首页

> 论文发表知识库

首页 论文发表知识库 问题

导热高分子材料的研究进展论文

发布时间:

导热高分子材料的研究进展论文

1.Siwei Liu, Wu Yupeng, Yi Zhang, Chi Zhenguo, Jiarui Xu, Yan Wei, Synthesis and characterization of functional ABA block polymer containing aniline trimer , Chemistry Letter, 2009, 38(8): 840-8412.Hanjia Chen, Xuhua Shi, Yafei Zhu, Yi Zhang, Jiarui Xu, Surface Functionalization of Polypropylene by Entrapment of Polypropylene-grafted- poly (ethylene glycol), Journal of Applied Polymer Science, 2009, 114(4):.Xu Bing, Yi Zhang, Chi Zhenguo, Peng Xiangfang, Lin Yongqiang, Xu Jiarui*, Reinforcing and Toughening on Poly(ether imide) by a Novel Thermotropic Liquid Crystalline Poly(ester-imide-ketone) with Low Content, Polymer Engineering & Science, (10): 2046-20534.Xiqi Zhang, Zhiyong Yang, Zhenguo Chi, Meina Chen, Bingjia Xu, Chengcheng Wang, Siwei Liu, Yi Zhang and Jiarui Xu, A multi-sensing fluorescent compound derived from cyanoacrylic acid, Journal of Materials Chemistry, 2010,20(2)192-1985.Zhiyong Yang, Zhenguo Chi, Tao Yu, Xiqi Zhang, Meina Chen, Bingjia Xu,Siwei Liu, Yi Zhang and Jiarui Xu, Triphenylethylene carbazole derivatives as a new class of AIE materials with strong blue light emission and high glass transition temperature, Journal of Materials Chemistry, 2009, 19, 5541 – 55466.Xiqi Zhang, Zhenguo Chi, Zhiyong Yang, Meina Chen, Bingjia Xu, Lin Zhou, Chengcheng Wang, Yi Zhang, Siwei Liu, Jiarui Xu, Synthesis of carbazole derivatives with high quantum yield and high glass transition temperature, Optical Materials, 2009, 32, 94-987.Zhiyong Yang, Zhenguo Chi, Lin Zhou, Xiqi Zhang, Meina Chen, Bingjia Xu, Chengcheng Wang, Yi Zhang, Jiarui Xu, Blue-light-emitting carbazole derivates with high thermal stability, Optical Materials, 2009, 32 : 398–4018.Yigao Yin, Yi Zhang, Zhengguo Chi, Jiarui Xu*, Self-catalytic cross-linking reaction and reactive mechanism studies of , European Polymer Journal, 2008, 44, 2284-22949.Hanjia Chen, Xuhua Shi, Yafei Zhu, Yi Zhang, Jiarui Xu, Surface modification of polypropylene. I. Surface enrichment of poly(ethylene glycol) on polypropylene/poly- (ethylene glycol) blends. Journal of Vinyl & Additive Technology, 2008, 14(1), 28-3310.HJ Chen, YF Zhu, Yi Zhang, JR Xu, Quantitative analysis of surface composition of polypropylene blends using attenuated total reflectance FTIR spectroscopy, Spectroscopy and Spectral Analysis, 2008, 28(8): 1799-180211.. Chen, . Shi, . Zhu, Y Zhang, . Xu, Polypropylene surface modification by entrapment of polypropylene-graft-poly(butyl methacrylate), Applied Surface Science, 2008, 254: 2521–252712.Hanjia Chen, Xuhua Shi, Yafei Zhu, Yi Zhang, Jiarui Xu, Enrichment of poly(butyl methacrylate) and its graft copolymer of polybutadiene on the surface of polypropylene blend. Journal of Applied Polymer Science, 2008, 107(5), 3049-305713.Hanjia Chen, Xuhua Shi, Yafei Zhu, Yi Zhang, Jiarui Xu, Synthesis and characterization of macromolecular surface modifier PP-g-PEG fro Polypropylene, Front. Chem. Eng. China, 2008, 2(1): 102-10814.Zhenguo Chi, Xiqi Zhang, Yi Zhang, Jiarui Xu, Influence of the Monomer Feeding Sequence on the Structure and Properties of Thermotropic Liquid-Crystalline Poly(ester imide)s, Journal of Applied Polymer Science, 2008, 110, 3001-300815.Shanshan Wei, Yi Zhang, Jiarui Xu, Preparation and property characterization of PAA/Fe3O4 nanocomposite, Front. Chem. Eng. China, 2007, 1(3): 233-23716.Hanjia Chen, Yafei Zhu, Yi Zhang, Jiarui Xu, Surface enrichment of polypropylene -graft-poly(methyl methacrylate) on polypropylene, J. Polym. Res., 2007,14: 489-49617.Jun Xu, Yafei Zhu, Yi Zhang, Yimin Zheng, Zhenguo Chi, Jiarui Xu, Effects of sequence structure on physical property of thermal liquid crystalline Poly(ester imide ketone)s,. Polym. Sci., 2007, 103(5):3183-319318.Shanshan Wei, Yi Zhang and Jiarui Xu, The Dynamic Rheology Behaviors of Reactive Polyacrylic acid/nano-Fe3O4 Ethanol Suspension, Colloids and Surfaces, A: Physicochemical and engineering aspects, 2007, 296(1-3):51-5619.Siwei Liu, Kaizheng Zhu, Yi Zhang, Jiarui Xu, Cyclic Polyaniline Nanostructures form Aqueous/Organic Interfacial Polymerization Induced by Polyacrylic Acid, Polymer, 2006,47:7680~768320.Shanshan Wei, Yafei Zhu, Yi Zhang, Jiarui Xu, Preparation and Characterization of Hyperbranched Aromatic Polyamides/Fe3O4 Magnetic Nanocomposite, Reactive and Functional Polymers, 2006, 66: 1272-127721.Gufeng Chen, Yi Zhang, Jiarui Xu,Synthesis of SMA Esters and the Surface Properties when Blending with Polyethylene, Applied Surface Science, 2006, 253(3): 1107-111022.Xiaolong Lu, Yi Zhang and Jiarui Xu, Influence of fiber morphology in pull-out process of chain-shaped fiber reinforced polymer composites, Scripta Materialia, 2006, 54, 1617-162123.Hanjia Chen, Yafei Zhu, Yi Zhang, Jiarui Xu, Synthesis and characterization of a macromolecular surface modifier for polypropylene, J. Science, 2006, 102(4): 3413-341924.Zhenguo Chi, Dan Cheng, Xinwei Pan, Yi Zhang, Jiarui Xu and Haishan Bu, Thermal transition behaviors in a liquid crystalline polyesterimide, Polymer, 2005, 46(15): 5840-584725.Zhenguo Chi, Xiandong Yao, Yi Zhang, Jiarui Xu, Thermal decomposition kinetics of thermotropic liquid crystalline polyesterimides,J. Science, 2005, 98(6): 2467-247226.Siwei Liu, Kaizheng Zhu, Yi Zhang, Jiarui Xu, A Novel Method to Conductive Polymer: PMMA with Fixed Length Oligoaniline as Side Chanis, Material Letters, 2005, 59(28): 3715-371927.Yi Zhang, Kailiang Cheng, Jiarui Xu, Thermal stability studies of polyamides and their block coppolymers, Thermochimica Acta, 2005, 425: 137-14128.Yi Zhang, Jiarui Xu et al, A novel method to the preparation of monocaproxy l-end-grouped polycaprolactam with adjustable low molecular weight,J. Science, 2004, 92(2):722-.Jiarui Xu, Yi Zhang and Quanling Zhang, A novel approach to melt-processable molecular composites, Polymer, 2001, 42, 2689-269330.张艺,郑雪菲,牛新星,张燕珠,肖善雄,林文璇,刘四委,黄爱萍,池振国,许家瑞,含硫醚结构均苯型聚酰亚胺的合成及表征,高分子学报,2010, 录用31.张艺,郑雪菲,牛新星,张燕珠,肖善雄,林文璇,刘四委,黄爱萍,池振国,许家瑞,一种新型聚酰亚胺的合成及结构性能表征,中山大学学报,2010,录用32.肖善雄,张艺,孙世彧,刘四委,池振国,许家瑞,导热高分子复合材料的研究进展,广东化工,录用,2010, 2: 5-833.张燕珠,刘四委,黄爱萍,张艺, 池振国,许家瑞*,热处理对聚酰胺嵌段共聚物/尼龙6共混体系结晶熔融行为和结晶结构的影响,高分子学报, 2010, 2:231-23634.刘四委,张艺,危岩,许家瑞,双聚己内酯封端苯胺三聚体的合成与研究,高分子学报,2010, 1: 22-2635.李红山,张艺,许家瑞,硬脂酸镧对硅烷交联LLDPE 热性能和力学性能的影响,高分子材料科学与工程,2009,25(5):46-4836.杨志涌,池振国,于涛,陈美娜,张锡奇,王程程,许炳佳,周勰,刘四委,张艺,许家瑞,具有聚集诱导增强发光效应的咔唑基三苯乙烯衍生物新型单体及聚合物,高分子学报,2009,6:560-56537.张锡奇,杨志涌,陈美娜,许炳佳,张艺,池振国,许家瑞, 含N已基吩噻嗪和N已基咔唑基团的联苯乙烯类有机发光材料的合成及其性能研究, 中山大学学报,2009,6,9-1438.李红山,张艺,许家瑞,氧化镧对LLDPE热氧化分解行为的影响,中山大学学报,2008,47(1):51-5539.李红山,张艺,许家瑞,稀土氧化物对LLDPE 热氧分解行为的影响, 塑料, 2008, 37(1), 70-7340.余穗华,赵克,张艺,新型Comfort-DA Ⅱ型义齿黏附剂的研制,广东牙病防治,2008,16(8):94341.尹以高,张艺,陈晓燕,许家瑞,自催化交联型有机硅密封胶的合成和性能研究,中国粘结剂,2007,16(5):1-342.尹以高,陈晓燕,张艺,许家瑞,有机硅密封胶粘接聚烯烃材料的研究,中国粘结剂,2007,16(2):10-1343.逯小龙,张艺,许家瑞,链状纤维增强热塑性聚合物复合材料的界面特性研究,中山大学学报(自然科学版),2007,46(2):41-4444.陈谷峰,祝亚非,周勰,张艺,许家瑞. SMA梳状酯化物的合成及其对HDPE表面改性的研究. 功能高分子学报,2007,19-20(1):1-845.李红山,张艺,许家瑞,硬脂酸镧对LLDPE热氧化分解行为的影响,稀土,2007,28(3):5-846.许军,张艺,祝亚非,许家瑞,聚酯酰亚胺共聚物的液晶特性和相转变研究,中山大学学报,2007, 46(1):48-5147.许军,张艺,李瑞,祝亚非,池振国,许家瑞,一类含萘环结构的聚酯酰亚胺液晶聚合物的结构与性能研究,高分子学报,2007,4:314-32048.许军,祝亚非,张艺,李瑞,池振国,许家瑞;聚酯酰亚胺三元共聚物的核磁共振波谱法表征,分析测试学报,2007,26(2):145-15049.陈汉佳,祝亚非,张艺,许家瑞,添加型聚丙烯大分子表面改性剂PP-g-PEG的制备及其应用,高分子学报,2007,2:203-20850.陈汉佳,祝亚非,张艺,许家瑞,聚丙烯大分子表面改性剂PP-g-PMMA的制备及其应用,高分子材料科学与工程,2007,23(3):80-8451.陈汉佳,祝亚非,张艺,许家瑞,聚丙烯蜡/聚乙二醇接枝共聚物在PP共混体系中的迁移扩散,塑料工业,2007,35(7):42-4652.陈谷峰,张艺,许家瑞,LLDPE/SMA共混物表面固相接枝PEG的研究,高分子学报,2006,6: 829-83253.李红山,张艺,许家瑞,氧化镧对硅烷交联LLDPE热性能的影响,中国塑料,2006, 20(6):73-7654.李红山,张艺,许家瑞,硬脂酸镧对LLDPE热老化行为的影响,中山大学学报,2006, 45(6):48-5255.魏珊珊,张艺,许家瑞,聚丙烯酸/Fe3O4纳米复合材料的制备及性能研究,中山大学学报,2006,45(5):47-5056.魏珊珊,祝亚非,张艺,许家瑞。聚(丙烯酸-丙烯酸羟乙酯)/Fe3O4磁流体的制备及表征,华东理工大学学报(原《功能高分子学报》),2006,32(6):634-63757.陈汉佳,祝亚非,张艺,许家瑞,聚丁二烯/聚甲基丙烯酸丁酯接枝共聚物的合成及表征,中山大学学报自然科学版,2006,45(4):54-5758.陈汉佳,祝亚非,张艺,许家瑞,聚丁二烯/聚甲基丙烯酸甲酯接枝共聚物的合成及表征,华东理工大学学报(原《功能高分子学报》),2006,32(6):638-64259.陈汉佳,祝亚非,张艺,许家瑞,氢化聚丁二烯/聚甲基丙烯酸甲酯接枝共聚物的合成及表征,塑料工业,2006,34(2):11-1460.张艺,池振国,许军,郑毅敏,许家瑞,可纺性热致液晶聚酯酰亚胺的分子设计及 合成,高分子液晶态与超分子有序结构研究进展,,37-41(ISBN 7-5614 -3149-X/O. 104)61.许军,张艺,李瑞,池振国,郑毅敏,许家瑞,含萘环结构的热致性液晶聚酯酰亚胺的设计合成及其性能研究,高分子液晶态与超分子有序结构研究进展,2005,A09,42~45 (ISBN 7-5614-3149-X/O. 104)62.刘四委,朱凯征,张艺,祝亚非,许家瑞,含苯胺低聚物侧链的导电共聚物的合成与性能研究,高分子学报,2005,2:266-26863.张艺,程开良,郑毅敏,许家瑞,空间立体结构对芳香聚酰胺及其与脂肪聚酰胺嵌段共聚物结晶行为的影响,中山大学学报(自然科学版),2004,Vol 43(5):20-2464.张艺,许家瑞,调制式差示扫描量热法(MDSC)在高分子研究中的应用,化学通报,2004, 5: 341-34765.张艺,许家瑞,微观纤维增强高分子复合材料研究I,材料工程,2003. 8: 43-4866.张艺,许家瑞,微观纤维增强高分子复合材料研究II,世界科技研究与发展,2003,4:68~7767.曾春莲,张艺,许家瑞等,用MDSC法表征尼龙6和聚乳酸热转变行为,分析测试学报,2003,4:70~7268.张全灵,许家瑞,张艺,微观纤维增强高分子复合材料分散相结构设计 II,中山大学学报,1999. 38 (5), 4069.张全灵,许家瑞,张艺,微观纤维增强高分子复合材料分散相结构设计 I,中山大学学报,1998. 37 (5), 39 1.张艺,李霁,何芬,池振国,许家瑞,多重响应性改性纳米磁性颗粒的制备,中国化学会第十四届反应性高分子学术讨论会,.~19.,广州(口头报告)2.杨志涌,于涛,陈美娜,张锡奇,许炳佳,王程程,刘四委,张艺,池振国,许家瑞, 周勰,具有聚集诱导增强发光效应的咔唑三苯乙烯衍生物的聚合物,中国化学会第十四届反应性高分子学术讨论会,.~19.,广州(口头报告)3.张艺,李瑞,池振国,许家瑞,热致液晶聚酯酰亚胺/PET共混体系结构与性能研究,2007年先进材料成型技术与材料加工国际研讨会,, pp. 154-157,广州 (口头报告)4.张艺,李瑞,池振国,许家瑞,含萘环结构热致液晶聚酯酰亚胺/PET共混体系研究,2007年高分子学术年会会议,. 成都 (墙报展示)5.许家瑞,张艺,许军,池振国,主链型热致液晶聚酯酰亚胺的可控聚合及表征,2007年高分子学术年会会议,. 成都 (口头报告)6.张艺,程开良,郑毅敏,池振国,许家瑞,三元共聚液晶聚酯酰亚胺/PET共混体系性能研究,2005年高分子学术论文报告会,.~13.,北京(口头报告)7.魏珊珊,祝亚非,张艺,许家瑞, PAA/Fe3O4纳米复合材料中两组分相互作用研究,2005年高分子学术论文报告会,.~13.,北京8.陈谷峰,张艺,许家瑞,SMA酯化物的合成及其对聚乙烯表面改性的研究,2005年高分子学术论文报告会,.~13.,北京9.李红山,张艺,许家瑞,氧化镧和硬脂酸镧对LLDPE结晶与力学性能的影响,2005年高分子学术论文报告会,.~13.,北京10.刘四委,朱凯征,张艺,许家瑞,结构规整的含苯胺低聚物侧链的导电聚合物研究,2005年高分子学术论文报告会,.~13.,北京11.逯小龙,张艺,许家瑞,链状短纤维与热塑性聚合物界面性能研究,2005年高分子学术论文报告会,.~13.,北京12.陈汉佳,祝亚非,张艺,许家瑞,PP添加型大分子表面改性剂的制备及其应用,2005 广东高性能、功能材料研究与产业化及发展循环经济研讨会,~22,汕头13.张艺,程开良,张全灵,许家瑞,低分子芳香聚酰胺/尼龙6共混体系结晶行为研究,复合材料--成本、环境与产业化(NCCM-13),2004,D:树脂基复合材料,572-576(ISBN 7-80183-467-4)14.许家瑞,张艺,程开良,张全灵,微观纤维增强高分子复合材料研究的进展及若干思考,2004年中国复合材料学会换届会议,上海15.许家瑞,张艺,程开良,张全灵,可熔融加工的微观纤维增强高分子复合材料研究,03全国高分子学术论文报告会论文集,Oct 9-14,杭州, Zhang, Yi Zhang and Jiarui Xu, A novel approach to molecular composite 6th Pacific Polymer Conference (PPC-6) December 7-11, 1999 Guangzhou, China, Section-2 0917.许家瑞,张全灵,张艺,曾汉民,微观纤维增强高分子复合材料增强相的结构与性能的研究——模型嵌段共聚物的合成与表征,97ˊ全国高分子学术论文报告会论文集,f 247,合肥 Zhang, Jiarui Xu et al, Synthesis of Tri-block Copolymer for Melt-processable Molecular Composites, Proceedings of the 13th International Conference for Composite Materials, Section-19, ID-1506,Ed. Yao Zhang, Wanfang Digital Publishers, Beijing, 2001 (CD edition, ISBN 7-900075-46-1/Z-Y)

