首页

> 论文发表知识库

首页 论文发表知识库 问题

极值的论文答辩

发布时间:

极值的论文答辩

大学毕业论文答辩中,的确见到过许多离谱的论文致谢,在许多人看来他们非常离谱可笑,其实我们也可以看得出在日常生活中,我们特别容易被一些细小的举动所感动,也许是在写论文的时候看到窗外的风景,门口的猫咪,或者是在家里写论文的时候,有父母的陪伴,对于他们来说这些也许是非常日常可见的事情,但是在我们日常生活中,又是由这些美好的事情所组成,也正是因为有他们让我们觉得人生值得。

每个人都要写,对于一些人来说觉得特别头疼,因为自己不知道写什么,所以当他们历经一切困难写完之后,他们心中一定是有非常感慨的,知道有这多么的不容易,在完成期间有老师的帮助同学的帮助,还有家长的支持,对于一名学生来说,如果自己在生活中能够被这些爱包围的话,其实是非常开心的,在致谢中自己能够把真实想法表达出来,也是非常好的。

他们不好意思说出口,所以他们往往会把一些爱意藏于心中,但是在这些的时候我们可以大大方方的表达自己的真实感受,也许在别人看来我们这些文字写出来的都是矫情,但只有自己知道是多么的真实,这完全是自己的内心感受,这是对自己大学4年的一个总结,也是对自己这些年来收获的一个概括。

我们要珍惜自己的每一段时光,也许在一开始会非常厌烦写论文,但是在写完之后又觉得非常有意义,可能这是自己在大学4年期间,唯一做过的一件非常严谨的,与学术那么靠近的事情。

论文答辩基本流程1.论文答辩举行前,学生将经过指导老师审定并签署过意见的毕业论文一式多份,连同提纲、草稿等交给答辩委员会。2.答辩开始,老师宣读答辩小组名单和答辩规则。3.学生在规定时间内作论文陈述。概述论文标题及选题原因,较详细地介绍论文的主要论点、论据和写作体会。4.老师向答辩人提出质询的重点问题。5.学生逐一回答完所有问题后退场,答辩委员会集体根据论文质量和答辩情况,商定成绩和评语。6.召回学生,由主答辩老师当场宣布答辩结果并进行小结【提醒】各院校具体答辩流程可能稍有不同,仅供参考前期准备熟悉论文学生应对论文有全面、深刻的理解,熟悉文章每一个部分的主要内容。●此外,还要多了解与论文有关的新闻时事、学术热点等。●在反复阅读、审查自己毕业论文的基础上,写好答辩报告书。特别注意以下几点:①突出选题的重要性和意义。②介绍论文的主要观点与结构安排。③强调论文的新意与独创性。④说明做了哪些必要的工作。想好答案答辩老师常见的提问类型①对选题意义提问②对重要观点及概念提问③对论文新意提问④对论文细节提问⑤对论文数据来源提问⑥对论文薄弱环节提问⑦对建议可行性提问⑧对自己所做工作的提问⑨对超出论文范围的提问⑩对格式是否规范化的提问【注意】●陈述一定要简明扼要,层次清晰。可按照“自我介绍一论文题目一 选题缘由一 研究背景一研究内容成文结构 不足一 致谢"几个环节进行自我陈述。●回答老师问题后,认真听取答辩老师的评判和意见,总结经验教训。制作答辩PPT●封面简洁美观,写上论文名称、姓名、学号、指导老师等。●内容避免大段文字,每部分列出核心观念即可。●图表可适当在PPT中穿插一些能辅助论证的图表,不仅能吸引老师的注意,还能形象地传达你的观点。●配色力求简洁大方,字体颜色要和背景形成鲜明对比,避免过于花哨繁复控制时间●论文答辩会 上一般都有时间限制,学生在答辩前应对答辩内容有时间上的估计。●在正式答辩前一-定要多计时演练几遍,在答辩过程中也可以灵活地减少或增加内容。

第一开门见山法。“各位评委老师,你们好,我是5号答辩学生,我今天答辩的题目是……”

这就是一种答辩的方式,这种答辩的方式省去了一些拐弯抹角的说辞,让评委老师听起来很舒服。

第二直奔主题法。“各位评委老师好,下面我开始答辩,请大家批评指正”。这也是一种答辩的开场白,这种开场白比第一种开场白更加的简洁明了。

因为我们在答辩的时候还会制作PPT来进行展示,所以你在PPT上已经有了的一些内容,就完全没有必要再重复去说一遍了,甚至连你的姓名,你的答辩的题目都不用说了。

第三表达感谢法。“尊敬的各位评委老师,大家辛苦了,我是今天最后一位答辩的学生,感谢你们给我这次答辩的机会,考虑到各位评委老师都比较辛苦,我简要向大家介绍我的论文”。

第四不按常理出牌法。

不按常理出牌呢顾名思义就是不按一般人的套路来进行答辩,一般大家都是按照写作依据、主要论点、创新点和不足这几个方面来进行答辩。

那么有的人他就会另辟蹊径,就只讲自己的论文创新点,然后一上来就开始说创新点。

毕业答辩的结束语,简单一两句话总结后就直接表示感谢后结束,不拖泥带水

毕业答辩最后的结束语,就只有最简单的3句话:

