首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

振动式给料机结构设计毕业论文

发布时间:

振动式给料机结构设计毕业论文

这个改造的问题是很复杂的其实,电磁式和电机式的给料机很多场合是不能互换,我们从几个方面说一下:基础条件:电磁式的工作原理是双质体调谐振动,工作相对比较温和,对安装基础的刚度强度要求不是太高,电机式是单质体抗阻尼振动,工作很粗暴,对安装基础的刚度和强度要求都很高,所以你要看现场条件是否允许,你可以去电机式的应用现场看看。被处理物料的特性:一般而言电磁式多用于细小颗粒状物料或者粉状物料的输送筛分,而电机式多用于尺寸稍大的块状物料的输送和筛分。同时要考虑物料的含水量,你要看看你的物料的特性。以上我认为是你要考虑的东西,你说维修困难,其实电磁式的维修几乎是没有的,除非你们用的机器质量非常差,相反电机式后期的维护会很多,轴承容易损坏,需要定期的加润滑油,检查螺栓的松动问题,基础结构的破坏状况等。欢迎你给我发邮件给我,期待能和你有更多的探讨,我的邮箱

机械专业工程 教育 应加强对学生的工程实践训练,以提高机械专业的工程教育水平。下面是我为大家推荐的机械专业 毕业 论文,供大家参考。机械专业毕业论文篇一:《机械加工质量技术》 摘要:机械加工产品的质量与零件的加工质量、产品的装配质量密切相关,而零件的加工质量是保证产品质量的基础,它包括零件的加工精度和表面质量两方面。 关键词:机械加工;精度;几何形状;工艺系统;误差 一、机械加工精度 1、机械加工精度的含义及内容 加工精度是指零件经过加工后的尺寸、几何形状以及各表 面相 互位置等参数的实际值与理想值相符合的程度,而它们之间的偏离程度则称为加工误差。加工精度在数值上通过加工误差的大小来表示。零件的几何参数包括几何形状、尺寸和相互位置三个方面,故加工精度包括:(1)尺寸精度。尺寸精度用来限制加工表面与其基准间尺寸误差不超过一定的范围。(2)几何形状精度。几何形状精度用来限制加工表面宏观几何形状误差,如圆度、圆柱度、平面度、直线度等。(3)相互位置精度。相互位置精度用来限制加工表面与其基准间的相互位置误差,如平行度、垂直度、同轴度、位置度零件各差来表示的要求和允许用专门的符明。 在相同中的各种因对准确和完足产品的工加工 方法 ,的生产条件下所加工出来的一批零件,由于加工素的影响,其尺寸、形状和表面相互位置不会绝全一致,总是存在一定的加工误差。同时,从满作要求的公差范围的前提下,要采取合理的经济以提高机械加工的生产率和经济性。 2、影响加工精度的原始误差 机械加工中,多方面的因素都对工艺系统产生影响,从而造成各种各样的原始误差。这些原始误差,一部分与工艺系统本身的结构状态有关,一部分与切削过程有关。按照这些误差的性质可归纳为以下四个方面:(1)工艺系统的几何误差。工艺系统的几何误差包括加工方法的原理误差,机床的几何误差、调整误差,刀具和夹具的制造误差,工件的装夹误差以及工艺系统磨损所引起的误差。(2)工艺系统受力变形所引起的误差。(3)工艺系统热变形所引起的误差。(4)工件的残余应力引起的误差。 3、机械加工误差的分类 (1)系统误差与随机误差。从误差是否被人们掌握来分,误差可分为系统误差和随机误差(又称偶然误差)。凡是误差的大小和方向均已被掌握的,则为系统误差。系统误差又分为常值系统误差和变值系统误差。常值系统误差的数值是不变的。如机床、夹具、刀具和量具的制造误差都是常值误差。变值系统误差是误差的大小和方向按一定规律变化,可按线性变化,也可按非线性变化。如刀具在正常磨损时,其磨损值与时间成线性正比关系,它是线性变值系统误差;而刀具受热伸长,其伸长量和时间就是非线性变值系统误差。凡是没有被掌握误差规律的,则为随机误差。 (2)静态误差、切削状态误差与动态误差。从误差是否与切削状态有关来分,可分为静态误差与切削状态误差。工艺系统在不切削状态下所出现的误差,通常称为静态误差,如机床的几何精度和传动精度等。工艺系统在切削状态下所出现的误差,通常称为切削状态误差,如机房;在切削时的受力变形和受热变形等。工艺系统在有振动的状态下所出现的误差,称为动态误差。 二、工艺系统的几何误差 1、加工原理误差 加工原理误差是由于采用了近似的成形运动或近似的刀刃轮廓进行加工所产生的误差。通常,为了获得规定的加工表面,刀具和工件之间必须实现准确的成形运动,机械加工中称为加工原理。理论上应采用理想的加工原理和完全准确的成形运动以获得精确的零件表面。但在实践中,完全精确的加工原理常常很难实现,有时加工效率很低;有时会使机床或刀具的结构极为复杂,制造困难;有时由于结构环节多,造成机床传动中的误差增加,或使机床刚度和制造精度很难保证。因此,采用近似的加工原理以获得较高的加工精度是保证加工质量和提高生产率以及经济性的有效工艺 措施 。 例如,齿轮滚齿加工用的滚刀有两种原理误差,一是近似造型原理误差,即由于制造上的困难,采用阿基米德基本蜗杆或法向直廓基本蜗杆代替渐开线基本蜗杆;二是由于滚刀刀刃数有限,所切出的齿形实际上是一条折线而不是光滑的渐开线,但由此造成的齿形误差远比由滚刀制造和刃磨误差引起的齿形误差小得多,故忽略不计。又如模数铣刀成形铣削齿轮,模数相同而齿数不同的齿轮,齿形参数是不同的。理论上,同一模数,不同齿数的齿轮就要用相应的一把齿形刀具加工。实际上,为精简刀具数量,常用一把模数铣刀加工某一齿数范围的齿轮,也采用了近似刀刃轮廓。 2、机床的几何误差 (1)主轴回转运动误差的概念。机床主轴的回转精度,对工件的加工精度有直接影响。所谓主轴的回转精度是指主轴的实际回转轴线相对其平均回转轴线的漂移。 瞬时速度为零。实际上,由于主轴部件在加工、装配过程中的各种误差和回转时的受力、受热等因素,使主轴在每一瞬时回转轴心线的空间位置处于变动状态,造成轴线漂移,也就是存在着回转误差。超级秘书网 主轴的回转误差可分为三种基本情况:轴向窜动——瞬时回转轴线沿平均回转轴线方向的轴向运动,如图l(a)所示。径向跳动——瞬时回转轴线始终平行于平均回转轴线方向的径向运动,如图l(b)所示。角度摆动——瞬时回转轴线与平均回转轴线成一倾斜角度,交点位置固定不变的。 (a)轴向窜动;(b)径向跳动;(c)角度摆动动,如图1(c)所示。角度摆动主要影响工件的形状精度,车外圆时,会产生锥形;镗孔时,将使孔呈椭圆形。实际上,主轴工作时,其回转运动误差常常是以上三种基本形式的合成运动造成的。 (2)主轴回转运动误差的影响因素。影响主轴回转精度的主要因素是主轴轴颈的误差、轴承的误差、轴承的间隙、与轴承配合零件的误差及主轴系统的径向不等刚度和热变形等。主轴采用滑动轴承时,主轴轴颈和轴承孔的圆度误差和波度对主轴回转精度有直接影响,但对不同类型的机床其影响的因素也各不相同。 参考文献: [1]郑渝.机械结构损伤检测方法研究[D];太原理工大学;2004年 [2]杨春雷,尹国会.浅谈机械加工影响配合表面的原因及对策[N].中华建筑报;2005年 [3]高原.不锈钢表面复合处理提高耐磨性的研究 机械专业毕业论文篇二:《企业工程机械设备管理》 摘要:由于工程机械现代化的实现,为现代企业的发展带来了新的发展机遇和高效的工作效率。但是,企业机械设备的管理仍然存在着很多问题,制约着企业的高速发展。本文作者就现代企业机械设备管理存在的问题和提高管理的方法进行了简单的论述。 关键词:工程;机械设备;管理;问题;对策 科学技术进步、生产建设的需求,为工程机械的应用提供了广阔的空间,也对设备管理的提出了更高的要求。做好机械设备的合理配置、科学使用、及时保养、适时维修,降低设备故障发生,提高机械设备的有效利用率,是对工程设备管理工作的主要要求,下面我就当前矿山企业在工程机械设备管理方面存在的问题和提高工程机械管理的方法谈谈自己的看法。 一、当前工程机械设备管理中存在的问题及原因 1、管理机构不健全,管理制度不完善 相当一部分施工企业仍缺乏完整、严格的工程机械设备管理制度,对工程机械设备的台账、技术资料档案的建立等工作尚未完善,管理工作无章可循、管理无序,有的企业甚至在购买了新设备后,没有及时或根本不入账,造成管理工作相当被动,设备糊涂使用,不能明确工程机械管理和使用的责任主体。 2、舍不得智力投资 (1)虽然目前大部分施工企业都根据自己企业的实际情况,设立了机务管理部门,但由于机构、人员更迭较为频繁,设备管理及维修人员接受专业教育时间短,管理人员对设备管理的整体认识尚较模糊,技术管理水平参差不齐。 (2)而有些企业只是片面注重眼前利益,宁愿花耗大量资金用于购买先进设备,但在管理人才培训等智力投资方面却显得过分吝惜,舍不得花钱。这样,就算有再先进的设备,但管理跟不上、人员素质低劣,是很难适应机械自动化、机电一体化程度高的设备管理的需要。 3、工程机械设备的使用与保养相互脱节 (1)目前大多数施工企业虽然都实行定人定机制度,即每个操作人员固定使用一台机械设备,但却忽略了定人保养制度,没有把机械设备维修保养的各项 规章制度 明确落实到个人。正因为如此,操作人员往往只是“包用不包修”,维修人员也是马虎应付了事,每当机械设备出现故障,操作人员与维修人员往往互相推卸责任。这样,不但影响了产量、质量,也增加了维修费用、运转费用以及降低了设备的使用寿命。 (2)此外,不少项目负责人只考虑眼前利益,没有从长远打算,短期行为严重,只注意产值与效益挂钩,在设备管理使用上表现为“重用轻管”,为了赶工期、抢进度,而不惜拼设备,造成机械设备常常处于超负荷状况工作,或带“病”作业,甚至违章操作,其结果是该工程项目完工后,机械设备严重磨损老化,而调运到新工程又需花费大量的精力与费用进行整修,造成施工工期贻误,项目部之间在维修费用上互相推诿,固定资产无形流失。 4、工程机械设备维修“滞后”,浪费严重 (1)由于目前大部分施工企业还未能有效地实行点检制度等保养措施,设备维修管理往往局限于“事后维修”,“预防维修”意识不够重视,对设备的故障及劣化现象也就未能早期发觉、早期预防、早期 修理 ,以致造成人力、物力、财力不必要的浪费。 (2)施工企业机械设备“浪费维修”的现象也十分严重,个别维修人员为了贪图方便,对一些仍有很大修复价值的旧件不加以修复利用,任凭其主观随意地报废,更有甚者,不考虑 其它 设备的整体性能,采取“拆东墙补西墙”的做法,得过且过,只要机械能动就交差了事,结果也只会是事倍功半。 二、提高机械设备管理工作的方法 1、在使用方面,设备的价值主要体现在使用。任何设备都有规定的使用范围、条件及操作程序,只有正确的使用设备,才能保证 安全生产 。而设备使用的好坏很大程度上取决于操作人员水平的高低。 所以在使用中,一是教育操作人员正确的使用和操作各种工程机械,不能在超过机械所能承受的最大负荷下进行工作,尽量保证机械负荷的均匀加减,使机械处于较为平缓的负荷变动,具体地说,就是要较为均匀地加减油门,防止发动机、工作装置动作的大起大落。二是加强技术培训,提高操作人员素质,使操作人员做到懂构造、懂原理、懂性能,会使用、会保养、会检查、会排除故障,从源头上减少和防止人为失误引起的机械故障。三是坚持实行包机责任制,责任到人,将个人经济利益与责任机械的维修费、燃油费相结合进行考核,奖罚并举,加强管理设备的责任心,调动爱护设备的积极性。超级秘书网 2、在保养方面,对设备实行定期保养是保持机械良好技术状况的基础。对于工程机械,保养工作中的重中之中就是保证对机械的合理润滑。零件工作面的磨损、零件表面的腐蚀和材料的老化是正常使用条件下的机械零部件的3种主要失效形式,而零件工作面的磨损所引起的失效所占的比例最大。也就是说,机械的磨损是使其各种零部件走向极限技术状态的主要原因之一。那么,解决机械零部件的磨损问题,除了采用优良的材料、选择先进的制造工艺、设计合理的机械结构外,在使用过程中要做的一项重要工作就是保证对机械的合理润滑。 据统计,工程机械的故障有一半以上是由润滑不良引起的。由于工程机械各零部件配合的精密性,良好的润滑可以使其保持正常的工作间隙和合适的工作温度,从而降低零件的磨损程度,减少机械故障。正常合理的润滑是减少机械故障的有效措施之一。为此,一是要合理选用润滑剂,要根据机械的种类和应用结构的不同选用正常的润滑剂类别,根据机械的要求选用合适的质量等级,根据机械的工作环境和不同的季节选择合适的润滑剂牌号。二是经常检查润滑剂的数量和质量。数量不足要及时补充,质量不佳要及时更换。三是根据保养周期、设备技术状况、工作环境等因素,制定强制保养计划,到时间必须停机保养润滑。 3、维修方面 机械在使用过程中必然会出现各种各样的故障。在这些故障中,有些故障对机械设备的影响可能是很微小的,有些是比较严重的,甚至会造成机毁人亡的大事故。 经验 表明,严重机械故障往往是由一些较小的故障引发的。究其原因,就在于忽视了对小故障的及时处置。因此,在维修方面,一是重视小故障的及时处理,做到防患于未然。切不可小故障不影响使用,为了赶任务让设备带故障作业,最后小毛病拖成了大故障,不但延误工期,影响正常使用,还有可能造成设备突然报废。从某种意义上来说,对出现的故障及时进行处理,就是减少和防止故障的一种有效措施。二是采取“计划维修”与“预防性维修”两种制度的相结合的维修制度,科学合理的安排设备维修工作。计划维修坚持“养修并重,预防为主”的指导思想,在使用中,根据机械损坏和零件磨损规律,按照工作时间,定期对设备实施强制保修项目;预防性维修坚持“定期检查,按需修理”,它是按照维修对象的实际计划状况,而不是按照实际使用时间来控制的维修方式,避免了强制维修造成的浪费,同时通过定期检查,避免了漏拆漏检导致的失保失修。 总之,任何设备投入使用后都会不可避免的出现故障,但在工作中,只要我们加强设备管理,合理科学的使用、及时到位的保养、适时准确的维修,就能抓住设备寿命期内各种故障的发生规律,有效的降低故障发生,提高有效利用率,保持设备的良好技术状态,最大限度的发挥设备的使用价值。 机械专业毕业论文篇三:《浅析纺织机械的绿色制造技术》 一、绿色制造的发展必要性 纺织行业一直是一个高污染的产业,由于传统技术的落后,纺织生产过程中会产生大量的生产污染物,包括废气、污水等,同时还存在着资源浪费的问题,而这些都对人类生存的环境造成了严重的危机。中国作为世界上最大的纺织品生产出口大国,现代纺织制造业的发展十分迅速,因此纺织行业的污染问题一直是关注重点。在如今大力提倡生态文明的时代,纺织机械关于绿色制造技术的发展已经刻不容缓。 环境意识制造,也就是绿色制造,简单来说就是制造产品的绿色环保可持续发展,是一个兼顾环境发展和经济效益的现代化制造模式。关于绿色制造的实施,具体策略表现为减少浪费,减少污染以及资源利用最大化。现如今,考虑到生态环境的保护,国际上已经开始对贸易产品的绿色工艺有了要求,虽然这样的绿色壁垒还不是很多,但是作为纺织产品的出口大国,为了保持纺织行业的优势,纺织机械的绿色制造需要及早提上发展日程。 二、绿色制造技术的体现 (一)绿色材料。绿色材料的选择要在保证纺织机械制造的要求的基础上考虑材料的环保性。以化纤生产为例,其生产过程中使用了大量的酸碱,导致硫酸盐一类有毒物质的产生,所以绿色材料的首要条件是无毒,无污染。此外,化纤产品的不可降解性使得其在废弃之后对土壤环境造成负担,因此,绿色材料还需具备可降解,可回收的特点。最后,由于化纤产品加工困难,因此造成了能源的浪费,这就要求绿色材料是易加工的。 (二)绿色设计。绿色设计是绿色制造的核心,因为绿色设计需要贯穿了产品的整个生命周期,在产品设计的阶段就要将产品从生产到包装到最后的废弃和回收的环保性都要列入考虑,生产资源的选择,能源的最大化利用,产品的回收利用都是绿色设计要进行的工作,不仅要满足工艺技术的经济要求,更要保证绿色环保的环境需求。 (三)绿色工艺。首先要选择正确适合的工艺方法,然后优化工艺操作,设计最高效的工艺方案,如此便能提高工作效率,减少资源的消耗,降低能源的消耗,将废气,污水一类的有害物质和污染物对生态环境的危害降至最低程度。 (四)绿色包装。绿色包装的设计要从以下三方面入手,首先是包装材料的选择,关于包装材料要求就是绿色环保,无害可降解,易回收,易加工;其次是包装结构的优化,包装结构应该尽量简化,不要铺张浪费;最后是使用后的包装和工艺废弃物的回收利用,以往包装材料在丢弃后,因为不可降解或者污染有毒,对生态环境造成了不小的破坏,而包装本身的丢弃也是对资源的极大浪费,所以采用可回收的材料,既不会造成环境负担,又减少了资源的浪费,一举两得。 三、绿色制造技术的应用 (一)包装材料。绿色包装的设计要求包装材料的绿色环 保,可回收利用,包装避繁就简。常见的纺织产品的包装材料有瓦楞纸,木材和塑料等。瓦楞纸纸板的特点是易回收,但是不够坚固耐用,并且需要前期加工,既浪费资源也不环保;木板的坚固程度足够,可是作为不可再生资源,过度的木材使用会导致生态发展不平衡,也不利于环境保护;塑料包装有着木材与纸板不可替代的特点,轻便耐用又方便生产,但是也有不可降解的缺点,也不是最佳的绿色包装材料。目前最好的绿色包装材料是纸浆模塑和蜂窝纸板,两者的组合成为蜂窝纸芯复合板,这种包装材料无污染易回收,是绿色包装的最好选择。 (二)计算机辅助设计。纺织机械的绿色设计可利用现代计算机技术,设计无纸化减少了木材资源的浪费,节约了资源的同时,高科技技术还可以减少设计周期,强化设计蓝图,大大提高了工作效率,以及纺织产品的质量。现如今结合了计算机技术的三维软件可以模拟纺织机械的各个零部件的受力情况并对其进行相关性能的校对检测。 (三)工艺规划。 纺织机械制造的工艺规划的目标体系为 TQCSRE体系,关键在于分析资源消耗R与环境影响E的关系。例如,通过分析生产资源的消耗与废物产生量间的关系,经过分析纺织机械工艺在这之中的作用,研发出优化的绿色工艺。 结语 随着环境问题成为如今的 热点 话题,环保的浪潮也渐渐影响到了制造业。传统的制造模式已经不再适用于当今社会的发展潮流,纺织机械的绿色制造发展迫在眉睫。绿色资源与绿色技术的推进是不仅有利于环境负担的减少,更能实现资源利用的最大化。绿色制造兼顾了环保与经济的双向发展,更揭示了人与自然和谐发展才是社会发展的正确道路。 猜你喜欢: 1. 浅谈机械制造专业毕业论文范文 2. 机械毕业论文范例 3. 机械毕业论文范文大全 4. 大学毕业论文机械范文 5. 机械毕业论文范文参考 6. 3000字机械类论文