可以xx这些比较好找资料的

高分子材料作为一种重要的材料, 经过约半个世纪的发展巳在各个工业领域中发挥了巨大的作用。下文是我为大家整理的有关高分子材料毕业论文的范文,欢迎大家阅读参考! 有关高分子材料毕业论文篇1 浅析高分子材料成型加工技术. 【摘要】高分子材料成型加工技术在工业上取得的飞速发展,介绍高分子材料成型加工技术的发展情况,探讨其创新研究,并详细阐述高分子材料成型加工技术的发展趋势。 【关键词】高分子材料;成型加工;技术 近年来,某些特殊领域如航空工业、国防尖端工业等领域的发展对聚合物材料的性能提出了更高的要求,如高强度、高模量、轻质等,各种特定要求的高强度聚合物的开发研制越来越显迫切。 一、高分子材料成型加工技术发展概况 近50年来,高分子合成工业取得了很大的进展。例如,造粒用挤出机的结构有了很大的改进,产量有了极大的提高。20世纪60年代主要采用单螺杆挤出机造粒,产量约为3t/h;70年代至80年代中期,采用连续混炼机+单螺杆挤出机造粒,产量约为10t/h;80年代中期以来。采用双螺杆挤出机+齿轮泵造粒,产量可以达到40-45t/h,今后的发展方向是产量可高达60t/h。 在l950年,全世界塑料的年产量为200万t。20世纪90年代。塑料产量的年均增长率为,2000年增加至亿t至2010年,全世界塑料产量将达3亿t,此外。合成工业的新近避震使得易于璃确控制树脂的分子结构,加速采用大规模进行低成本的生产。随着汽车工业的发展,节能、高速、美观、环保、乘坐舒适及安全可靠等要求对汽车越来越重要.汽车规模的不断扩大和性能的提高带动了零部件及相关材料工业的发展。为降低整车成本及其自身增加汽车的有效载荷,提高塑料类材料在汽车中的使用量便成为关键。 据悉,目前汽车上100kg的塑料件可取代原先需要100-300kg的传统汽车材料(如钢铁等)。因此,汽车中越来越多的金属件由塑料件代替。此外,汽车中约90%的零部件均需依靠模具成型,例如制造一款普通轿车就需要制造1200多套模具,在美国、日本等汽车制造业发达的国家,模具产业超过50%的产品是汽车用模具。 目前,高分子材料加工的主要目标是高生产率、高性能、低成本和快捷交货。制品方面向小尺寸、薄壁、轻质方向发展;成型加工方面,从大规模向较短研发周期的多品种转变,并向低能耗、全回收、零排放等方向发展。 二、现今高分子材料成型加工技术的创新研究 (一)聚合物动态反应加工技术及设备 聚合物反应加工技术是以现双螺杆挤出机为基础发展起来的。国外的Berstart公司已开发出作为连续反应和混炼的十螺杆挤出机,可以解决其它挤出机(包括双螺杆和四螺杆挤出机)作为反应器所存在的问题。国内反应成型加工技术的研究开发还处于起步阶段,但我国的经济发展强烈要求聚合物反应成型加工技术要有大的发展。指交换法聚碳酸酯(PC)连续化生产和尼龙生产中的比较关键的技术是缩聚反应器的反应挤出设备,我国每年还有数以千万吨计的改性聚合物及其合金材料的生产。关键技术也是反应挤出技术及设备。 目前国内外使用的反应加工设备从原理上看都是传统混合、混炼设备的改造产品,都存在传热、传质过程、混炼过程、化学反应过程难以控制、反应产物分子量及其分布不可控等问题.另外设备投资费用大、能耗高、噪音大、密封困难等也都是传统反应加工设备的缺陷。聚合物动态反应加工技术及设备与传统技术无论是在反应加工原理还是设备的结构上都完全不同,该技术是将电磁场引起的机械振动场引入聚合物反应挤出全过程,达到控制化学反应过程、反应生成物的凝聚态结构和反应制品的物理化学性能的目的。 该技术首先从理论上突破了控制聚合物单体或预聚物混合混炼过程及停留时间分布不可控制的难点,解决了振动力场作用下聚合物反应加工过程中的质量、动量及能量传递及平衡问题,同时从技术上解决了设备结构集成化问题。新设备具有体积重量小、能耗低、噪音低、制品性能可控、适应性好、可靠性高等优点,这些优点是传统技术与设备无法比拟或是根本没有的。该项新技术使我国聚合物反应加工技术直接切人世界技术前沿,并在该领域处于技术领先地位。 (二)以动态反应加工设备为基础的新材料制备新技术 1.信息存储光盘盘基直接合成反应成型技术。此技术克服传统方式的中间环节多、周期长、能耗大、储运过程易受污染、成型前处理复杂等问题,将光盘级PC树脂生产、中间储运和光盘盘基成型三个过程整合为一体,结合动态连续反应成型技术,研究酯交换连续化生产技术,研制开发精密光盘注射成型装备,达到节能降耗、有效控制产品质量的目的。 2.聚合物/无机物复合材料物理场强化制备新技术。此技术在强振动剪切力场作用下对无机粒子表面特性及其功能设计(粒子设计),在设计好的连续加工环境和不加或少加其它化学改性剂的情况下,利用聚合物使无机粒子进行原位表面改性、原位包覆、强制分散,实现连续化制备聚合物/无机物复合材料。 3.热塑性弹性体动态全硫化制备技术。此技术将振动力场引入混炼挤出全过程,控制硫化反直进程,实现混炼过程中橡胶相动态全硫化.解决共混加工过程共混物相态反转问题。研制开发出拥有自主知识产权的热塑性弹性体动态硫化技术与设备,提高我国TPV技术水平。 三、高分子材料成型加工技术的发展趋势 近年来,各个新型成型装备国家工程研究中心在出色完成了国家级火炬计划预备项目和国家“八五”、“九五”重点科技计划(攻关)等项目同时,非常注重科技成果转化与产业化,完成产业化工程配套项目20多项,创办了广州华新科机械有限公司和北京华新科塑料机械有限公司,使其有自主知识产权的新技术与装备在国内外推广应用。塑料电磁动态塑化挤出设备已形成了7个规格系列,近两年在国内20多个省、市、自治区推广应用近800台(套)。销售额超过亿元,还有部分新设备销往荷兰、泰国、孟加拉等国家.产生了良好的经济效益和社会效益。 例如PE电磁动态发泡片材生产线2000年和2001年仅在广东即为国家节约外汇近1600万美元,每条生产线一年可为制品厂节约21万k的电费。塑料电磁动态注塑机已开发完善5个规格系列,投入批量生产并推向市场;塑料电磁动态混炼挤出机的中试及产业化工作已完成,目前开发完善的4个规格正在生产试用。并逐步推向市场目前新设备的市场需求情况很好,聚合物新型成型装备国家工程研究中心正在对广州华新科机械有限公司进行重组。将技术与资本结合,引入新的管理、市场等机制,争取在两三年内实现新设备年销售额超亿。我国已加入WTO,各个行业都将面临严峻挑战。 综上所述,我国必须走具有中国特色的发展高分子材料成型加工技技术与装备的道路,打破国外的技术封锁,实现由跟踪向跨越的转变;把握技术前沿,培育自主知识产权。促进科学研究与产业界的结合,加快成果转化为生产力的进程,加快我国高分子材料成型加工高新技术及其产业的发展是必由之路。 参考文献: [1]Chris Rauwendaal,Polymer Extrusion,Carl Hanser Verlag,Munich/FkG,l999. [2]瞿金平,聚合物动态塑化成型加工理论与技术[M].北京:科学出版社,2005 427435. [3]瞿金平,聚合物电磁动态塑化挤出方法及设备[J].中国专利,I990;美国专利5217302,1993. 有关高分子材料毕业论文篇2 浅论高分子材料的发展前景 摘要:随着生产和科技的发展,以及人们对知识的追求,对高分子材料的性能提出了各种各样新的要求。现代,高分子材料已与金属材料、无机非金属材料相同,成为科学技术、经济建设中的重要材料。本文主要分析了高分子材料的发展前景和发展趋势。 关键词:高分子材料;发展;前景 一 高分子材料的发展现状与趋势 高分子材料作为一种重要的材料, 经过约半个世纪的发展巳在各个工业领域中发挥了巨大的作用。从高分子材料与国民经济、高技术和现代生活密切相关的角度说, 人类已进人了高分子时代。高分子材料工业不仅要为工农业生产和人们的衣食住行用等不断提供许多量大面广、日新月异的新产品和新材料又要为发展高技术提供更多更有效的高性能结构材料和功能性材料。 鉴于此, 我国高分子材料应在进一步开发通用高分子材料品种、提高技术水平、扩大生产以满足市场需要的基础上重点发展五个方向:工程塑料,复合材料,液晶高分子材料,高分子分离材料,生物医用高分子材料。近年来,随着电气、电子、信息、汽车、航空、航天、海洋开发等尖端技术领域的发展和为了适应这一发展的需要并健进其进? 步的发展, 高分子材料在不断向高功能化高性能化转变方面日趋活跃,并取得了重大突破。 二 高分子材料各领域的应用 1高分子材料在机械工业中的应用 高分子材料在机械工业中的应用越来越广泛, “ 以塑代钢” ,“ 塑代铁” 成为目前材料科学研究的热门和重点。这类研究拓宽了材料选用范围,使机械产品从传统的安全笨重、高消耗向安全轻便、耐用和经济转变。如聚氨酉旨弹性体,聚氨醋弹性体的耐磨性尤为突出, 在某些有机溶剂 如煤油、砂浆混合液中, 其磨耗低于其它材料。聚氨醋弹性体可制成浮选机叶轮、盖板, 广泛使用在工况条件为磨粒磨损的浮选机械上。又如聚甲醛材料聚甲醛具有突出的耐磨性, 对金属的同比磨耗量比尼龙小, 用聚四氟乙烯、机油、二硫化钥、化学润滑等改性, 其摩擦系数和磨耗量更小, 由于其良好的机械性能和耐磨性, 聚甲醛大量用于制造各种齿轮、轴承、凸轮、螺母、各种泵体以及导轨等机械设备的结构零部件。在汽车行业大量代替锌、铜、铝等有色金属, 还能取代铸铁和钢冲压件。 2 高分子材料在燃料电池中的应用 高分子电解质膜的厚度会对电池性能产生很大的影响, 减薄膜的厚度可大幅度降低电池内阻, 获得大的功率输出。全氟磺酸质子交换 膜的大分子主链骨架结构有很好的机械强度和化学耐久性, 氟素化合物具有僧水特性, 水容易排出, 但是电池运转时保水率降低, 又要影响电解质膜的导电性, 所以要对反应气体进行增湿处理。高分子电解质膜的加湿技术, 保证了膜的优良导电性, 也带来电池尺寸变大增大左右、系统复杂化以及低温环境下水的管理等问题。现在一批新的高分子材料如增强型全氟磺酸型高分子质子交换膜耐高温芳杂环磺酸基高分子电解质膜纳米级碳纤维材料新的一导电高分子材料等等, 已经得到研究工作者的关注。 3 高分子材料在现代农业种子处理中的应用及发展 高分子材料在现代农业种子处理中的应用:新一代种子化学处理一般可分为物理包裹利用干型和湿形高分子成膜剂, 包裹种子。种子表面包膜利用高分子成膜剂将农用药物和其他成分涂膜在种子表面。种子物理造粒将种子和其他高分子材料混和造粒, 以改善种子外观和形状, 便于机械播种。高分子材料在现代农业种子处理中研究开发进展:种子处理用高分子材料已经从石油型高分子材料逐步向天然型以及功能型高分子材料的方向发展。其中较为常见和重要的高分子材料类型包括多糖类天然高分子材料, 具有在低温情况下维持较好膜性能的高分子材料, 高吸水性材料, 温敏材料, 以及综合利用天然生物资源开发的天然高分子材料等, 其中利用可持续生物资源并发的种衣剂尤为引人关注。 4 高分子材料在智能隐身技术中的应用 智能隐身材料是伴随着智能材料的发展和装备隐身需求而发展起来的一种功能材料,它是一种对外界信号具有感知功能、信息处理功能。自动调节自身电磁特性功能、自我指令并对信号作出最佳响应功能的材料/系统。区别于传统的外加式隐身和内在式雷达波隐身思路设计,为隐身材料的发展和设计提供了崭新的思路,是隐身技术发展的必然趋势 ,高分子聚合物材料以其可在微观体系即分子水平上对材料进行设计、通过化学键、氢键等组装而成具有多种智能特性而成为智能隐身领域的一个重要发展方向。 三 高分子材料的发展前景 1高性能化 进一步提高耐高温,耐磨性,耐老化,耐腐蚀性及高的机械强度等方面是高分子材料发展的重要方向,这对于航空、航天、电子信息技术、汽车工业、家用电器领域都有极其重要的作用。高分子材料高性能化的发展趋势主要有创造新的高分子聚合物,通过改变催化剂和催化体系,合成工艺及共聚,共混及交联等对高分子进行改性,通过新的加工方法改变聚合物的聚集态结构,通过微观复合方法,对高分子材料进行改性。 2高功能化 功能高分子材料是材料领域最具活力的新领域,目前已研究出了各种各样新功能的高分子材料,如可以像金属一样导热导电的高聚物,能吸收自重几千倍的高吸水性树脂,可以作为人造器官的医用高分子材料等。鉴于以上发展,高分子吸水性材料、光致抗蚀性材料、高分子分离膜、高分子催化剂等都是功能高分子的研究方向。 3复合化 复合材料可克服单一材料的缺点和不足,发挥不同材料的优点,扩大高分子材料的应用范围,提高经济效益。高性能的结构复合材料是新材料革命的一个重要方向,目前主要用于航空航天、造船、海洋工程等方面,今后复合材料的研究方向主要有高性能、高模量的纤维增强材料的研究与开发,合成具有高强度,优良成型加工性能和优良耐热性的基体树脂,界面性能,粘结性能的提高及评价技术的改进等方面。 4智能化 高分子材料的智能化是一项具有挑战性的重大课题,智能材料是使材料本身带有生物所具有的高级智能,例如预知预告性,自我诊断,自我修复,自我识别能力等特性,对环境的变化可以做出合乎要求的解答;根根据人体的状态,控制和调节药剂释放的微胶囊材料,根据生物体生长或愈合的情况或继续生长或发生分解的人造血管人工骨等医用材料。由功能材料到智能材料是材料科学的又一次飞跃,它是新材料,分子原子级工程技术、生物技术和人 工智能诸多学科相互融合的一个产物。 5绿色化 虽然高分子材料对我们的日常生活起了很大的促进作用,但是高分子材料带来的污染我们仍然不能小视。那些从生产到使用能节约能源与资源,废弃物排放少,对环境污染小,又能循环利用的高分子材料备受关注,即要求高分子材料生产的绿色化。主要有以下几个研究方向,开发原子经济的聚合反应,选用无毒无害的原料,利用可再生资源合成高分子材料,高分子材料的再循环利用。 四 结束语 高分子材料为我国的经济建设做出了重要的贡献,我国已建立了较完善的高分子材料的研究、开发和生产体系,我国虽然在高分在材料的开发和综合利用方面起步较晚,但目前来看也取得了不错的进步,我们应提高其整体技术水平,致力于创新的高分在聚合反应和方法,开发出多种绿色功能材料和智能材料,以提高人类的生活质量,并满足各项工业和新技术的需求。 参考文献: [1]金关泰.《高分子化学的理论和应用》,中国石化出版社,1997 [2]李善君 纪才圭等.《高分子光化学原理及应用》复旦大学出版社2003 6. [3]李克友, 张菊华, 向福如. 《高分子合成原理及工艺学》,科学出版社,1999 猜你喜欢: 1. 全国高分子材料学术论文报告 2. 全国高分子材料学术论文 3. 全国高分子材料学术论文 4. 全国高分子材料学术论文报告 5. 关于材料学方面论文

