首页

> 论文发表知识库

首页 论文发表知识库 问题

大数据论文选题方向

发布时间:

大数据论文选题方向

答:大数据与会计专业论文选题方向大数据比较好。因为大数据就业范围广,题材丰富,比较容易写。

当今时代,电脑已经成为人们生活以及公司发展的必需品。现在和未来一切都是电脑,所以现在电脑技术还是很有前途的,只要你的技术过硬,找到一份好工作,获得高额薪水,一切都不是问题。

会计大数据选题方向为前瞻性培养。根据查询相关公开信息可知:会计大数据方向是前瞻性培养适应当今人工智能与大数据时代会计业务和会计信息日益呈现海量数据处理、实时云计算化、会计智能决策等新型会计业务。

大数据(Big Data)又称为巨量资料,指需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。“大数据”概念最早由维克托·迈尔·舍恩伯格和肯尼斯·库克耶在编写《大数据时代》中提出,指不用随机分析法(抽样调查)的捷径,而是采用所有数据进行分析处理。对于“大数据”(Big data)研究机构Gartner给出了定义,“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。

数据分析毕业论文选题方向

通常来说,大学生(研究生)在确定论文研究方向的时候,需要先考虑三件事,其一是自身的知识结构和能力特点;其二是目前拥有的研究资源;其三行业发展趋势。

自身的知识结构和能力特点是选择研究方向的基础,因为要想完成一篇合格的论文,有三个基本的要求,其一是具有一定的创新性;其二是具有一定的落地可行性;其三是论述的完整性和可靠性。要想让论文有所创新,首先就要从知识结构上寻求突破,所以自身的知识结构是论文研究方向首先应该考虑的因素。

研究资源对于论文方向的选择也有非常直接的影响,写论文一定离不开大量研究资源的支撑,涉及到导师资源、课堂资源、实验室资源(设备)、行业资源等等,所以在选择论文方向的时候,要根据目前能够整合的研究资源进行细分方向的选择。通常来说,导师对于论文研究方向的选择有比较直接的影响,选择导师比较擅长的研究领域会更容易获得突破。

论文研究方向还应该考虑一下当前的行业发展趋势,在产业结构升级的大背景下,如果研究方向能够与大环境相契合,不仅能够获得更多的研究资源,同时对于未来的发展空间也有较大程度的促进作用。以计算机领域为例,当前选择大数据、云计算、边缘计算、人工智能等方向都是不错的选择。

最后,要想完成一篇高质量论文往往需要做大量的基础工作,同时一定要尊重实验结果,否则在进行落地应用的过程中会遇到很多障碍,这一点一定要注意。如果论文中的实验是无法重现的,那么这样的研究成果是没有意义的。

毕业论文(graduation study),按一门课程计,是普通中等专业学校、高等专科学校、本科院校、高等教育自学考试本科及研究生学历专业教育学业的最后一个环节,为对本专业学生集中进行科学研究训练而要求学生在毕业前总结性独立作业、撰写的论文。

从文体而言,它也是对某一专业领域的现实问题或理论问题进行 科学研究探索的具有一定意义的论文。一般安排在修业的最后一学年(学期)进行。学生须在教师指导下,选定课题进行研究,撰写并提交论文。目的在于培养学生的科学研究能力;加强综合运用所学知识、理论和技能解决实际问题的训练;从总体上考查学生学习所达到的学业水平。

论文题目由教师指定或由学生提出,经教师同意确定。均应是本专业学科发展或实践中提出的理论问题和实际问题。通过这一环节,应使学生受到有关科学研究选题,查阅、评述文献,制订研究方案,设计进行科学实验或社会调查,处理数据或整理调查结果,对结果进行分析、论证并得出结论,撰写论文等项初步训练。