送料机械结构设计毕业论文

随着社会的进步,工业的发展,我国机械制造业得到了巨大的发展。下文是我为大家整理的关于机械设计方面毕业论文例文参考的内容,欢迎大家阅读参考!

浅析大型机械驾驶室减振设计

摘要:本文概述了工程机械减振技术的发展概况,并以大型机械的驾驶室减振设计为背景,探讨了发动机悬置设计的基本原则,并对发动机减振的布置的力学特性进行分析,最后提出了以驾驶室模态试验为基础来检验现有类型的驾驶室的结构弱点检验和构件加强的方法。

关键词:机械 驾驶室 减振设计

1、概述

工程机械在水利工程、道路施工、矿山等场合得到大量的使用,其性能的可靠性直接影响到工程建设的正常开展。这类机械的设计时通常采用静态设计,设计理念上更多的是考虑机械的强度、耐久性等和机械的工作性质直接相关因素。但从实际使用情况来看,国产的大型工程机械普遍存在着施工过程中振动过大的问题,这将间接影响设备的抗疲劳特性和操作人员的舒适性和操作的稳定性。

由于工程机械的工作环境恶劣,车体结构的振动问题更加明显,直接影响到驾驶员的舒适性和驾驶的安全性。因此对于大型工程机械而言,控制车体振动尤其是驾驶室的振动,寻求有效的减震设计方法,对于提高驾驶员的舒适度和车体驾驶室构件的疲劳寿命都是有重要意义的。大型工程机械的振动控制问题是个非常复杂的问题,本文将这一问题缩小到驾驶室的减振设计上,主要通过发动机悬置位置的优化设计,以及基于模态分析和被动隔振理论来降低驾驶室的振动效应。

早期的汽车发动机减振方法是利用硫化橡胶,但硫化橡胶在耐油和耐高温方面表现不够理想。20世纪40年代设计出了液压悬置装置来降低发动机的振幅,并取得了较好的使用效果。但液压悬置减振装置在高频激励下会出现动态硬化的问题,已经逐渐不适应汽车发动机减振的要求。

上述几类减振方式都属于被动减振技术,在此基础上,随着发动机减振技术的进步,半主动减振技术开始应用到发动机减振中,这类减振技术的代表作是半主动控制式液压悬置装置,这类减振技术的应用最为广泛。尽管后来又出现了由被动减振器、激振器等所构成的主动减振技术,这一技术能够较好的实现降噪性能,但结构非常复杂,在恶劣工作环境下的工程车辆较少使用。

在工程车辆驾驶室的舒适度设计方面,主要所依据的是动态舒适性理论,用以评价驾驶人员在驾驶室振动的条件下对主观舒适程度。从驾驶员所承受的振动来源来看,主要是受发动机的周期性振动和来自于路面的随机激励。其传递机理较为复杂,跟发动机、驾驶室、座椅等的减振都有关系。因此为便于分析,本文中只针对驾驶室的减振问题展开研究。

2、大型工程机械驾驶室的减振设计

如前文所述,驾驶室的振源激励主要来自于路面和发动机及其传动机构。来自于路面的振源激励具有很大的随机性,要进行理论分析非常困难。加之在需要使用大型工程机械的场合机械的运动速度一般都较慢,随之产生的路面激振频率较低。因此相比之下,大型机械的发动机在运行时一直都处在高速运转状态,由此产生的激振频率很高,也更容易导致构件的疲劳损坏,实践证明发动机及其附件的疲劳损坏主要是由发动机周期激振力产生的交变应力引起的。从物理背景来看,工程机械的驾驶室所受到的振动激励主要来从车架传递到台架,驾驶室的振动行为属于被动响应。为了便于分析,将驾驶室的隔振系统进行简化,以单自由度弹簧阻尼系统来对驾驶室受到振动激励过程进行分析。

2.1发动机的悬置设计

发动机在工作过程中的振动原因主要是不平衡力和力矩,这类振动不仅会引起车架的的振动,也会形成较强烈的噪声,不仅会影响到构件的使用寿命也会影响驾驶员的舒适度。要缓解发动机振动所造成的负面影响,采用悬置的设计方式是比较有效的途径,其实现方式是在动力总成和车架之间加入弹性支承元件。悬置设计方式的理论基础是发动机解耦理论,通过解除发动机六个自由度解耦,改变发动机的支撑位置,从而实现发动机自由度间振动耦合的解除。

此外,需要配合使用解除耦合后的各自由度方向的刚度与相应的阻尼系数,但应注意在解耦之后振动最强的自由度方向的共振控制,可应用主动隔振理论来确定减震器的刚度和阻尼系数。采用合适的刚度和阻尼系数的目的在于控制发动机悬置系统的减振区域。

具体到悬置设计的细节方面,主要是确定发动机支撑的数目和相应的布置位置。在考虑发动机动力总成悬置系统的支撑数目时,考虑的因素包括承重量和激振力两大类。在设计时通常都会依据车辆类型的不同选择三点或者四点支撑方式。对于大型机械而言,在实践中一般都会采用四点支撑的方式,本文中作为算例的发动机属于某型重型挖掘机的发动机。因此采用经典的四点支撑。其支撑位置选择在飞轮端和风扇端,上述两个位置分别设置两个对称的支撑点,采用支撑对称的目的在于后期解耦方便。从布置的方式上看,主要有平置、汇聚和斜置三种典型布置方式,具体采用哪种方式取决于发动机周围附属配件的布局方式以及车架所能提供的空间有关。本文中不重点讨论减振支撑的布置方式,因此仍然采用平置式的减振布置方式。

2.2悬置系统的动力学分析

为减少研究成本,在支撑的材料上选用橡胶减振器。由前节所述,由于采用的是四个平置式的橡胶减震器,因此可以在进行力学分析时将其简化为三个互相垂直的弹簧阻尼系统,从而可以构建一个发动机主动隔振的力学模型。

2.3驾驶室模态试验

在上述基本力学分析的基础上,进一步采用驾驶室模态试验的方法来检验整个驾驶室的减振效果,其目的在于掌握驾驶室的动态特性和找出驾驶室结构上的薄弱部位,同时以试验为基础还可以调整驾驶室减震器的系数匹配,减小驾驶室的整体振动响应。在试验时以快速傅里叶变换为以及,测量激振力和振动响应之间的关系,从而得到二者之间的传递函数,而模态分析的目的是通过实现来实现传递函数的曲线拟合和确定结构的模态参数。本试验中采用LMS模态测试分析软件,驾驶室所受的激振用力锤激振器来模拟。

在试验时用力锤敲击驾驶室从而制造出1-200HZ脉冲信号。通过记录下在不同激振频率下驾驶室结构的反应来确定驾驶室各个构件的强度,以及应该避免的激振频率。在得到这些基础数据后可为后续的驾驶室减振设计的选择悬置系统的减振区域的临界值,使得驾驶室所有构件的固有频率都能够位于减振器的减振区域内,从而起到抑制驾驶室结构的振动响应。

参考文献

[1]司爱国.轮式装载机行驶稳定系统开发与研究[D].北京:北京科技大学硕士学位论文.

[2]王敏.轻卡动力总成悬置系统的隔振性能[D].合肥:合肥工业大学硕士学位论文.

浅谈机械的可靠性设计

【摘要】本文主要叙述机械可靠性设计的一些基本内容,在此基础上进一步的分析了机械可靠性的优化设计,以及重点的分析了机械可靠性设计的稳健设计,希望能够对我国的机械可靠性设计发展有所帮助。

【关键词】机械可靠性设计;发展沿革;优化设计;稳健设计

引言:20世纪40年代的时候出现了可靠性设计思想,这种思想主要是将安全度作为主题所研究的可靠性理论,这项技术出现后在理论学术界以及实际工程界都有了很大的关注度,相关的理论以及方式也是不断的出现。比如:M onte C arlo 模拟法 、矩方法和以矩方法为基础的可靠性理论、响应面法、支持向量机法 、最大熵方法、随机有限元法和非概率分析方法等这些理论设计到了静强设计、疲劳强度设计、有限寿命设计的各个方面,对于结构系统、机构系统、震动系统等有这可靠性的研究。

1.机械可靠性设计的概述

在产品质量中可靠性是其最为主要的指标以及最重要的技术指标,工程界对于这一点也是越来越重视。在产品的设计、研制、装配、调试等各个环节中可靠性都有着一定的关联性,所以说在概率统计理论的基础上要加大其的推广认识,这样对于原本传统的相关问题能够很好的解决点,同时将产品质量提升上去而且使得产品成本有所降低。经过多年的发展,可靠性技术的不断发展,使得机械可靠性以及设计方式出现了很好的种类,但是就具体的实质来说,大致的分为数学模型法以及物流原因方式两种。

数学模型法就是通过某种实验数据所得概率统计为基础,逐渐的划分为两点,第一点为时间范畴中所涉及的量是可靠性质的,也是就是说因为依据某种规律在时间变动下,疲劳寿命以及耗损失都是在一定的范围之内的;第二种为,将某种偶然因素所发生结果所表现的可靠性,主要是因为不定期所出现的偶然因素所波动的,都是通过概率可靠性对于随机事件计算的,也会发展为两个方面:第一种是对模型法或者相关扩展方式,这样的方式主要是对于产品实效原因产生与产品上应力大于产品本身的强度,所以说应力概率是低于可靠度强度的,第二种为随即过程中或者是随机场不超出规定水准的概率。

2.可靠性优化设计

2.1可靠性优化设计的基本理论

无论是什么样的机械产品,在最开始的方案构建到后期的生产制造实施,都是需要经过一个设计过程的,但是现在计算不断发展,新的知识、新的材料、新的手工艺、新的会计不断的出现,使得机械产品日益在完善,这就是所谓的知识成就了技术、技术成就了产品时间。使得研究的时间越来越短,但是结构确实越来越复杂,这样的情况下顾客对于产品功能、性能、质量、或者是相关服务都有着很大的要求。

这样的趋势下,对于设计整个过程要加大进度,设计周期要缩短。同时需要注意的是,对于设计是不是能够完善来说,产品的力学性能或者是使用价值、制造成本都是有着一定行的影响的,但是对于产品企业的工作质量或者是仅仅效果也是有着相对影响的,所以说,如何将设计质量提升上去,设计理论怎么发展下去,设计技术怎么做到更好,设计过程怎么才能加快嫉妒,都是现在机械设计中所研究的重要问题。

60年代的时候是机械优化设计发展最为迅速的时候,将数学规划以及计算机技术这两种结合在一起。所谓的数学规划理念在现在已经是不断的成熟起来,计算机技术也是高速的发展和广泛的使用中,在工程设计中为最普遍使用优化设计提供相关理论以及方式。

国家能源以及相关资源的是否被合理使用都受到了产品最佳、最可靠性的问题影响,通过使用最佳或者是最可靠性设计能够得到小体积、轻质量、节能材料的产品,同时这样产品有着一定的可靠性,机械产品所进行优化设计的主要目标就是根据一定的预期点或者是安全需要,通过一种最优化的形式将产品展示处理,在进行设计的同时需要将各种载荷随机性考虑到位,同时不能忽略的是结构参数的随机性,这两点对于产品都有着一定性能的影响。

所谓的可靠性优化设计是指质量、成本、可靠度这三方面的,将产品的总体可靠度进行一定的性能约束优化,将所出现的问题合理安全性的相结合,这样也是在结构布局或者是产品质量有保证情况,使得产品有了最大化的可靠度。

2.2近年来可靠性优化设计发展

最近的30年内,机械设计领域中,因为科技的融入使得现代化设计方式以及相关的科学方式不断的出现,在可靠性设计或者是优化设计方面一定有着很高的水准,但是就单方面来说,无论是可靠性设计或者是优化设计,都不能很好的将其所具备的巨大潜力展示出来。一点是因为可靠性设计和优化设计是不相同的,在机械产品经过可靠性设计之后,不能将其工作性能或者是参数达到最为优秀的一点,还有一点是因为优化设计所包含的不是可靠性设计,机械产品要是在不可靠性情况下所进行的优化设计,不能保证产品在一定的条件下或者是时间内,能够将所规定的功能很好的完成,有的时候也许会出现一定的事故,这样直接都有着经济损失。