聚合物材料之一,一些论文3000 给你

导电高分子材料的研究进展论文

你是要文献吗 发不过去 留下邮箱吧己酰壳聚糖/聚丙交酯共混膜的制备与表征 这个行不

年轻的材料——高分子材料 在世界范围内, 高分子材料的制品属於最年轻的材料.它不仅遍及各个工业领域, 而且已进入所有的家庭, 其产量已有超过金属材料的趋势, 将是 21 世纪最活跃的材料支柱.高分子材料在我们身边随处可见。在我们的认识中,高分子材料是以高分子化合物为基础的材料。高分子材料按特性分为橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料。今天,我想就高分子材料为主线,研究一下各种高分子材料所具有的特性和优缺点。 从我们以前学过的化学知识中可以知道,高分子材料其实是有机化合物, 有机化合物是碳元素的化合物.除碳原子外, 其他元素主要是氢、氧、氮等.碳原子与碳原子之间, 碳原子与其他元素的原子之间, 能形成稳定的结构.碳原子是四价, 每个一价的价键可以和一个氢原子键连接, 所以可形成为数众多的、具有不同结构的有机化合物.有机化合物的总数已接近千万种, 远远超过其他元素的化合物的总和, 而且新的有机化合物还不断地被合成出来.这样, 由於不同的特殊结构的形成, 使有机化合物具有很独特的功能.高分子中可以把某些有机物结构(又称为功能团)替换, 以改变高分子的特性.高分子具有巨大的分子量, 达到至少1 万以上, 或几百万至千万以上, 所以, 人们将其称为高分子、大分子或高聚物.高分子材料包括三大合成材料, 即塑料、合成纤维和合成橡胶(未加工之前称为树脂). 1.橡胶 橡胶是一类线型柔性高分子聚合物,橡胶是一种有弹性的碳氢化合物异戊二烯聚合,未经加工时以乳剂的形态存在。橡胶乳剂可以从一些植物的树液中取得,也可以是人造的。也是很普遍的高分子材料之一。其分子链间次价力小,分子链柔性好,在外力作用下可产生较大形变,除去外力后能迅速恢复原状。橡胶属于完全无定型聚合物,它的玻璃化转变温度(T g)低, 分子量往往很大,大于几十万。由于橡胶的分子链可以交联,交联后的橡胶受外力作用发生变形时,具有迅速复原的能力,并具有良好的物理力学性能和化学稳定性。所以橡胶是橡胶工业的基本原料,广泛用于制造轮胎、胶管、胶带、电缆及其他各种橡胶制品。 橡胶按原料分为天然橡胶和合成橡胶。 从橡胶的结构来看的话我们不难发现从线性结构来分析未硫化橡胶的普遍结构。由于分子量很大,无外力作用下,呈细团状。当外力作用,撤除外力,细团的纠缠度发生变化,分子链发生反弹,产生强烈的复原倾向,这便是橡胶高弹性的由来。 用型橡胶的综合性能较好,应用广泛。主要有:①天然橡胶。从三叶橡胶树的乳胶制得,弹性好,强度高,综合性能好。②异戊橡胶。全名为顺-1,4-聚异戊二烯橡胶,由异戊二烯制得的高顺式合成橡胶,因其结构和性能与天然橡胶近似,故又称合成天然橡胶。③丁苯橡胶。简称SBR,其综合性能和化学稳定性好。④顺丁橡胶。与其他通用型橡胶比,硫化后的顺丁橡胶的耐寒性、耐磨性和弹性特别优异,动负荷下发热少,耐老化性能好,易与天然橡胶、氯丁橡胶、丁腈橡胶等并用。 随后我们介绍一下特种橡胶。特种型橡胶指具有某些特殊性能的橡胶。主要有:①氯丁橡胶。简称CR,由氯丁二烯聚合制得。具有良好的综合性能,耐油、耐燃、耐氧化和耐臭氧。但其密度较大,常温下易结晶变硬,贮存性不好,耐寒性差。②丁腈橡胶。简称NBR,由丁二烯和丙烯腈共聚制得。耐油、耐老化性能好 ,可在120℃的空气中或在150℃的油中长期使用。此外,还具有耐水性、气密性及优良的粘结性能。③硅橡胶。主链由硅氧原子交替组成,在硅原子上带有有机基团。耐高低温,耐臭氧,电绝缘性好。④氟橡胶。分子结构中含有氟原子的合成橡胶。通常以共聚物中含氟单元的氟原子数目来表示 ,如氟橡胶23,是偏二氟乙烯同三氟氯乙烯的共聚物。氟橡胶耐高温、耐油、耐化学腐蚀。⑤聚硫橡胶。由二卤代烷与碱金属或碱土金属的多硫化物缩聚而成。有优异的耐油和耐溶剂性,但强度不高,耐老化性、加工性不好,有臭味,多与丁腈橡胶并用。此外,还有聚氨酯橡胶、氯醇橡胶、丙烯酸酯橡胶等。 2.塑料 我们都知道生活中由于塑料的轻便和便宜,随处可以用到塑料。下面就介绍一下塑料的各种特性和用途。 塑料为合成的高分子化合物,可以自由改变形体样式。塑料是利用单体原料以合成或缩合反应聚合而成的材料,由合成树脂及填料、增塑剂、稳定剂、润滑剂、色料等添加剂组成的,它的主要成分是合成树脂。 广义的塑料定义指具有塑性行为的材料,所谓塑性是指受外力作用时,发生形变,外力取消后,仍能保持受力时的状态。塑料的弹性模量介于橡胶和纤维之间,受力能发生一定形变。软塑料接近橡胶,硬塑料接近纤维。狭义的塑料定义是指以树脂(或在加工过程中用单体直接聚合)为主要成分,以增塑剂、填充剂、润滑剂、着色剂等添加剂为辅助成分,在加工过程中能流动成型的材料。 【塑料与其它材料比较有如下的特性】 〈1〉 耐化学侵蚀 〈2〉 具光泽,部份透明或半透明 〈3〉 大部分为良好绝缘体 〈4〉 重量轻且坚固 〈5〉 加工容易可大量生产,价格便宜 〈6〉 用途广泛、效用多、容易着色、部分耐高温 塑料也区分为泛用性塑料及工程塑料,主要是用途的广泛性来界定,如PE、PP价格便宜,可用在多种不同型态的机器上生产。工程塑料则价格较昂贵,但原料稳性及物理物性均好很多,一般而言,其同时具有刚性与韧性两种特性。 大部分塑料的抗腐蚀能力强,不与酸、碱反应。塑料制造成本低。耐用、防水、质轻容易被塑制成不同形状。是良好的绝缘体。塑料可以用于制备燃料油和燃料气,这样可以降低原油消耗。 而其也有很多不足之处,比如回收利用废弃塑料时,分类十分困难,而且经济上不合算。塑料容易燃烧,燃烧时产生有毒气体。塑料是由石油炼制的产品制成的,石油资源是有限的。 根据各种塑料不同的理化特性,可以把塑料分为热固性塑料和热塑料性塑料两种类型。 塑料的成型加工是指由合成树脂制造厂制造的聚合物制成最终塑料制品的过程。加工方法(通常称为塑料的一次加工)包括压塑(模压成型)、挤塑(挤出成型)、注塑(注射成型)、吹塑(中空成型)、压延等。 中国塑料工业经过长期的奋斗和面向全球的开放,已形成门类较齐全的工业体系,成为与钢材、水泥、木材并驾齐驱的基础材料产业,作为一种新型材料,其使用领域已远远超越上述三种材料进入21世纪以来,中国塑料工业取得了令世人瞩目的成就,实现了历史性的跨越。作为轻工行业支柱产业之一的塑料行业,近几年增长速度一直保持在10%以上,在保持较快发展速度的同时,经济效益也有新的提高。塑料制品行业规模以上企业产值总额在轻工19个主要行业中位居第三,实现产品销售率,高于轻工行业平均水平。从合成树脂、塑料机械和塑料制品生产来看,都显示了中国塑料工业强劲的发展势头。 塑料技术的发展日新月异,针对全新应用的新材料开发,针对已有材料市场的性能完善,以及针对特殊应用的性能提高可谓新材料开发与应用创新的几个重要方向。 1 新型高热传导率生物塑料, 这种生物塑料除导热性能好外,还具有质量轻、易成型、对环境污染小等优点,可用于生产轻薄型的电脑、手机等电子产品的外框。 2 可变色塑料薄膜,这种薄膜把天然光学效果和人造光学效果结合在一起,实际上是让物体精确改变颜色的一种新途径。 3 塑料血液,英国设菲尔德大学的研究人员开发出一种人造“塑料血”,外形就像浓稠的糨糊,只要将其溶于水后就可以给病人输血,可作为急救过程中的血液替代品。 4 新型防弹塑料,这种新型材料受到子弹冲击后,虽然暂时也会变形,但很快就会恢复原状并可继续使用。此外,这种新材料可以将子弹的冲击力平均分配,从而减少对人体的伤害。 5 可降低汽车噪音的塑料,该种材料主要应用于车身和轮舱衬垫,产生一个屏障层,能吸收汽车车厢内的声音并且减少噪音,减少幅度为25%~30%。 随着人类对于科技的不断探索和材料研究事业的不断发展,我相信,会有越来越多的新型的塑料产品问世,到时候,就可以更加好的造福人类了。 3.纤维 纤维(Fiber): 聚合物经一定的机械加工(牵引、拉伸、定型等)后形成细而柔软的细丝,形成纤维。纤维具有弹性模量大,受力时形变小,强度高等特点,有很高的结晶能力,分子量小,一般为几万。 纤维大体分天然纤维、人造纤维和合成纤维 天然纤维指自然界生长或形成的纤维,包括植物纤维 (天然纤维素纤维)、动物纤维 (天然蛋白质纤维)和矿物纤维。 人造纤维是利用自然界的天然高分子化合物——纤维素或蛋白质作原料(如木材、棉籽绒、稻草、甘蔗渣等纤维或牛奶、大豆、花生等蛋白质),经过一系列的化学处理与机械加工而制成类似棉花、羊毛、蚕丝一样能够用来纺织的纤维。如人造棉、人造丝等。 