团有限公司、华东理工大学共同承担的国家高技术研究发展计划(863 计划)重大课题“新型水煤浆气化技术”就是将单喷嘴水煤浆气化炉改为对置式多喷嘴水煤浆气化炉,并配套生产甲醇和联产发电。多喷嘴对置式水煤浆气化技术含水煤浆制备工序、多喷嘴对置式水煤浆气化和煤气初步净化工序、含渣水处理工序。 多喷嘴对置式水煤浆气化技术自动化程度高,全部采用集散控制系统(DCS)控制,特别是氧煤比完全可以投自动串级控制。工业运行证实,该装置具有开车方便、操作灵活、投煤负荷增减自如的特点,操作的方便程度优于引进水煤浆气化装置。多喷嘴对置式水煤浆气化技术已被工程实践证实完全可行,工艺指标也极为先进,对初步的运行结果统计表明:有效气 CO+H2≥82%,碳转化率≥98%。通过工业化规模的气化炉的示范运行,我国在水煤浆气流床气化技术方面将达国际先进水平,具有自主知识产权的大型煤气化技术。 随着机械化采煤的发展,粉煤产率也在增加,利用此项技术可以解决粉煤的利用问题,也可以解决煤炭在洗选过程中产生的大量煤泥,利用水煤浆气化技术联合循环发电也具有广阔前景。今后煤化工的更多机会是发展新型煤化工,即煤制甲醇、煤烯烃、二甲醚和煤制油,煤气化生产甲醇及其下游产品的开发和 IGCC 联合发电也是新型煤化工的一个发展方向。新型煤化工将成为今后煤化工产业的发展主题。 八、结束语 在我国今后的水煤浆气化的发展过程中,可以更加深入的分析德士古水煤浆气化技术,通过充分利用其优势来提高其使用效果,从而提高我国水煤浆气化技术的整体质量水平。 【参考文献】 [1]陈俊峰.煤气化技术的发展现状及研究进展[J].广州化工,(5):31-33. [2]赵嘉博.刘小军.洁净煤技术的研究现状及进展[J].露天采矿技术.. [3]高丽. 德士古水煤浆加压气化技术的应用[J]. 煤炭技术,2010,07:161-162. [4]贾小军. 德士古水煤浆气化技术研究及其国产化创新[J]. 中国科技信息,2013,14:115. [5]崔嵬,吕传磊,徐厚斌. 德士古水煤浆加压气化技术的应用及创新[J]. 化肥工业,2000,06:7-8+17-58. 看了“水煤浆气化技术论文”的人还看: 1. 煤气化技术论文 2. 煤气化技术论文(2) 3. 煤炭气化技术论文(2) 4. 洁净煤燃烧技术论文 5. 大气污染控制技术论文
研究人员报告说,一种新的无机合成氨方法既环保又能在环境条件下按需生产有价值的化学物质。 研究人员操纵了一种二维晶体——二硫化钼——并通过从晶格状结构中去除硫原子,并用钴代替暴露的钼,将其转化为催化剂。 这使得这种材料能够模仿细菌用来将大气中的二氮转化为氨的天然有机过程,包括在使用氨来帮助肝脏功能的生物体中。 无机工艺将允许氨作为工业的小规模附属物在任何需要的地方生产,工业每年通过无机哈伯-博施工艺生产数百万吨的化学物质。 这项研究来自莱斯大学布朗工程学院材料科学家军楼实验室 美国化学学会杂志 。 “哈伯-博施工艺产生大量二氧化碳,消耗大量能源,”合著者兼研究生小银·田说。“但是我们的过程使用电来触发催化剂。我们可以从太阳能或风能中获得。” 研究人员已经知道二硫化钼与二氮有亲和力,二氮是由两个强键氮原子组成的天然分子,约占地球大气的78%。 布鲁克海文国家实验室的研究人员刘明杰的计算模拟显示,用钴代替一些暴露的钼原子将增强化合物促进二氮还原成氨的能力。 