有呀,汉斯的应用数学进展这本刊上的文献就是呀,你有时间可以去看看呐
高等数学在我们生活中的具体应用论文
从小学、初中、高中到大学乃至工作,大家都尝试过写论文吧,论文是探讨问题进行学术研究的一种手段。你写论文时总是无从下笔?以下是我收集整理的高等数学在我们生活中的具体应用论文,希望对大家有所帮助。
摘要:
进入21世纪,随着经济的不断发展,社会竞争越来越大,对于人才的要求也越来越高。在这种情况下,高等数学的重要作用就凸显了出来,高等数学能够培养人们的思维能力,培养人们发现问题、解决问题的思维方式。高等数学在我们生活中的应用越来越广泛,并且渗透到了各行各业中,许多问题的解决都离不开数学模型的构建。针对高等数学的特点,分析其在我们生活中的具体应用。
关键词 :
高等数学;经济社会;应用;
引言:
数学既是一门理论学科,又是一门应用广泛的工具性学科,在理学、工学、管理学、经济学等各个领域都发挥着重要的作用,如何将抽象的数学理论应用到具体的经济科学实践中去,作为学管理学、经济学的我们更应该对数学有更深的认识。
一、高等数学在学术中的应用
高等数学在众多的学科中扮演着重要的角色,在物理学科中,高等数学与其关系极为紧密,高等数学中最为重要的一部分便是微积分,众所周知,微积分是其创始人,著名的物理学家、数学家牛顿先生在解决经典力学问题的过程中所创立的,力学作为物理学中重要的知识,几乎贯穿于整个物理知识体系中,而微积分就是解决物理知识的关键工具,构建了地球和天体主要运动现象的完整力学体系。
在生物学中,高等数学同样扮演着重要的角色,19世纪时,就有生物学家试图通过数学方法来研究生命现象。而在上世纪20年代中期,就有生物学家利用高等数学的一些知识来解决著名的地中海鳖鱼问题,经历了几十年的发展,生物数学已经成为了生物学中重要的部分,无论是心脏的跳动还是血液的循环、脉搏的周期,都可以用高等数学的知识通过方程组的形式进行表示,并且通过求解的方法来掌握一定的规律,描述生物界的一些现象。
二、高等数学在经济社会的应用
随着社会经济的不断进步以及高等数学的不断发展,数学的手段越来越多样化,经济问题也越来越多样化,利用数学问题对经济环节进行定量分析是十分重要的,最简单的例子就是我们平时生活中的存取款问题以及利率问题。高等数学在经济生活中的应用不止如此,除此之外,高等数学还可以为经营者提供科学合理的数据,以高等数学作为工具来得到最佳的决策。在经济学当中,许多的量如边际成本、边际收益、边际利润都需要用导数来进行计算。而通过这些量可以计算企业生产过程中的一些数据,来对企业的正常运转进行调控,从而达到最优的生产效果。每个经营者都希望用最少的钱创造更多的`价值,在实际经营过程中,难免会出现资金的浪费,利用高等数学知识,能够使资金得到最合理的应用,使成本降低,创造更加大的利润,这种问题,其实就是高等数学中最大值最小值的问题,将其转化为数学模型,能够更好地配置相关资源,合理安排生产,实现最大利润。
三、高等数学在军事中的应用
纵观两次世界大战,无论哪一次都少不了高等数学的身影。射击火力表一直都是数学家需要计算的重要任务。除此之外,各种新型武器装备的研发以及投产,都离不开高等数学的研究。不仅仅是空气动力学、流体动力学还是弹道学,等等,其中都包含着高等数学的知识,这充分说明了高等数学的重要地位。除此之外,高等数学还在原子弹、声呐等新型装备的研发过程中扮演着重要的角色,可能直接影响战争的格局和走向。未来,随着科学技术的不断发展,军事技术也一定会作用于各种新的高科技,而一切高科技领域都少不了高等数学的"加持"。
四、高等数学中概率和数理统计的应用
