以下是近些年将遗传算法应用于图像匹配的一些论文推荐:
下个金山快译2009就可以了,让她给你翻译
基于遗传算法的图像匹配方法研究基于遗传算法的图像匹配方法及其在地理信息系统中的应用基于遗传算法的图像匹配技术在视觉SLAM中的研究基于遗传算法的多模态图像匹配方法研究基于遗传算法的医学图像配准研究基于遗传算法的多源遥感图像匹配研究基于遗传算法和粒子群优化的图像配准方法研究基于遗传算法的人脸识别中的局部图像匹配方法研究基于遗传算法的多特征融
随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读!
图像识别技术研究综述
摘要:随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。图像识别是利用计算机对图像进行处理、分析和理解,由于图像在成像时受到外部环境的影响,使得图像具有特殊性,复杂性。基于图像处理技术进一步探讨图像识别技术及其应用前景。
关键词:图像处理;图像识别;成像
中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)10-2446-02
图像是客观景物在人脑中形成的影像,是人类最重要的信息源,它是通过各种观测系统从客观世界中获得,具有直观性和易理解性。随着计算机技术、多媒体技术、人工智能技术的迅速发展,图像处理技术的应用也越来越广泛,并在科学研究、教育管理、医疗卫生、军事等领域已取得的一定的成绩。图像处理正显著地改变着人们的生活方式和生产手段,比如人们可以借助于图像处理技术欣赏月球的景色、交通管理中的车牌照识别系统、机器人领域中的计算机视觉等,在这些应用中,都离不开图像处理和识别技术。图像处理是指用计算机对图像进行处理,着重强调图像与图像之间进行的交换,主要目标是对图像进行加工以改善图像的视觉效果并为后期的图像识别大基础[1]。图像识别是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。但是由于获取的图像本事具有复杂性和特殊性,使得图像处理和识别技术成为研究热点。
1 图像处理技术
图像处理(image processing)利用计算机对图像进行分析,以达到所需的结果。图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。这种处理大多数是依赖于软件实现的。其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。
1)图像采集,图像采集是数字图像数据提取的主要方式。数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。图像的提取是将一个图像变换为适合计算机处理的形式的第一步。
2)图像增强,图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。
3)图像复原,图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。
4)图像编码与压缩,数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。由于视频可以被看作是一幅幅不同的但有紧密相关的静态图像的时间序列,因此动态视频的单帧图像压缩可以应用静态图像的压缩标准。图像编码压缩技术可以减少图像的冗余数据量和存储器容量、提高图像传输速度、缩短处理时间。
5)图像分割技术,图像分割是把图像分成一些互不重叠而又具有各自特征的子区域,每一区域是像素的一个连续集,这里的特性可以是图像的颜色、形状、灰度和纹理等。图像分割根据目标与背景的先验知识将图像表示为物理上有意义的连通区域的集合。即对图像中的目标、背景进行标记、定位,然后把目标从背景中分离出来。目前,图像分割的方法主要有基于区域特征的分割方法、基于相关匹配的分割方法和基于边界特征的分割方法[2]。由于采集图像时会受到各种条件的影响会是图像变的模糊、噪声干扰,使得图像分割是会遇到困难。在实际的图像中需根据景物条件的不同选择适合的图像分割方法。图像分割为进一步的图像识别、分析和理解奠定了基础。
2 图像识别技术
图像识别是通过存储的信息(记忆中存储的信息)与当前的信息(当时进入感官的信息)进行比较实现对图像的识别[3]。前提是图像描述,描述是用数字或者符号表示图像或景物中各个目标的相关特征,甚至目标之间的关系,最终得到的是目标特征以及它们之间的关系的抽象表达。图像识别技术对图像中个性特征进行提取时,可以采用模板匹配模型。在某些具体的应用中,图像识别除了要给出被识别对象是什么物体外,还需要给出物体所处的位置和姿态以引导计算初工作。目前,图像识别技术已广泛应用于多个领域,如生物医学、卫星遥感、机器人视觉、货物检测、目标跟踪、自主车导航、公安、银行、交通、军事、电子商务和多媒体网络通信等。主要识别技术有:
指纹识别