莱斯的实验室测试表明情况确实如此。研究人员通过在碳布上生长有缺陷的二硫化钼晶体并添加钴来组装纳米材料样品。(从技术上讲,这些晶体是2D的,但看起来像一个钼原子平面,上面和下面都有硫层。)在施加电流的情况下,使用1千克催化剂,该化合物每小时产生10克以上的氨。 莱斯大学博士后研究员、合著者张箐说:“这种规模无法与发达的工业过程相提并论,但在特定情况下,它可以是一种替代方案。”。"它将允许在没有工厂的地方生产氨,甚至在太空应用中."他说实验室实验使用了专用的二氮饲料,但是这个平台可以很容易地把它从空气中取出来。 卢说,其他掺杂剂可能会让这种材料催化其他化学物质,这是未来研究的主题。“我们认为这里有一个机会去做一些我们非常熟悉的事情,尝试做大自然几十亿年来一直在做的事情,”他说。"如果我们以正确的方式设计一个反应堆,这个平台就可以不间断地执行它的功能." 论文的合著者来自莱斯、布鲁克海文国家实验室和新加坡南洋理工大学。 韦尔奇基金会和美国能源部科学办公室支持这项研究。
第一步是原料气的制备。采用合成法生产氨,首先必须制备含氢和氮的原料气。它可以由分别制得的氢气和氮气混合而成,也可同时制得氢氮混合气。
第二步是原料气的净化。制取的氢氮原料气中都含有硫化合物、一氧化碳、二氧化碳等杂质。这些杂质不仅能腐蚀设备,而且能使氨合成催化剂中毒。因此,把氢氮原料气送入合成塔之前,必须进行净化处理,除去各种杂质,获得纯净的氢氮混合气。
第三步是原料气的压缩和氨的合成。将纯净的氢氮混合气压缩到高压,并在高温和有催化剂存在的条件下合成为氨。
生产合成氨的原料主要焦炭、煤、天然气、重油、轻油等燃料,以及水蒸气和空气;生产合成氨的主要过程一般如下图所示。
原料 →原料气的制备 → 脱 硫→ 一氧化碳的变换→ 脱 碳→ 少量一氧化碳及二氧化碳的清除→压 缩 →氨的合成→ 产品氨。
扩展资料:
氨分子式为NH₃,是一种无色气体,有强烈的刺激气味。极易溶于水,常温常压下1体积水可溶解700倍体积氨,水溶液又称氨水。降温加压可变成液体,液氨是一种制冷剂。
氨也是制造硝酸、化肥、炸药的重要原料。氨对地球上的生物相当重要,它是许多食物和肥料的重要成分。氨也是所有药物直接或间接的组成。
氨有很广泛的用途,同时它还具有腐蚀性等危险性质。由于氨有广泛的用途,氨是世界上产量最多的无机化合物之一,多于八成的氨被用于制作化肥。由于氨可以提供孤对电子,所以它也是一种路易斯碱。
参考资料来源:百度百科-氨
天然气制氨。天然气先经脱硫,然后通过二次转化,再分别经过一氧化合成氨重要下游尿素碳变换、二氧化碳脱除等工序,得到的氮氢混合气,其中尚含有一氧化碳和二氧化碳约体积),经甲烷化作用除去后,制得氢氮摩尔比为3的纯净气,经压缩机压缩而进入氨合成回路,制得产品氨。以石脑油为原料的合成氨生产流程与此流程相似。以下为流程图:小伙伴儿~求采纳~求好评~
1.合成氨的工艺流程 (1)原料气制备 将煤和天然气等原料制成含氢和氮的粗原料气。对于固体原料煤和焦炭,通常采用气化的方法制取合成气;渣油可采用非催化部分氧化的方法获得合成气;对气态烃类和石脑油,工业中利用二段蒸汽转化法制取合成气。 (2)净化 对粗原料气进行净化处理,除去氢气和氮气以外的杂质,主要包括变换过程、脱硫脱碳过程以及气体精制过程。 ① 一氧化碳变换过程 在合成氨生产中,各种方法制取的原料气都含有CO,其体积分数一般为12%~40%。