高等数学中涵盖的知识点较多,概率作为其中的一个知识点,在多种领域尤其是自然科学方面以及社会科学方面的应用十分广泛,而且,还与我们的日常生活息息相关。举例子来说,几年前,我国全面开放了二孩政策,在这项政策开放的背后,是相关专家针对我国人口发展的问题,根据众多的资料数据进行统计分析,判断后做出的决定。近几年,随着我国科学技术的不断进步,以高等数学为核心的生活方式迅速地辐射到了人们日常生活中的各个领域,从移动支付以及购物到智能机器人的应用,办公的自动化,这些都需要我们具有高等数学知识以及素养。
五、高等数学在学生思维构建方面的应用
高等数学通过建立模型,能够有效地培养学生的综合素质,开拓学生的思维。在教学过程中,教师通过给学生树立建模的思想,使学生能够得到全面的发展,能够最大程度地提高学生的学习热情。高等数学可以通过构建数学模型,以此来对现实中的一些事物进行有规律的描述。而高等数学进行数学模型的构建需要人类的思维活动,也就是说,高等数学能够提高学生对于数学理论以及思维方法应用的意识,使学生培养数学思维,利用数学知识解决生活实际问题。
六、结语
当代大学生学习数学的重要性显而易见,我们要想在21世纪的社会有一个立足之地就需要全面地发展自己,而我们学习的高等数学又是其中的重中之重。我们要认清当今社会的人才培养目标,深入地学习高等数学,为中国的经济建设献出自己的力量,为早日实现中华民族的伟大复兴而奋斗。
参考文献
[1]苏丽论高等数学在经济分析中的应用[J].信息记录材料,2016,(06)
[2]卢明宇浅析微积分在金融领域的作用[J].经贸实践,2017,(05)
[3]马源谈谈数学学习在经济金融学中的作用[J].经贸实践,2017,(15)
拓展:
专业论文格式模板
一、毕业论文(设计)资料按以下顺序排列:
(一)封面。包括论文题目、指导教师、学生姓名、学号、院(系)、专业、毕业时间等内容。论文封面由学校统一印制。
(二)中、外文摘要(包括关键词)。外文论文(设计)的中文摘要放在英文摘要后面编排。
(三)正文。
(四)注释。
(五)附录。
(六)参考文献。
(七)致谢。
二、毕业论文的打印与装订
除要检验学生书写规范的专业外,毕业论文(设计)须用计算机打印,一律采用A4纸。
(一)页面设置
毕业论文(设计)要求纵向打印,页边距的要求为:
上(T):2.5cm
下(B):2.5cm
左(L):2cm
右(R):2cm
装订线(T):0.5cm
装订线位置(T):左
其余采取系统默认设置。
(二)排式与用字
文字图形一律从左至右横写横排。
文字一律通栏编辑。
论文采用宋体,字迹清楚整齐,除特殊需要,一般不使用繁体字。
(三)段落设置
采用多倍行距,行距设置值为1.25。
其余采取系统默认设置。
(四)页眉、页脚设置
论文题目(不包括副题目)居中,采用五号宋体字。
页脚需设置页码,页码采用五号黑体字,加粗,居中放置,格式如:1,2,3……页。
三、毕业论文(设计)撰写的内容与要求
(一)封面
1、封面。
纸质封面由学校统一印制。不编排页码。
2、封一(中文摘要)
中文摘要:“中文摘要”四字在第一行居中位置,使用小二号黑体字,加粗。内容使用小四号宋体字。起行空两格,回行顶格。中文摘要一般不超过250—300字。
关键词:接中文摘要打印,“关键词”三字空两格,后加冒号与关键词隔开,各关键词之间用逗号隔开。关键词一般在3—8个之间。
3、封二(外文摘要)
外文摘要:“外文摘要”英文单词在第一行居中位置,使用小二号黑体字,加粗。内容使用小四号宋体字。起行空两格,回行顶格。外文摘要一般不超过250个实词。
关键词:接外文摘要打印,“关键词”英文单词空两格,后加冒号与关键词隔开,各关键词之间用逗号隔开。外文关键词应与中文关键词相对应。
(二)正文
正文一般使用小四号宋体字,重点文句加粗。
1、标题层次。
毕业论文的全部标题层次应整齐清晰,相同的层次应采用统一的表示体例,正文中各级标题下的内容应同各自的标题对应,不应有与标题无关的内容。