指纹识别是生物识别技术中一种最实用、最可靠和价格便宜的识别手段,主要应用于身份验证。指纹识别是生物特征的一个部分,它具有不变性:一个人的指纹是终身不变的;唯一性:几乎没有两个完全相同的指纹[3]。一个指纹识别系统主要由指纹取像、预处理与特征提取、比对、数据库管理组成。目前,指纹识别技术与我们的现实生活紧密相关,如信用卡、医疗卡、考勤卡、储蓄卡、驾驶证、准考证等。
人脸识别 目前大多数人脸识别系统使用可见光或红外图像进行人脸识别,可见光图像识别性能很容易受到光照变化的影响。在户外光照条件不均匀的情况下,其正确识别率会大大降低。而红外图像进行人脸识别时可以克服昏暗光照条件变化影响,但由于红外线不能穿透玻璃,如果待识别的对象戴有眼镜,那么在图像识别时,眼部信息全部丢失,将严重影响人脸识别的性能[4]。
文字识别
文字识别是将模式识别、文字处理、人工智能集与一体的新技术,可以自动地把文字和其他信息分离出来,通过智能识别后输入计算机,用于代替人工的输入。文字识别技术可以将纸质的文档转换为电子文档,如银行票据、文稿、各类公式和符号等自动录入,可以提供文字的处理效率,有助于查询、修改、保存和传播。文字识别方法主要有结构统计模式识别、结构模式识别和人工神经网络[5]。由于文字的数量庞大、结构复杂、字体字形变化多样,使得文字识别技术的研究遇到一定的阻碍。
3 结束语
人类在识别现实世界中的各种事物或复杂的环境是一件轻而易举的事,但对于计算机来讲进行复杂的图像识别是非常困难的[6]。在环境较为简单的情况下,图像识别技术取得了一定的成功,但在复杂的环境下,仍面临着许多问题:如在图像识别过程中的图像分割算法之间的性能优越性比较没有特定的标准,以及算法本身存在一定的局限性,这使得图像识别的最终结果不十分精确等。
参考文献:
[1] 胡爱明,周孝宽.车牌图像的快速匹配识别方法[J].计算机工程与应用,2003,39(7):90—91.
[2] 胡学龙.数字图像处理[M].北京:电子工业出版社,2011.
[3] 范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007.
[4] 晓慧,刘志镜.基于脸部和步态特征融合的身份识别[J].计算机应用,2009,1(29):8.
[5] 陈良育,曾振柄,张问银.基于图形理解的汉子构型自动分析系统[J].计算机应用,2005,25(7):1629-1631.
[6] Sanderson C,Paliwal K Fusion and Person Verification Using Speech & Face Information[C].IDIAP-RR 02-33,Martigny,Swizerland,2002.
点击下页还有更多>>>图像识别技术论文
Viola-Jones方法,人脸识别研究组。《智能环保垃圾处理设备》发布的公告得知人脸识别参考文献为Viola-Jones方法,人脸识别研究组。包括人脸检测,人脸预处理和人脸等方向。
随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读!
图像识别技术研究综述
摘要:随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。图像识别是利用计算机对图像进行处理、分析和理解,由于图像在成像时受到外部环境的影响,使得图像具有特殊性,复杂性。基于图像处理技术进一步探讨图像识别技术及其应用前景。
关键词:图像处理;图像识别;成像
中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)10-2446-02
图像是客观景物在人脑中形成的影像,是人类最重要的信息源,它是通过各种观测系统从客观世界中获得,具有直观性和易理解性。随着计算机技术、多媒体技术、人工智能技术的迅速发展,图像处理技术的应用也越来越广泛,并在科学研究、教育管理、医疗卫生、军事等领域已取得的一定的成绩。图像处理正显著地改变着人们的生活方式和生产手段,比如人们可以借助于图像处理技术欣赏月球的景色、交通管理中的车牌照识别系统、机器人领域中的计算机视觉等,在这些应用中,都离不开图像处理和识别技术。图像处理是指用计算机对图像进行处理,着重强调图像与图像之间进行的交换,主要目标是对图像进行加工以改善图像的视觉效果并为后期的图像识别大基础[1]。图像识别是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。但是由于获取的图像本事具有复杂性和特殊性,使得图像处理和识别技术成为研究热点。
1 图像处理技术
图像处理(image processing)利用计算机对图像进行分析,以达到所需的结果。图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。这种处理大多数是依赖于软件实现的。其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。