除此之外,因为机械产品有着很多的设计参数,要是对于多个设计参数进行确定的时候,单纯的可靠性设计就不是这样有地位了,所以在进行可靠性优化设计研究的前提下,要将机械产品可靠性要求先保证,同时保证所运行的环境是最佳的工作性能以及参数,将可靠性或者是优化性设计很好的结合在一起,然后在发展研究设计,才能得出最为优秀的设计方式。

2.2关于可靠性的稳健设计

产品质量是企业赢得用户的关键因素 。任何一种产品,它的总体质量一般可分为用户质量if't-部质量)和技术质量(内部质量)。前者是指用户所能感受到、见到、触到或听到的体现产品优劣的一些质量特性 ;后者是指产品在优良的设计和制造质量下达到理想功能 的稳健性。稳健设计作为一种低成本和高质量的设计思想和方法,对产 品性能、质量和成本综合考虑,选择出最佳设计,不仅可以提高产品的质量,而且可以降低成本。在机械产 品设计中,正确地应用稳健设计的理论与方法可以使产品在制造和使用中,或是在规定的寿命期 问内当设计因素发生微小变化时都能保证产品质量的稳定 。

结束语:总而言之,对于机械的可靠性设计而言,设计人员应该根据实际,做出最优的设计,只有这样的设计才能将可靠性或者是优化设计巨大潜力发挥出来,将两点所具有的优势已近特长全部发挥出来,才能达到产品最佳以及最可靠点,这样的设计有着最为先进和最实用的设计特点,才能最好的达到预定的目标,和保证在设计中的机械产品的质量以及经济效益。

【参考文献】

[1]杨为民,盛~兴.系统可靠性数字仿真[M ].北京:北京航空航天大学出版社,1990.

[2]谢里阳,何雪法,李佳.机电系统可靠性与安全性设计[M].哈尔滨:哈尔滨工业大学出版社,2006.

[3]阎楚良,杨方飞.机械数字化设计新技术[M ].北京:机械工业 出版.2007.

[4]张义民,刘巧伶.多随机参数结构可靠性分析的随机有限元法[J] 东北工学院学报,2012,13(增刊):97.99

[5] 金雅娟,张义民,张艳林,等.任意分布参数的涡轮盘裂纹扩展寿命可靠性分析[J].工程设计学报,2009,l6(3):196-199 .

先给你发点类似的看看,满意的话加分,给你发一篇完整的,不满意就算了。摘要 1第一章 机械手设计任务书 11.1毕业设计目的 11.2本课题的内容和要求 2第二章 抓取机构设计 42.1手部设计计算 42.2腕部设计计算 72.3臂伸缩机构设计 8第三章 液压系统原理设计及草图 113.1手部抓取缸 113.2腕部摆动液压回路 123.3小臂伸缩缸液压回路 133.4总体系统图 14第四章 机身机座的结构设计 154.1电机的选择 164.2减速器的选择 174.3螺柱的设计与校核 17第五章 机械手的定位与平稳性 195.1常用的定位方式 195.2影响平稳性和定位精度的因素 195.3机械手运动的缓冲装置 20第六章 机械手的控制 21第七章 机械手的组成与分类 227.1机械手组成 227.2机械手分类 24第八章 机械手Solidworks三维造型 258.1上手爪造型 268.2螺栓的绘制 30毕业设计感想 35参考资料 36送料机械手设计及Solidworks运动仿真摘要本课题是为普通车床配套而设计的上料机械手。工业机械手是工业生产的必然产物,它是一种模仿人体上肢的部分功能,按照预定要求输送工件或握持工具进行操作的自动化技术设备,对实现工业生产自动化,推动工业生产的进一步发展起着重要作用。因而具有强大的生命力受到人们的广泛重视和欢迎。实践证明,工业机械手可以代替人手的繁重劳动,显著减轻工人的劳动强度,改善劳动条件,提高劳动生产率和自动化水平。工业生产中经常出现的笨重工件的搬运和长期频繁、单调的操作,采用机械手是有效的。此外,它能在高温、低温、深水、宇宙、放射性和其他有毒、污染环境条件下进行操作,更显示其优越性,有着广阔的发展前途。本课题通过应用AutoCAD 技术对机械手进行结构设计和液压传动原理设计,运用Solidworks技术对上料机械手进行三维实体造型,并进行了运动仿真,使其能将基本的运动更具体的展现在人们面前。它能实行自动上料运动;在安装工件时,将工件送入卡盘中的夹紧运动等。上料机械手的运动速度是按着满足生产率的要求来设定。关键字 机械手,AutoCAD,Solidworks 。第一章 机械手设计任务书1.1毕业设计目的毕业设计是学生完成本专业教学计划的最后一个极为重要的实践性教学环节,是使学生综合运用所学过的基本理论、基本知识与基本技能去解决专业范围内的工程技术问题而进行的一次基本训练。这对学生即将从事的相关技术工作和未来事业的开拓都具有一定意义。其主要目的:一、 培养学生综合分析和解决本专业的一般工程技术问题的独立工作能力,拓宽和深化学生的知识。二、 培养学生树立正确的设计思想,设计构思和创新思维,掌握工程设计的一般程序规范和方法。三、 培养学生树立正确的设计思想和使用技术资料、国家标准等手册、图册工具书进行设计计算,数据处理,编写技术文件等方面的工作能力。四、 培养学生进行调查研究,面向实际,面向生产,向工人和技术人员学习的基本工作态度,工作作风和工作方法。1.2本课题的内容和要求(一、)原始数据及资料(1、)原始数据:a、 生产纲领:100000件(两班制生产)b、 自由度(四个自由度)臂转动180?臂上下运动 500mm臂伸长(收缩)500mm手部转动 ±180?(2、)设计要求:a、上料机械手结构设计图、装配图、各主要零件图(一套)b、液压原理图(一张)c、机械手三维造型d、动作模拟仿真e、设计计算说明书(一份)(3、)技术要求主要参数的确定:a、坐标形式:直角坐标系b、臂的运动行程:伸缩运动500mm,回转运动180?。c、运动速度:使生产率满足生产纲领的要求即可。d、控制方式:起止设定位置。e、定位精度:±0.5mm。f、手指握力:392Ng、驱动方式:液压驱动。(二、)料槽形式及分析动作要求( 1、)料槽形式由于工件的形状属于小型回转体,此种形状的零件通常采用自重输送的输料槽,如图1.1所示,该装置结构简单,不需要其它动力源和特殊装置,所以本课题采用此种输料槽。图1.1机械手安装简易图(2、)动作要求分析如图1.2所示动作一:送 料动作二:预夹紧动作三:手臂上升动作四:手臂旋转动作五:小臂伸长动作六:手腕旋转预夹紧手臂上升手臂旋转小臂伸长手腕旋转手臂转回图1.2 要求分析第二章 抓取机构设计2.1手部设计计算一、对手部设计的要求1、有适当的夹紧力手部在工作时,应具有适当的夹紧力,以保证夹持稳定可靠,变形小,且不损坏工件的已加工表面。对于刚性很差的工件夹紧力大小应该设计得可以调节,对于笨重的工件应考虑采用自锁安全装置。2、有足够的开闭范围夹持类手部的手指都有张开和闭合装置。工作时,一个手指开闭位置以最大变化量称为开闭范围。对于回转型手部手指开闭范围,可用开闭角和手指夹紧端长度表示。手指开闭范围的要求与许多因素有关,如工件的形状和尺寸,手指的形状和尺寸,一般来说,如工作环境许可,开闭范围大一些较好,如图2.1所示。图2.1 机械手开闭示例简图3、力求结构简单,重量轻,体积小手部处于腕部的最前端,工作时运动状态多变,其结构,重量和体积直接影响整个机械手的结构,抓重,定位精度,运动速度等性能。因此,在设计手部时,必须力求结构简单,重量轻,体积小。4、手指应有一定的强度和刚度5、其它要求因此送料,夹紧机械手,根据工件的形状,采用最常用的外卡式两指钳爪,夹紧方式用常闭史弹簧夹紧,松开时,用单作用式液压缸。此种结构较为简单,制造方便。二、拉紧装置原理如图2.2所示【4】:油缸右腔停止进油时,弹簧力夹紧工件,油缸右腔进油时松开工件。图2.2 油缸示意图1、右腔推力为FP=(π/4)D?P (2.1)=(π/4) 0.5? 25 10?=4908.7N2、根据钳爪夹持的方位,查出当量夹紧力计算公式为:F1=(2b/a) (cosα′)?N′ (2.2)其中 N′=4 98N=392N,带入公式2.2得:F1=(2b/a) (cosα′)?N′=(2 150/50) (cos30?)? 392=1764N则实际加紧力为 F1实际=PK1K2/η (2.3)=1764 1.5 1.1/0.85=3424N经圆整F1=3500N3、计算手部活塞杆行程长L,即L=(D/2)tgψ (2.4)=25×tg30?=23.1mm经圆整取l=25mm4、确定"V"型钳爪的L、β。取L/Rcp=3 (2.5)式中: Rcp=P/4=200/4=50 (2.6)由公式(2.5)(2.6)得:L=3×Rcp=150取"V"型钳口的夹角2α=120?,则偏转角β按最佳偏转角来确定,查表得:β=22?39′5、机械运动范围(速度)【1】(1)伸缩运动 Vmax=500mm/sVmin=50mm/s

反击式破碎机结构设计毕业论文

反击式破碎机,又称反击破,主要用于冶金、化工、建材、水电等经常需要搬迁的物料的加工,特别是高速公路、铁路、水电等流动石料的作业。根据原材料的种类、加工材料的规模和成品材料的要求,可进行多种配置。

目前我国大部分的移动破碎站都是在城市拆迁中的建筑垃圾处理项目中使用的。将建筑垃圾破碎筛分成几种不同规模的循环再生骨料,是实现我国建筑垃圾资源再利用的基础。

反击式破碎机是借用冲击的能量达到破碎物料的模板需求的。当机器工作时,在电机的带动下,转子高速旋转,当物料进入板锤的作用区域时,其撞击并与转子上的板锤破碎,再一次抛入反击装置,再从反击衬反弹回到板锤作用区域再次断裂,重复此过程,将物料从大至小依次破碎成1、2、3个反击腔,直至物料破碎成所需的粒度。通过出口排出。

1.  反击式破碎机能更有效的处理含水量大的物料

当物料的含水量超过标准时,可在破碎机的反击板和进料槽可装配加热设施,以防止材料的粘合。反击式破碎机无需配备底筛板,有效防止堵塞。

2.  适应破碎机的材料硬度更广泛

反击式破碎机的板锤采用机械夹紧结构牢固地固定在转子上。当它与转子一起旋转时,有很大的转动惯量。与锤式破碎机(锤头悬空)相比,反击式破碎机的转子动量较大,适应较硬物料的破碎,同时能耗较低。

3.  调整出料尺寸方便灵活,调整范围广

反击破碎机可通过调整转子转速、调整反攻板与研磨腔的间隙等多种方式调节放电粒度。间隙调整可通过机械或液压类型进行调整。液压控制系统可通过按钮或距离控制系统的就地操作,方便地调整间隙。

上述介绍了反击式破碎机的结构、工作原理和技术优势,如果以上回答对您有用,请鼓励我为我点赞,让我能帮助更多的人,谢谢!