各层标题均单独占行。第一级标题居中放置;第二、三、四等级标题序数顶格放置,后空一格接标题内容,末尾不加标点。
标题序数采用1.、2.……1.1、1.2……1.1.1、1.1.2……1.1.1.1……的层次。正文中对总项包括的分项采用一、二、……(一)、(二)……1、2……(1)、(2)……①②……的层次,括号后不再加其他标点。
2、量和单位。各种计量单位一律采用国家标准GB3100—GB3102-93。非物理量的单位可用汉字与符号构成组合形式的单位。
3、标点符号。标点符号应按照国家新闻出版署公布的“标点符号使用方法”的统一规定正确使用,忌误用和含糊混乱。
4、外文字母。外文字母采用我国规定和国际通用的有关标准写法。要分清正斜体、大小写和上下脚码。
5、名词、名称。科学技术名词术语采用全国自然科学技术名词审定委员会公布的规范词或国家标准、部标准中规定的名称,尚未统一规定或叫法有争议的名称术语,可采用惯用的名称。
6、数字。文中的数字,除部分结构层次序数和词、词组、惯用语、缩略语、具有修辞色彩语句中作为词素的数字必须使用汉字外,应当使用阿拉伯数码,同一文中,数字表示方法应前后一致。
7、公式。公式一般居中放置;有编号的公式顶格放置,编号需加圆括号标在公式右边,公式与编号之间不加虚线。
公式下有说明时,应在顶格处标明“注: ”。
较长公式的转行应在加、减、乘、除等符号处。
8、表格和插图。
(1)表格。每个表格应有自己的表序和表题。表内内容应对齐,表内数字、文字连续重复时不可使用“同上”等字样或符号代替。表内有整段文字时,起行处空一格,回行顶格,最后不用标点符号。
(2)插图。每幅图应有自己的图序和图题。一般要求采用计算机制图。
文中图表需在表的上方、图的下方排印表号、表名、表注或图号、图名、图注。
(三)注释
注释采用页末注(将注文放在加注页的页脚)或篇末注(将全部注文集中在文章末尾),不可行中加注。注释编号选用带圈阿拉伯数字,注文使用小五号宋体字。
以下为引用各类文献注释格式:
专著:注释编号.作者.专著.书名[m].出版社,出版年.起止页码
期刊:注释编号.作者.期刊.题名[J].刊名,出版年(卷、期):起止页码
论文集:注释编号.作者.论文名称:论文集名[C].出版地:出版社,出版年度.起止页码
学位论文:注释编号.作者.题名[D].保存地点:保存单位,写作年度.
专利文献:注释编号.专利所有者.题名[P].专利国别:专利号,出版日期
光盘:注释编号.责任者.电子文献题名[电子文献及载体类型标识],出版年(光盘序号)
互联网:注释编号.责任者.文献题名.电子文献网址.访问时间(年-月-日)
文献作者3名以内的全部列出;3名以上则列出前3名,后加“等”(英文加“etc"”)
(四)附录
“附录”两字在第一行居中位置,使用小二号黑体字,加粗。
附录项目名称使用四号黑体字,加粗,居左顶格放置。另起一行空两格,使用小四号宋体字标注附录序号和题名,编排样式可参照正文。
(五)参考文献
参考文献一律放在文后,其书写格式应根据GB3469-83《文献类型与文献载体代码》规定,以单字母方式标识:M专著,C论文集,N报纸文章,J期刊文章,D学位论文,R研究报告,S标准,P专利;对于专著、论文集中的析出文献采用单字母“A”标识,其他未说明的文献类型,采用单字母“Z”标识。
“参考文献”四字居中放置,使用小二号黑体字,加粗。
内容使用小四号宋体字,居左,空两格放置。具体结构格式与标注方法同注释中交代引文出处的注文格式。