1)图像采集,图像采集是数字图像数据提取的主要方式。数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。图像的提取是将一个图像变换为适合计算机处理的形式的第一步。
2)图像增强,图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。
3)图像复原,图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。
4)图像编码与压缩,数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。由于视频可以被看作是一幅幅不同的但有紧密相关的静态图像的时间序列,因此动态视频的单帧图像压缩可以应用静态图像的压缩标准。图像编码压缩技术可以减少图像的冗余数据量和存储器容量、提高图像传输速度、缩短处理时间。
5)图像分割技术,图像分割是把图像分成一些互不重叠而又具有各自特征的子区域,每一区域是像素的一个连续集,这里的特性可以是图像的颜色、形状、灰度和纹理等。图像分割根据目标与背景的先验知识将图像表示为物理上有意义的连通区域的集合。即对图像中的目标、背景进行标记、定位,然后把目标从背景中分离出来。目前,图像分割的方法主要有基于区域特征的分割方法、基于相关匹配的分割方法和基于边界特征的分割方法[2]。由于采集图像时会受到各种条件的影响会是图像变的模糊、噪声干扰,使得图像分割是会遇到困难。在实际的图像中需根据景物条件的不同选择适合的图像分割方法。图像分割为进一步的图像识别、分析和理解奠定了基础。
2 图像识别技术
图像识别是通过存储的信息(记忆中存储的信息)与当前的信息(当时进入感官的信息)进行比较实现对图像的识别[3]。前提是图像描述,描述是用数字或者符号表示图像或景物中各个目标的相关特征,甚至目标之间的关系,最终得到的是目标特征以及它们之间的关系的抽象表达。图像识别技术对图像中个性特征进行提取时,可以采用模板匹配模型。在某些具体的应用中,图像识别除了要给出被识别对象是什么物体外,还需要给出物体所处的位置和姿态以引导计算初工作。目前,图像识别技术已广泛应用于多个领域,如生物医学、卫星遥感、机器人视觉、货物检测、目标跟踪、自主车导航、公安、银行、交通、军事、电子商务和多媒体网络通信等。主要识别技术有:
指纹识别
指纹识别是生物识别技术中一种最实用、最可靠和价格便宜的识别手段,主要应用于身份验证。指纹识别是生物特征的一个部分,它具有不变性:一个人的指纹是终身不变的;唯一性:几乎没有两个完全相同的指纹[3]。一个指纹识别系统主要由指纹取像、预处理与特征提取、比对、数据库管理组成。目前,指纹识别技术与我们的现实生活紧密相关,如信用卡、医疗卡、考勤卡、储蓄卡、驾驶证、准考证等。
人脸识别 目前大多数人脸识别系统使用可见光或红外图像进行人脸识别,可见光图像识别性能很容易受到光照变化的影响。在户外光照条件不均匀的情况下,其正确识别率会大大降低。而红外图像进行人脸识别时可以克服昏暗光照条件变化影响,但由于红外线不能穿透玻璃,如果待识别的对象戴有眼镜,那么在图像识别时,眼部信息全部丢失,将严重影响人脸识别的性能[4]。
文字识别
文字识别是将模式识别、文字处理、人工智能集与一体的新技术,可以自动地把文字和其他信息分离出来,通过智能识别后输入计算机,用于代替人工的输入。文字识别技术可以将纸质的文档转换为电子文档,如银行票据、文稿、各类公式和符号等自动录入,可以提供文字的处理效率,有助于查询、修改、保存和传播。文字识别方法主要有结构统计模式识别、结构模式识别和人工神经网络[5]。由于文字的数量庞大、结构复杂、字体字形变化多样,使得文字识别技术的研究遇到一定的阻碍。
3 结束语
人类在识别现实世界中的各种事物或复杂的环境是一件轻而易举的事,但对于计算机来讲进行复杂的图像识别是非常困难的[6]。在环境较为简单的情况下,图像识别技术取得了一定的成功,但在复杂的环境下,仍面临着许多问题:如在图像识别过程中的图像分割算法之间的性能优越性比较没有特定的标准,以及算法本身存在一定的局限性,这使得图像识别的最终结果不十分精确等。
参考文献:
[1] 胡爱明,周孝宽.车牌图像的快速匹配识别方法[J].计算机工程与应用,2003,39(7):90—91.
[2] 胡学龙.数字图像处理[M].北京:电子工业出版社,2011.
[3] 范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007.
[4] 晓慧,刘志镜.基于脸部和步态特征融合的身份识别[J].计算机应用,2009,1(29):8.
[5] 陈良育,曾振柄,张问银.基于图形理解的汉子构型自动分析系统[J].计算机应用,2005,25(7):1629-1631.
[6] Sanderson C,Paliwal K Fusion and Person Verification Using Speech & Face Information[C].IDIAP-RR 02-33,Martigny,Swizerland,2002.