第一句:用一句话总结一下你的毕业论文或毕业设计的结论。

第二句:明确告诉大家,答辩陈述结束。“我的毕业论文答辩陈述就到这里,感谢聆听,也感谢某某导师对我的指导”。

第三句:下面欢迎各位老师对我进行提问。

1、要熟悉自己的论文,熟练掌握自己的观点思路,在答辩时能够胸有成竹

2、要保持礼貌,在进行答辩时要将正视委员会和会场上的同学,不要低头或者抬头,要和他们有目光交流

3、要讲答辩老师的问题听清楚,思考后再进行回答

4、与答辩老师意见观点相左时,表述自己观点要有理有据,注意言辞,反驳的时候要注意分寸,注意礼貌,对老师的说教要用求教的态度。

5、不要强答狡辩,对于老师提出来的问题,自己知道就要把知道的说出来;对于自己不明白的问题,要敢于承认

极值与最值问题的研究论文

最值问题是高中数学中永恒的话题,可综合地考查函数的性质、导数、均值不等式、线性规划、向量等知识的应用;涉及到代数、三角、几何等方面的内容;体现数学中的数形结合、分类讨论、转化与化归、函数与方程等思想与方法,并能综合考查学生的数学思维能力、分析和解决问题的能力,是历届高考中的焦点、热点、难点.本文就近几年高考中的常见类型略作探讨,难免有不当之处,权作抛砖引玉. 中国论文网 /9/一、代数问题一般通过考察常见函数的单调性,或者能够利用导数问题研究其单调性,在定义域内求最值,或者通过方程思想,得到不等式再求最值.【例1】(2008·江西·第9题)若02,=,==2.评注:求在有限闭区间上的二次函数的最值问题,关键抓住两点:①二次函数图像的开口方向;②二次函数图像的对称轴与所给闭区间的相对位置关系.此类型最值必然在区间端点或图像顶点处取得.【例3】(2005·全国卷Ⅱ·文21题改编)设a为实数,函数,求的最值.解析:令=3x2-2x-1=0得=-,=1∵,≥0,∴函数在上是增函数,∴==a+显然不存在最小值.与本题类似,2008全国卷I第19题、全国卷Ⅱ第22题(文)都出现了与导数有关的判断函数单调性的问题.评注:导数知识放在高中阶段学习,为高中数学增添了许多亮点,同时也为高考数学的考查方向和难度提供了许多有利的条件.【例4】已知,,求的最小值.解法1:==5+≥5+=9(当且仅当且x+y=1,即时取“=”号)∴的最小值等于9.说明:此法符合均值不等式的条件“一正二定三相等”.解法2:∵x+y=1,令,()∴====≥=9说明:此解法运用了三角换元,最后又运用了重要不等式,与法1实质相同.解法3:利用柯西不等式==≥==9说明:实质上令,,是的应用.解法4:令=t,由,消去y可得:转化为上述方程在内有解,故有,可得到t≥9.所以最小值等于9.说明:本解法体现了转化思想、方程思想.评注:对本题的四种解法中,我们可看到解法1、解法2是较为简洁的.我们提倡一题多解,善于发现、总结,从中找出最优解法,逐步提高分析问题、解决问题的能力.二、三角函数问题三角函数作为一种重要的函数,也是高考考查的重点.三角函数常借助三角函数的有界性或利用换元转化为代数的最值问题.【例5】(2008·全国卷Ⅱ·第8题)若动直线与函数与的图像分别相交于M、N两点,则的最大值为( ). B. C. 分析:画图像,数形结合是很难得到答案的.易得,,则,利用正弦函数的有界性易知最大值为.【例6】(2004全国卷)求函数的最大值.解析:,而,∴评注:令,则,这样转化为区间或其子集上的二次函数的值域问题.类似的结构还有:,,等.【例7】(2008重庆·第10题)函数的值域为( ).A. B. C. D.分析:观察式子结构,若化为∵,∴但最小值不能直接观察出.因为分子取最小值时,分母取不到最小正数.变形为另一种形式:,观察结构,再配凑,会发现什么?令,,问题转化为求的最值问题,数形结合,易知的范围是[],从而选B.可见向量作为工具的重要应用,应多观察、联想、对比、发现,从中寻找解决问题的最佳途径.上述介绍的数学思想与方法是根据近几年部分高考试题总结的,也是最值求解问题中最常用的,只要在平时注意归纳,加强训练,就能够熟练运用.但没有任何一种方法能够“包打天下”,因此在具体实施时,还需要注意解题方法的选择,及各种思想方法的综合使用,实现优势互补,这样才能够“游刃有余”.

微积分是高等数学的一部分知识,关于微积分的论文有哪些?接下来我为你整理了数学微积分论文的 范文 ,一起来看看吧。

摘要:初等微积分作为高等数学的一部分,属于大学数学内容。在新课程背景下,几进几出中学课本。可见初等微积分进入中学是利是弊已见分晓,其重要性不言而喻。但对很多在岗教师而言,还很陌生,或是理解不透彻。这样不利于这方面的教学。我将对初等微积分进入中学数学背景,作用及教学作简单研究.

关键词:微积分;背景;作用;函数

一、微积分进入高中课本的背景及必要性

在数学发展史上,自从牛顿和莱布尼茨创建微积分以来,数学中的很多问题都得以解决。微积分已成为我们学习数学不可或缺的知识。其在经济、物理等领域的大量运用也使之成为解决生活实际问题的重要工具。但牛顿和莱布尼茨创建的微积分为“说不清”的微积分,也就是连他们自己也说不清微积分的理论依据,只是会应用。这使得很多人学不懂微积分,更不用说让中学生来学习微积分。

柯西和维尔斯特拉斯等建立了严谨的极限理论,巩固了微积分基础,这是第二代微积分,但概念和推理繁琐迂回,对高中生更是听不明白。近十年来,在大量的数学家如:张景中,陈文立,林群等的不懈努力下,第三代微积分出现了相比前两代说得清楚,对高中生而言,也更容易理解。这为其完全进入高中课本奠定了基础。从内容来看,新一轮的课改数学教材在微积分部分增加了定积分的 概念及应用(求曲边梯形面积,旋转体体积,以及在物理中的应用),可能考虑到中学生的认知能力,人教版新教材与北师大版在这方面有所不同。即利用定积分求简单旋转体体积在北师大版教材中出现了,但人教版没有。

从课标和考试大纲(参考2011年高考考试大纲)上看,初等微积分所占比重也是越来越重。回顾历届高考,微积分相关题型分值越来越高。但就我个人观点,初等微积分在中学数学中的作用还没有真正全面发挥。我认为,它是学生中学数学和教师教学的一条线索,它是我们研究中学函数问题的统一 方法 ,也是联系中学与大学数学知识的纽带!

二、微积分在中学数学中的作用

1.衔接性与后继作用。微积分本是大学高等数学范畴,是大学开设的课程。让现在中学生提前学习部分微积分知识,这便为其以后升入大学学习微积分打下良好的基础,这也使数学知识从小学到大学从内容上衔接得更加紧密。也不会再出现很多大学生认为的大学数学知识在高中数学教学中没有任何作用的观点.