数学源于生活,又广泛用于生活。在实际生活中运用所学数学知识,处理实际问题是中学生的数学素养之一。新课程标准强调数学教学要“从学生已有的生活经验出发”,“使学生获得对数学知识的理解”。因此,在数学教学中,如何结合学生的生活实际,使学生“领悟”数学知识源于生活,又服务于生活,培养学生用数学眼光去观察生活,运用数学知识解决实际问题的素养,是每位数学教师重视的问题。1挖掘教材中的生活资源。例如,在低年级的教学中,教师可以提出这样的问题:你今年几岁啦?多高呀?身体有多重?比一比你和你的同桌谁重?……这些都是小学生经常遇到的问题,而要准确地说出结果,就需要我们量一量、称一称、算一算,这些都离不开数学。再如,像水电费收取、储蓄利息的计算、日常购物等生活中常用的各种知识均发生在身边,我们买东西、做衣服、外出旅游,也离不开数学。2指导学生观察生活中的数学。让学生观察生活中的数学,既是积累数学知识,更是培养学生学习数学兴趣的最佳途径。如在长正方形认识时,从生活中观察哪些物体的表面是长方形的,用实物的表面在黑板上画出一个长方形。学生善于发现并研究生活中的数学,本身就是最好的学习方法。学生在研究中不断思考,不断尝试,并不断地体验成功。如布置学生用硬纸板做一个长方体模型,学生要思考观察什么物体的形状是长方体,长方体有什么特征,怎样做才美观大方。第二天学生带着自己制作的长方体模型到课堂时,每个学生根据已有体验与同学交流,各抒己见,这样的课堂能不充实、活跃吗?总之,数学教学让学生的生活经验走进数学课堂,为学生提供了亲身体验和动手操作的机会,指导学生更好的学习数学。在这方面,我受益良多,通过上学期的教学实践活动,我们班的学生学习数学的兴趣非常浓厚,改变了以往数学学习的枯燥乏味,学生在思想上有了从“要我学”-----到“我要学和我喜欢学”质的飞跃,学生变的喜欢学习数学。我的教学工作也变很顺利,学生中没有了见了数学就头疼的“老大难”,工作效率有了很大的提高,学生的学习成绩有明显的进步。新《课标》也给我们明确提出:“数学教学要紧密联系学生的生活实际,从学生的生活经验和已有的知识出发,创设生动有趣的情境,引导学生开展观察、操作、猜想、推理、交流等活动。使学生通过数学活动,掌握基本的数学知识和技能,初步学会从数学角度去观察事物,思考问题。激发对学习数学的兴趣,以及学好数学的愿望,树立学好数学的自信心。
人类在对自然界和实际生活中各类随机现象的深入研究是产生概率统计的前提和基础,从这一方面上看,概率统计脱胎于实际生活。当前,人们对概率统计的认知只是停留在浅表的层面,认为概率统计高深莫测,采用敬而远之的策略,出现了概率统计与实际生活的分离,这不但会影响概率统计的实际应用,也会使实际生活难于做出科学的判断和合理的决策。新时期的实际生活正在丰富多彩,人们应该利用概率统计这一武器,从实际生活出发,探寻概率统计应用的方法和策略,使人们的日常行为、实际生活、具体生产得到科学化的指引,做到对整个社会发展、科学、进步水平的支持与保障。 1 概率统计对于实际生活的重要价值 从概率统计的产生和发展来看,概率统计脱胎于对实际生活现象的观察,而实际生活和生产的发展也需要概率统计作为基础和手段,因此,在生活和生产中与概率统计打交道是常见的现象,社会越发达就越需要深入利用概率统计这一武器,做到对行为的控制和决策的支持。在保险工作、抽奖活动、质量判断、游戏活动等具体的生活中,概率统计有着直接而重要地应用,而大众由于没有必要的概率统计知识和手段,往往会做出非理性判断和不科学决策,最终造成对自身的不利影响。一些商家会应用概率统计的手段,通过科学、准确地概率统计实现自身的应力和利润。从上述两个层面的分析,可以理解概率统计对社会各主体的作用,也能看到概率统计对于实际生产的重要意义,因此,有必要针对实际生产和生活展开概率统计的深层次利用。 2 实际生活中概率统计的具体应用策略和方法 (1)保险工作中对概率统计的应用 某保险公司承担汽车保险业务,在保险额上限为20万元的第三者责任险中,车主缴纳1200元保险费用,如果有1000辆汽车投保,计算此保险公司盈利40万元的概率,保险公司亏本的概率是多大?