点击下页还有更多>>>图像识别技术论文
本科毕业设计论文外文翻译基本格式
论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,简称之为论文。它既是探讨问题进行学术研究的一种手段,又是描述学术研究成果进行学术交流的一种工具。它包括学年论文、毕业论文、学位论文、科技论文、成果论文等。以下是我精心整理的本科毕业设计论文外文翻译基本格式,欢迎大家借鉴与参考,希望对大家有所帮助。
本科毕业设计论文外文翻译基本格式
一、要求
1、与毕业论文分开单独成文。
2、两篇文献。
二、基本格式
1、文献应以英、美等国家公开发表的文献为主(Journals from English speaking countries)。
2、毕业论文翻译是相对独立的,其中应该包括题目、作者(可以不翻译)、译文的出处(杂志的名称)(5号宋体、写在文稿左上角)、关键词、摘要、前言、正文、总结等几个部分。
3、文献翻译的字体、字号、序号等应与毕业论文格式要求完全一致。
4、文中所有的图表、致谢及参考文献均可以略去,但在文献翻译的末页标注:图表、致谢及参考文献已略去(见原文)(空一行,字体同正文)。
5、原文中出现的'专用名词及人名、地名、参考文献可不翻译,并同原文一样在正文中标明出处。
三、毕业论文设计外文翻译的内容要求
外文翻译内容必须与所选课题相关,外文原文不少于6000个印刷符号。译文末尾要用外文注明外文原文出处。
外文翻译要求:
1、外文资料与毕业设计(论文)选题密切相关,译文准确、质量好。
2、阅读2篇幅以上(10000字符左右)的外文资料,完成2篇不同文章的共2000汉字以上的英译汉翻译
3、外文资料可以由指导教师提供,外文资料原则上应是外国作者。严禁采用专业外语教材文章。
4、排序:“一篇中文译文、一篇外文原文、一篇中文译文、一篇外文原文”。插图内文字及图名也译成中文。
5、标题与译文格式(字体、字号、行距、页边距等)与论文格式要求相同。
下页附:外文翻译与原文参考格式
英文翻译 (黑体、四号、顶格)
外文原文出处:(译文前列出外文原文出处、作者、国籍,译文后附上外文原文)
外文翻译要求:(1)选定外文文献后先给指导老师看,得到老师的确认通过后方可翻译。(2)选择外文翻译时一定选择外国作者写的文章,可从学校中知网或者外文数据库下载。(3)外文翻译字数要求3000字以上,从外文文章起始处开始翻译,不允许从文章中间部分开始翻译,翻译必须结束于文章的一个大段落。
毕业论文外文翻译:将外文参考文献翻译成中文版本。
翻译要求:
1、选定外文文献后先给指导老师看,得到老师的确认通过后方可翻译。
2、选择外文翻译时一定选择外国作者写的文章,可从学校中知网或者外文数据库下载。
3、外文翻译字数要求3000字以上,从外文文章起始处开始翻译,不允许从文章中间部分开始翻译,翻译必须结束于文章的一个大段落。
参考文献是在学术研究过程中,对某一著作或论文的整体的参考或借鉴。征引过的文献在注释中已注明,不再出现于文后参考文献中。外文参考文献就是指论文是引用的文献原文是国外的,并非中国的。
原文就是指原作品,原件,即作者所写作品所用的语言。如莎士比亚的《罗密欧与朱丽叶》原文是英语。
译文就是翻译过来的文字,如在中国也可以找到莎士比亚《罗密欧与朱丽叶》的中文版本,这个中文版本就称为译文。
主要标准
翻译是语际交流过程中沟通不同语言的桥梁。一般来说,翻译的标准主要有两条:忠实和通顺。
忠实
是指忠实于原文所要传递的信息,也就是说,把原文的信息完整并且准确地表达出来,使译文读者得到的信息与原文读者得到的信息大致相同。
通顺
是指译文规范、明白易懂,没有文理不通、结构混乱、逻辑不清的现象。
实践产生理论,欧美许多国家的翻译理论是五花八门的。从大的方面来看,可以分为两大派:一派是翻译可能论,一派是翻译不可能论。其实,完完全全百分之百的可能是没有的,完完全全百分之百的不可能也是没有的。
世界上一切翻译活动都是在这两个极端之间进行的。欧洲许多著名的人物,比如马丁·路德、M.阿诺德、.纽曼、.波斯特加特、H.白洛克、.诺克斯、V.那巴可夫等等,都对翻译提出了自己的理论。据《开塞尔世界文学百科全书》的意见,这些理论中有些是刚愎自用的。
CS方向sci三区的一个小刊,之前也是major revision,大四毕业了才中了。。所以在我心目中MV几乎约等于AC,虽然这辈子只投过一篇文章。北京译顶科技做的不错,可以联系他们一下 统一查下。