合成氨需要的两种组分是H2和N2,因此需要除去合成气中的CO。变换反应如下: CO+H2OH→2+CO2 = 0298HΔ 由于CO变换过程是强放热过程,必须分段进行以利于回收反应热,并控制变换段出口残余CO含量。第一步是高温变换,使大部分CO转变为CO2和H2;第二步是低温变换,将CO含量降至左右。因此,CO变换反应既是原料气制造的继续,又是净化的过程,为后续脱碳过程创造条件。 ② 脱硫脱碳过程 各种原料制取的粗原料气,都含有一些硫和碳的氧化物,为了防止合成氨生产过程催化剂的中毒,必须在氨合成工序前加以脱除,以天然气为原料的蒸汽转化法,第一道工序是脱硫,用以保护转化催化剂,以重油和煤为原料的部分氧化法,根据一氧化碳变换是否采用耐硫的催化剂而确定脱硫的位置。工业脱硫方法种类很多,通常是采用物理或化学吸收的方法,常用的有低温甲醇洗法(Rectisol)、聚乙二醇二甲醚法(Selexol)等。 粗原料气经CO变换以后,变换气中除H2外,还有CO2、CO和CH4等组分,其中以CO2含量最多。CO2既是氨合成催化剂的毒物,又是制造尿素、碳酸氢铵等氮肥的重要原料。因此变换气中CO2的脱除必须兼顾这两方面的要求。 一般采用溶液吸收法脱除CO2。根据吸收剂性能的不同,可分为两大类。一类是物理吸收法,如低温甲醇洗法(Rectisol),聚乙二醇二甲醚法(Selexol),碳酸丙烯酯法。一类是化学吸收法,如热钾碱法,低热耗本菲尔法,活化MDEA法,MEA法等。 4 ③ 气体精制过程 经CO变换和CO2脱除后的原料气中尚含有少量残余的CO和CO2。为了防止对氨合成催化剂的毒害,规定CO和CO2总含量不得大于10cm3/m3(体积分数)。因此,原料气在进入合成工序前,必须进行原料气的最终净化,即精制过程。 目前在工业生产中,最终净化方法分为深冷分离法和甲烷化法。深冷分离法主要是液氮洗法,是在深度冷冻(<-100℃)条件下用液氮吸收分离少量CO,而且也能脱除甲烷和大部分氩,这样可以获得只含有惰性气体100cm3/m3以下的氢氮混合气,深冷净化法通常与空分以及低温甲醇洗结合。甲烷化法是在催化剂存在下使少量CO、CO2与H2反应生成CH4和H2O的一种净化工艺,要求入口原料气中碳的氧化物含量(体积分数)一般应小于。甲烷化法可以将气体中碳的氧化物(CO+CO2)含量脱除到10cm3/m3以下,但是需要消耗有效成分H2,并且增加了惰性气体CH4的含量。甲烷化反应如下: CO+3H2→CH4+H2O = 0298HΔ CO2+4H2→CH4+2H2O = 0298HΔ (3)氨合成 将纯净的氢、氮混合气压缩到高压,在催化剂的作用下合成氨。氨的合成是提供液氨产品的工序,是整个合成氨生产过程的核心部分。氨合成反应在较高压力和催化剂存在的条件下进行,由于反应后气体中氨含量不高,一般只有10%~20%,故采用未反应氢氮气循环的流程。氨合成反应式如下: N2+3H2→2NH3(g) =