合成纤维的化学组成和天然纤维完全不同,是从一些本身并不含有纤维素或蛋白质的物质如石油、煤、天然气、石灰石或农副产品,加工提炼出来的有机物质,再用化学合成与机械加工的方法制成纤维。如涤纶、锦纶、腈纶、丙纶、氯纶等。 纤维是天然或人工合成的细丝状物质.在现代生活中,纤维的应用无处不在,而且其中蕴含的高科技还不少呢。导弹需要防高温,江堤需要防垮塌,水泥需要防开裂,血管和神经需要修补,这些都离不开纤维这个小身材的“神奇小子”。 穿得舒服, 御寒防晒,是我们对衣服的最初要求,如今这个要求已很容易达到。海藻碳纤维做成衣服后,穿着时能长期使人体分子摩擦产生热反应,促进身体血液循环,因此能蓄热保温,而防紫外线辐射的纤维制成衣服便可减少我们夏日撑伞的麻烦。 而纤维更大的作用早已不仅停留在日常穿着了,粘胶基碳纤维帮导弹穿上“防热衣”,可以耐几万度的高温;无机陶瓷纤维耐氧化性好,且化学稳定性高,还有耐腐蚀性和电绝缘性,航空航天、军工领域都用得着;聚酰亚胺纤维可以做高温防火保护服、赛车防燃服、装甲部队的防护服和飞行服;碳纳米管可用作电磁波吸收材料,用于制作隐形材料、电磁屏蔽材料、电磁波辐射污染防护材料和“暗室”(吸波)材料。 纤维在环保上也是好帮手。聚乳酸作为可完全生物降解性塑料,越来越受到人们重视。可将聚乳酸制成农用薄膜、纸代用品、纸张塑膜、包装薄膜、食品容器、生活垃圾袋、农药化肥缓释材料、化妆品的添加成分等。 纤维在医药方面的应用已非常广泛。甲壳素纤维做成医用纺织品,具有抑菌除臭、消炎止痒、保湿防燥、护理肌肤等功能,因此可以制成各种止血棉、绷带和纱布,废弃后还会自然降解,不污染环境;聚丙烯酰胺类水凝胶可能控制药物释放;聚乳酸或者脱乙酰甲壳素纤维制成的外科缝合线,在伤口愈合后自动降解并吸收,病人就不用再动手术拆线了。 在建筑领域,防渗防裂纤维可以增强混凝土的强度和防渗性能,纤维技术与混凝土技术相结合,可研制出能改善混凝土性能,提高土建工程质量的PP纤维,对于大坝、机场、高速公路等工程可起到防裂、抗渗、抗冲击和抗折性能,在国家大剧院、上海市公安局指挥中心屋顶停机坪、上海虹口足球场等大型工程中已露了一手。 随着生物科技的发展,一些纤维的特性可以派上用场。类似肌肉的纤维可制成“人工肌肉”、“人体器官”。聚丙烯酰胺具有生物相容性,一直是人体组织良好的替代材料,聚丙烯酰胺水凝胶能够有规律地收缩和溶胀,这些特性正可以模拟人体肌肉的运动。 胶原是人体中最多的蛋白质,人体心脏、眼球、血管、皮肤、软骨及骨路中都有它的存在,并为这些人体组织提供强度支撑。合成纳米纤维能在骨折处形成一种类似胶质的凝胶,引导骨骼矿质在胶原纤维周围生成一个类似于天然骨骼的结构排列,修补骨骼于无形之中。 蜘蛛丝一直是人类想要模仿制造的,天然蜘蛛丝的直径为4微米左右,而它的牵引强度相当于钢的5倍,还具有卓越的防水和伸缩功能。如果制造出一种具有天然蜘蛛丝特点的人造蜘蛛丝,将会具有广泛的用途。它不仅可以成为降落伞和汽车安全带的理想材料,而且可以用作易于被人体吸收的外科手术缝合线。 纤维的充填能有效地提高塑料的强度和刚度。纤维增强塑料属刚性结构材料。 纤维增强塑料主要有两个组分。基体是热固性塑料或热塑性塑料,用纤维材料充填。通常基体的强度较低,而纤维填料具有较高的刚性但呈脆性。两者复合得到的增强塑料中,纤维承受很大的载荷应力,基体树脂通过与纤维界面上的剪切应力,支撑了纤维传递了外载荷。 增强塑料以玻璃纤维使用占优势,其品种很多,无碱玻璃(E-glass)为常用普通纤维,碱金属氧化物含量很低,具有优良的化学稳定性和电绝缘性。高强度玻璃纤维(S-glass)含有镁铝硅酸盐等成分,具有比E-glass纤维高10%-50%的强度。由于化学成分和生产工艺的不同,还有高模量、中碱和高碱等各种玻璃纤维。碳纤维具有较大的刚性和优良的耐腐性,常用于增强热固性塑料。 目前,世界上有机高分子材料的研究正在不断地加强和深入.一方面,对重要的通用有机高分子材料继续进行改进和推广,使它们的性能不断提高,应用范围不断扩大.例如,塑料一般作为绝缘材料被广泛使用,但是近年来,为满足电子工业需求,又研制出具有优良导电性能的导电塑料.导电塑料已用于制造电池等,并可望在工业上获得更广泛的应用.另一方面,与人类自身密切相关、具有特殊功能的材料的研究也在不断加强,并且取得了一定的进展,如仿生高分子材料、高分子智能材料等.这类高分子材料在宇航、建筑、机器人、仿生和医药领域已显示出潜在的应用前景.总之,有机高分子材料的应用范围正在逐渐扩展,高分子材料必将对人们的生产和生活产生越来越大的影响. 参考文献:材料网,《新型有机高分子材料》,复合材料学报,药用功能的高分子材料,《橡胶参考资料》,《塑料加工应用》,《物理化学》,百度百科,《高性能纤维》 公务员一号网作为最全面、最专业的公务员考试网站,为广大考生朋友免费提供考试试题及公务员题库下载等相关讯息

所有的导电高分子都属于所谓的"共轭高分子"。共轭高分子最简单的例子是聚乙炔。它由长链的碳分子以sp2键链结而成(见图)。由于sp2键结的特性,使得每一个碳原子有一个价电子未配对,且在垂直于sp2面上形成未配对键。我们可以想像,相邻原子的未配对键的电子云互相接触,会使得未配对电子很容易沿着长链移动。 然而,实际的情况较为复杂,未配对电子很容易和邻居配对而形成"单键-双键"交替出现的结构。这种转变称为配对化(dimerization),物理上称为派若斯(Peirels)不稳定性。塑料基本上是聚合物,就好象珍珠项链一般具有长链而且以固定的单元不断重复的结构,当它要变得能导电时就必须能仿真金属的行为,亦及电子必须能不受原子的束缚而能自由移动,要达到此目的的第一个条件就是这个聚合物应该具有交错的单键与双键,亦称为共轭的双键,透过乙炔所聚合而得的聚乙炔,,不过,具有共轭双键的长链并不足以造成它的导电,要能导电必须对这种塑料动点手脚,一则将部份电子移出,一则加入一些电子,这种过程称为掺杂.导电聚合物除了具有高分子聚合物的一般的结构特点外还含有一价的对阴离子(P型掺杂)或对阳离子(N型掺杂)导电聚合物最引人注目的一个特点是其电导率可以在绝缘体—半导体—金属态(10-9到105s/cm)较宽的范围里变化。这是目前其他材料所无法比拟的除了最早的聚乙炔(PA)外,主要有聚吡咯(PPY)、聚噻吩(PTH)、聚对苯乙烯(PPV)、聚苯胺(PANI)以及他们的衍生物其中聚苯胺结构多样、掺杂机制独特、稳定性高技术应用前景广泛,在目前的研究中备受重视其中聚乙炔的所能达到的电导率在已发现的导电聚合物中是最高的,达到了105S/cm量级,接近Pt和Fe的室温电导率

高分子材料在很长一段时期都被用作电绝缘材料.随着不同应用领域的需要以及为进一步拓宽高分子材料的应用范围,一些高分子材料被赋予某种程度的导电性以致成为导电高分子材料.第一个高导电性的高分子材料是经碘掺杂处理的聚乙炔,其后又相继开发了聚吡咯、聚对苯撑、聚苯硫醚、聚苯胺等导电高分子材料〔1〕.由于这些导电高分子材料都具有共轭键结构,并且主要是由化学方法处理得到的,因此常称为本征型导电高分子材料.但是,这类材料的稳定性、重现性较差,电导率分布范围较窄,成本较高,而且加工困难,尚未进入批量生产的实用阶段〔2〕.本征型导电高分子材料在应用方面遇到的困难短期难以解决,促使人们转而研究和开发导电高分子复合材料.导电高分子复合材料是以高分子材料为基体,通过加入导电功能体,经过分散复合、层积复合以及形成表面导电膜等方式处理后形成的多相复合导电体系.由于原料易得、工艺相对简单、成本较低、电阻率可在较大范围内调节,同时具有一定程度的再加工性并兼有高分子基体材料的一些优异性能而受到广泛重视.导电高分子复合材料的研究工作主要有:① 复合材料导电机理的理论研究、特殊效应机理的理论研究;② 用不同方法研制新材料的实验研究;③ 材料应用的实验研究.导电高分子复合材料导电机理的理论研究工作通常又包括导电通路的形成和形成导电通路后的导电机理两方面.前者研究的是加入聚合物基体中的导电功能体在给定的加工工艺条件下,如何达到电接触而在整体上自发地形成导电通路这一宏观自组织过程;后者则主要涉及导电通路或部分导电通路形成后载流子迁移的微观过程.显然,无论是宏观过程还是微观过程,它们都受到复合体系的几何拓扑、热力学和动力学等多种因素的制约.因此,导电高分子复合材料的理论研究工作一方面呈现多样性、复杂性,另一方面又与实验结果之间存在着不同程度的差异,而且许多理论结果往往不具有普适性.新材料的实验研究工作采用的主要方法有:组分改造(改变基体种类、改变导电功能体种类);整体或组分物性改造(磁化、接枝、热处理、结晶、浸渍);结构改造(板状、叠层、发泡);导电功能体形状改造(粒状、球状、中空状、纤维状)等.应用研究则包括根据应用条件和具体要求解决各种实际问题的理论和实验研究.