2.解决数学相关知识的作用。高中数学函数在整个中学数学内容中,不论从高考所占比重还是自身难度来说都应该排在首位。对学生来说永远是最难学的,得分率也相对比较低。很多学生讨厌数学就是讨厌函数,提到数学中的函数就头晕。由于应试 教育 的关系,学生又不得不学习函数,而函数思想本身也是高中数学学习的一条线索。微积分的进入对学生学习函数问题找到了统一的方法。高中阶段我们所研究的函数问题一般是以一些基本初等函数为媒介研究函数的定义,图像和性质,当然也有应用。但随着课改的深入,函数应用问题逐渐在淡化。而初等微积分知识即研究函数的重要工具,如:微积分可以求函数的单调性,最值。最重要的是它可以画出函数的图像,其实,当函数图像画好后,几乎函数所有性质都可以解决。学生只要学好微积分便掌握了研究函数的统一方法,那么高中阶段的二次函数,指数函数,对数函数,三角函数等所有初等函数的学习就可以统一,既节约了教学时间又学习了先进的数学思想。对提高学生的数学修养打下坚实的基础。我相信还可以激发其学习数学的兴趣。另外,在高中阶段,初等微积分还可以解决不等式问题,求二次曲线的切线问题,求曲边梯形的面积等很多数学问题。利用微积分不仅可以使问题简化,并能使问题的研究更为深入、全面。

3.提高数学在其他学科的应用能力。作为自然学科的数学本身已应用于社会经济、技术等各个领域。而作为中学数学,它对中学 其它 学科的推动作用也是毋庸置疑的。如物理,化学,地理等学科也离不开数学。在高中阶段往往会因为数学的教学进度而影响其它学科的进度。如地理中要学习地球的经度,纬度等知识就需要先学习数学中球体相关知识和解三角形相关知识。当微积分进入中学数学后,数学这个学科的作用就更加重要了。特别像物理中匀加速直线运动位移,瞬时速度,加速度等问题利用微积分的导数求解起来更加简单,容易理解。新课程人教版数学教材选修2-2中专门加入了利用定积分求变速直线运动的路程一节。另外,微积分解决生活中的优化问题也进入中学课本。可见,微积分进入中学教材,对促进学科间知识的整合起到了至关重要的作用。

三、国际上一些教材对微积分知识的处理

以苏联中学为例,苏联中小学为十年制,从九年级(1)(相当于我国高中一年级)中讲了数学归纳法和排列组合以后,就介绍无穷数列和极限。然后介绍函数极限和导数,所有这些都在讲解三角函数,幂函数,指数、对数函数之前。随即介绍导数在近似计算,几何(求切线)和在物理中的应用(研究速度,加速度)以及导数在研究函数问题中得应用(求函数极值,最值,单调性等)。到九年级末及十年级(2)再讲三角函数, 利用导数可以研究三角函数的性质。然后介绍不定积分和定积分。接着在指数函数,对数函数和幂函数一章介绍指数函数的导函数,再利用反函数求得对数函数的导函数。在十年级(3)中利用微积分知识研究几何问题,用积分推导锥体,球体等的体积公式。还把球的表面积定义为球的体积V(R)对R的导数,从而立即求得球的表面积公式。可见,苏联课本中及早分散引入导数及积分的概念和计算,而不是到最后整块讲解。这样处理,可以使微积分知识结合研究函数问题,几何问题以及研究物理问题中都得到应用。

当然,还有比如台湾中学教材对微积分处理和我过现行教材区别不大,就不再介绍。而上诉对微积分的处理情况是一种在欧洲中学教材中较普遍的处理方式。其优点主要就是充分发挥了微积分在中学数学教学中的作用。使中学数学知识更加连贯,更加易懂!

摘 要:微积分是高等院校管理类专业的重要数学基础课,第一堂课是上好微积分的关键。通过三个方面就如何上好微积分绪论课做些探讨。

关键词:微积分;起源;内容;方法

微积分是门基础课,这门课的学习直接影响到今后专业课的学习,而绪论课对这门课的学习有着引导的作用,在整门课中有特殊的地位和作用。绪论课应包含下面几个部分的内容:

一、微积分起源的介绍

微积分包括两方面的内容:微分与积分。微积分的创立源于处理17世纪的科学问题。先引入微积分学的创始人之一费马研究的一个问题:假设一个小球正向地面落去,求下落后第5秒时小球的速度?若是匀速运动,则速度等于路程除以时间,然而这里的速度是非均匀的,那能不能把非均匀速度近似看成均匀速度?用什么方法?这就是微分学问题,再引入古希腊人研究的面积问题:计算抛物线y=x2与坐标轴x轴在0≤x≤1间所围成的面积。能不能将面积切割成n个小面积,再将小面积用小矩形来代替,由n个小矩形的面积得到所求面积?这里所用的方法就是积分问题。很早以前就有人研究过微分与积分,而微积分的系统发展是在17世纪开始的,从此逐渐形成了一门系统完整且逻辑严密的学科。微积分通常认为是牛顿和莱布尼茨创立的。这一系统发展关键在于认识到微分和积分这两个过程实际上是彼此互逆地联系着。

介绍提及的人物牛顿和莱布尼茨的相关轶事,例如创建微积分优先权的争论。牛顿于1665~1687年把研究出的微积分相关结果告诉了他的朋友,并将短文《分析学》送给了巴罗,但期间没有正式公开发表过微积分方面的工作。莱布尼茨于1672年访问巴黎,1673年访问伦敦时,和一些知道牛顿工作的人通信。1684年莱布尼茨正式公开发表关于微积分的著作。于是有人怀疑莱布尼茨知道牛顿具体的工作内容,莱布尼茨被指责为剽窃者。在两个人死了很久后,调查证明:牛顿很多工作是在莱布尼茨前做的,但是莱布尼茨是微积分思想的独立发明者。

二、介绍微积分内容及方法

微积分学研究的对象是函数,极限是最主要的推理方法,它是微积分学的基础。微积分内容有四类:一是已知物体移动的距离是时间的函数,怎样由距离得到物体在任意时刻的速度和加速度;反过来,已知物体的加速度是时间的函数,怎样求速度和距离。二是求曲线的切线。三是求函数的最大最小值问题。四是求曲线的长度、平面曲线围成的面积、曲面围成的体积、物体的重心。

三、为什么要学习高等数学

微积分在自然科学、经济管理、工程技术、生命科学等方面都有应用,是各门学科强有力的数学工具。学好微积分,可以增加语言的严密性、精确性,可以从中锻炼人的 理性思维 ,并感受到美的艺术。例如黄金分割,无理数的■与π的表达式:

微积分的绪论课是整个教学的第一课,绪论教学能使学生对这门课有个快速大致的认识与了解,好的绪论课可以引导学生主动、积极地学习。

前言

21世纪,科学、技术和社会都发生了巨大的变化。高等数学作为高等院校的基础课程之一,在其他各个领域及学科中发挥出越来越大的作用。尤其是微积分教学,是目前数学教育的一大课题。