弗里茨·哈伯(Fritz Haber,1868年12月9日-1934年1月29日),德国化学家,出生在德国西里西亚布雷斯劳(现为波兰的弗罗茨瓦夫)的一个犹太人家庭。从小就对化学工业有极浓厚的兴趣。高中毕业后,哈伯先后到柏林、海德堡、苏黎世上大学。上学期间,他还在几个工厂中实习,得到了许多实践的经验。他喜爱德国农业化学之父李比希的伟大职业——化学工业。读大学期间,哈伯在柏林大学霍夫曼教授的指导下,写了一篇关于有机化学的论文,并因此获得博士学位。1904年,哈伯在两位企业家答应给予大力支持开始研究合成氨的工业化生产,并于1909年获得成功,成为第一个从空气中制造出氨的科学家。使人类从此摆脱了依靠天然氮肥的被动局面,加速了世界农业的发展。哈伯也从此成了世界闻名的大科学家。为表彰哈伯的这一贡献,瑞典皇家科学院把1918年的诺贝尔化学奖颁给了哈伯。由于在第一次世界大战中,哈伯担任化学兵工厂厂长时负责研制、生产氯气、芥子气等毒气,并使用于战争之中,造成近百万人伤亡。虽然按照他自己的说法,这是“为了尽早结束战争”,但哈伯这一行径,仍然遭到了美、英、法、中等国科学家们的谴责,哈伯的妻子伊美娃也以自杀的方式以示抗议。一战结束后,哈伯又做了从海水中提取黄金的试验,但最后宣告失败。1934年初被派遣去巴勒斯坦德理化学研究所任职。1934年1月29日哈伯因突发心脏病逝世于瑞士的巴塞尔。
煤的工业分析也称煤的实用分析、近似分析或技术分析,包括煤的外在水分、内在水分、全水分、分析煤样水分、灰分、挥发分、固定碳、全硫和各种硫及发热量等项目。作为校正挥发分、发热量和元素成分碳含量等需用的,碳酸盐中二氧化碳含量也属工业分析范围。一般把煤的水分、灰分、挥发分和固定碳称作煤的半工业分析,如包括硫分和发热量等分析项目,就称作煤的全工业分析。煤的工业分析是煤质分析中最基本的也是最重要的分析项目,因此凡是以煤为原料或燃料的工业部门都需要进行煤的工业分析。煤质分析化验分为两类,一类是测定煤所固有的成分如碳、氢、氧、氮等,称为元素分析,其测定结果是作为对煤进行科学分类的主要依据,在生产上,是计算发热量、热平衡、物料平衡的依据;另一类是在人为规定的条件下,(鹤壁市华诺电子科技有限公司)根据技术需要测定煤经转化生成的物质或呈现的性质如灰分、挥发分等,称作技术分, 根据水分、灰分、挥发分和固定碳含量四项基本测定结果,对煤中有机质、无机质的含量、性质等有了初步了解,并可初步判断煤的种类、加工利用效果及工业用途等。煤的工业分析是煤质分析中最基本的也是最重要的分析项目。
生产能力和产量:合成氨是化学工业中产量很大的化工产品。消费和用途:合成氨主要消费部门为化肥工业,用于其他领域的(主要是高分子化工、火炸药工业等)非化肥用氨,统称为工业用氨。原料:合成氨主要原料有天然气、石脑油、重质油和煤等。生产方法:生产合成氨的方法主要区别在原料气的制造,其中最广泛采用的为蒸汽转化法和部分氧化法(见合成氨原料气)。
详细提纲,是把论文的主要论点和展开部分较为详细地列出来。如果在写作之前准备了详细提纲,那么,执笔时就能更顺利。下面仍以《关于培育和完善建筑劳动力市场的思考》为例,介绍详细提纲的写法:上面所说的简单提纲和详细提纲都是论文的骨架和要点,选择哪一种,要根据作者的需要。如果考虑周到,调查详细,用简单提纲问题不是很大;但如果考虑粗疏,调查不周,则必须用详细提纲,否则,很难写出合格的毕业论文。总之,在动手撰写毕业论文之前拟好提纲,写起来就会方便得多。
合成氨指由氮和氢在高温高压和催化剂存在下直接合成的氨,为一种基本无机化工流程。现代化学工业中,氨是化肥工业和基本有机化工的主要原料。
氨的生产过程,粗略的讲可分成四步:原料的生产;原料气的净化;氨的合成;氨的分离。除氨的合成外,其它过程的转化率和分离率都比较高。由于氨合成的转化率较低,反应后的气体经氨分离后循环返回合成塔。