单转子反击式破碎机的构造,料块从进料口喂入,为了防止料块在破碎时飞出,在进料口进料方向装有链幕。喂入的料块落在篦条筛的上面,细小料块通过篦缝落到机壳的下部,大块的物料沿着筛面滑到转子上。在转子的圆周上固定安装着有一定高度的板锤,转子由电动机经V型皮带带动作高速转动。落在转子上面的料块受到高速旋转的板锤的冲击,获得动能后以高速向反击板撞击,接着又从反击板上反弹回来,在破碎区中又同被转子抛出的物料相碰撞。由 条筛、转子、反击板以及链幕所组成的空间称为第一冲击区;由反击板与转子之间组成的空间是第二冲击区。物料在第一冲击区受到互相冲击而破碎后,继而又进入第二冲击区受到再次的冲击粉碎。破碎后的物料经机壳下部的出料口卸出。反击板的一端用活链悬挂在机壳上,另一端用调节螺栓将其位置固定。当大块物料或难碎物件夹在转子与反击板之间的间隙时,反击板受到较大压力而使反击后移。

毕业论文设计v带传动机构

优点:结构简单、传动平稳、造价低廉、不需要润滑以及缓冲、吸震、易维护等特点。缺点滑动损失皮带在工作时,由于带轮两边的拉力差以及相应的变形经差形成弹性滑动,导致带轮与从动轮的速度损失。弹性滑动与载荷、速度、带轮直径和皮带的结构有关,弹性滑动率通常在1%-2%之间。有的皮带传动还有几何滑动。过载时将引起打滑,使皮带的运动处于不稳定状态,效率急剧下降,磨损加剧,严重影响皮带的寿命。滞后损失皮带在运行中会产生反复伸缩,特别是带轮上的绕曲会使皮带体内部产生摩擦引起功率损失。空气阻力高速传动时,运动中的风阻将引起转矩损耗,其损耗值与速度的平方成正比。因此,设计高速皮带传动时,皮带的表面积宜小,尽量用厚而窄的皮带,带轮的轮辐面要平滑,或用辐板以减小风阻。