一、我国微积分教学改革的现状

目前的数学实验中,微积分教学改革的现状中仍然存在一些主要问题。

首先,优秀人才的培养重视不够。在微积分教学中,重视的是教育大众化的人才,而一些顶尖的、优秀的人才的培养却重视不够。

其次,过度应试化。过度重视应试教育在微积分教学中越来越明显,轻能力重考试已成为一种倾向。

再次,学生差异大,素质下降。学生人数的激增带来学生差异的强化,面对这一情况,如何规划班级,如何区别对待学生是微积分教学面临的问题。

二、微积分课改的必要性

随着高等数学改革的不断深入,微积分教学的改革成为其中的重要部分。微积分教学的改革并不是空穴来风,而是一种必然。

(1)社会高度发展提出的要求

微积分作为高等数学的一部分,对技术文明的推动有重要作用,许多数学细想和数学的建树都离不开微积分。可以说,微积分在推进数学思想,推进社会进步,推进科学发展上有举足轻重的作用,是不可或缺的,它是人类思维的伟大成果,不仅是高等数学。而且是其他行业,其他专业,在不同范围和不同程度上对微积分的认识都是必要的。设想一下,如果取消对微积分的学习,那么技能的进步只是一句空谈,社会不会发展,智慧不会被充分开掘。所以,微积分教学的改革是十分必要的。

(2)科技的发展提出的需要

当今世界,是一个科学技术突飞猛进的时代,军事、贸易等激烈的竞争和市场经济,如果没有科技的推进,则会落后于他人。如何促进科学的发展呢?微积分起着重要的作用,它不仅为科学提供了精密的数学思想,也为科学的提供了理论支撑,它不但改变了数学面貌,还是其他学科的工具和方法,微积分在自然学科的各个方面都有运用。随着科技发展的时代,提高微积分教学的质量是势在必行的。

(3)人类思维发展的需要

微积分中蕴藏着很多重要思想,比如辩证的思想,常量与变量,孤立与发展,静止变化,有限与无限等,还有“直”与“曲”,“局部”与“整体”的辩证关系,其实。哲学最处就是与数学密切相关的,所以,数学,尤其是微积分思想充满了逻辑与辩证,微积分的学习。不仅是知识、理论的学习,更是一种思维的训练。因此,微积分教学的完善有利于培养人类思维,使人类思维获得一个飞跃,更有效地解决问题。

三、微积分课改的内容

根据新的教学大纲的修改,微积分教学重新设计了课程内容、教学理念、 教学方法 等,以学生为主体,更直观形象,而且在教学方法上也进行了革新。全面促进了微积分教学的改革。

1、课程基本理念的改革

微积分教学的改革能否成功关键在于观念的转变,过去是偏重理论,现在则要注重应用激发初学者的学习兴趣,尽早把握微积分的基础知识,把抽象难懂的微积分理论转变为学生容易接受、容易理解的微积分教学方式,比如说,极限是微积分知识中的难点,极限概念、运动、辩证思想等对于学生来说是十分抽象,不容易理解,从而没有激发学生的学习兴趣,课堂变得枯燥无味,理论严谨,逻辑性很强,学生上手难。微积分教学大纲的修订也体现出教学理念的更新,新的微积分教学中,适当降低了难点知识。重视对微积分本质的认识,以直观、实例来提高学生的微积分学习兴趣和学习效率,使学生学习的主动性回归到自身,体现以人为本的思想,重视学生的情感态度、生活价值的培养,根据学生自身的特点因材施教,为学生提供更好的学习条件和基础。

2、课程内容的改革

根据《标准》大纲的修订,微积分教学首先是对课程内容和教学大纲的精简、增加、删改。修订后的教学内容比原来的教学大纲更精练,更科学。比如,原来12学时的“极限”在修订大纲中被大面积的删减。并在修订大纲中,引入导数这一很有判断意义的概念,因为导数是微积分初步了解的第一个概念,对导数概念的理解起到基础性的作用。而且,修订的课本内容中,对导数的讲解时直观形象的,应用性很强,又有许多实例来帮助学生加深理解。因此,微积分教学的新课改减轻了学生的学习负担,降低了概念的理解难度。

3、课程设计的改革

原来的课程是从极限、连续、导数、导数应用,再到不定积分、定积分这样的次序设计的,并在“导数和微分”的前面一章给“极限”设计了许多定义,以及对“极限”的求法和运算做了讲解。修订后的大纲对课程设计做了调整,尤其是微积分讲解的路线,发生了变化,从瞬间速度,变化率,导数、导数应用再到定积分。对人文社科方面的高校微积分课程的设置,则多数是作为选修课来处理的,并与生活十分贴近,应用性很强,使非数学专业也对数学有一定的基础了解和学习兴趣。

4、教学方法的革新

(1)数学思想方法的渗透与运用。数学思想方法是多种多样的,在生活中也取得有效地运用。微积分耶是高等数学的一个方面,因此,在微积分教学中引入数学思想方法是科学的。其中,数学分析,也叫微积分,是17世纪出现的十分重要的数学思想,不仅在17世纪有非常重要的地位,即使是在今天,这种思想方法在成功解决无限过程的运算方面,即极限运算有很大的帮助。数学思想的运用已成为各国比较重视一项革新项目。

(3)加强实例分析和应用性。数学是一种逻辑推理。但也是来源于生活的,也最终给应用于生活,因此,数学的教学不能和现实相脱离。修订后的微积分教学大纲明显注重了实际应用性。即使是书上一个很简单的概念,也时刻穿插一些实用性的图片,在习题的练习中,也是紧密结合生活实际,不是空中楼阁。比如说,用指数函数来看银行存款和人口问题,还有对数函数中涉及放射性、分贝、地震级的问题。微积分数学应用于生活中实际问题的解决。

5、教学工具的革新。

现代教育技术,尤其是多媒体技术在微积分教学中的应用,对很好的实现教学理念,完善教学思想和教学方法很有意义,例如,作为重点和难点的“极限”概念和理论一直是教学中难以攻克的,因为它的抽象,所以老师再怎么讲解也难免有学生不理解,而多媒体教学的应用解决了这一难题,教师可用直观形象的动画来表现比如“无限逼近”的理论,给学生一个直观、感性的认知,还可运用多媒体设计可变参数的动画,让学生积极参与,自己动手设计,加深理解。又如导数概念的理解需要借助曲线来表现其某个点在某个时刻的瞬时速度,可以充分利用多媒体技术,画具有艺术性的示意图,设计动画,让学生在动画中领悟微积分的实质和导数的概念。值得注意的是,在运用多媒体技术时,要遵循学科本身的规律,反复渗透,循序渐进,结合教材,积极引导。