高分子材料的研究论文选题

选什么不好说 不要选流变学。 那玩意我觉得比较不好弄。

高分子材料作为一种重要的材料, 经过约半个世纪的发展巳在各个工业领域中发挥了巨大的作用。下文是我为大家整理的有关高分子材料毕业论文的范文,欢迎大家阅读参考! 有关高分子材料毕业论文篇1 浅析高分子材料成型加工技术. 【摘要】高分子材料成型加工技术在工业上取得的飞速发展,介绍高分子材料成型加工技术的发展情况,探讨其创新研究,并详细阐述高分子材料成型加工技术的发展趋势。 【关键词】高分子材料;成型加工;技术 近年来,某些特殊领域如航空工业、国防尖端工业等领域的发展对聚合物材料的性能提出了更高的要求,如高强度、高模量、轻质等,各种特定要求的高强度聚合物的开发研制越来越显迫切。 一、高分子材料成型加工技术发展概况 近50年来,高分子合成工业取得了很大的进展。例如,造粒用挤出机的结构有了很大的改进,产量有了极大的提高。20世纪60年代主要采用单螺杆挤出机造粒,产量约为3t/h;70年代至80年代中期,采用连续混炼机+单螺杆挤出机造粒,产量约为10t/h;80年代中期以来。采用双螺杆挤出机+齿轮泵造粒,产量可以达到40-45t/h,今后的发展方向是产量可高达60t/h。 在l950年,全世界塑料的年产量为200万t。20世纪90年代。塑料产量的年均增长率为,2000年增加至亿t至2010年,全世界塑料产量将达3亿t,此外。合成工业的新近避震使得易于璃确控制树脂的分子结构,加速采用大规模进行低成本的生产。随着汽车工业的发展,节能、高速、美观、环保、乘坐舒适及安全可靠等要求对汽车越来越重要.汽车规模的不断扩大和性能的提高带动了零部件及相关材料工业的发展。为降低整车成本及其自身增加汽车的有效载荷,提高塑料类材料在汽车中的使用量便成为关键。 据悉,目前汽车上100kg的塑料件可取代原先需要100-300kg的传统汽车材料(如钢铁等)。因此,汽车中越来越多的金属件由塑料件代替。此外,汽车中约90%的零部件均需依靠模具成型,例如制造一款普通轿车就需要制造1200多套模具,在美国、日本等汽车制造业发达的国家,模具产业超过50%的产品是汽车用模具。 目前,高分子材料加工的主要目标是高生产率、高性能、低成本和快捷交货。制品方面向小尺寸、薄壁、轻质方向发展;成型加工方面,从大规模向较短研发周期的多品种转变,并向低能耗、全回收、零排放等方向发展。 二、现今高分子材料成型加工技术的创新研究 (一)聚合物动态反应加工技术及设备 聚合物反应加工技术是以现双螺杆挤出机为基础发展起来的。国外的Berstart公司已开发出作为连续反应和混炼的十螺杆挤出机,可以解决其它挤出机(包括双螺杆和四螺杆挤出机)作为反应器所存在的问题。国内反应成型加工技术的研究开发还处于起步阶段,但我国的经济发展强烈要求聚合物反应成型加工技术要有大的发展。指交换法聚碳酸酯(PC)连续化生产和尼龙生产中的比较关键的技术是缩聚反应器的反应挤出设备,我国每年还有数以千万吨计的改性聚合物及其合金材料的生产。关键技术也是反应挤出技术及设备。 目前国内外使用的反应加工设备从原理上看都是传统混合、混炼设备的改造产品,都存在传热、传质过程、混炼过程、化学反应过程难以控制、反应产物分子量及其分布不可控等问题.另外设备投资费用大、能耗高、噪音大、密封困难等也都是传统反应加工设备的缺陷。聚合物动态反应加工技术及设备与传统技术无论是在反应加工原理还是设备的结构上都完全不同,该技术是将电磁场引起的机械振动场引入聚合物反应挤出全过程,达到控制化学反应过程、反应生成物的凝聚态结构和反应制品的物理化学性能的目的。 该技术首先从理论上突破了控制聚合物单体或预聚物混合混炼过程及停留时间分布不可控制的难点,解决了振动力场作用下聚合物反应加工过程中的质量、动量及能量传递及平衡问题,同时从技术上解决了设备结构集成化问题。新设备具有体积重量小、能耗低、噪音低、制品性能可控、适应性好、可靠性高等优点,这些优点是传统技术与设备无法比拟或是根本没有的。该项新技术使我国聚合物反应加工技术直接切人世界技术前沿,并在该领域处于技术领先地位。 (二)以动态反应加工设备为基础的新材料制备新技术 1.信息存储光盘盘基直接合成反应成型技术。此技术克服传统方式的中间环节多、周期长、能耗大、储运过程易受污染、成型前处理复杂等问题,将光盘级PC树脂生产、中间储运和光盘盘基成型三个过程整合为一体,结合动态连续反应成型技术,研究酯交换连续化生产技术,研制开发精密光盘注射成型装备,达到节能降耗、有效控制产品质量的目的。 2.聚合物/无机物复合材料物理场强化制备新技术。此技术在强振动剪切力场作用下对无机粒子表面特性及其功能设计(粒子设计),在设计好的连续加工环境和不加或少加其它化学改性剂的情况下,利用聚合物使无机粒子进行原位表面改性、原位包覆、强制分散,实现连续化制备聚合物/无机物复合材料。 3.热塑性弹性体动态全硫化制备技术。此技术将振动力场引入混炼挤出全过程,控制硫化反直进程,实现混炼过程中橡胶相动态全硫化.解决共混加工过程共混物相态反转问题。研制开发出拥有自主知识产权的热塑性弹性体动态硫化技术与设备,提高我国TPV技术水平。 三、高分子材料成型加工技术的发展趋势 近年来,各个新型成型装备国家工程研究中心在出色完成了国家级火炬计划预备项目和国家“八五”、“九五”重点科技计划(攻关)等项目同时,非常注重科技成果转化与产业化,完成产业化工程配套项目20多项,创办了广州华新科机械有限公司和北京华新科塑料机械有限公司,使其有自主知识产权的新技术与装备在国内外推广应用。塑料电磁动态塑化挤出设备已形成了7个规格系列,近两年在国内20多个省、市、自治区推广应用近800台(套)。销售额超过亿元,还有部分新设备销往荷兰、泰国、孟加拉等国家.产生了良好的经济效益和社会效益。 例如PE电磁动态发泡片材生产线2000年和2001年仅在广东即为国家节约外汇近1600万美元,每条生产线一年可为制品厂节约21万k的电费。塑料电磁动态注塑机已开发完善5个规格系列,投入批量生产并推向市场;塑料电磁动态混炼挤出机的中试及产业化工作已完成,目前开发完善的4个规格正在生产试用。并逐步推向市场目前新设备的市场需求情况很好,聚合物新型成型装备国家工程研究中心正在对广州华新科机械有限公司进行重组。将技术与资本结合,引入新的管理、市场等机制,争取在两三年内实现新设备年销售额超亿。我国已加入WTO,各个行业都将面临严峻挑战。 综上所述,我国必须走具有中国特色的发展高分子材料成型加工技技术与装备的道路,打破国外的技术封锁,实现由跟踪向跨越的转变;把握技术前沿,培育自主知识产权。促进科学研究与产业界的结合,加快成果转化为生产力的进程,加快我国高分子材料成型加工高新技术及其产业的发展是必由之路。 参考文献: [1]Chris Rauwendaal,Polymer Extrusion,Carl Hanser Verlag,Munich/FkG,l999. [2]瞿金平,聚合物动态塑化成型加工理论与技术[M].北京:科学出版社,2005 427435. [3]瞿金平,聚合物电磁动态塑化挤出方法及设备[J].中国专利,I990;美国专利5217302,1993. 有关高分子材料毕业论文篇2 浅论高分子材料的发展前景 摘要:随着生产和科技的发展,以及人们对知识的追求,对高分子材料的性能提出了各种各样新的要求。现代,高分子材料已与金属材料、无机非金属材料相同,成为科学技术、经济建设中的重要材料。本文主要分析了高分子材料的发展前景和发展趋势。 关键词:高分子材料;发展;前景 一 高分子材料的发展现状与趋势 高分子材料作为一种重要的材料, 经过约半个世纪的发展巳在各个工业领域中发挥了巨大的作用。从高分子材料与国民经济、高技术和现代生活密切相关的角度说, 人类已进人了高分子时代。高分子材料工业不仅要为工农业生产和人们的衣食住行用等不断提供许多量大面广、日新月异的新产品和新材料又要为发展高技术提供更多更有效的高性能结构材料和功能性材料。 鉴于此, 我国高分子材料应在进一步开发通用高分子材料品种、提高技术水平、扩大生产以满足市场需要的基础上重点发展五个方向:工程塑料,复合材料,液晶高分子材料,高分子分离材料,生物医用高分子材料。近年来,随着电气、电子、信息、汽车、航空、航天、海洋开发等尖端技术领域的发展和为了适应这一发展的需要并健进其进? 步的发展, 高分子材料在不断向高功能化高性能化转变方面日趋活跃,并取得了重大突破。 二 高分子材料各领域的应用 1高分子材料在机械工业中的应用 高分子材料在机械工业中的应用越来越广泛, “ 以塑代钢” ,“ 塑代铁” 成为目前材料科学研究的热门和重点。这类研究拓宽了材料选用范围,使机械产品从传统的安全笨重、高消耗向安全轻便、耐用和经济转变。如聚氨酉旨弹性体,聚氨醋弹性体的耐磨性尤为突出, 在某些有机溶剂 如煤油、砂浆混合液中, 其磨耗低于其它材料。聚氨醋弹性体可制成浮选机叶轮、盖板, 广泛使用在工况条件为磨粒磨损的浮选机械上。又如聚甲醛材料聚甲醛具有突出的耐磨性, 对金属的同比磨耗量比尼龙小, 用聚四氟乙烯、机油、二硫化钥、化学润滑等改性, 其摩擦系数和磨耗量更小, 由于其良好的机械性能和耐磨性, 聚甲醛大量用于制造各种齿轮、轴承、凸轮、螺母、各种泵体以及导轨等机械设备的结构零部件。在汽车行业大量代替锌、铜、铝等有色金属, 还能取代铸铁和钢冲压件。 2 高分子材料在燃料电池中的应用 高分子电解质膜的厚度会对电池性能产生很大的影响, 减薄膜的厚度可大幅度降低电池内阻, 获得大的功率输出。全氟磺酸质子交换 膜的大分子主链骨架结构有很好的机械强度和化学耐久性, 氟素化合物具有僧水特性, 水容易排出, 但是电池运转时保水率降低, 又要影响电解质膜的导电性, 所以要对反应气体进行增湿处理。高分子电解质膜的加湿技术, 保证了膜的优良导电性, 也带来电池尺寸变大增大左右、系统复杂化以及低温环境下水的管理等问题。现在一批新的高分子材料如增强型全氟磺酸型高分子质子交换膜耐高温芳杂环磺酸基高分子电解质膜纳米级碳纤维材料新的一导电高分子材料等等, 已经得到研究工作者的关注。 3 高分子材料在现代农业种子处理中的应用及发展 高分子材料在现代农业种子处理中的应用:新一代种子化学处理一般可分为物理包裹利用干型和湿形高分子成膜剂, 包裹种子。种子表面包膜利用高分子成膜剂将农用药物和其他成分涂膜在种子表面。种子物理造粒将种子和其他高分子材料混和造粒, 以改善种子外观和形状, 便于机械播种。高分子材料在现代农业种子处理中研究开发进展:种子处理用高分子材料已经从石油型高分子材料逐步向天然型以及功能型高分子材料的方向发展。其中较为常见和重要的高分子材料类型包括多糖类天然高分子材料, 具有在低温情况下维持较好膜性能的高分子材料, 高吸水性材料, 温敏材料, 以及综合利用天然生物资源开发的天然高分子材料等, 其中利用可持续生物资源并发的种衣剂尤为引人关注。 4 高分子材料在智能隐身技术中的应用 智能隐身材料是伴随着智能材料的发展和装备隐身需求而发展起来的一种功能材料,它是一种对外界信号具有感知功能、信息处理功能。自动调节自身电磁特性功能、自我指令并对信号作出最佳响应功能的材料/系统。区别于传统的外加式隐身和内在式雷达波隐身思路设计,为隐身材料的发展和设计提供了崭新的思路,是隐身技术发展的必然趋势 ,高分子聚合物材料以其可在微观体系即分子水平上对材料进行设计、通过化学键、氢键等组装而成具有多种智能特性而成为智能隐身领域的一个重要发展方向。 三 高分子材料的发展前景 1高性能化 进一步提高耐高温,耐磨性,耐老化,耐腐蚀性及高的机械强度等方面是高分子材料发展的重要方向,这对于航空、航天、电子信息技术、汽车工业、家用电器领域都有极其重要的作用。高分子材料高性能化的发展趋势主要有创造新的高分子聚合物,通过改变催化剂和催化体系,合成工艺及共聚,共混及交联等对高分子进行改性,通过新的加工方法改变聚合物的聚集态结构,通过微观复合方法,对高分子材料进行改性。 2高功能化 功能高分子材料是材料领域最具活力的新领域,目前已研究出了各种各样新功能的高分子材料,如可以像金属一样导热导电的高聚物,能吸收自重几千倍的高吸水性树脂,可以作为人造器官的医用高分子材料等。鉴于以上发展,高分子吸水性材料、光致抗蚀性材料、高分子分离膜、高分子催化剂等都是功能高分子的研究方向。 3复合化 复合材料可克服单一材料的缺点和不足,发挥不同材料的优点,扩大高分子材料的应用范围,提高经济效益。高性能的结构复合材料是新材料革命的一个重要方向,目前主要用于航空航天、造船、海洋工程等方面,今后复合材料的研究方向主要有高性能、高模量的纤维增强材料的研究与开发,合成具有高强度,优良成型加工性能和优良耐热性的基体树脂,界面性能,粘结性能的提高及评价技术的改进等方面。 4智能化 高分子材料的智能化是一项具有挑战性的重大课题,智能材料是使材料本身带有生物所具有的高级智能,例如预知预告性,自我诊断,自我修复,自我识别能力等特性,对环境的变化可以做出合乎要求的解答;根根据人体的状态,控制和调节药剂释放的微胶囊材料,根据生物体生长或愈合的情况或继续生长或发生分解的人造血管人工骨等医用材料。由功能材料到智能材料是材料科学的又一次飞跃,它是新材料,分子原子级工程技术、生物技术和人 工智能诸多学科相互融合的一个产物。 5绿色化 虽然高分子材料对我们的日常生活起了很大的促进作用,但是高分子材料带来的污染我们仍然不能小视。那些从生产到使用能节约能源与资源,废弃物排放少,对环境污染小,又能循环利用的高分子材料备受关注,即要求高分子材料生产的绿色化。主要有以下几个研究方向,开发原子经济的聚合反应,选用无毒无害的原料,利用可再生资源合成高分子材料,高分子材料的再循环利用。 四 结束语 高分子材料为我国的经济建设做出了重要的贡献,我国已建立了较完善的高分子材料的研究、开发和生产体系,我国虽然在高分在材料的开发和综合利用方面起步较晚,但目前来看也取得了不错的进步,我们应提高其整体技术水平,致力于创新的高分在聚合反应和方法,开发出多种绿色功能材料和智能材料,以提高人类的生活质量,并满足各项工业和新技术的需求。 参考文献: [1]金关泰.《高分子化学的理论和应用》,中国石化出版社,1997 [2]李善君 纪才圭等.《高分子光化学原理及应用》复旦大学出版社2003 6. [3]李克友, 张菊华, 向福如. 《高分子合成原理及工艺学》,科学出版社,1999 猜你喜欢: 1. 全国高分子材料学术论文报告 2. 全国高分子材料学术论文 3. 全国高分子材料学术论文 4. 全国高分子材料学术论文报告 5. 关于材料学方面论文