假设每次交通事故保险公司理赔平均额为5万元,盈利40万元意味被保险车辆出现事故的车次不超过16次,正常情况下车辆出现事故的概率为0.005,如果盈利40万元为事件C,计算可以得知p(C)=0.99998,由此可以得知,保险公司盈利40万元的概率是相当高的。 (2)抽奖活动中对概率统计的应用 抽奖是现代市场经济常见的促销手段,很多消费者在商家的抽奖活动前会改变消费策略和方法,因此,商家愿意通过抽奖活动确保市场扩大和利润增长。而在具体的抽奖活动中,如果奖券的数量不高,很多消费者会产生错误的想法,认为后抽奖的人具有更大的中奖概率,纷纷选择靠后的抽奖顺序。如果中奖出现在抽奖的初始时期,会在消费者中产生"内部操作"的思想。这时商家应该利用概率统计的手段,说明顺序和中奖的关系,展现抽奖活动的公平性,做到对消费者正确地引导。例如:商家可以假设50张抽奖券中有5张是中奖奖券,现在有2人去抽奖,通过概率统计的准确计算,得出P(1)和P(2)通过对比P(1)和P(2)的大小,可以科学判断抽奖顺序和中奖之间没有必然的联系,进一步体现抽奖的公平,做到对消费者困惑和歧义的有效处理,建立商家更为积极的商业形象。 (3)质量判断中概率统计的应用 例如,张老师在批发市场买苹果,当询问苹果质量如何的时候,卖主说一箱苹果100个,里面至多有四五个是坏的.张老师随机打开一箱抽取了10个,结果这10个中有3个是坏的。通过概率统计可以得知,一箱苹果100个,其中5个是坏的,抽取的10个中坏苹果为3的概率为P(X=3)=0.00625,同理,P(X=4)=0.00038,P(X=5)=0.000003,根据古典概率的定义,10个苹果中坏苹果大于2的概率P(X>2)=P(X=3)+P(X=4)+P(X=5)=0.006633,苹果质量一定与买主说的不一致. (4)游戏活动中概率统计的应用 生活中有各类娱乐和游戏活动,很多看似简单的游戏会引发人们的兴趣,例如:常见的"套圈"就是一款看似简单而实际困难的游戏,套圈游戏的规则是:在固定的距离上,投掷套圈,套圈能够套取的物品就是游戏的奖品。在实际生活中,很多人低估了游戏的难度,导致大量购买套圈,造成得不偿失的问题。 3 结语 概率统计是数学重要的知识组成,也是来源于实际和生活的方法归纳与总结,在实际应用中概率统计与生活有着紧密的联系,特别在重要的应用领域,概率统计的思想、手法和判别有着关键性的应用,不但可以为生活提供更为科学的认知,也为各类生活决策提供合理和有效的基础。
着科学的发展,数学在生活中的应用越来越广,生活的数学无处不在。而概率作为数学的一个重要部分,同样也在发挥着越来越广泛的用处。抽样调查,评估,彩票,保险等经常会遇到要计算概率的时候,举个例子在保险公司里有2500个同一年龄的人参加了人寿保险,在一年里死亡的概率为0.002,每个人一年付12元保险费,而在死亡的时候家属可以领取由保险公司支付的2000元,问保险公司盈利的概率是多少,公司获利不少于10000的概率是多少?这样的问题咋一看很难知道保险公司是否盈利,但经过概率统计的知识一计算就可以得知公司是几乎必定盈利的A={2500×12-2000X<0}={X>15}由此得知P=0.999931,而盈利10000以上的概率也有0.98305,以上的结果说明了为什么保险公司那样乐于开展保险业务的原因.除了保险,概率统计学对彩票也有有两个方面的应用 。据钱江晚报报道,彩票市场越来越火爆,据了解,南京某一期电脑福利彩票有一懂概率统计的彩民一个人中1个一等奖、3个二等奖、33个三等奖,有一期彩票有9注号码中一等奖,从而引发了无数彩民自己预测号码的愿望,概率统计方面的书籍也一下子走俏。