四、小结

驻点必为极值点,但不一定是最值,是否为最值,要通过函数的单调性确定,比如第二个例子,求距离 设Z=X^2-(X-2) 显然这个函数有最小值,而第一个例子中的函数则没有。你可以多看看书,书本上肯定有解释。

一定要有题目,作者名字,通讯地址,邮编,摘要关键词,正文,参考文献,最好还要有英文的Keyword与 Abstract ,范文随便上网找,结尾要有参考文献。关于条件极值的探讨(图片打不上,呵呵)俊聪 (应用数学学院,应用数学专业,08级)摘要 本文主要类比了无条件极值的判别法,讨论了条件极值是否拥有与无条件极值类似的判别法。通过利用黑赛矩阵与二阶微分,得出了怎样求条件极值和极值点的有效方法,并且得出了无条件极值所满足的判别法不是都适应条件极值的。关键词 条件极植一熟悉的条件极值判别法在研究数学问题时,有时会遇到与极值有关的问题,而我们常见的有无条件极值与条件极值。对于无条件极值,我们都有非常熟悉的判别法:若二元函数f在点的某个邻域U()内具有二阶连续偏导数,且是f的稳定点,则有:(1) 当>0,>0时,黑赛矩阵是正定的,f在点取得极小值;(2) 当<0, >0时,黑赛矩阵是负定的,f在点取得极大值;(3) 当<0时,黑赛矩阵是不定的,f在点不能取得极值;(4) 当=0时,黑赛矩阵是半定的,不能肯定f在点是否取得极值。因此,我们可以类比无条件极值,探讨条件极值,看它是否也满足上面的四条判别法。二 有关条件极值的一个定理为了研究上面的问题,我们首先给出一个常用定理:首先,这个定理需要条件:在的限制下,要求目标函数的极值。则有定理:设在满足上面的限制下,求函数的极值问题,其中与在区域D内有连续的一阶的偏导数。若D的内点是上述问题的极值点,且雅可比矩阵的秩为m,则存在m个常数,使得为拉格朗日函数的稳定点,即为下述n+m个方程的解。三 分析讨论以上问题通过引入上面的定理,我们可以得到它的稳定点,而我们接下来考虑的是条件极值能否在稳定点处取得极值,且如果取得极值,它取得的是极大值还是极小值。我们在这里还需用到黑赛矩阵。设是F的稳定点。令,并且使固定,考虑在点的黑赛矩阵此时,分类讨论:1当是正定的或负定的。这是是的极值点。而我们限制了。因此也是的相应的条件极值点。2当是不定的或半正定的或半负定的。这是可能不是的极值点,但也有可能是的极值点。我们可以通过,。求出,,…,,,…,之间的关系,得到,…,的二次型如果此时其系数矩阵是正定的,则是的极小值点;如果是负定的,则是的极大值点。通过以上分析,我们就可以得出一个重要的结论:条件极值类比与无条件极值第一,二条是成立的,对于第四条是不适应的,对于第三条虽然开始也无法判断,但可以找到其他途径,求出是否有极值。四 实例分析我们首先举出一个例子:已知f(x,y,z)=x+y+z,求它在限制条件xyz=下的极值点。解:根据题意,我们首先设F(x,y,z,)=f(x,y,z)+ (xyz-)接着,我们算dF(x,y,z,)=0,从而解得x=y=z=c, =如果c=0,则可得f(x,y,z)在xyz=下无极值点当c0时,则在=,=(c,c,c)处,有=此时此矩阵不是正定的,也不是负定的。再对xyz-=0求微分,在=(c,c,c)处,解得dz=-dx-dy,代入得=(dxdy+dydz+dzdx)=(——dxdy—)=当c>0时,正定,(c,c,c)为极小值点,当c<0, 负定,(c,c,c)为极大值点。因此,通过这个例子,我们在不能判断黑赛矩阵是正定还是负定的情况下,可以通过适当的转化使极值点求出来。其实,我们也可以通过其他类似的方法来求有关条件极值的有关问题。例如,我们可以用二阶微分的方法来求条件极值。对于二阶微分,有公式:我们通过举个例子来加以说明。已知f=xyz,求它在限制条件下的极值。解:令F(x,y,z,)= xyz+ ()求dF=0,则=yz+2x=0 =xz+2y=0 =xy+2z=0 =0则可以解得八个稳定点当=—时,有稳定点(1,1,1),(1,—1,—1), (—1,—1,1), (—1,1,—1)当 =时,有稳定点 (1,1,—1),(—1,—1.—1),(—1,1,1), (1,—1,1)则dF=(yz+2x)dx+(xz+2y)dy+(xy+2z)dz=我们首先来判断点 (1,1,1)是否为极值点,求出稳定点 的微分dz=—dx—dy,且(,)=—+=——+2(dx+dy)dz,把dz=—dx—dy带进去,得(,)=———2<0,则可得(1,1,1)是极大值点,同理可得(1,—1,—1), (—1,—1,1), (—1,1,—1)是极大值点,而(1,1,—1),(—1,—1.—1),(—1,1,1), (1,—1,1)都是极小值点,进而我们可求出此时极大值点所对应的极值都为1,极小值点所对应的极值都为—1,从而得解。[参考文献][1] 华东师范大学数学系 数学分析下册 第三版[M]高等教育出版社 2001[2]孙振绮 丁效华 工科数学分析例题与习题下册[M]机械工业出版社 2008

极值论文模板

有关国家标准、各校自拟格式要求与模板是规范 毕业 论文格式的主要依据,对论文的写作格式与排版格式均提出了要求。下面是我为大家整理的2000字论文格式模板,供大家参考。

一、封面

题目:小二号黑体加粗居中。

各项内容:四号宋体居中。

二、目录

目录:二号黑体加粗居中。

章节条目:五号宋体。

行距:单倍行距。

三、论文题目 : 小一号黑体加粗居中。

四、中文摘要

1、摘要:小二号黑体加粗居中。

2、摘要内容字体:小四号宋体。

3、字数:3字左右。

4、行距:2磅

5、关键词: 四号宋体,加粗。 词3-5个,每个词间空一格。

五、英文摘要

1、ABSTRACT:小二号 Times New Roman.