械设计课程设计任务书 设计题目:带式运输机传动装置设计 布置形式:设计用于带式运输机的一级直齿圆柱齿轮减速器(Ⅰ) 传动简图 原始数据: 数据编号 1 2 3 4 5 6 运输带工作拉力F/N 800 850 1150 运输带工作速度v/(m/s) 1.5 1.6 1.7 1.5 1.55 1.6 卷筒直径D/mm 250 260 270 240 250 260 工作条件:一班制,连续单向运转。载荷平稳,室内工作,有粉尘。 使用期限:10 年 生产批量:10 套 动力来源:三相交流电(220V/380V ) 运输带速度允许误差:±5% 。 提问者: 浪人5 - 试用期 一级 其他回答 共 1 条 这个是我好不容易才找到的,一个东东啊,你可以自己看看啊,就差不多能自己理解了。。。给我你的邮箱发给你啊!我的是 目 录 设计任务书…………………………………………………2 第一部分 传动装置总体设计……………………………4 第二部分 V带设计………………………………………6 第三部分 各齿轮的设计计算……………………………9 第四部分 轴的设计………………………………………13 第五部分 校核……………………………………………19 第六部分 主要尺寸及数据………………………………21 设 计 任 务 书 一、 课程设计题目: 设计带式运输机传动装置(简图如下) 原始数据: 数据编号 3 5 7 10 运输机工作转矩T/(N.m) 690 630 760 620 运输机带速V/(m/s) 0.8 0.9 0.75 0.9 卷筒直径D/mm 320 380 320 360 工作条件: 连续单向运转,工作时有轻微振动,使用期限为10年,小批量生产,单班制工作(8小时/天)。运输速度允许误差为 。 二、 课程设计内容 1)传动装置的总体设计。 2)传动件及支承的设计计算。 3)减速器装配图及零件工作图。 4)设计计算说明书编写。 每个学生应完成: 1) 部件装配图一张(A1)。 2) 零件工作图两张(A3) 3) 设计说明书一份(6000~8000字)。 本组设计数据: 第三组数据:运输机工作轴转矩T/(N.m) 690 。 运输机带速V/(m/s) 0.8 。 卷筒直径D/mm 320 。 已给方案:外传动机构为V带传动。 减速器为两级展开式圆柱齿轮减速器。 第一部分 传动装置总体设计 一、 传动方案(已给定) 1) 外传动为V带传动。 2) 减速器为两级展开式圆柱齿轮减速器。 3) 方案简图如下: 二、该方案的优缺点: 该工作机有轻微振动,由于V带有缓冲吸振能力,采用V带传动能减小振动带来的影响,并且该工作机属于小功率、载荷变化不大,可以采用V带这种简单的结构,并且价格便宜,标准化程度高,大幅降低了成本。减速器部分两级展开式圆柱齿轮减速,这是两级减速器中应用最广泛的一种。齿轮相对于轴承不对称,要求轴具有较大的刚度。高速级齿轮常布置在远离扭矩输入端的一边,以减小因弯曲变形所引起的载荷沿齿宽分布不均现象。原动机部分为Y系列三相交流 异步电动机。 总体来讲,该传动方案满足工作机的性能要求,适应工作条件、工作可靠,此外还结构简单、尺寸紧凑、成本低传动效率高。 计 算 与 说 明 结果 三、原动机选择(Y系列三相交流异步电动机) 工作机所需功率: =0.96 (见课设P9) 传动装置总效率: (见课设式2-4) (见课设表12-8) 电动机的输出功率: (见课设式2-1) 取 选择电动机为Y132M1-6 m型 (见课设表19-1) 技术数据:额定功率( ) 4 满载转矩( ) 960 额定转矩( ) 2.0 最大转矩( ) 2.0 Y132M1-6电动机的外型尺寸(mm): (见课设表19-3) A:216 B:178 C:89 D:38 E:80 F:10 G:33 H:132 K:12 AB:280 AC:270 AD:210 HD:315 BB:238 L:235 四、传动装置总体传动比的确定及各级传动比的分配 1、 总传动比: (见课设式2-6) 2、 各级传动比分配: (见课设式2-7) 初定 第二部分 V带设计 外传动带选为 普通V带传动 1、 确定计算功率: 1)、由表5-9查得工作情况系数 2)、由式5-23(机设) 2、选择V带型号 查图5-12a(机设)选A型V带。 3.确定带轮直径 (1)、参考图5-12a(机设)及表5-3(机设)选取小带轮直径 (电机中心高符合要求) (2)、验算带速 由式5-7(机设) (3)、从动带轮直径 查表5-4(机设) 取 (4)、传动比 i (5)、从动轮转速 4.确定中心距 和带长 (1)、按式(5-23机设)初选中心距 取 (2)、按式(5-24机设)求带的计算基础准长度L0 查图.5-7(机设)取带的基准长度Ld=2000mm (3)、按式(5-25机设)计算中心距:a (4)、按式(5-26机设)确定中心距调整范围 5.验算小带轮包角α1 由式(5-11机设) 6.确定V带根数Z (1)、由表(5-7机设)查得dd1=112 n1=800r/min及n1=980r/min时,单根V带的额定功率分呷为1.00Kw和1.18Kw,用线性插值法求n1=980r/min时的额定功率P0值。 (2)、由表(5-10机设)查得△P0=0.11Kw (3)、由表查得(5-12机设)查得包角系数 (4)、由表(5-13机设)查得长度系数KL=1.03 (5)、计算V带根数Z,由式(5-28机设) 取Z=5根 7.计算单根V带初拉力F0,由式(5-29)机设。 q由表5-5机设查得 8.计算对轴的压力FQ,由式(5-30机设)得 9.确定带轮的结构尺寸,给制带轮工作图 小带轮基准直径dd1=112mm采用实心式结构。大带轮基准直径dd2=280mm,采用孔板式结构,基准图见零件工作图。 第三部分 各齿轮的设计计算 一、高速级减速齿轮设计(直齿圆柱齿轮) 1.齿轮的材料,精度和齿数选择,因传递功率不大,转速不高,材料按表7-1选取,都采用45号钢,锻选项毛坯,大齿轮、正火处理,小齿轮调质,均用软齿面。齿轮精度用8级,轮齿表面精糙度为Ra1.6,软齿面闭式传动,失效形式为占蚀,考虑传动平稳性,齿数宜取多些,取Z1=34 则Z2=Z1i=34×2.62=89 2.设计计算。 (1)设计准则,按齿面接触疲劳强度计算,再按齿根弯曲疲劳强度校核。 (2)按齿面接触疲劳强度设计,由式(7-9) T1=9.55×106×P/n=9.55×106×5.42/384=134794 N?mm 由图(7-6)选取材料的接触疲劳,极限应力为 бHILim=580 бHILin=560 由图 7-7选取材料弯曲疲劳极限应力 бHILim=230 бHILin=210 应力循环次数N由式(7-3)计算 N1=60n, at=60×(8×360×10)=6.64×109 N2= N1/u=6.64×109/2.62=2.53×109 由图7-8查得接触疲劳寿命系数;ZN1=1.1 ZN2=1.04 由图7-9查得弯曲 ;YN1=1 YN2=1 由图7-2查得接触疲劳安全系数:SFmin=1.4 又YST=2.0 试选Kt=1.3 由式(7-1)(7-2)求许用接触应力和许用弯曲应力 将有关值代入式(7-9)得 则V1=(πd1tn1/60×1000)=1.3m/s ( Z1 V1/100)=1.3×(34/100)m/s=0.44m/s 查图7-10得Kv=1.05 由表7-3查和得K A=1.25.由表7-4查得Kβ=1.08.取Kα=1.05.则KH=KAKVKβKα=1.42 ,修正 M=d1/Z1=1.96mm 由表7-6取标准模数:m=2mm (3) 计算几何尺寸 d1=mz1=2×34=68mm d2=mz2=2×89=178mm a=m(z1+z2)/2=123mm b=φddt=1×68=68mm 取b2=65mm b1=b2+10=75 3.校核齿根弯曲疲劳强度 由图7-18查得,YFS1=4.1,YFS2=4.0 取Yε=0.7 由式(7-12)校核大小齿轮的弯曲强度. 二、低速级减速齿轮设计(直齿圆柱齿轮) 1.齿轮的材料,精度和齿数选择,因传递功率不大,转速不高,材料按表7-1选取,都采用45号钢,锻选项毛坯,大齿轮、正火处理,小齿轮调质,均用软齿面。齿轮精度用8级,轮齿表面精糙度为Ra1.6,软齿面闭式传动,失效形式为点蚀,考虑传动平稳性,齿数宜取多些,取Z1=34 则Z2=Z1i=34×3.7=104 2.设计计算。 (1) 设计准则,按齿面接触疲劳强度计算,再按齿根弯曲疲劳强度校核。 (2)按齿面接触疲劳强度设计,由式(7-9) T1=9.55×106×P/n=9.55×106×5.20/148=335540 N?mm 由图(7-6)选取材料的接触疲劳,极限应力为 бHILim=580 бHILin=560 由图 7-7选取材料弯曲疲劳极阴应力 бHILim=230 бHILin=210 应力循环次数N由式(7-3)计算 N1=60n at=60×148×(8×360×10)=2.55×109 N2= N1/u=2.55×109/3.07=8.33×108 由图7-8查得接触疲劳寿命系数;ZN1=1.1 ZN2=1.04 由图7-9查得弯曲 ;YN1=1 YN2=1 由图7-2查得接触疲劳安全系数:SFmin=1.4 又YST=2.0 试选Kt=1.3 由式(7-1)(7-2)求许用接触应力和许用弯曲应力 将有关值代入式(7-9)得 则V1=(πd1tn1/60×1000)=0.55m/s ( Z1 V1/100)=0.55×(34/100)m/s=0.19m/s 查图7-10得Kv=1.05 由表7-3查和得K A=1.25.由表7-4查得Kβ=1.08.取Kα=1.05.则KH=KAKVKβKα=1.377 ,修正 M=d1/Z1=2.11mm 由表7-6取标准模数:m=2.5mm (3) 计算几何尺寸 d1=mz1=2.5×34=85mm d2=mz2=2.5×104=260mm a=m(z1+z2)/2=172.5mm b=φddt=1×85=85mm 取b2=85mm b1=b2+10=95 3.校核齿根弯曲疲劳强度 由图7-18查得,YFS1=4.1,YFS2=4.0 取Yε=0.7 由式(7-12)校核大小齿轮的弯曲强度. 总结:高速级 z1=34 z2=89 m=2 低速级 z1=34 z2=104 m=2.5 第四部分 轴的设计 高速轴的设计 1.选择轴的材料及热处理 由于减速器传递的功率不大,对其重量和尺寸也无特殊要求故选择常用材料45钢,调质处理. 2.初估轴径 按扭矩初估轴的直径,查表10-2,得c=106至117,考虑到安装联轴器的轴段仅受扭矩作用.取c=110则: D1min= D2min= D3min= 3.初选轴承 1轴选轴承为6008 2轴选轴承为6009 3轴选轴承为6012 根据轴承确定各轴安装轴承的直径为: D1=40mm D2=45mm D3=60mm 4.结构设计(现只对高速轴作设计,其它两轴设计略,结构详见图)为了拆装方便,减速器壳体用剖分式,轴的结构形状如图所示. (1).各轴直径的确定 初估轴径后,即可按轴上零件的安装顺序,从左端开始确定直径.该轴轴段1安装轴承6008,故该段直径为40mm。