许多平时见到符号就头疼的彩民也捧起概率书兴趣盎然地啃起来。东南大学经管院陈建波博士指出,概率书上讲的都是理论知识,一大堆数学计算公式,如何把概率书的理论运用到彩票选号中来,才是许多彩民关心的问题。实际上,概率统计学主要有两个方面的应用:一个方面是利用概率公式计算各种数字号码出现的概率值,然后选择最大概率值数字进行选号。举一个简单的例子,类似“1234567”七个数一直连续的彩票号码与非一直连续的号码出现的概率比例为:29:6724491(1:230000)左右,由于出现的概率值极低,因此一般不选这种连续号码。另一方面的应用是统计,即把以前所有中奖号码进行统计,根据统计得到的概率值来预测新的中奖号码,例如五区间选号法,就是根据统计进行选号的。南京的“专业”彩民则介绍一条选号规则———逆向选号法。从摇奖机的构造角度来说,它要保证每个数字中奖的概率都一样。虽然摇一次奖无法保证,摇100次奖也无法保证,但摇奖的次数越多,各个数字中奖的次数也必定越趋于平均。就像扔硬币,一开始就扔几次可能正反面出现的次数不一样,但随着扔的次数的增加,正反面出现的次数就会越来越接近。从这个角度考虑,在选号时就应该尽量选择前几次没中过奖的数字。这就是逆向选号法,即选择上一次或前几次没中奖的数字.......这也说明了概率的无所不在
生活中,我们总会遇到大大小小的选择,如何才能做出符合实际情况的最优选择,而不是凭感觉去做选择呢?统计概率知识能够帮助我们理性思考进而做出最佳判断。有人可能会有困惑,统计概率是数学知识,真的能够指导生活方方面面吗?能的话又是怎么实现的呢?曾经我也有过同样的困惑,在上篇文章“建立统计概率思维 提升人生成功机率”中进行了简单概述。1、几个基本概念我们先从搞清概率、统计、统计概率思维这几个概念开始。概率,是对随机事件发生的可能性的度量,一般以一个在0到1之间的实数表示一个事件发生的可能性大小。越接近1,该事件更可能发生;越接近0,则该事件更不可能发生。其实质是客观论证,而非主观验证。统计科学,也称统计学,是指研究如何搜集、整理和分析统计资料的理论与方法。统计学是应用数学的一个分支,主要通过利用概率论建立数学模型,收集所观察系统的数据,进行量化的分析、总结,并进而进行推断和预测,为相关决策提供依据和参考。概率统计是应用概率的理论来研究大量随机现象的规律性;对通过科学安排的一定数量的实验所得到的统计方法给出严格的理论证明;并判定各种方法应用的条件以及方法、公式、结论的可靠程度和局限性,使我们能从一组样本来判定是否能以相当大的概率来保证某一判断是正确的,并可以控制发生错误的概率。以上是度娘中给出的专业解释。通俗点说,统计和概率只是方法论上的区别,一个是推理,一个是归纳。概率论是统计推断的基础,在给定数据生成过程下观测、研究数据的性质;而统计推断则根据观测的数据,反向思考其数据生成过程,强调对于数据生成过程的研究。2、统计概率思维我们从统计学这门学科的发展源头说起。统计学是从旧时的赌博来的。当时的赌徒们通过历史数据的记录,逐渐总结出了描述性统计。利用这些描述性统计的数据,使得他们胜率直线上升。哪个有赚哪个稳赔,哪个波动大没规律,这些经验逐渐成为了知识,并在之后的各个领域里体现了这种智慧。赌博中的统计,就是要用以往的胜败估计下一次成功的大小。为什么能够这样做,为什么以往的数据能对下一次数据有较为准确的估计,这是概率论要说清楚的问题。大数定律的三个定理就是要说明为什么样本均值可以估计总体均值。这个估计的准确性却是要由统计学说的,对于各种分布的参数估计,之后的模拟估测,虽然与概率论看似完全无关,实际上却是由他们在支撑着统计学这个科目。由此可知,统计概率知识来源于生活,同时也必将指导生活实践。也许有人会说,我不赌博,这些知识对我用处不大。