2020年12月24日,《本科毕业论文(设计)抽检办法(试行)》提出,本科毕业论文抽检每年进行一次,抽检比例原则上应不低于2%。

***统计方法的应用

如果你想写一篇好论文,最基本、最重要的一点就是选题。如果选定的题目是创新的,有特色的;如果你能写作和创作自己。对于硕士毕业生来说,这可能还是一个麻烦的问题,那么如何选择硕士论文的选题呢?paperfree论文查重网站小编给大家讲解。 一、如何选择硕士毕业论文选题? 1.毕业论文是对过去学习和实践经验的总结,因此论文的主题选择也应该有实际内容,可以让我们发挥和进一步扩展。 2.每年都有很多毕业论文。过于重复的内容往往会使人感到疲劳。因此,在选择主题时,我们应该具有一定的独特性。所选主题不应重复太多,否则也不利于我们的表现。 3.除了创新,还要注意选题的可操作性,即选题是否有能力和写作空间。对于很多人来说,很难在不熟悉的领域发挥自己的优势,所以在选题的时候要尽量选择自己擅长的方向。 二、硕士毕业设计论文选题有哪些方面要求? 1.毕业论文的选题一直注重前沿性、应用性和可行性,要求学生的选题具有实际的应用价值。 2.硕士的培养侧重于培养,需要培养他们的系统研究能力。因此,他们写的论文应该具备数据分析能力。创新应该与应该达到的水平相结合。 3.硕士论文要在学术上分析别人的命题,尽量填补前人研究领域的空白,起到实际作用,要求学生根据自身条件和研究资源调整论文选题难度。

我给你分享几个统计学与应用这本期刊的题目吧,你参考参考:产业集聚对江苏省制造业全要素生产率的影响研究、基于文献计量分析的企业论文发表情况评价——以宁波市安全生产协会会员为例、基于泰尔指数的城乡收入差距的分析与预测、卡方分布下FSI CUSUM和VSI CUSUM控制图的比较、新冠肺炎疫情对中国旅游业的冲击影响研究——基于修正的TGARCH-M模型

论文大数据的研究方向

可以往数据分析方向写哦

大数据的研究领域可以说很宽泛,也是未来很长一段时间的热点领域。目前大数据的研究方向主要聚焦在下面五个方面。

1、可视化大数据分析。进行分析之前,需要对数据进行探索式地考查。在此过程中,可视化将发挥很大的作用。对大数据进行分析以后,为了方便用户理解结果,也需要把结果展示出来。尤其是可视化移动数据分析工具,能追踪用户行为,让应用开发者得以从用户角度评估自己的产品,通过观察用户与一款应用的互动方式,开发者将能理解用户为何执行某些特定行为,从而为自己完善和改进应用提供依据。

2、AI。包括大数据与神经计算、深度学习、语义计算以及人工智能其他相关技术结合。得益于以云计算、大数据为代表的计算技术的快速发展,使得信息处理速度和质量大为提高,能快速、并行处理海量数据。

3、跨学科领域交叉的数据融合分析与应用。由于现有的大数据平台易用性差,而垂直应用行业的数据分析又涉及领域专家知识和领域建模,目前在大数据行业分析应用与通用的大数据技术之间存在很大的鸿沟,缺少相互的交叉融合。因此,迫切需要进行跨学科和跨领域的大数据技术和应用研究,促进和推动大数据在典型和重大行业中的应用和落地,尤其是与物联网、移动互联、云计算、社会计算等热点技术领域相互交叉融合。

4、大数据安全和隐私。大数据时代,各网站均不同程度地开放其用户所产生的实时数据,一些监测数据的市场分析机构可通过人们在社交网站中写入的信息、智能手机显示的位置信息等多种数据组合进行分析挖掘。然而,大数据时代的数据分析不能保证个人信息不被其他组织非法使用,用户隐私安全问题的解决迫在眉睫。安全智能更加强调将过去分散的安全信息进行集成与关联,独立的分析方法和工具进行整合形成交互,最终实现智能化的安全分析与决策。

5、大数据治理。大数据将打开各行各业的数据“潘多拉魔盒”。社交网站、电商巨头、电信运营商乃至金融、医疗、教育等行业,都将加入大数据的“淘金”热潮,政府部门同样会从大数据中获益匪浅。如何将海量数据应用于决策、营销和产品创新?如何利用大数据平台优化产品、流程和服务?如何利用大数据更科学地制定公共政策、实现社会治理?所有这一切,都离不开大数据治理。可以说,在大数据战略从顶层设计到底层实现的“落地”过程中,治理是基础,技术是承载,分析是手段,应用是目的。