2、内容字体:小四号 Times New Roman.

3、单倍行距。

4、Keywords: 四号 加粗。 词3-5个,小四号 Times New Roman. 词间空一格。

六、绪论 小二号黑体加粗居中。内容5字左右,小四号宋体,行距:2磅

七、正文

(一)正文用小四号宋体

(二)安保、管理类毕业论文各章节按照一、二、三、四、五级标题序号字体格式

章:标题 小二号黑体,加粗,居中。

节:标题 小三号黑体,加粗,居中。

一级标题序号 如:

一、二、三、 标题四号黑体,加粗,顶格。

二级标题序号 如:(一)(二)(三) 标题小四号宋体,不加粗,顶格。

三级标题序号 如:. 标题小四号宋体,不加粗,缩进二个字。

四级标题序号 如:(1)(2)(3) 标题小四号宋体,不加粗,缩进二个字。

五级标题序号 如:①②③ 标题小四号宋体,不加粗,缩进二个字。

医学、体育类毕业论文各章序号用阿拉伯数字编码,层次格式为:1××××(小2号黑体,居中)××××××××××××××(内容用4号宋体)。××××(3号黑体,居左)×××××××××××××(内容用4号宋体)。××××(小3号黑体,居左)××××××××××××××××××××(内容用4号宋体)。①××××(用与内容同样大小的宋体)a.××××(用与内容同样大小的宋体)

(三)表格

每个表格应有自己的表序和表题,表序和表题应写在表格上方正中。表序后空一格书写表题。表格允许下页接续写,表题可省略,表头应重复写,并在右上方写“续表××”。

(四)插图

每幅图应有图序和图题,图序和图题应放在图位下方居中处。图应在描图纸或在洁白纸上用墨线绘成,也可以用计算机绘图。

(五)论文中的图、表、公式、算式等,一律用阿拉伯数字分别依序连编编排序号。序号分章依序编码,其标注形式应便于互相区别,可分别为:图、表、公式()等。

文中的阿拉伯数字一律用半角标示。

八、结束语 小二号黑体加粗居中。内容3字左右,小四号宋体,行距:2磅。

九、致谢 小二号黑体加粗居中。内容小四号宋体,行距:2磅

十、参考文献

(一)小二号黑体加粗居中。内容8—1篇, 五号宋体, 行距:2磅。参考文献以文献在整个论文中出现的次序用[1]、[2]、[3]……形式统一排序、依次列出。

(二)参考文献的格式:

著作:[序号]作者.译者.书名.版本.出版地.出版社.出版时间.引用部分起止页

期刊:[序号]作者.译者. 文章 题目.期刊名.年份.卷号(期数). 引用部分起止页

会 议论文 集:[序号]作者.译者.文章名.文集名 .会址.开会年.出版地.出版者.出版时间.引用部分起止页

十一、附录 (可略去)

小二号黑体加粗居中。 英文内容小四号 Times New Roman. 单倍行距。翻译成中文字数不少于5字 内容五号宋体,行距:2磅。

十二、提示

标准论文格式模板范文

标准论文格式模板范文,毕业论文是我们掌握所学的专业基础知识的呈现,论文基本上是每个人都要写的,对论文的题目要有自己的心得体会,论文的格式也是非常重要的,下面学习一下标准论文格式模板范文。

一、封面

使用学校统一格式,题目居中,学号等内容靠左侧对齐,后面的下画线要整齐。。题目要对论文(设计)的内容有高度的概括性,简明、易读,字数应在20以内。

二、中文论文题目

论文题目 黑体三号,居中。下面空一行。

三、中文摘要

“摘要:“顶头,黑体四号,后面内容采用宋体小四号,摘要应简要说明毕业论文(设计)所研究的内容、目的、实验方法、主要成果和特色,一般为150-300字。下面空一行

四、中文关键词

“关键词:“顶头,黑体四号,后面内容采用宋体小四号,关键词一般3-5个,以”,“号隔开,最后一个关键词尾不加标点符号,下面空两行。

五、英文论文题目

所有英文采用“Times New roman”字体,黑体三号,加粗,居中。下面空一行。

六、英文摘要和关键词

英文摘要和关键词除字体外同中文摘要和关键词的格式要求,但“Abstract:”和“Key words:”要加粗。内容翻译要准确,英文摘要的词汇和语法必须准确。

注意:如果内容教多,可以将英文题目、摘要、关键词放到下页。

七、目录

“目录”两字为黑体3号,居中,下面空一行。

第一层次标题“一、”顶头,黑体、小四号,第二层次缩进一字,宋体,小四号,第三层次再缩进一字,宋体,小四号……,页码加小括号,页码前为连续的点,垂直居中。

如果采用“1”、“1、1”、“1、1、1”的形式,则每层缩进半字。

参考文献按第一层次标题的格式。

八、正文

正文采用宋体,小四号,每段开头空两字,要符合一般学术论文的写作规范,文理科毕业论文字数一般不少于6000字,工科、艺术类专业毕业设计字数视专业情况而定。

论文应文字流畅,语言准确,层次清晰,论点清楚,论据准确,论证完整、严密,有独立的观点和见解,应具备学术性、科学性和一定的创新性。

毕业论文内容要实事求是,尊重知识产权,凡引用他人的观点、统计数据或计算公式的要有出处(引注),计算的数据要求真实、客观、准确。

九、标题

所有标题左侧空两字,数字标题从大到小的顺序写法应为:“一、”,“(一)”,“1、”,“(1)”,“” 的形式,黑体,小四号,左侧空两字,或者采用“1”、“1、1”、“1、1、1”……的形式,黑体,小四号,左侧顶格。

十、注释

采用本学科学术规范,提倡实用脚注,论文所有引用的中外文资料都要注明出处。中外文注释要注明所用资料的原文版作者、书名、出版商、出版年月、页码。

十一、图表

正文中出现图表时,调整行距至所需大小,返回正文再将行距调整为22磅。

十二、参考文献

参考文献按在正文中出现的先后次序列表于文后;文后以“参考文献:”(左顶格)为标识;参考文献的序号左顶格,并用数字加方括号表示,如[1]、[2]、…,以与正文中的指示序号格式一致。参照ISO690及ISO690-2,每一参考文献条目的最后均以“、”结束。各类参考文献条目的编排格式及示例如下:

专著、论文集、学位论文、报告

[序号]主要责任者、文献题名[文献类型标识]、出版地:出版者,出版年、起止页码(任选)、(中译本前要加国别)

[1] [英]M奥康诺尔著,王耀先译.科技书刊的编译工作[M]、北京:人民教育出版社,1982、56-57、

[2] 辛希孟、信息技术与信息服务国际研讨会论文集:A集[C]、北京:中国社会科学出版社,1994、

十三、打印及纸张

本科生毕业论文(设计)应一律采用打印的形式,使用A4规格的纸张,左边距2、75cm,右边距及上下边距2、5cm,页眉页脚1、5cm,全文行距22磅,装订线在左侧。按以下介绍的次序依次编排,页号打在页下方,宋体五号,居中。

装订次序

学生答辩后各院系要将有关资料和论文按照封面、中英文内容摘要及关键词、目录、正文、注释、参考文献、选题审批表、开题报告、中期检查表、指导教师评语、答辩记录表的顺序统一装订成册,存入院系教学档案。

十四、提交论文电子稿

学生上交的毕业论文(设计)软盘一定要经过杀毒处理!

毕业论文(设计)应用Microsoft Word编辑,存成以学号为名的、doc文件,例如一个学生的学号为0137023,则文件名应该为0137023、doc。每个学生交上来的磁盘中只能有一个名为学号、doc的文件,对于双修的学生,应上交两篇论文,其中一篇名为学号、doc,另一篇名为学号sh、doc,如 0137023sh、doc(双修专业)。

1、论文题目:

要求准确、简练、醒目、新颖。

2、内容提要:

文章主要内容的.摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。

3、摘要及关键词:

关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。每篇论文一般选取3-8个词汇作为关键词。

主题词是经过规范化的词。

4、论文正文:

引言:引言又称前言、序言和导言,用在论文的开头。引言一般要概括地写出作者意图,说明选题的目的和意义,并指出论文写作的范围。引言要短小精悍、紧扣主题。

正文:正文是论文的主体,正文应包括论点、论据、论证过程和结论。主体部分包括以下内容:a.提出问题-论点;b.分析问题-论据和论证;c.解决问题-论证方法与步骤;d.结论。

5、参考文献:

一篇论文的参考文献是将论文在研究和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。标题--作者--出版物信息(版地、版者、版期)

所列参考文献的要求是:

(1)所列参考文献应是正式出版物,以便读者考证。

(2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。

标题:

作者:

单位:

电话:

基金项目:

摘要:

关键词:

是用来做什么呢?

课程论文格式要求论文题目 [宋体,小二号,加粗,居中,不宜超过20字]学号[黑体,小四号,居中] 姓名[楷体_GB2312,小四号,居中][空一行]摘要 [黑体,五号,加粗,缩进两个字]:本文介绍了……..的种类、现状、防治的办法等,对…………有意义。×××××××××××××××××××××××。 [摘要内容为宋体, 五号, 300汉字左右][空一行]关键词[黑体,五号,加粗,缩进两个字]:×××,×××, ×××[宋体, 五号,数量一般不超过6个。每一个关键词之间用逗号隔开,最后一个关键词后不用标点符号][空两行]目 录[黑体,小三号,居中][空一行]1□×××××××××××××××××××□…… ……………………………□1□□□×××××××××××××××××××□………………………………□1□□□□□××××××××××××××□□□□□××××××××××××□□□×××××××××××××□………………………………………………□72□××××××××××××××□……………………… …………………………11□□参考文献□……………………………………………………………40□□致谢□…………………………………………………………   …41[正文新起一页,小四,宋体]1. □××××××  □××××× □×××××× □ □⑴□××××××□ □①□××××××  2. □×××××× □××××××□××××××插图的格式 □□图3-2□□×××××× 图3-2表示第三部分的第二张图。每一图应有简短确切的题名,连同图号置于图下。图位置居中。[小五,中文用宋体,数字用Times New Roman,加粗,居中]               表的格式表2-5□□×××××× [小五,中文用宋体,数字用Times New Roman,加粗,居中]×××××× ××××× ×[宋体小五号,垂直居中,最小行距] …×× 0 ××× ×× ×××× × ××{表的编排,采用三线表(不能出现竖线,外侧两条为粗线,中间线为细线);一般是内容和测试项目由左至右横读,数据依序竖排。表应有自明性并采用阿拉伯数字编排序号(表2-5表示第二部分第五张表)。每一表应有简短确切的题名,连同表号置于表上。一张表格应为一个整体,表格一页排不下允许下页接写,表题可省略,表头应重复写,并在右上方写 “ 续表 ××” }参考文献格式A.正文中的参考文献格式:×××[3],×××××××××[3,6],××××××××××××××××××××××××××××××××××[3-6]。[5号Times New Roman,上标;[3]表示第三篇文献,[3,6]表示第三篇和第六篇文献,[3-6]表示第三,四,五,六篇连续的文献]B. 后面参考文献的格式:参考文献[宋体;五号;加粗;居中;段前段后各空一行][1]. 张毅. 铸造工艺CAD及其应用[M]. 北京: 机械工业出版社,1994: 14-15[2]. Huang S C, Huang Y M, Shieh S M. Vibration and stability of a rotating shaft containing a transerse crack [J]. J Sound and Vibration, 1993, 162(3): 387-401[3]. 陈金梅.氟石膏生产早强快硬水泥的试验研究[D].西安:西安建筑科学大学,2000{五号字体,中文为楷体_GB2312,英文和数字为Times New Roman,倍行距,左对齐。 (1)专著格式:[序号]. 编著者. 书名[M]. 版本(第1版不标注),出版地: 出版社,年代: 起止页码(2)期刊论文格式:[序号]. 作者(不超过3人者全部列出,超过者只列前3名,后加“等”或“et al”). 论文名称[J]. 期刊名称,年度,卷(期):起止页码(3)学位论文格式:[序号]. 作者. 学位论文名称[D]. 发表地:学位授予单位,年度}致谢的格式致□□谢[新起一页,宋体;四号;加粗;居中;中间空两格,段前段后各空一行]    ××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××。[宋体;五号;倍行距