ML28-1 杯芳烃化合物的合成及其在氟化反应中的相转移催化作用ML28-2 高效液相色谱分离硝基甲苯同分异构体ML28-3 甲烷部分氧化反应的密度泛函研究ML28-4 硝基吡啶衍生物的结构及其光化学的研究ML28-5 酰胺衍生的P,O配体参与的Suzuki偶联反应及其在有机合成中的应用ML28-6 磺酰亚胺的新型加成反应的研究ML28-7 纯水相Reformatsky反应的研究ML28-8 一个合成邻位氨基醇化合物的绿色新反应ML28-9 恶二唑类双偶氮化合物的合成与光电性能研究ML28-10 CO气相催化偶联制草酸二乙酯的宏观动力学研究ML28-11 三芳胺类空穴传输材料及其中间体的合成研究ML28-12 光敏磷脂探针的合成、表征和光化学性质研究ML28-13 脱氢丙氨酸衍生物的合成及其Michael加成反应研究ML28-14 5-(4-硝基苯基)-10,15,20-三苯基卟啉的亲核反应研究ML28-15 醇烯法合成异丙醚的研究ML28-16 手性螺硼酸酯催化的前手性亚胺的不对称硼烷还原反应研究ML28-17 甾类及相关化合物的结构与生物活性关系研究ML28-18 金属酞菁衍生物的合成与其非线性光学性能的研究ML28-19 新型手性氨基烷基酚的合成及其不对称诱导ML28-20 水滑石类化合物催化尿素醇解法合成有机碳酸酯研究ML28-21 膜催化氧化正丁烷制顺酐ML28-22 甲醇选择性催化氧化制早酸甲酯催化剂的研制与反应机理研究ML28-23 甲酸甲酯水解制甲酸及其动力学的研究ML28-24 催化甲苯与甲醇侧链烷基化反应制取苯乙烯和乙苯的研究ML28-25 烯胺与芳基重氮乙酸酯的新反应研究 ML28-26 核酸、蛋白质相互作用研究及毛细管电泳电化学发光的应用ML28-27 H-磷酸酯在合成苄基膦酸和肽衍生物中的应用ML28-28 微波辐射下三价锰离子促进的2-取代苯并噻唑的合成研究ML28-29 铜酞菁—苝二酰亚胺分子体系的光电转换特性研究ML28-30 新型膦配体的合成及烯烃氢甲酰化反应研究ML28-31 肼与羰基化合物的反应及其机理研究ML28-32 离子液体条件下杂环化合物的合成研究ML28-33 超声波辐射、离子液体以及无溶剂合成技术在有机化学反应中的应用研究ML28-34 有机含氮小分子催化剂的设计、合成及在不对称反应中的应用ML28-35 金属参与的不对称有机化学反应研究ML28-36 黄酮及噻唑类衍生物的合成研究ML28-37 钐试剂产生卡宾的新方法及其在有机合成中的应用ML28-38 琥珀酸酯类内给电子体化合物的合成与性能研究ML28-39 3-甲基-4-芳基-5-(2-吡啶基)-1,2,4-三唑铜(II)配合物的合成、晶体结构及表征ML28-40 直接法合成二甲基二氯硅烷的实验研究ML28-41 中性条件下傅氏烷基化反应的初步探索IIβ-溴代醚新合成方法的初步探索ML28-42 几种氧化苦参jian类似物的合成ML28-43 环丙烷和环丙烯类化合物的合成研究ML28-44 基于甜菜碱的超分子设计与研究ML28-45 新型C2轴对称缩醛化合物合成研究ML28-46 环状酰亚胺光化学性质研究及消毒剂溴氯甘脲的制备ML28-47 蛋白质吸附的分子动力学模拟ML28-48 富硫功能化合物的分子设计与合成ML28-49 ABEEM-σπ模型在Diels-Alder反应中的应用ML28-50 快速确定丙氨酸-α-多肽构象稳定性的新方法ML28-51 SmI2催化合成含氮杂环化合物的研究及负载化稀土催化剂的探索ML28-52 新型金属卟啉化合物的合成及用作NO供体研究ML28-53 磁性微球载体的合成及其对酶的固定化研究ML28-54 甾体—核苷缀合物的合成及其性质研究ML28-55 非键作用和库仑模型预测甘氨酸-α-多肽构象稳定性ML28-56 多酸基有机-无机杂化材料的合成和结构表征ML28-57 5-芳基-2-呋喃甲醛-N-芳氧乙酰腙类化合物的合成、表征及生物活性研究ML28-58 氟喹诺酮类化合物的合成、表征及其生物活性研究ML28-59 手性有机小分子催化剂催化的Baylis-Hillman反应和直接不对称Aldol反应ML28-60 多核铁配合物通过水解途径识别蛋白质a螺旋ML28-61 一种简洁地获取结构参数的方法及应用ML28-62 水杨酸甲酯与硝酸钇的反应性研究及其应用ML28-63 脯氨酸及其衍生物催化丙酮与醛的不对称直接羟醛缩合反应的量子化学研究ML28-64 新型荧光分子材料的合成及其发光性能研究ML28-65 枸橼酸西地那非中间体1-甲基-3-丙基-4-硝基吡唑-5-羧酸的合成研究ML28-66 具有生物活性的含硅混合二烃基锡化合物的研究ML28-67 直接法合成三乙氧基硅烷的研究ML28-68 具有生物活性的含硅混合三烃基锡化合物的研究ML28-69 过氧钒有机配合物的合成及其对水中有机污染物氧化降解的催化性能研究ML28-70 查耳酮化合物的合成与晶体化学研究ML28-71 二唑衍生物的合成研究ML28-72 2-噻吩甲酸-2,2’-联吡啶二元、三元稀土配合物的合成、表征及光致发光ML28-73 3’,5’-二硫代脱氧核苷的合成及其聚合性质的研究ML28-74 β-烷硫基丁醇和丁硫醇类化合物及其衍生物的合成研究ML28-75 新型功能性单体丙烯酰氧乙基三甲基氯化铵合成与研究ML28-76 5-取代吲哚衍生物结构和性能的量子化学研究ML28-77 新型水溶性手性胺膦配体的合成和在芳香酮不对称转移氢化中的应用ML28-78 大豆分离蛋白的接枝改性及其溶液行为研究ML28-79 N-(4-乙烯基苄基)-1-氮杂苯并-34-冠-11的合成和其自由基聚合反应的研究ML28-80 稀土固体超强酸催化合成酰基二茂铁ML28-81 硒(硫)杂环化合物与金属离子的合成与表征ML28-82 新型二阶非线性光学发色团分子的设计、合成与性能研究ML28-83 对△~4-烯-3-酮结构的甾体选择性脱氢生成△~(4,6)-二烯-3-酮结构的研究ML28-84 对苯基苯甲酸稀土二元、三元配合物的合成、表征及荧光性能研究ML28-85 D-π-A共轭结构有机分子的设计合成及理论研究ML28-86 羧酸酯一步法嵌入式烷氧基化反应研究ML28-87 分子内电荷转移化合物溶液及超微粒分散体系的光学性质研究ML28-88 手性氨基烷基酚的合成ML28-89 酪氨酸酶的模拟及酚的选择性邻羟化反应研究ML28-90 单分子膜自组装结构与性质的研究ML28-91 氯苯三价阳离子离解势能面的理论研究ML28-92 香豆素类化合物的合成与晶体化学研究ML28-93 离子液体的合成及离子液体中的不对称直接羟醛缩合反应研究ML28-94 五元含氮杂环化合物的合成研究ML28-95 ONOO~-对胰岛素的硝化和一些因素对硝化影响的体外研究ML28-96 酶解多肽一级序列分析与反应过程建模及结构变化初探ML28-97 一系列二茂铁二取代物的合成和表征ML28-98 N2O4-N2O5-HNO3分析和相平衡及硝化环氧丙烷研究ML28-99 光催化甲烷和二氧化碳直接合成乙酸的研究ML28-100 N-取代-4-哌啶酮衍生物的合成研究ML28-101 电子自旋标记方法对天青蛋白特征分析ML28-102 材料中蛋白质含量测定及蛋白质模体分析ML28-103 具有不同取代基的偶氮芳烃化合物的合成及其性能研究ML28-104 非光气法合成六亚甲基二异氰酸酯(HDI)ML28-105 邻苯二甲酸的溶解度测定及其神经网络模拟ML28-106 甲壳多糖衍生物的合成及其应用研究ML28-107 吲哚类化合物色谱容量因子构致关系ab initio方法研究ML28-108 全氯代富勒烯碎片的亲核取代反应初探ML28-109 自催化重组藻胆蛋白结构与功能的关系ML28-110 二茂铁衍生的硫膦配体的合成及在喹啉不对称氢化中的应用ML28-111 离子交换电色谱纯化蛋白质的研究ML28-112 氨基酸五配位磷化合物的合成、反应机理及其性质研究ML28-113 手性二茂铁配体的合成及其在碳—碳键形成反应中的应用研究ML28-114 水溶性氨基卟啉和磺酸卟啉的合成研究ML28-115 金属卟啉催化空气氧化对二甲苯制备对甲基苯甲酸和对苯二甲酸ML28-116 简单金属卟啉催化空气氧化环己烷和环己酮制备己二酸的选择性研究ML28-117 四苯基卟啉锌掺杂8-羟基喹啉铝与四苯基联苯二胺的电致发光性能研究ML28-118 可降解聚乳酸/羟基磷灰石有机无机杂化材料的制备及性能研究ML28-119 大豆分离蛋白接枝改性及应用研究ML28-120 谷氨酸和丙氨酸在Al2O3上的吸附和热缩合机理的研究ML28-121 常压非热平衡等离子体用于甲烷转化的研究ML28-122 纳米管/纳米粒子杂化海藻酸凝胶固定化醇脱氢酶ML28-123 蛋白质在晶体界面上吸附的分子动力学模拟ML28-124 微乳条件下氨肟化反应的探索性研究ML28-125 微波辅助串联Wittig和Diels-Alder反应的研究ML28-126 谷氨酸和丙氨酸在Al2O3上的吸附和热缩合机理的研究ML28-127 3-乙基-4-苯基-5-(2-吡啶基)-1,2,4-三唑配合物的合成、晶体结构及表征ML28-128 水相中‘一锅法’Wittig反应的研究和手性P,O-配体的合成及其在不对称烯丙基烷基化反应中的应用ML28-129 具有生物活性的1,2,4-恶二唑类衍生物的合成研究ML28-130 树枝状分子复合二氧化硅载体的合成及其脂肪酶的固定化研究ML28-131 PhSeCF2TMS的合成及转化ML28-132 离子液体中脂肪酶催化(±)-薄荷醇拆分的研究ML28-133 脂肪胺取代蒽醌衍生物及其前体化合物合成ML28-134 萘酰亚胺类一氧化氮荧光探针的设计、合成及光谱研究ML28-135 微波条件下哌啶催化合成取代的2-氨基-2-苯并吡喃的研究ML28-136 镍催化的有机硼酸与α,β-不饱和羰基化合物的共轭加成反应研究ML28-137 茚满二酮类光致变色化合物的制备与表征ML28-138 新型手性螺环缩醛(酮)化合物的合成ML28-139 芳醛的合成及凝胶因子的设计及合成ML28-140 固定化酶柱与固定化菌体柱耦联—高效拆分乙酰-DL-蛋氨酸ML28-141 苯酚和草酸二甲酯酯交换反应产品的减压歧化反应研究ML28-142 有机物临界性质的定量构性研究ML28-143 3-噻吩丙二酸的合成及卤代芳烃亲核取代反应ML28-144 α,β-二芳基丙烯腈类发光材料的合成及发光性质的研究ML28-145 L-乳醛参与的Wittig及Wittig-Horner反应立体选择性的研究ML28-146 亚砜为催化剂和酰亚胺氯为氯化剂的醇的氯代反应的初步研究ML28-147 功能性离子液的合成及在有机反应中的应用ML28-148 DMSO催化三聚氯氰转化苄醇为苄氯的新反应的初步研究ML28-149 气相色谱研究β-二酮酯化合物的互变异构ML28-150 二元烃的混合物过热极限的测定与研究ML28-151 芳杂环取代咪唑化合物的合成及洛汾碱类过氧化物化学发光性能测定ML28-152 卤代苯基取代的咪唑衍生物的合成及其荧光性能的研究ML28-153 取代并四苯衍生物的合成及其应用ML28-154 苯乙炔基取代的杂环及稠环化合物的合成ML28-155 吸收光谱在有机发光材料研发材料中的应用ML28-156 水相中‘一锅法’Wittig反应的研究和手性P,O-配体的合成及其在不对称烯丙基烷基化反应中的应用ML28-157 苯并噻吩-3-甲醛的合成研究ML28-158 微波辅助串联Wittig和Diels-Alder反应的研究ML28-159 超声辐射下过渡金属参与的药物合成反应研究ML28-160 呋喃酮关键中间体—3,4-二羟基-2,5-己二酮的合成研究ML28-161 树枝状分子复合二氧化硅载体的合成及其脂肪酶的固定化研究ML28-162 吡咯双希夫碱及其配合物的制备与表征ML28-163 负载型Lewis酸催化剂的制备及催化合成2,6-二甲基萘的研究ML28-164 PhSeCF2TMS的合成及转化ML28-165 纳米管/纳米粒子杂化海藻酸凝胶固定化醇脱氢酶ML28-166 多取代β-CD衍生物的合成及其对苯环类客体分子识别ML28-167 多取代_CD衍生物的合成及其对苯环类客体分子识别ML28-168 柿子皮中类胡萝卜素化合物的分离鉴定及稳定性研究ML28-169 毛细管电泳研究致癌物3-氯-1,2-丙二醇ML28-170 超临界水氧化苯酚体系的分子动力学模拟ML28-171 甲烷和丙烷无氧芳构化反应研究ML28-172 2-取代咪唑配合物的合成、晶体结构及表征ML28-173 气相色谱研究β-二酮酯化合物的互变异构ML28-174 DMSO催化三聚氯氰转化苄醇为苄氯的新反应的初步研究ML28-175 二元烃的混合物过热极限的测定与研究ML28-176 氨基酸在多羟基化合物溶液中的热力学研究ML28-177 分子印迹膜分离水溶液中苯丙氨酸异构体研究ML28-178 杯[4]芳烃酯的合成及中性条件下对醇的酯化反应研究ML28-179 亚砜为催化剂和酰亚胺氯为氯化剂的醇的氯代反应的初步研究ML28-180 双氨基甲酸酯化合物的合成及分子自组装研究ML28-181 由芳基甲基酮合成对应的半缩水合物的新方法ML28-182 取代芳烃的选择性卤代反应研究ML28-183 吡啶脲基化合物的合成、分子识别及配位化学研究ML28-184 丙烯(氨)氧化原位漫反射红外光谱研究ML28-185 嘧啶苄胺二苯醚类先导结构的发现和氢化铝锂驱动下邻位嘧啶参与的苯甲酰胺还原重排反应的机理研究ML28-186 酰化酶催化的Markovnikov加成与氮杂环衍生物的合成ML28-187 多组分反应合成嗪及噻嗪类化合物的研究ML28-188 脂肪酶构象刻录及催化能力考察ML28-189 L-乳醛参与的Wittig及Wittig-Horner反应立体选择性的研究ML28-190 烯基铟化合物与高碘盐偶联反应的研究及其在有机合成中的应用ML28-191 α,β-二芳基丙烯腈类发光材料的合成及发光性质的研究ML28-192 邻甲苯胺的电子转移机理及组分协同效应研究ML28-193 负载型非晶态Ni-B及Ni-B-Mo合金催化剂催化糠醛液相加氢制糠醇的研究ML28-194 含吡啶环套索冠醚及配合物的合成与性能研究ML28-195 芳烃侧链分子氧选择性氧化反应研究ML28-196 多组分复合氧化物对异丁烯制甲基丙烯醛氧化反应的催化性能研究ML28-197 多孔甲酸盐[M3(HCOO)6]及其客体包合物的合成、结构和性质ML28-198 纳米修饰电极的制备及其应用于蛋白质电化学的研究ML28-199 对于几种蛋白质模型分子的焓相互作用的研究ML28-200 氨基酸、酰胺、多羟基醇化合物相互作用的热力学研究......