现在感觉大家说大数据,一般都在炒概念,大数据并不难,怎么让数据分析落地式很难的,在我来看,目前很多人都在吹嘘大数据,但是真正懂大数据落地的人寥寥无几。给你一个工具,FineBI,楼主可以自己看看。

说到大数据我们不能不提到人工智能,这个近几年非常火的一个新技术方向,从几年前大家科普什么是人工智能到现在产业普遍探讨如何落地问题,人工智能几乎霸屏各行各业。

大数据时代势不可挡。 一方面,为了实现降本增效,企业纷纷在寻求数字化、智能化转型。以期利用新技术带来结构性增长;;另一方面国家释放推动“新基建”加速经济建设信号,对于信息数字化 科技 产业的重视程度空前高涨。企业内部发展刚需和国家政策红利,人工智能化必然是新经济环境下的大势所趋。

人工智能的三大核心要素:算法、算力、数据缺一不可。 其中大数据更像是水电煤般的基础设施的存在。数据沉淀将变成未来企业搭建壁垒的核心竞争力。而具体来看大数据的发展方向也是涵盖多个方面,举例来说:

>> 新零售

新零售的新就在于将“零售数据化”,通过大数据重新定义“人货场”概念。传统零售下,通常是“人找货”,卖场提供什么样的商品用户就只能买到什么。而在大数据加持下的新零售时代,则是相反的“货找人”,零售平台将用户的“数据”和货的“数据”进行匹配。用户“数据”例如:用户的性别、年龄、兴趣品类、性格标签、消费能力、购物频次、浏览时长……等等;货的“数据”包含了:商品价格、促销优惠、品类细分、品质、产地、库存……等等。通过数据赋能、精准匹配,商家能比用户自己更了解用户。

>>在线教育

教育的线上化在这次疫情的驱动下变得十分必要,传统教育一个老师面对多个学生或者一对一的私教,老师的精力无法顾及所有学生,而通过技术手段可以沉淀学生、老师及课程的数据,从而更好地服务好双边体验。例如:AI识别学生上课状态,是否打瞌睡是否专注上课;智能批改作业,实时反馈学习成绩和遗漏知识点;知识点查漏补缺,根据学生个人情况定制测试作业……大数据智能协助提高效率的同时,也减轻人工成本,解放老师“管理”的时间,花更多时间精力备课。

>>直播

直播行业的大数据更是其生存之本,用户侧的“数据”有:内容喜好、观看时段、浏览时长等等,内容侧的“数据”有:什么样的主播在什么时段播什么类型的什么内容、转赞评数据等等。有了这样的双边数据后,平台自然可以实现“千人千面”的算法推荐内容,从而增强用户对平台的粘度。而直播的最直接的变现手段带货,大数据的则能进行智能跳转,快速结算。

大数据赋能下的行业有着不同的新业态,未来大数据必然会成为产业、生活必不可少的工具,涵盖我们生活的各个方面,帮我们更便捷高效的生活。

大数据是未来人工智能领域一项非常重要的基础。而随意人工智能的发展,需要的大数据将会在广度和深度两个方向同步扩展。从广度来看,大数据最终会扩展到 社会 的所有环节;从深度来看,大数据最终会深入到每个人从生到死全过程。

大数据的未来:万物皆可互联,世界鲜有隐私!

第一:大数据自身能够创造出更多的价值。大数据相关技术紧紧围绕数据价值化展开,数据价值化将开辟出广大的市场空间,重点在于数据本身将为整个信息化 社会 赋能。随着大数据的落地应用,大数据的价值将逐渐得到体现。目前在互联网领域,大数据技术已经得到了较为广泛的应用。

第二:大数据推动 科技 领域的发展。大数据的发展正在推动 科技 领域的发展进程,大数据的影响不仅仅体现在互联网领域,也体现在金融、教育、医疗等诸多领域。在人工智能研发领域,大数据也起到了重要的作用,尤其在机器学习、计算机视觉和自然语言处理等方面,大数据正在成为智能化 社会 的基础。