2段装齿轮,为了便于安装,取2段为44mm。齿轮右端用轴肩固定,计算得轴肩的高度为4.5mm,取3段为53mm。5段装轴承,直径和1段一样为40mm。4段不装任何零件,但考虑到轴承的轴向定位,及轴承的安装,取4段为42mm。6段应与密封毛毡的尺寸同时确定,查机械设计手册,选用JB/ZQ4606-1986中d=36mm的毛毡圈,故取6段36mm。7段装大带轮,取为32mm>dmin 。 (2)各轴段长度的确定 轴段1的长度为轴承6008的宽度和轴承到箱体内壁的距离加上箱体内壁到齿轮端面的距离加上2mm,l1=32mm。2段应比齿轮宽略小2mm,为l2=73mm。3段的长度按轴肩宽度公式计算l3=1.4h;去l3=6mm,4段:l4=109mm。l5和轴承6008同宽取l5=15mm。l6=55mm,7段同大带轮同宽,取l7=90mm。其中l4,l6是在确定其它段长度和箱体内壁宽后确定的。 于是,可得轴的支点上受力点间的跨距L1=52.5mm,L2=159mm,L3=107.5mm。 (3).轴上零件的周向固定 为了保证良好的对中性,齿轮与轴选用过盈配合H7/r6。与轴承内圈配合轴劲选用k6,齿轮与大带轮均采用A型普通平键联接,分别为16*63 GB1096-1979及键10*80 GB1096-1979。 (4).轴上倒角与圆角 为保证6008轴承内圈端面紧靠定位轴肩的端面,根据轴承手册的推荐,取轴肩圆角半径为1mm。其他轴肩圆角半径均为2mm。根据标准GB6403.4-1986,轴的左右端倒角均为1*45。。 5.轴的受力分析 (1) 画轴的受力简图。 (2) 计算支座反力。 Ft=2T1/d1= Fr=Fttg20。=3784 FQ=1588N 在水平面上 FR1H= FR2H=Fr-FR1H=1377-966=411N 在垂直面上 FR1V= Fr2V=Ft- FR1V=1377-352=1025N (3) 画弯矩图 在水平面上,a-a剖面左侧 MAh=FR1Hl3=966 52.5=50.715N?m a-a剖面右侧 M’Ah=FR2Hl2=411 153=62.88 N?m 在垂直面上 MAv=M’AV=FR1Vl2=352×153=53.856 N?m 合成弯矩,a-a剖面左侧 a-a剖面右侧 画转矩图 转矩 3784×(68/2)=128.7N?m 6.判断危险截面 显然,如图所示,a-a剖面左侧合成弯矩最大、扭矩为T,该截面左侧可能是危险截面;b-b截面处合成湾矩虽不是最大,但该截面左侧也可能是危险截面。若从疲劳强度考虑,a-a,b-b截面右侧均有应力集中,且b-b截面处应力集中更严重,故a-a截面左侧和b-b截面左、右侧又均有可能是疲劳破坏危险截面。 7.轴的弯扭合成强度校核 由表10-1查得 (1)a-a剖面左侧 3=0.1×443=8.5184m3 =14.57 (2)b-b截面左侧 3=0.1×423=7.41m3 b-b截面处合成弯矩Mb: =174 N?m =27 8.轴的安全系数校核:由表10-1查得 (1)在a-a截面左侧 WT=0.2d3=0.2×443=17036.8mm3 由附表10-1查得 由附表10-4查得绝对尺寸系数 ;轴经磨削加工, 由附表10-5查得质量系数 .则 弯曲应力 应力幅 平均应力 切应力 安全系数 查表10-6得许用安全系数 =1.3~1.5,显然S> ,故a-a剖面安全. (2)b-b截面右侧 抗弯截面系数 3=0.1×533=14.887m3 抗扭截面系数WT=0.2d3=0.2×533=29.775 m3 又Mb=174 N?m,故弯曲应力 切应力 由附表10-1查得过盈配合引起的有效应力集中系数 。 则 显然S> ,故b-b截面右侧安全。 (3)b-b截面左侧 WT=0.2d3=0.2×423=14.82 m3 b-b截面左右侧的弯矩、扭矩相同。 弯曲应力 切应力 (D-d)/r=1 r/d=0.05,由附表10-2查得圆角引起的有效应力集中系数 。由附表10-4查得绝对尺寸系数 。又 。则 显然S> ,故b-b截面左侧安全。 第五部分 校 核 高速轴轴承 FR2H=Fr-FR1H=1377-966=411N Fr2V=Ft- FR1V=1377-352=1025N 轴承的型号为6008,Cr=16.2 kN 1) FA/COr=0 2) 计算当量动载荷 查表得fP=1.2径向载荷系数X和轴向载荷系数Y为X=1,Y=0 =1.2×(1×352)=422.4 N 3) 验算6008的寿命 验算右边轴承 键的校核 键1 10×8 L=80 GB1096-79 则强度条件为 查表许用挤压应力 所以键的强度足够 键2 12×8 L=63 GB1096-79 则强度条件为 查表许用挤压应力 所以键的强度足够 联轴器的选择 联轴器选择为TL8型弹性联轴器 GB4323-84 减速器的润滑 1.齿轮的润滑 因齿轮的圆周速度<12 m/s,所以才用浸油润滑的润滑方式。 高速齿轮浸入油里约0.7个齿高,但不小于10mm,低速级齿轮浸入油高度约为1个齿高(不小于10mm),1/6齿轮。 2.滚动轴承的润滑 因润滑油中的传动零件(齿轮)的圆周速度V≥1.5~2m/s所以采用飞溅润滑, 第六部分 主要尺寸及数据 箱体尺寸: 箱体壁厚 箱盖壁厚 箱座凸缘厚度b=15mm 箱盖凸缘厚度b1=15mm 箱座底凸缘厚度b2=25mm 地脚螺栓直径df=M16 地脚螺栓数目n=4 轴承旁联接螺栓直径d1=M12 联接螺栓d2的间距l=150mm 轴承端盖螺钉直径d3=M8 定位销直径d=6mm df 、d1 、d2至外箱壁的距离C1=18mm、18 mm、13 mm df、d2至凸缘边缘的距离C2=16mm、11 mm 轴承旁凸台半径R1=11mm 凸台高度根据低速轴承座外半径确定 外箱壁至轴承座端面距离L1=40mm 大齿轮顶圆与内箱壁距离△1=10mm 齿轮端面与内箱壁距离△2=10mm 箱盖,箱座肋厚m1=m=7mm 轴承端盖外径D2 :凸缘式端盖:D+(5~5.5)d3 以上尺寸参考机械设计课程设计P17~P21 传动比 原始分配传动比为:i1=2.62 i2=3.07 i3=2.5 修正后 :i1=2.5 i2=2.62 i3=3.07 各轴新的转速为 :n1=960/2.5=3.84 n2=384/2.61=147 n3=147/3.07=48 各轴的输入功率 P1=pdη8η7 =5.5×0.95×0.99=5.42 P2=p1η6η5=5.42×0.97×0.99=5.20 P3=p2η4η3=5.20×0.97×0.99=5.00 P4=p3η2η1=5.00×0.99×0.99=4.90 各轴的输入转矩 T1=9550Pdi1η8η7/nm=9550×5.5×2.5×0.95×0.99=128.65 T2= T1 i2η6η5=128.65×2.62×0.97×0.99=323.68 T3= T2 i3η4η3=323.68×3.07×0.97×0.99=954.25 T4= T3 η2η1=954.23×0.99×0.99=935.26 轴号 功率p 转矩T 转速n 传动比i 效率η 电机轴 5.5 2.0 960 1 1 1 5.42 128.65 384 2.5 0.94 2 5.20 323.68 148 2.62 0.96 3 5.00 954.25 48 3.07 0.96 工作机轴 4.90 935.26 48 1 0.98 齿轮的结构尺寸 两小齿轮采用实心结构 两大齿轮采用复板式结构 齿轮z1尺寸 z=34 d1=68 m=2 d=44 b=75 d1=68 ha=ha*m=1×2=2mm hf=( ha*+c*)m=(1+0.25)×2=2.5mm h=ha+hf=2+2.5=4.5mm da=d1+2ha=68+2×2=72mm df=d1-2hf=68-2×2.5=63 p=πm=6.28mm s=πm/2=3.14×2/2=3.14mm e=πm/2=3.14×2/2=3.14mm c=c*m=0.25×2=0.5mm 齿轮z2的尺寸 由轴可 得d2=178 z2=89 m=2 b=65 d4=49 ha=ha*m=1×2=2mm h=ha+hf=2+2.5=4.5mm hf=(1+0.5)×2=2.5mm da=d2+2ha=178+2×2=182 df=d1-2hf=178-2×2.5=173 p=πm=6.28mm s=πm/2=3.14×2/2=3.14mm e=πm/2=3.14×2/2=3.14mm c=c*m=0.25×2=0.5mm DT≈ D3≈1.6D4=1.6×49=78.4 D0≈da-10mn=182-10×2=162 D2≈0.25(D0-D3)=0.25(162-78.4)=20 R=5 c=0.2b=0.2×65=13 齿轮3尺寸 由轴可得, d=49 d3=85 z3=34 m=2.5 b=95 ha =ha*m=1×2.5=2.5 h=ha+hf=2.5+3.125=5.625 hf=(ha*+c*)m=(1+0.25)×2.5=3.125 da=d3+2ha=85+2×2.5=90 df=d1-2hf=85-2×3.125=78.75 p=πm=3.14×2.5=7.85 s=πm/2=3.14×2.5/2=3.925 e=s c=c*m=0.25×2.5=0.625 齿轮4寸 由轴可得 d=64 d4=260 z4=104 m=2.5 b=85 ha =ha*m=1×2.5=2.5 h=ha+hf=2.5+3.25=5.625 hf=(ha*+c*)m=(1+0.25)×0.25=3.125 da=d4+2ha=260+2×2.5=265 df=d1-2hf=260-2×3.125=253.75 p=πm=3.14×2.5=7.85 s=e=πm/2=3.14×2.5/2=3.925 c=c*m=0.25×2.5=0.625 D0≈da-10m=260-10×2.5=235 D3≈1.6×64=102.4 D2=0.25(D0-D3)=0.25×(235-102.4)=33.15 r=5 c=0.2b=0.2×85=17 参考文献: 《机械设计》徐锦康 主编 机械工业出版社 《机械设计课程设计》陆玉 何在洲 佟延伟 主编 第3版 机械工业出版社 《机械设计手册》 设计心得 机械设计课程设计是机械课程当中一个重要环节通过了3周的课程设计使我从各个方面都受到了机械设计的训练,对机械的有关各个零部件有机的结合在一起得到了深刻的认识。 由于在设计方面我们没有经验,理论知识学的不牢固,在设计中难免会出现这样那样的问题,如:在选择计算标准件是可能会出现误差,如果是联系紧密或者循序渐进的计算误差会更大,在查表和计算上精度不够准 在设计的过程中,培养了我综合应用机械设计课程及其他课程的理论知识和应用生产实际知识解决工程实际问题的能力,在设计的过程中还培养出了我们的团队精神,大家共同解决了许多个人无法解决的问题,在这些过程中我们深刻地认识到了自己在知识的理解和接受应用方面的不足,在今后的学习过程中我们会更加努力和团结。 由于本次设计是分组的,自己独立设计的东西不多,但在通过这次设计之后,我想会对以后自己独立设计打下一个良好的基础。参考资料:机械设计基础