pvcpp材料多,相对容易。

锂离子电池材料的研究进展论文

参考下这类的文献,免费查阅的可以去找汉斯的(材料科学)这本OA刊物

锂离子电池的研究进展摘要 介绍了锂离子电池的电化学反应原理、一般特性及电池正极材料、负极材料、电解质材料的研究进展,同时也介绍了目前存在的问题和发展前景。关键词 锂离子电池,研究进展,展望R&D of Li-ion secondary batterySun Chunwen(Department of Applied Chemistry,Tianjin University,300072)Abstract The fundamental principle of electrochemical reaction of Li-ion battery,its general properties and the progress of researches on materials for cathode,anode and electrolyte are introduced in this the same time its existing problems and prospects are also words Li-ion battery,research progress,prospect自从1859年Gaston Plante提出铅酸电池概念以来,化学电源界一直在研制新的高比能量、长循环寿命的二次电池。1990年日本索尼公司率先研制成功锂离子电池〔1〕。它是把锂离子嵌入碳中形成负极,取代传统锂电池的金属锂或锂合金作负极。负极材料是石墨和焦炭等碳材料。目前的正极材料主要是LiCoO2,其次是LiNiO2和LiMn2O4。电解质为LiAsF6+PC(碳酸丙烯酯)、LiAsF6+PC+EC(碳酸乙烯酯)及LiPF6+EC+DMC(碳酸二甲酯)。隔膜为PP微孔薄膜、PE微孔薄膜或两者双层。锂离子电池既保持了锂电池高电压、高容量的主要优点,又具有循环寿命长、安全性能好的显著特点,在便携式电子设备、电动汽车、空间技术、国防工业等领域展示了良好的应用前景和潜在的经济效益,是近年来受到广泛关注的研究热点。1 锂离子电池的电化学反应原理及特性这种电池的正负极均采用可供锂离子(Li+)自由嵌脱的活性物质,充电时,Li+从正极逸出,嵌入负极;放电时Li+则从负极脱出,嵌入正极。这种充放电过程,恰似一把摇椅。因此,这种电池又称为摇椅电池(Rocking Chair Batteries)。以LiCoO2为正极材料,石墨为负极材料的锂离子电池,充放电反应式为锂离子蓄电池的一般特性〔2〕:(1)体积及质量的能量密度高;(2)单电池的输出电压高,为 V;(3)自放电率小;(4)在60℃左右的高温下也可以使用;(5)不含有毒物质等。2 锂离子电池的研究进展研究锂离子蓄电池的关键技术是采用能在充放电过程嵌入和脱嵌锂离子的正、负极材料及选用合适的电解质材料。 正极材料作为正极材料的嵌锂化合物是锂离子的贮存库。为了获得较高的单体电池电压,应选择高电势的嵌锂化合物。一般而言,正极材料应满足〔3~7〕:(1)在所要求的充放电电位范围内,具有与电解质溶液的电化学相容性;(2)温和的电极过程动力学;(3)高度可逆性;(4)全锂化状态下在空气中稳定性好。目前研究的热点主要集中在层状LiMO2和尖晶石型LiM2O4结构的化合物上(M=Co、Ni、Mn、V等过渡金属离子)。能作正极活性物质的主要有LiCoO2、LiNiO2和LiMn2O4等。最早用于商品化的锂离子电池中的正极为LiCoO2,它属于α-FeO2型结构。其合成方法是将Li2CO3和CoCO3按摩尔比Li/Co=1∶1的比例混合,在空气中700℃灼烧而成〔8〕。其可逆性、放电容量、充放电效率、电压的稳定性等性能均很好。因此,目前正极材料主要采用LiCoO2,或在其中再添加Al、In等元素的复合钴酸锂。但是,由于钴材料成本较高,资源缺乏,因此,必须开发少用钴、不用钴或廉价易得的材料,如用镍或锰来取代钴,这样电池单价可大大降低。LiNiO2是继LiCoO2后研究较多的层状化合物,一般是用锂盐和镍盐混合在700~850℃经固态反应制备。镍与钴的性质相近,价格比钴低廉。LiNiO2目前的最大容量为150 mAh/g,工作电压范围为~ V,不存在过充电和过放电的限制,Ohzuku〔9〕认为它是锂离子电池中最有前途的正极材料之一。但由于LiNiO2的制备中存在许多问题,所以LiNiO2的实际应用还受到限制。例如,制备三方晶系的LiNiO2时容易产生立方晶系的LiNiO2,特别是当热处理温度大于900℃时,LiNiO2将全部以立方晶系形式存在,而在非水电解质溶液中,立方晶系的LiNiO2无电化学活性。尖晶石型的LiM2O4(M=Mn、Co、V等)中M2O4骨架是一个有利于Li+离子扩散的四面体和八面体共面的三维网络。其典型代表是LiMn2O4。因为在加热过程中易失去氧而产生电化学性能差的缺氧化合物,使高容量的LiMn2O4制备较复杂,现在常用的合成方法有多步加热固态合成法、溶液-凝胶法、沉淀法等。如何克服容量在循环时下降的问题是目前LiMn2O4研究的焦点。因此,尖晶石型特别是掺杂型LiMn2O4的制备及结构与性能的关系仍是今后锂离子电池电极材料研究的方向。 负极材料锂离子电池作为一种新型的高能电池在性能上的提高仍有很大的空间,而碳材料性能的提高是其中的主要关键。负极碳材料应具备大容量、良好的充放电特性、高度可逆的嵌入反应、热力学稳定以及对电解液稳定的性能。1973年就有人提出以碳作为嵌锂材料,但直到1990年索尼公司以石油焦炭作为负极,才使锂离子电池的研究进入实用化阶段,从而掀起了世界范围的研究热潮。用于锂离子电池的碳材料主要有以下几种,见下表。目前研究的碳负极材料主要有石墨、冶金焦炭、石油焦炭等。其中石墨具有层状结构,因此其层与层之间有可能嵌入原子或原子团,形成碳层间化合物。石墨用作锂离子蓄电池的负极,可用充电的方法在碳层之间嵌入锂离子,用放电的方法脱嵌锂离子。用嵌锂石墨作为负极时,研究的焦点主要有:不可逆容量损失的机理和抑制方法,石墨结构与电化学性能的关系等。石墨的结晶度、微观组织、堆积形式等都影响其嵌锂容量。有研究发现,部分无序排列的存在是石墨嵌锂容量小于理论容量的原因,通过调节热处理温度控制石墨的堆积形式是获得高容量的有效手段。日本本田研究与发展公司利用特殊处理方法解决了锂离子电池比容量低的问题。具体做法是将锂(分子)置于有序石墨板之间,材料经聚亚苯基(PPP)热处理后,再将高度取向的石墨经高压(5 000~6 000 MPa)热解。用该方法得到的石墨作负极,使负极达到了1 116 mAh/g的高比容量〔10〕。1991年日本NEC的Iijima用真空电弧蒸发石墨电极时,发现了具有纳米尺寸的碳多层管状物——纳米碳管。此后,引起了人们广泛的兴趣和深入的研究。纳米碳管具有尺寸小、机械强度高、比表面大、电导率高和界面效应强等特点,其顶端开口填充已用于高效催化载体、吸波材料等。近年来,已把碳管用于锂离子电池中作为负极材料,研究发现它具有高的可逆容量等优异的电极性能。目前,对碳电极材料的研究十分活跃,今后仍是锂离子电池研究的重点。 电解质材料主要采用锂盐和混合有机溶剂所组成的材料,如LiClO4/PC(碳酸丙烯酯)+DME(二甲基乙二醇)、PC+DME、PC+DME+EC(碳酸乙烯酯)、EC+DEC(碳酸二乙酯)、LiAsF6/EC+THF(四氢呋喃)等。有些专家认为,LiClO4是强氧化剂,使用很不安全。PC在蓄电池中因反应性强,易进入碳夹层,用于锂离子电池也不可取。LiPF6是适宜的用盐,1~2 mol/L LiPF6/EC+DMC是理想的电解液〔11〕。电解质的稳定性也是当前研究锂离子蓄电池的一个关键技术。另外,提高锂离子电池的容量、电极循环寿命、电池的安全性、减小自放电和实现快充仍是今后锂离子电池研究的关键技术。3 展望近年来锂离子电池作为一种新型的高能蓄电池,它的研究和开发已取得重大进展。但由于锂离子电池是一个涉及化学、物理、材料、能源、电子学等多学科的交叉领域,研制中还存在许多问题。运用传统的电化学研究方法结合现场、非现场的谱学方法等多种检测手段,对锂离子电池体系进行评价、优化设计,将会有力地推动锂离子电池的研究和应用。锂离子电池将是继镍镉、镍氢电池之后,在下世纪相当长一段时间内市场前景最好,发展最快的一种二次电池。参考文献1 Nagaura T,Tozawa Batts Sol Cells,1990(9):209~2172 李春鸿.电池,1996,26(6):286~2903 Miure K,Yamada A,et Acta,1996,41:249~2564 Gao Y,Dahn J Soc,1996,143:100~1145 Saidi M Y,Barker J,et Acta,1996,41:199~2046 Rougier A,Gravereau P,et Electrochem Soc,1996,143:1168~11757 周恒辉,慈云祥等.化学进展,1998,10(1):85~948 金属时评(日),1993(1525):29 Ohzuku T,Ueda A,et Acta,1993,38:1159~116710 任学佑.电池,1996,26(1):38~4011 Main Trends in Li-Ion Battery,Techno Japan,1994,27(3):58~60