第三:大数据产业链逐渐形成。经过近些年的发展,大数据已经初步形成了一个较为完整的产业链,包括数据采集、整理、传输、存储、分析、呈现和应用,众多企业开始参与到大数据产业链中,并形成了一定的产业规模,相信随着大数据的不断发展,相关产业规模会进一步扩大。

第四:产业互联网将推动大数据落地。当前互联网正在经历从消费互联网向产业互联网过渡,产业互联网将利用大数据、物联网、人工智能等技术来赋能广大的传统产业,可以说产业互联网的发展空间非常大,而大数据则是产业互联网发展的一个重点,大数据能否落地到传统行业,关乎产业互联网的发展进程,所以在产业互联网阶段,大数据将逐渐落地,也必然落地。

通过以上分析可以得出,未来大数据领域的发展空间还是比较大的,而且目前大数据领域的人才缺口比较大。

大数据的发展趋势总的来说应该体现在以下几个方面:

第一:互联网逐渐大数据化。随着大数据技术的逐渐成熟,互联网将成为大数据首先落地的领域,大数据将在电子商务等互联网应用平台得到广泛的应用。互联网 科技 公司也是推动大数据技术发展的中坚力量,在大数据发展的过程中会起到重要的作用,通过大数据技术在互联网领域的应用也能积累大量的应用经验。

第二:传统产业逐渐大数据化。随着互联网发展到产业互联网阶段,未来产业互联网将深入到整个传统行业中,而大数据技术作为产业互联网的核心技术之一必然会深入到传统行业中,所以未来传统行业大数据化将是一个重要的趋势。通过大数据相关技术不仅能够促进传统行业的信息化建设,包括物联网、云计算建设等,更是能够通过大数据来为传统行业创新带来帮助。

第三:人才大数据化。大数据的发展必然需要大量的大数据人才,不仅需要专业的大数据开发人才(大数据平台开发、大数据应用开发、大数据分析、大数据运维等),也需要大量的大数据应用型人才(基于大数据工具开展大数据分析等工作),所以人才大数据化也是未来一个重要的趋势。对于职场人来说,掌握一定的大数据知识会提升自身的岗位竞争力。

大数据的发展方向我认为…每个人的生活轨迹习惯喜好,每个企业的需求和全方位信息,每个行业的发展方向布局,每个国家的综合状态,通过大数据统计分析,做出你所想要的结论!

大数据未来发展趋势将从以下几个方面体现:

一切皆有弹性。基于云的数据库和存储可以根据使用情况双向伸缩,用户只需购买和使用其需要的东西。

当数据传输变得更快数据量更大时,边缘计算的智能化可以避免消耗更大的云存储空间和远端基础设施。

大数据硬件更加廉价,同时越来越多的智能化软件替代硬件功能。云时代,硬件越来越廉价。

平面文件和表结构将继续存在,同时会出现更多的空间数据、图形和网络数据。

数据的价值决定于数据如何处理。引用舍恩伯格《大数据时代》中的一句话, 大数据带来的“不是随机样本,而是全体数据;不是精确性,而是混杂性;不是因果关系,而是相互关系。”你能获得的数据量越大,你能挖掘到的价值就越多。

法律检索大数据是目前发展方向之一。法律 科技 新秀律宝AI大脑,导入最新最全的司法大数据,把人工智能技术运用在法律检索、案件信息提取与分析上,律师只需输入文字或语音识别录入事情经过或案件事实,系统将会自动进行信息提取和数据匹配,输出精准的法律检索结果和详细的案件分析报告,节省了律师办案时间。

【大数据检索】又新又全的司法大数据,输入关键词即可一键检索获取法规、案例、工商信息、司法观点等,方便律师进行检索。

【类案大数据】律宝能根据律师录入的案件详情,通过大数据智能检索匹配同类型案件和适用法条,给律师提供办案思路。

1、智慧城市

智慧城市(英语:Smart City)是指利用各种信息技术或创新意念,集成城市的组成系统和服务,以提升资源运用的效率,优化城市管理和服务,以及改善市民生活质量。

用途范围

用途分为十大智慧体系,分别为:智慧物流体系、智慧制造体系、智慧贸易体系、智慧能源应用体系、智慧公共服务、智慧 社会 管理体系、智慧交通体系、智慧 健康 保障体系、智慧安居服务体系、智慧文化服务体系。