1、结合机床的拆装,分析带传动主要类型有哪些?各有什么特点? 2、影响带传动工作能力的因素有哪些? 3、带速为什么不宜太高也不宜太低? 4、带传动中的弹性滑动和打滑是怎样产生的?对带传动有何影响? 5、带传动的主要失效形式是什么?设计中怎样考虑? 6、为什么带传动通常布置在机器的高速级? 7、带传动在什么情况下才会发生打滑?打滑通常发生在大带轮上还是 小带轮上?刚开始打滑前,紧边拉力与松边拉力有什么关系? 8、何谓滑动率?滑动率如何计算? 9、带传动中带为何要张紧?如何张紧? 10、为什么V带轮轮槽槽角要小于40°?为什么V带轮的基准直径越 小,轮槽槽角就越小? 11、试分析带传动中参数?1、D1、i和a的大小对带传动的影响。 12、试分析比较普通V带、窄V带、多楔带、同步齿形带和高速带传 动的特点和应用范围。 13、与带传动相比,链传动有哪些优缺点? 14、滚子链是如何构成?其最主要的参数是什么?对传动有何影响? 15、为什么一般链节数选偶数,而链轮齿数多取奇数? 16、链传动中为什么小链轮的齿数不宜过少?而大链轮的齿数又不宜 过多? 17、何谓链传动的多边形效应?如何减轻多边形效应的影响? 18、在什么条件下链传动瞬时传动比为恒定?此时链速是否也恒定? 19、链传动的紧边拉力和松边拉力各由哪几部分组成? 20、简述滚子链传动的主要失效形式和原因。 21、简述滚子链传动的布置、润滑和张紧要点。 22、简述齿形链传动的特点。 习 题 1、一普通V带传动,已知带的型号为A,两轮基准直径分别为150 mm 和400 mm,初定中心距a = 4500 mm,小带轮转速为1460 r/min。 试求:(1)小带轮包角;(2)选定带的基准长度Ld;(3)不考虑带传动 的弹性滑动时大带轮的转速;(4)滑动率? =0.015时大带轮的实际转速;(5)确定实际中心距。 2、题1中的普通V带传动用于电动机与物料磨粉机之间,作减速传动, 每天工作8小时。已知电动机功率P = 4 kW,转速n1=1460 r/min,试求所需A型带的根数。 3、一普通V带传动传递功率为P = 7.5 kW,带速??= 10 m/s,紧边 拉力是松边拉力的两倍,即F1=2F2,试求紧边拉力、松边拉力和有效拉力。 4、设计一破碎机用普通V带传动。已知电动机额定功率为P = 5.5 kW, 转速n1= 1440 r/min,从动轮为n2= 600 r/min,允许误差±5%,两班制工作,希望中心距不超过650 mm。 5、在如图所示链传动中,小链轮为主动轮,中心距a = (30~50) p。 问在图所示布置中应按哪个方向转动才合理?同一铅垂面内有什么缺点?应采取什么措施? 6、当其它条件相同时,试比较下列两种链传动设计方案的运动不均匀性和附加动载荷,哪一种较好?为什么? (1)p = 15.875 mm,z1=31; (2)p = 31.75 mm,z1=15; 7、一单排滚子链传动,链轮齿数z1=21、z2=53、链型号为10A、链长Lp=100节。试求两链轮的分度圆、齿顶圆和齿根圆直径以及传动的中心距。 8、题5中,小链轮为主动轮,n1= 600 r/min,载荷平稳,试求:(1)此链传动能传递的最大功率;(2)工作中可能出现的

这位老兄请将问题再讲清楚点,你的V带是用于测试还是用于接负载。具体的V带选型方法可以查机械设计手册。V带参数请与相关厂家联系。

结构设计毕业论文

1论文(设计)的基本结构包括前置和主体两个部分,2前置部分:包括封面、毕业设计(论文)考核表、中文摘要、关键词和目录等3目录由论文(设计)的章、节序号、名称和页码组成。4主体部分:包括前言、正文、参考文献和致谢等5前言简要说明本项研究的意义,研究的思路、方法以及要解决的主要问题等。6正文是毕业论文(设计)的核心部分,应占主要篇幅。7列出的参考文献限于作者直接阅读过的。[序号]作者.书名(期刊名).出版地:出版者,出版年:起止页次.

这有两种方法可以解决。1.在cad里绘制布置图,然后可以截图到word里,去掉图片背景色就可以,也可以借助小工具直接选择图形粘贴到word里。2.pkpm模型建立之后,可以导出word格式的计算书,里面可以包括柱布置图。

本科毕业论文结构格式标准

毕业论文和毕业设计是本科教学的重要内容。为加强这一工作环节的管理,规范写作,提高毕业论文和毕业设计质量,特制定本标准 。

一、总则

本标准由教务处负责制订、修改与解释,望各相关学院参照执行。

(一)适用范围

本标准适用于东北财经大学全日制普通本科学生毕业论文(包括毕业设计报告,以下统称毕业论文)的撰写制作。外国语言文学类专业本科毕业论文可参照本标准的原则要求、按外文写作规则制作。

全日制普通本科学生学年论文的撰写制作参照本标准执行,篇幅可略小。

(二)本标准的执行

本标准由毕业论文指导教师负责指导学生执行。不符合本标准要求的毕业论文原则上不能提交答辩。

(三)本标准的监督

为确保本科毕业论文的质量,实施学院和教务处两级审查监督。

二、毕业论文结构

本科毕业论文包括以下内容(按顺序):封面、中文摘要与关键词、英文摘要与关键词、目录、正文、注释、附录、主要参考文献、后记、封底。其中毕业设计的正文还应包括所使用的主要仪器设备、实验数据和结果等;“附录”、“后记”视具体情况安排,其余为必备项目。

(一)封面

封面由文头、论文标题、作者、学院、专业、年级、学号、指导教师、答辩日期、成绩等10项内容组成。

(二)中文摘要与关键词

摘要是对论文内容的概括性描述,应忠实于原文,字数在300~500字之间。关键词是从论文标题、摘要或正文中提取的、能表现论文主题的、具有实质意义的词语,通常为动词或名词,数量不少于3个,不超过7个。

(三)英文摘要与关键词

英文摘要(Abstract)和关键词(Key words)由中文摘要和关键词翻译而成。

(四)目录

列出论文正文的一、二级标题名称及对应页码,以及附录、主要参考文献、后记等的对应页码。

(五)正文

正文是论文的主体部分,通常由绪论(引论)、本论、结论三部分组成。这三部分在行文上可以不明确标示。正文的各个章节或部分应以若干层级标题来标识。正文字数应在7 000~10 000字之间。

(六)注释

对所创造的名词术语的解释或对引文出处的说明。注释采用脚注形式。

(七)附录

附录属于正文、对正文起补充说明作用的信息材料,主要包括:(1)放在正文内过于冗长的公式推导;(2)复杂的数据图表;(3)论文使用的字母或缩写符号的意义;(4)计算机程序及有关说明等。