计算机软件毕业论文的题目都好写啊
网络、网站,或管理系统都可以的
==你是本科还是硕士啊论文的话应该主要是算法的研究和改进吧……问题比如:你采用了哪种人脸识别算法你对这种算法的改进在哪里(你不只要说明改进在哪里可能还需要做一些实验收集下数据来对比说明算法在改进后对性能有了提升)新算法比其他算法好在哪里(还是通过实验收集数据对比一下)分析下算法的复杂度(时间复杂度和空间复杂度可能都会要求毕竟图像分析很占空间)然后是怎样进行优化的实验采用的样本是哪些(我们当时用的UCIrvineMachineLearningRepository下面会有CMUFaceImages大家一般都用这个库来作为样本)怎样对实验结果进行量化比较的(标准是什么)如果是模式识别的话还可能关心怎样选的特征值和特征空间(计算量大的话是怎样减少计算量的)训练样本采用的什么算法实验的识别率是多少算法的性能是不是稳定……==我想到的都是本科的问题如果是研究生的话可能还会问的更难
1 KM-1 键混器的设计 1 Sw3204V监控器的设计 1 基于射频遥控型(单片机)交通灯的设计1 Sw802V视频切换器的设计 1 无线数控多相位灯从机的设计1 基于RS232遥控型交通灯的设计1 Sw802A音频切换器的设计1 Sw6408V监控器的设计 1 KM-3键混器的设计1 无线数控多相位灯主机的设计1 SW162V数字视频切换器的设计1 基于RS232监控切换器1 SW401V 数字视频切换器的设计1 基于单片机的多路数据采集系统1 RS485转RS232的模块设计1 基于LCD显示的波形发生器的设计1 4-20mA转RS-485模块的设计 1 基于RS232流量计的设计 1 基于PTR2000的交通灯控制器主机的设计1 基于RS485量水仪的设计1 压力采集控制器的设计 1 数字量转4-20mA模拟量输出的模块设计1 正弦波形发生器的设计1 基于PTR2000的交通灯控制器从机的设计1 基于RS485视频切换器的设计1 LCD车速里程表电路设计1 LED车速里程表电路设计1 MSK通信系统的仿真设计1 员工信息管理系统 1 计算机文化基础考试系统的设计和开发1 人事工资管理系统1 员工信息管理系统设计1 超市进销存管理系统的VB实现1 基于单片机的多波形发生器的应用1 基于单片机电动自行车控制器设计1 个人理财管理系统1 基于CAN总线火灾监控系统的研究1 基于DSP平台的FIR滤波器设计1 于Matlab的FIR数字滤波器设计与仿真1 基于TMS320VC5402-DSP的最小系统硬件设计1 基于单片机的热水控制器 1 基于单片机的路灯控制系统的设计1 于单片机远程控制家用电器系统的设计1 基于液晶显示的乘法口诀测试仪的设计1 实验室设备管理系统毕业设计开题报告1 用AT89C51做 洗衣机全自动控制.doc1 数显频率计的设计.doc1 数控车间温度湿度控制系统设计.doc1 三角波斜率测试仪设计.doc1 人脸几何特征提取1 全自动洗衣机的控制程序设计.doc1 乞丐论文.doc1 教学楼毕业设计.doc1 建立海上风电场的技术要求分析与探讨.doc1 基于凌阳61A的数字式温湿度检测仪.doc1 基于几何匹配和分合算法的人脸识别.doc1 基于单片机数字钟的设计.doc1 基于单片机数据通用采集器的设计.doc1 基于单片机数据采集器.doc1 基于单片机的自动报警器的设计.doc1 基于单片机的终端设计.doc1 基于单片机的路灯控制系统控制系统的设计.doc1 基于单片机的交通灯的设计.doc1 基于单片机的简易计算器的设计.doc1 基于单片机的家用安保系统的设计.doc1 基于VHDL的数字频率计.doc1 基于SystemView的OFDM系统仿真设计.doc1 基于SystemView的OFDM系统仿真设计 基于PLC的烧结配料控制系统设计.doc1 基于MSP430的温度检测系统设计 基于MATLAB工具箱的数字滤波器设计.doc1 基于MATLAB的扩频通信系统仿真研究.doc1 基于GSM短信息通信方式的路灯无线监控系统.doc1 基于FPGA的信号源设计.doc1 基于EPP协议的AVR与PC并行通信系统的设计 单片机交通灯.doc1 单片机多点温度巡回检测系统的设计.doc1 单片机的温湿度检测系统 单路口交通信号PLC控制系统的设计.doc1 城市路口多相位自寻优交通信号控制设计.doc1 陈洁(螺旋瓶盖的设计).doc1 八路竞赛抢答器.doc1 matlab信号与系统.doc1 GSM系统的研究与SystemView仿真.doc1 蒯申红智能语音报站系统设计 MT8888在家庭安全电话报警系统中的应用设计1 基于FPGA的频率与功率因数在线测量1 基于FPGA的误码测试仪如果需要定做的话系 Q 273546756