2、增强现实(AR)与虚拟现实(VR)

增强现实技术(Augmented Reality,简称 AR),是一种实时地计算摄影机影像的位置及角度并加上相应图像、视频、3D模型的技术,这种技术的目标是在屏幕上把虚拟世界套在现实世界并进行互动。这种技术1990年提出。VR是Virtual Reality的缩写,中文为虚拟现实。虚拟现实技术是一种能够创建和体验虚拟世界的计算机仿真技术, 它利用计算机生成一种交互式的三维动态视景,其实体行为的仿真系统能够使用户沉浸到该环境中。

3、人工智能(Artificial Intelligence)

英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

用途范围

机器翻译,智能控制,专家系统,机器人学,语言和图像理解,遗传编程机器人工厂,自动程序设计,航天应用,庞大的信息处理,储存与管理,执行化合生命体无法执行的或复杂或规模庞大的任务等等。

国内外大数据标准化现状及发展方向

数据工程师、数据分析师、架构设计师 ----------河南新华

数据库论文方向

数据库,这个方向也太大了吧,你可以把方向缩小在缩小,比如XML数据库,面向对象数据库,空间数据库,时态数据库,数据质量等,这些方向也还很大,个人建议根据你的内容来写题目就行,你的内容是干什么就写什么,最好范围越小越好。

这个也可以作为论文?这都是基础知识呀,教材里都有的。在计算机硬件、软件发展的基础上,在应用需求的推动下,数据管理技术的发展经历了三个阶段。一、人工管理阶段1、背景应用背景:科学计算硬件背景:无直接存取存储设备软件背景:没有操作系统 处理方式:批处理2、特点数据的管理者:人数据面向的对象:某一应用程序数据的共享程度:无共享,冗余度极大数据的独立性:不独立,完全依赖于程序数据的结构化:无结构数据控制能力:应用程序自己控制二、文件系统阶段1、背景应用背景:科学计算、管理硬件背景:磁盘、磁鼓软件背景:有文件系统处理方式:联机实时处理 批处理2、特点数据的管理者:文件系统数据面向的对象:某一应用程序数据的共享程度:共享性差,冗余度大数据的独立性:独立性差数据的结构化:记录内有结构,整体无结构数据控制能力:应用程序自己控制三、数据库系统阶段1、背景应用背景:大规模管理硬件背景:大容量磁盘软件背景:有数据库管理系统处理方式:联机实时处理, 分布处理批处理2、特点数据的管理者:数据库管理系统数据面向的对象:整个应用系统数据的共享程度:共享性高,冗余度小数据的独立性:具有高度的物理独立性和逻辑独立性数据的结构化:整体结构化,用数据模型描述数据控制能力:由数据库管理系统提供数据安全性、完整性、并发控制和恢复能力四、数据库系统的特点1、数据结构化2、数据的共享性高,冗余度低,易于扩充3、数据独立性高4、数据由DBMS统一管理和控制数据结构化 数据结构化是数据库与文件系统的根本区别。在描述数据时不仅要描述数据本身,还要描述数据之间的联系。 数据的共享性 数据库系统从整体角度看待和描述数据,数据不再面向某个应用而是面向整个系统。 数据冗余度 指同一数据重复存储时的重复程度。 数据的一致性 指同一数据不同拷贝的值一样(采用人工管理或文件系统管理时,由于数据被重复存储,当不同的应用使用和修改不同的拷贝时就易造成数据的不一致)。 物理独立性 当数据的存储结构(或物理结构)改变时,通过对映象的相应改变可以保持数据的逻辑构可以不变,从而应用程序也不必改变。 逻辑独立性 当数据的总体逻辑结构改变时,通过对映象的相应改变可以保持数据的局部逻辑结构不变,应用程序是依据数据的局部逻辑结构编写的,所以应用程序不必修改。 数据的安全性(Security) 数据的安全性是指保护数据,防止不合法使用数据造成数据的泄密和破坏,使每个用户只能按规定,对某些数据以某些方式进行访问和处理。 数据的完整性(Integrity) 数据的完整性指数据的正确性、有效性和相容性。即将数据控制在有效的范围内,或要求数据之间满足一定的关系。 并发(Concurrency)控制 当多个用户的并发进程同时存取、修改数据库时,可能会发生相互干扰而得到错误的结果并使得数据库的完整性遭到破坏,因此必须对多用户的并发操作加以控制和协调。 数据库恢复(Recovery) 计算机系统的硬件故障、软件故障、操作员的失误以及故意的破坏也会影响数据库中数据的正确性,甚至造成数据库部分或全部数据的丢失。DBMS必须具有将数据库从错误状态恢复到某一已知的正确状态(亦称为完整状态或一致状态)的功能。