(八)主要参考文献

主要参考文献是作者亲自阅读过内容的、对写作过程帮助比较大的、相对比较重要的参考资料,包括刊物上公开发表的参考论文、出版社正式出版的参考书目(包括著作或教材)和网上参考资料(包括网站上的论文和数据等)等。

(九)后记

后记主要表述本人在写作中获得的感受,表示对相关人物的感谢。

(十)封底

封底由指导教师评语、学院论文答辩机构意见两部分组成。

三、毕业论文格式编排

毕业论文必须按照以下格式要求排版。

(一)纸型及页边距论文格式

毕业论文一律用国际标准A4纸(297mm×210mm)打印。上、下、左、右的页边距一律设为2厘米,不设装订线。

(二)版式与用字

文字图形一律从左至右横写横排。文字一律通栏编辑。使用规范的简化汉字。除非必要,不使用繁体字。忌用异体字、复合字及其他不规范的汉字。

(三)论文各部分的编排式样及字体字号

论文各部分的编排式样及字体字号编辑要求如下:

1.文头。封面上部居中,3号宋体加粗,下空两行。固定内容为“东北财经大学本科毕业论文”。

2.论文标题。2号黑体加粗,文头下居中,上空两行。

3.论文副标题。小2号黑体加粗,紧挨正标题下居中,文字前加破折号。副标题与主标题加起来不得超过两行

4.作者、学院、专业、年级、学号、指导教师、答辩日期、成绩。项目名称用3号黑体,内容用3号楷体_GB2312,在正副标题下居中依次排列,各占一行。其中,“专业”一栏除专业外还应列示方向(使用括号);“指导教师”一栏应包括姓名和职称;答辩日期和成绩两栏内容留空,由论文答辩机构手写。

5.中文摘要及关键词。另起一节 。标题为“摘 要”,3号黑体。段前为两行,段后为一行,居中独占行,单倍行距。内容用小4号宋体,首行缩进2字符,行距为22磅固定值。

“关键词”三字用4号黑体,后接冒号,内容用小4号黑体;关键词通常不超过7个,词间空一格,不加标点。

6.英文摘要及关键词。另起一节。英文摘要的标题为“ABSTRACT”,3号Times New Roman粗体。段前为两行,段后为一行,居中独占行,单倍行距。英文摘要的内容格式为:小4号Times New Roman字体,首行缩进2字符,行距为22磅固定值,不采用悬挂格式。每个英文标点符号后,都要加一个空格。

英文关键词“Key words”为4号Times New Roman加粗,后接冒号,内容用小4号Times New Roman,上空一行,居左独占行;不同的`关键词之间加英文的分号“;”。

7.目录。另起一节。标题为“目 录”,3号黑体,顶部居中;段前为两行,段后为一行,居中独占行,单倍行距。目录内容的汉字部分为小4号仿宋,页码和连线为“Times New Roman”字体,1.5倍行距,一律居左,页码右齐。

建议利用论文模板,通过更新域来更新目录内容,实现自动编排目录的功能(显示一、二级标题)后,按要求的字型和字号进行修改。

8.正文文字。另起一节。论文标题为3号黑体。段前为两行,如果没有副标题,段后为一行;如果有副标题,段后为0行。居中独占行,单倍行距。论文副标题为小3号黑体。段前为0行,段后为一行,居中独占行,单倍行距。

论文正文内容的汉字一律按小4号宋体字排版(一级标题、公式和图表除外)。论文正文中的英文字号要与汉字相对应,建议采用“Times New Roman” 字体,不得使用汉字专用符号。

正文文字的字符间距为标准字距,行距原则上为22磅固定值,但正文中的表格和公式为单倍行距,一二级标题按规定格式处理。

9.正文文中的各级标题。标题的层次如下:

“一、……

(一)……

1.……

(1)……

①……”

一级标题“一、”,4号黑体,独占行,段前段后各占1行,单倍行距。末尾不加标点;

二级标题“(一)”,小4号宋体字,独占行,段前段后各占0.5行,单倍行距。末尾不加标点符号;

三级以下标题“1.”、“(1)”、“①”等,与正文字体字号相同。三级标题可根据标题的长短确定是否独占行。若独占行,则末尾不使用标点;否则,标题后必须加句号,然后接排。四级以下标题必须接排,不得独占行。每级标题的下一级标题应各自连续编号。原则上,同一级标题的数量不得少三个。

正文标题与段落均按汉字书写习惯,首行缩进2字符,一律不得采取悬挂缩进的格式。

10.注释。注释采用脚注方式,具体操作为“插入→引用→脚注和尾注→确定”。编号格式采用“①②……”,编号方式采用“每页重新编号”。 字体和字号均使用默认格式,一般为宋体与Times New Roman 5号字。脚注内容编排方式同参考文献。但须在最后标明引文的页码或页码区间(其中,中文的页码区间形式为“第3~5页”,英文的页码区间形式为“p3-5”,不得将两者混用)。

11.附录。项目名称用4号黑体。段前为两行,段后为一行,居中独占行,单倍行距。附录内容的字体一律为小4号宋体,首行缩进2字符,行距为22磅固定值(图表、公式除外)。

12.主要参考文献。目名称用4号黑体,在正文或附录后空两行顶格排印,另起行空两格用小4号宋体排印参考文献内容。参考文献先中文后外文,论文在前,著作在后;每一类文献按其发表时间的先后(近期在前,远期在后)排序。中外文参考文献统一编号,编号形式为阿拉伯数字后加圆点(如“1.”)。

主要参考文献的格式要求如表1所示:

表1 主要参考文献的格式要求

参考文献类型 格 式

中文论文 编号.作者名(译著的外国作者在姓名前用方括号括住的国籍简称,多个作者之间加顿号,亦可略写为“××等”),“文章题目”,《期刊名》,年份,卷号,期数。

中文著作 编号.作者名,译者名,《书名》,出版单位,年份和版次。

网上参考资料 编号.作者名,“文章题目”,http\\:网站名,发布的年月日。

外文论文 编号.作者名(英文名字在前,姓在后,中间是教名,可以缩写),“文章题目”,期刊名(使用斜体,不用书名号),年份,卷号,期数。

外文著作 编号.作者(姓名的排序可同论文,但亦可先排姓,加“,”再排名),书名(使用斜体,不用书名号),地名: 出版单位,年份.

非英语类外文,一律按该国文字格式处理。

13.后记。后记的标题为“后 记”,4号黑体。段前为两行,段后为一行,居中独占行,单倍行距。后记内容的字体一律为小4号楷体,行距为22磅固定值。

14.指导教师评语。排在封三上半页,项目名称用3号黑体,第一行居中编排。内容由指导教师手写并在指定位置签署姓名和日期。

15.学院答辩机构意见。排在封三下半部,项目名称用3号黑体,第一行居中编排。内容手写,由学院答辩机构负责人在指定位置签署姓名和日期。

(四)表格

正文或附录中的表格一般包括表头和表体两部分,编排的基本要求为:

1.表头。表头包括表号、标题和计量单位,用5号黑体,在表体上方与表格线等宽度编排,单倍行距。其中,表号居左,格式为“表1”,全文表格连续编号;标题居中,格式为“××表”,加粗;计量单位居右,参考格式为:“计量单位:元”。

2.表体。统计类表格中的所有表线都是细实线(1/2磅);会计类表格的上下端线一律使用粗实线(1.5磅),其余表线用细实线。表的左右两端不应封口(即没有左右边线)。表格主体部分中的文字和数码均使用5号字,单倍行距,文字为宋体,数码为“Times New Roman” 字体。如果表格中数字过多,也可以使用小5号字或更小的字。表格中的文字要注意上下居中与对齐,数码位数应对齐。

3.关于表中数据出处的说明。可以在表体的下端,用小5号字说明,亦可在表的标题中插入脚注进行说明。

4.其他要求。同一个表格应尽量排在同一页上,不要分开排在两页。正文中应当有必要的引导语,以便引出表格。表的引导语必须在所引导的表之前。

(五)图

图的插入方式为上下环绕,左右居中。文章中的图应统一编号并加图名,格式为“图1 ××图”,用5号黑体在图的下方居中编排。图中的文字为5号宋体字,单倍行距,尽量使用没有边框的图文框或文本框;所有的线条和文字最好安排在同一个画布上。正文中应当有必要的引导语,以便引出图形。图形的引导语必须在所引导的图形之前。

(六)公式

文中的公式应首行缩进2字符,5号宋体,单倍行距,段前段后均为0.5行,公式编号排在右侧,编号形式为“(1)式”。公式下面有说明时,应顶格书写。较长的公式可转行编排,在加号或减号处换行,换行后第一个符号应与上行的第一个等号对齐。文字内容较长的公式,应当采用叠排的方式。公式的编排尽量使用插入“域”的方法编辑,也可使用公式编辑器。

(七)数字

文中的数字,除部分结构层次序数词、词组、惯用词、缩略语、具有修辞色彩语句中作为词素的数字、模糊数字必须使用汉字外,其他应使用阿拉伯数字。同一文中,数字的表示方法应前后一致。阿拉伯数字超过4位时,应使用空格作为千分位的分组符号。

(八)标点符号

文中的标点符号应正确使用,忌误用、混用,中英文标点符号应区分开。

(九)计量单位

除特殊需要,论文中的计量单位必须使用法定计量单位。

(十)页码

封面不加页码;中英文摘要合在一起排页码,从“1”开始;目录单独排页码,从“1”开始;正文需要单独编排页码,从“1”开始。全文排印连续页码,页码在页面底端(页脚)居中书写。

(十一)页眉页脚

除封面不用页眉外,论文的其他部分必须使用页眉,其格式要求如下:

1.正文以外的部分,其页眉文字的内容是该部分的标题。如中文摘要、英文摘要、目录、附录、主要参考文献和后记的页眉文字分别是“摘要”、“ABSTRACT”、“目录”、“附录”、“主要参考文献”和“后记”。不同内容必须插入“分隔符”中“分节符”的“下一页”。在定义不同部分的页眉时,应取消默认的“同前”或“链接到前一个”选项。

2.正文的奇偶页页眉的内容不同;其中,奇数页的页眉文字为论文题目,偶数页的页眉文字为“××××大学2015届本科毕业论文”,应用的范围为“本节”。

3.页眉的线型为上粗下细的文武线,文字内容的字体为5号宋体,居中独占行。

四、定稿论文的印刷、装订与电子文档的版式

定稿论文必须按照规定格式和数量印刷、装订,在上交文本文件的同时,还要一并上交电子文档。

(一)印刷与装订

定稿论文一律用A4纸打印,单面印刷。文稿一律左侧装订。

(二)份数

定稿论文至少应印制3份。其中存档论文1份,需要用学校统一制作的封面,答辩论文的份数由学院根据需要确定。

(三)电子文档的版本

电子文档必须是WINDOWS—XP系统下OFFICE2003版本的WORD文档。

相关百科

热门百科

首页
发表服务