课程的话是 数字图像处理,另外到google学术搜“人脸识别”“face recognition”论文应该很多的,可以先综述入手,比如这篇论文:Face recognition: A literature survey。这是理论基础。实验的时候,用VC++和OpenCV 就看 《OpenCV教程——基础篇》;若是Matlab,熟悉基础语法之后,多看看软件帮助。两者都包含很多基本的图像处理操作,用起来很方便。如果是本科或者硕士的话,可以先动手实验,对图像处理有一定了解后再看理论要求较高的论文。 PS: 你得问得具体点才好回答呢。。
除了基础的图像处理,更重要的恐怕是模式识别、概率统计。你提到的几个属性特征中,肤色、发型比较容易实现,性别、年龄、种族可能比较困难。如果要想入手,时间宽裕的话,用opencv;如果只是希望发发论文,matlab会比较快。人脸识别你可以只是了解,其实你的课题核心不是识别某个人,而是对人脸特征的分析,比如,可以通过皱纹来判定年龄。
我建议你去看看这些网址。可能有。
文献如下:
[1] Rothe R, Timofte R, Gool L V. Deep Expectation of Real andApparent Age from a Single Image Without Facial Landmarks[J].International Journal of Computer Vision, 2016:1-14.
[2] Eidinger E, Enbar R, Hassner T. Age and Gender Estimation of Unfiltered Faces[J]. IEEE Transactions on Information Forensics & Security, 2014, 9(12):2170-2179.
[3] Chen B C, Chen C S, Hsu W H. Face Recognition and RetrievalUsing Cross-Age Reference Coding With Cross-Age CelebrityDataset[J]. IEEE Transactions on Multimedia, 2015, 17(6):804-815.
[4]王先梅,梁玲燕,王志良,胡四泉. 人脸图像的年龄估计技术研究[J].中国图象图形学报,2012, 17( 6) : 603-618。
[5] 郑德鹏, 杜吉祥, 翟传敏. 基于深度学习MPCANet 的年龄估计 [J].南京师大学报(自然科学版), 2017, 40(1):20-26。
知网可以查找文献。年龄估计的现状:
简单地说,基于人脸图像的年龄估计是指机器根据面部图像推测出人的大概年龄或所属的年龄范围( 年龄段)。基于人脸图像的年龄估计系统一般分为人脸检测与定位,年龄特征提取,年龄估计,系统性能评价几个部分。根据提取特征方式的不同又分为传统方法和深度学习方法。
如果基于人脸图像的年龄估计问题得到解决,那么在日常生活中基于年龄信息的各种人机交互系统将在现实生活中有着极大的应用需求。
市场主流年龄估计软件包括商汤科技,face++,百度云AI体验中心,腾讯云AI体验中心,年龄检测仪。我们随机拿了一些名人照片做测试,总体说来face++在测试集上表现最好。
传统方法研究思路,自然就是手动提取特征。
传统方法即手动提取特征,传统方法可粗略划分为手动提取特征和年龄估计两个阶段。
根据特征所反映的人脸信息,可以将常用的人脸年龄特征分为形状特征、纹理特征、代数特征以及混合特征。
由于每种类型的特征均从不同角度描述了人脸图像,为了充分利用各种特征的优点,研究人员通常综合集成多种人脸特征,并采用不同的数学方法对其进行处理,从而形成了各具特色的面部年龄特征提取模型。
常见的特征提取模型包括人体测量学模型( anthropometric models) 、特征子空间模型(AGES) 、柔性模型( flexible models) 、流形学习( age manifold)以及外观模型( appearance model) 等。