求数据库论文!我有这方面的资料球球296145855

这个论文好像比较难得写哦,在网上找现成的肯定不行啊,建议你还是找个可靠的代写,可以省很多心的。我就是找的一个,呵呵,很不错的。用支付宝的,安全你放心,他们是先写论文后付款的,不要定金,很放心的,看后再付款的。是脚印代写论文,网站是 脚印代写论文。你要求不高的话可以借鉴他们网站相关论文范文和资料,祝你好运哦

大数据统计方向毕业论文题目

统计学问题我来明确的

1、高技术产业产值影响因素的研究2、关于和谐社会统计指标的初步研究3、CCA研究我国产业结构的区域差异对经济的影响4、基于单因素序列相关面板数据的实证分析5、基于空间面板数据的中国FDI统计分析6、基于排队论在杭州公交站点停车位的优化及实证分析7、基于统计方法的股票投资价值分析8、某某市2019年工业发展状况的统计分析9、近30年31省市城镇居民恩格尔系数的统计分析10、近30年31省市农村居民恩格尔系数的统计分析11、近三十年中国经济发展趋势的实证分析12、林业科技对经济的贡献率美联储量化13、MMC排队模型在收费站排队系统中的应用14、财政收入影响因素的研究15、城市发展对二氧化碳排放的影响学术堂提供更多论文知识

我给你分享几个统计学与应用这本期刊的题目吧,你参考参考:产业集聚对江苏省制造业全要素生产率的影响研究、基于文献计量分析的企业论文发表情况评价——以宁波市安全生产协会会员为例、基于泰尔指数的城乡收入差距的分析与预测、卡方分布下FSI CUSUM和VSI CUSUM控制图的比较、新冠肺炎疫情对中国旅游业的冲击影响研究——基于修正的TGARCH-M模型

统计学作为一门综合性很强的学科,其运用范围非常广泛,不少学生在写作统计学论文时,都困在了选题这一步,其实就统计学而言,可供作为论文题目的热词有很多,如:企业管理、实证研究、统计估计、统计分析、计算机应用、支持向量机、数学模型、GIS、多元分析、统计报表等等,学术堂精选了20个优质“统计学毕业论文题目”,供大家参考。1、药品检验中常用的统计学方法及其应用2、应用统计学在现实生活中的应用分析3、浅谈统计学在金融领域的应用4、统计学在实验室质量控制中的应用5、论应用统计学PDTR教学模式的必要性和可行性6、水产生物统计学课程中学生统计思维能力与应用意识的培养研究7、地质统计学在某铜矿床资源量估算中的应用熊8、基于地质统计学的采空区储量估算9、密井网条件下地质统计学岩性反演在河道砂体预测中的应用10、地质统计学在稀土矿储量计算研究应用11、地质统计学在矿床品位估算中的应用研究12、地质统计学在细脉型矿体模拟中的应用:以新疆梅岭-红石铜矿为例13、地质统计学地震反演技术在溱潼南华地区薄砂层的预测应用14、朝阳沟油田扶余油层组深度域地质统计学反演15、基于DMine软件下地质统计学在矿山储量计算中的应用

相关百科

热门百科

首页
发表服务