发表职称论文的标准格式要求及论文格式模板标签: 陵县 参考文献 摘要 关键词 发表职称论文 杂谈发表职称论文的标准格式要求及论文格式模板 发表论文有一定标准格式,很多作者第一次发表论文,甚至发表过多篇论文依然对论文的格式不清楚。在此,我们通过此文对论文发表格式做个详细介绍。 发表的论文基本包含以下几部分:标题、作者名字、单位、摘要、关键词、正文、参考文献等。部分期刊杂志要求包含英文摘要和英文关键词。 一、标题 标题应该符合全文内容,是文章内容的高度概括。标题通常不得超过20个汉字,如果20个汉字仍无法说明白的,可以增加副标题。 二、作者名字 学术期刊发表论文必须有作者名字。作者名字按先后顺序被称作第一作者、第二作者、第三作者、�6�7�6�7。一般情况下,作者的数量是不限制的,也就是说文章是由几个人合作完成的就应该是几个人。但一般不会超过5人。部分杂志要求最多3人或者2人。 目前很多地区对职称论文中的作者要求必须是第1作者才认可。所以挂名发表的作者常不会被认可。 作者有时候还存在通讯作者一说,通常通讯作者是在标注或者文尾注明。在部分地区,通讯作者享有跟第一作者相同的认可度。 如果作者名字较多,且各作者单位不同,这时候就需要对作者名字做标注。比如:张三① 李四②。然后在单位名称前对应标注。 三、作者单位 作者单位是在职称评审中确定一个作者的身份的信息,尤其在学术论文中不可缺少。通常的格式是:单位,省市,邮编。例如:山东省枣庄市台儿庄区北园小学山东枣庄 277400。 作者单位应该为单位的全称,而不应该是简称。如“山东省德州市陵县第一中学”不能简写成“陵县一中”。很多地区对于单位简写的论文是不予认可的。很多作者常常应为这个原因造成职称机会错失。 四、摘要 摘要又被称为内容摘要,是对文章的一个概括性的结论。摘要通常在200字左右。摘要是对论文全文的引导,是论文格式中不可缺少的一环。摘要要求概括全文,不可以片面只讲文章的一部分。 五、英文摘要 部分杂志要求文章需要存在英文摘要。英文摘要是对中文摘要的一个翻译,要求翻译准确。 六、关键词 关键词是文章索引的一个重要部分。关键词要求必须设置准确,恰当。让别人可以较容易地根据关键词了解文章的主要谈论问题。这也是文章划类的一个基本方式。 七、英文关键词 部分杂志要求文章需要存在英文关键词。英文关键词要求翻译正确。 八、正文 学术论文的正文为论文的主体。正文的层次应该清晰,论述应该有理有据,论文的主题更是应该明确。论文写作切忌统概统论。大帽子下写小问题。发表论文的正文长度通常在2000字到8000字之间。过多应该精简,过少应该补充。 九、参考文献 参考文献具有一定的格式。文中如有参考文献,应依照引用的先后顺序用阿拉伯数字加方括号在右上角标出,并在文中按照引用的先后顺序标注出引用参考文献的作者名、引用文题名、出版单位以及出版日期。 参考文献的案例: 参考文献 [1]江山野.中国中学课程设置[M].河北教育出版社. [2]罗双凤,叶安珊[主编].教育管理学[M].中国人民大学出版社.

极值论文的开题报告

开题报告是指开题者对科研课题的一种文字说明材料。这是一种新的应用写作文体,这种文字体裁是随着现代科学研究活动计划性的增强和科研选题程序化管理的需要而产生的。题者把自己所选的课题的概况(即开题报告内容),向有关专家、学者、科技人员进行陈述。然后由他们对科研课题进行评议。亦可采用德尔菲法评分;再由科研管理部门综合评议的意见,确定是否批准这一选题。开题报告作为毕业论文答辩委员会对学生答辩资格审查的依据材料之一。研究方案,就是课题确定之后,研究人员在正式开展研究之前制订的整个课题研究的工作计划,它初步规定了课题研究各方面的具体内容和步骤。研究方案对整个研究工作的顺利开展起着关键的作用,尤其是对于我们科研经验较少的人来讲,一个好的方案,可以使我们避免无从下手,或者进行一段时间后不知道下一步干什么的情况,保证整个研究工作有条不紊地进行。可以说,研究方案水平的高低,是一个课题质量与水平的重要反映。

具体的范文模板链接:

追求效率最大,质量最好……结合具体谈,很广泛的

哈哈,我也是数学系的。不过,是师范类,我的论文是高中数学相关的。我觉得,求最值,就是为了知道一个临界值,了解了临界值,就知道了这个函数或者曲线的区域,就知道了范围。呵呵,知识都还给老师了。

开题报告是指开题者对科研课题的一种文字说明材料。这是一种新的应用写作文体,这种文字体裁是随着现代科学研究活动计划性的增强和科研选题程序化管理的需要而产生的。

开题者把自己所选的课题的概况(即"开题报告内容"),向有关专家、学者、科技人员进行陈述。然后由他们对科研课题进行评议。

亦可采用"德尔菲法"评分,再由科研管理部门综合评议的意见,确定是否批准这一选题。开题报告作为毕业论文答辩委员会对学生答辩资格审查的依据材料之一。

扩展资料:

就形式上讲,国外的很多大学在本科阶段的确没有我们国内意义上的毕业论文,但这不等于他们对学术论文没有要求。在美国大学,每门课一个学期一般要写3~4篇论文。为了完成论文,学生必须大量读书、上网。

每门课开课的第一天,老师就会告诫学生不许抄袭,引用别人的话也要注明出处。凡是抄袭,一经发现,轻则警告,重则开除。因此,美国大学生写论文很少有东拼西凑、蒙混过关的。至于毕业论文,绝大多数美国大学的本科生是不用写的,只有普林斯顿等少数几所大学要求本科生写毕业论文。

参考资料来源:百度百科-开题报告

关于极值论文题目

美邦提醒你!乐在过程而不是答案

数学与应用数学幂函数论文,行咯,多少字的,姐给.

想想,初中都学了那些?我在上中学时都没写过论文,现在上初中都要写论文啦?真是悲剧呀!但初中的数学还是很简单的,写一篇论文,可以联系到自己已经上过的知识。下面给你一些建议: 可以写,对任意的二元一次方程组的解转换为图形的交点问题。 还有,不知道三角函数有没有上,如果上了可以论证三角公式,比如说,(sinA)^2+(cosA)^2=1,(tanX)^2=(secX)^2-1

还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法

相关百科

热门百科

首页
发表服务