制取合成氨的原料气的气态烃主要有天然气,此外还有炼厂气、油田气、焦炉气及裂解气等。生产合成氨原料气的方法按热量供给的方式不同,主要有蒸汽转化法和间歇催化转换法。以天燃气为原料的优点是,冷热交替较少,而且变化幅度不大。有明显的节能效果。
扩展资料
方法:
1、蒸汽转化法
蒸汽转化法分两段进行,一段炉装有催化剂的转化管内,蒸气与气态烃进行吸热的转化反应,反应所需热量由管外提供。气态烃转化到一定程度后,送入装有催化剂的二段炉内。加入适量的空气,与部分可燃性气体燃烧,为剩余的烃进一步转化提供热量,同时为合成氨的生产提供氮气。
该法投资省、能耗低,是生产合成氨最经济的方法,目前在国内得到广泛应用。
2、间歇催化转换法
间接催化转换法的生产过程分为吹风和制气两个阶段,并不断交替进行。在吹风阶段,气态烃与空气在燃烧炉内燃烧,生成的烟道气使催化剂达到烃类蒸汽转化反应所需的温度。在制气的阶段,气态烃与蒸汽在催化剂层进行转化反应,制取合成氨原料气。
该法不需要制氧装置,投资省、建厂快,但热利用率低、原料烃消耗高、操作复杂,因而应用受到限制。
参考资料来源:百度百科-合成氨
德国化学家哈伯(, 1868-1934)从1902年开始研究由氮气和氢气直接合成氨。于1908年申请专利,即“循环法”,在此基础上,他继续研究,于1909年改进了合成,氨的含量达到6%以上。这是目前工业普遍采用的直接合成法。反应过程中为解决氢气和氮气合成转化率低的问题,将氨产品从合成反应后的气体中分离出来,未反应气和新鲜氢氮气混合重新参与合成反应。合成氨反应式如下:N2+3H2≒2NH3(该反应为可逆反应,等号上反应条件为:"高温 高压",下为:"催化剂")合成氨的主要原料可分为固体原料、液体原料和气体原料。经过近百年的发展,合成氨技术趋于成熟,形成了一大批各有特色的工艺流程,但都是由三个基本部分组成,即原料气制备过程、净化过程以及氨合成过程。
你好,
这个是因为催化剂在那个温度活性最高,正反应速率最大,达到平衡最快。
工业反应不仅要考虑反应限度还要考虑产率。
希望对你有所帮助!
不懂请追问!
求好评!
合成氨指由氮和氢在高温高压和催化剂存在下直接合成的氨,为一种基本无机化工流程。现代化学工业中,氨是化肥工业和基本有机化工的主要原料。
合成氨反应的机理,首先是氮分子在铁催化剂表面上进行化学吸附,使氮原子间的化学键减弱。接着是化学吸附的氢原子不断地跟表面上的氮分子作用,在催化剂表面上逐步生成—NH、—NH2和NH3,最后氨分子在表面上脱吸而生成气态的氨。
扩展资料:
合成氨的主要初始原料有天然气、石脑油、重质油和煤(或焦炭)等。
1、天然气制氨
天然气先经脱硫,通过二次转化,再分别经过一氧化碳变换、二氧化碳脱除等工序,得到的氮氢混合气,其中尚含有一氧化碳和二氧化碳约体积,经甲烷化作用除去后,制的氢氮摩尔比为3的纯净气,经压缩机压缩而进入氨合成回路,制得产品氨。
2、重质油制氨
重质油包括各种深度加工所得的渣油,可用部分氧化法制得合成氨原料气,生产过程比天然气蒸气转化法简单,但需要有空气分离装置。
3、煤(焦炭)制氨
以煤(焦炭)为原料制取氨的方式在世界上已很少采用。中国能源结构上存在多煤缺油少气的特点,煤炭成为主要的合成氨原料,天然气制氨工艺则受到严格限制。
参考资料来源:百度百科-合成氨