使能量密度达到现有任何电池的三倍,研究显示金属催化物在提高电池效率上起到重要作用。该校机械工程和材料科学与工程副教授YangShao-Horn表示,许多研究团队如今正致力于锂-空气电池的研究,但目前还缺乏对何种电极材料能够促进电池内部电化学反应发生的理解。Shao-Horn和其团队成员在4月1日出版的《电化学与固态快报》上报道了其研究成果,在锂-空气电池中使用金或铂金电极作为催化剂具有比单一碳电极高得多的反应活性和效率。此外,这项研究也为进一步研究寻找更佳的电极材料,如金和铂金或其他金属的合金材料或金属氧化物材料以及减少使用昂贵材料奠定基础。论文的第一作者、博士生Yi-ChunLu指出,研究团队开发了一种分析电池中不同催化剂活性的方法,现在可以基于这项研究来试验多种可能的材料,以确定控制催化剂活性的物理特性,最终能够预测催化剂的反应活动。锂-空气电池原理与锂离子电池类似,而后者目前是便携式电子产品使用的主要电源,而且在电动汽车电源的竞争中也占据了领先地位。但由于锂-空气电池使用了碳基空气电极和空气流替代锂离子电池较重的传统部件,因此电池质量更轻,这也使得包括IBM和通用汽车等大企业纷纷投身于锂-空气电池技术的开发当中。但锂-空气电池在成为可商用化产品之前还有一系列的问题需要解决,其中最大的问题是如何确保在经过了许多次的充放电过程后仍能保持其电力水平,可用在电动汽车或电子产品中。研究人员还需要详细研究充放电过程的化学问题,如产生了那些化合物,在哪里产生,以及它们之间如何相互反应等。Shao-Horn坦承,目前这方面的研究还处于初级阶段,部分企业将锂-空气电池研究视之为10年期的研发项目,但这是一个非常有前景的领域,如果能够克服许多科学和工程挑战,真正实现能量密度达到目前锂离子电池的两到三倍,将能够首先应用在便携式电子产品如笔记本电脑和手机上,降低成本后更可作为电动汽车电源。该项研究受到美国能源部的资助,MartinFamilySocietyofFellowsforSustainability和美国国家科学基金会也给予了支持。根据《日刊工业新闻》报道,日本旭化成株式会社和Central硝子株式会社两家企业正式参加美国IBMAlmaden Reseach Center正在进行的锂空气电池研究项目。按照该项目研究分工,旭化成将利用其掌握的先进膜技术,负责开发重要的有关膜部件;Central硝子负责开发新型电解液和高性能添加剂。研究小组计划到2020年实现锂空气电池的大量生产和推广应用。

高分子材料的研究论文怎么写

在世界范围内, 高分子材料的制品属於最年轻的材料.它不仅遍及各个工业领域, 而且已进入所有的家庭, 其产量已有超过金属材料的趋势, 将是 21 世纪最活跃的材料支柱. 高分子材料是有机化合物, 有机化合物是碳元素的化合物.除碳原子外, 其他元素主要是氢、氧在世界范围内, 高分子材料的制品属於最年轻的材料.它不仅遍及各个工业领域, 而且已进入所有的家庭, 其产量已有超过金属材料的趋势, 将是 21 世纪最活跃的材料支柱.高分子材料是有机化合物, 有机化合物是碳元素的化合物.除碳原子外, 其他元素主要是氢、氧、氮等.碳原子与碳原子之间, 碳原子与其他元素的原子之间, 能形成稳定的结构.碳原子是四价, 每个一价的价键可以和一个氢原子键连接, 所以可形成为数众多的、具有不同结构的有机化合物.有机化合物的总数已接近千万种, 远远超过其他元素的化合物的总和, 而且新的有机化合物还不断地被合成出来.这样, 由於不同的特殊结构的形成, 使有机化合物具有很独特的功能.高分子中可以把某些有机物结构(又称为功能团)替换, 以改变高分子的特性.高分子具有巨大的分子量, 达到至少1 万以上, 或几百万至千万以上, 所以, 人们将其称为高分子、大分子或高聚物.高分子材料包括三大合成材料, 即塑料、合成纤维和合成橡胶(未加工之前称为树脂).面向21 世纪的高科技迅猛发展, 带动了社会经济和其他产业的飞跃, 高分子已明确地承担起历史的重任, 向高性能化、多功能化、生物化三个方向发展.21 世纪的材料将是一个光辉灿烂的高分子王国.现有的高分子材料已具有很高的强度和韧性, 足以和金属材料相媲美, 我们日用的家用器械、家具、洗衣机、冰箱、电视机、交通工具、住宅等, 大部分的金属构造已被高分子材料所代替.工业、农业、交通以及高科技的发展, 要求高分子材料具有更高的强度、硬度、韧性、耐温、耐磨、耐油、耐折等特性, 这些都是高分子材料要解决的重大问题.从理论上推算, 高分子材料的强度还有很大的潜力.在提高高分子的性能方面, 最重要的还是制成复合材料第一代复合材料是玻璃钢, 是以玻璃纤维和合成树脂为粘合剂制成.它具有重量轻、强度高、耐高温、耐腐蚀、导热系数低、易於加工等优良性能, 用於火箭、导弹、船只和汽车躯体及电视天线之中.其后, 人们把玻璃纤维换成碳纤维, 其重量更轻, 强度比钢要高3~5 倍, 这就是第二代的复合材料.如果改用芳纶纤维, 其强度更高, 为钢丝的5 倍.高性能的高分子材料的开拓和创新尚有极大的潜力.科学家预测, 21 世纪初, 每年必须比目前多生产1500~2000 万吨纤维材料才能满足需要, 所以必须生产大量的合成纤维材料, 而且要具有更轻型、耐火、阻燃、防臭、吸水、杀菌等特性.有许多新型纤维, 如轻型空腔纤维、泡沫纤维、各种截面形状的纤维、多组份纤维材料等纷纷被研制出来, 人们可指望会有耐静电、耐脏、耐油, 甚至不会沾灰的纤维材料问世.这些纤维材料将用於宇航天线、宇航反射器、心脏瓣膜和人体大动脉.高分子功能材料, 在高分子王国里是一片百花争艳的盛景.由於高分子的功能团能够替代, 所以只要采用极为简便的方法, 就可以制造各种各样的高分子功能材料.常用的吸水性材料, 如棉花、海绵, 其吸水能力只有本身重量的20 倍, 在挤压时, 已吸收的大部分水将被挤出来.而用淀粉和丙烯腈制成的高分子吸水材料, 它不仅能吸收自身重量数百倍到上千倍的水, 而且受到挤压也不会挤出水来.人们可以期望, 将高吸水性的高分子材料制成能将化学能转变成机械能的装置, 以及具有类似於肌肉的功能或制造测量仪器.在微电子工业的光刻集成块工艺, 常用的光刻胶(又称光致抗蚀材料), 就是能使高分子相连接一种功能团, 光照射时会起化学反应, 使其溶解度降低或提高.应用这种光刻胶制备集成块, 可以使集成块的线宽达到 到 微米(1p毫米), 只有用其他工艺制成的集成块的线宽的1/10 到1/100, 是适合於21 世纪的电子计算机的主要元件mm微细元件的开关.光刻胶并能用於各种精细加工, 如半导体元件, EP 刷线路板, 金属板膜或表面的精细加工、玻璃、陶瓷的精细刻蚀、精密机械零件加工等.高分子功能材料应用在信息工程方面, 已经生产了光电导摄影材料、光信息记录材料、光mm能转换材料, 并都已进入实用阶段.像"当代摩西神树"的离子交换树脂的高分子功能材料也发展很快, 许多高分子离子交换膜、高分子反渗透膜、高分子气体分离膜、高分子透过蒸气膜等都在化学工艺的筛分、沉淀、过滤、蒸馏、结晶、萃取、吸附等过程中获得应 用, 而且分离结果优於其他方法, 可节约大量能量.日本的制盐工业早已用离子交换膜去代替盐田和电解食盐工艺.利用反渗透膜对有机化工、酿造工业的三废进行处理, 可回收胺、酯、醇、醚、酮、酚等重要有机化合物.气体分离膜对不同气体的透过率和选择性不同, 可以利用这一性质从混合气体中选择分离某种气体, 如从空气中富集氧, 从合成氨中回收氢, 从天然气中收集氦, 还可以制备一种水下呼吸器(人工鳃), 它是直接从海水中提取氧的潜水装置, 人类可望能长期生活在海水中, 进入海龙王的宫殿, 分享海龙王海底宁静的幸福生活的梦想可变成现实.还有各种信息转换膜、反应控制膜、能量输送膜等正在研制阶段.一种富有吸引力的生物膜也正在研究之中.生 物膜具有奇特的性能, 不仅能主动起能量、信息、物质的传递作用, 还能参加光合作用及有机物质的生命合成等生命活动.这就是21 世纪的高科技的一颗明珠, 摘取这颗明珠需要有极大的勇气和百折不挠的精神.高分子功能材料的另一极为重要的发展就是用於催促化学反应, 这类高分子功能材料被称为高分子催化剂.早在本世纪40 年代, 人们已经使用一种叫交联磺化聚苯乙烯的离子交换树脂作催化剂, 用於化学反应的各个过程, 如水解、缩合、聚合等.尔后, 这类高分子功能材料发展很快, 高分子金属络合物催化剂接着问世, 它能够在化学反应中加速捕捉金属离子, 实现金属化合物的迅速分离, 在工业生产和工业分析上是一种十分重要的方法.还有高分子金属催化剂, 是促进化合物中金属离子迅速完成化学反应的材料, 它已获得了成功的应用.自然界存在一种最有效的催化剂, 称为酶.这一类高分子材料像酶一样有很强的催化作用, 称为人工合成酶.酶是由氨基酸组成的蛋白质高分子化合物, 它是生物体内各种生物化学反应的高效催化剂, 是性能最优异的天然的高分子功能材料.现在, 各种人工合成酶已经研制成功并逐步投入应用, 其种类越来越多, 科学家根据酶的作用原理试图模仿应用於化学工业的催化剂, 在化学工业上进行一场革命.它可以制作进行化工生产, 可以充分利用再生的生物资源, 以摆脱传统的以石油系列为主要原料的合成工艺, 而且还可用酶的催化原理, 避开传统的合成工艺中的高温, 高压的条件, 在各种物质混合的状态下, 有选择地使特定物质发生化学反应, 使反应物能够不加分离地连续反应至生产出最终产物.这样, 生物反应器将会改变化工企业高塔林立的传统面貌, 不仅能节约能源, 改善工作环境, 同进还可以广开化工资源, 消灭废水、废气和废料(又称三废), 使建立无污染的理想化学工业成为可能.例如天门冬酰胺酶制成的中性树脂的前景就非常光明.高分子材料在医学和生命科学上的应用已有很长的历史, 但是依靠着高科技的进步, 近期来这个领域的发展令人惊讶, 人工心脏瓣膜、人工肺、人工肾、人工血管、人造血液、人工皮肤、人工骨骼、人工关节, 从研制迅速成功到不断完善, 并且已付诸使用.高分子材料制作的手术器械、医护用品已不计其数.高分子材料生物化的最大特色就是控制人的健康和生命, 利用不带药剂性的高分子与其他药剂合成的高分子药剂, 可大大改善治疗效果, 这一类药剂人体易於吸收, 毒性和副作用小.如引起恶心、全身不适等不良反应的抗癌药, 把它们高分子化, 其效果就大大改善, 像抗癌药芳庚酚酮和甲基丙烯酸结合为高分子, 其效果更佳.另一类高分子药物, 本身就有很高的药效, 如合成的聚乙烯吡咯烷酮, 就可以作为血浆的代用品.商品化的聚醚与聚氨酯合成的高分子药物与血浆蛋白质中的白蛋白的亲和力特别高, 相处很融洽, 是一种解决人体血凝的医用高分子材料.纵观上述, 高分子已经成为21 世纪材料科学中强有力的支柱, 高分子材料的发展在21 世纪将会取得更大的成就

哈哈我毕业的论文就是高分子改性!不过不大记得怎么写了!大致如下:1。摘要,中英文2。导论,介绍原高分子相应的缺陷或者介绍为何要改性,一般都会从市场或者技术的角度出发。3。实验方案,怎么做实验,用什么原料4。实验数据和分析,将实验结果进行分析,绘图,同时做比对说明,比如引入的某功能团在某某设备检测下证实已经引入,或者做一些对成品的物理分析,比如粘度等等5。总论6。感谢7。参考文献大致这样,具体忘记了,详细你要的话可以联系我,到时候我再给你看下。

o()^))o 唉 不会额

你文献综述写没有,首先把高分子材料合成和处理的历史介绍一下,然后介绍现在世界各国是怎么合成和处理的,都有哪些种,你觉得他们这种方法怎么样,然后提出你自己的看法,应该怎么做。这些东西百度上一堆一堆的,摘抄,堆砌,去万方上下载一些PDF格式的论文,再摘抄。文献综述大概写个六七千字,自己的看法什么的写几千字,完成。我去年毕业时的论文是PP/PANI复合材料制备和研究。

相关百科

热门百科

首页
发表服务