这只是片面的理解和认识。就好比哲学,这门学科对你生活看似毫无指导,但哲学真的是无用之学吗?事实上,每个行业处于金字塔顶端的人才都在运用哲学思维打破自己的认知瓶颈,开拓新的思维;再如每个人学钢琴就是为了成为演奏家吗,成为钢琴家的比例肯定很低,但学钢琴的过程中对音乐艺术思维的培养、左右手协调对左右脑的刻意训练,这些提高对你从事别的行业的事情大有益处。这大概是大多数家长给小孩学钢琴的目的吧。统计概率知识也同样如此,学习相关知识是为了建立统计概率思维,指导我们具体的生活。学不是为了学而学,而是为了用而学。这里引申出一个概念,统计概率思维。我给它定义为:统计概率思维即运用概率和统计学知识把不确定的预期根据数学知识进行量化,用数值表示某种可能性的大小,再根据具体量化值大小做出最优的选择和判断。它是统计概率知识在生活中的应用,而不是单纯的数学知识。如抛硬币游戏,有了相关概率知识后,你就知道每次抛硬币都是独立事件,即使你前面9次每次都是正面朝上,下一次正面朝上的概率还是50%。而不是很多人认为的,我都连续9次朝上了,下一次肯定是朝下的机率大了。3、统计概率知识在投资、人生抉择等方面的应用统计概率思维属于方法论范畴,是为了帮助我们理性判断、做出最优抉择。在选择正确的前提下,刻意锻炼自己的能力,成功的机率才会更大。(1)两个颠覆传统认知的概念投资理财中,我们经常说到要长期投资,而这个“长期”如何度量呢,是五年还是十年呢,相信很多人会很茫然,往往回答反正是很长时间就是了。我们来看看李笑来老师是如何计算这个“长期”的。以在投资理财领域中资金翻倍作为长期目标(翻倍的收益好有诱惑力啊),那么这个“长期”到底该如何定义呢。既然是长期投资,肯定少不了复利的累积效应,复利计算的核心当然是年化收益率的高低了。用复合年化收益率衡量达到预期目标所需长期时间,不同的人“长期”是不同的。投资获利越高,长期越短;投资获利越低,长期越长。这里就引申出第一层含义,你竟然可以通过提高能力缩短长期的长度。用金融学中的72法则(计算长期收益时的公式)可以清晰地看出来。公式:X≌72/年化复合收益率值(比如,你的年化复合收益率是10%的话,那么你需要72/10,即大约7年的时间让你的投资翻倍;如果你的年化复合收益率是25%,那么你需要72/25,即大约3年的时间让你的投资翻倍)。倒过来推演,就能明白巴菲特给自己定长期为十年,且每年要“买到年化复合增长率至少15%的股票”的内在原因了,他的目标原来就是投资资金翻倍后再翻倍啊。在一定程度上,策略可以弥补能力上的不足,这里引申出第二层含义,对能使用正确策略的人来说,“长期”更短。好的策略可量化为具体的方法,如选择成长性的公司、债券和股票组合投资、定投策略等等。根据复利的计算,如果投资资金有变化,特别是早期投资资金变动时,后期的收益会放大N个数量级。这里引申出第三层含义,你最好有除了投资以外的收入来源……因为这样你就“不用总是不得不把投资收益中的一部分拿出来花掉”。至此,李笑来老师把投资领域中的长期量化为三层含义,每层含义都可以量化为具体的行动目标,甚至可以通过概率知识量化为具体的值。三层含义总结如下:①对能力越强的人来说,“长期”越短…………如提高年化收益率;②对能使用正确策略的人来说,“长期”更短…………如定投或组合投资③对有能力在投资之外赚钱的人来说,“长期”更短…………如不支取投资资金投资领域的“长期”居然可以这样量化,是不是很颠覆认知。反正我初次看到时是被震撼到了。接下来我们看看另一个颠覆认知的概念:“凯利判据”。如果在赌博桌上,问你全部押上是多少,当然是翻遍口袋所有值钱东西押上了,至少我开始是这么认为的。但“凯利判据”却告诉了我们不同的答案。对于简单的投注与输赢两个结果,凯利判据可以计算最优单次下注占比。特别申明,该法则适用于赢了有收益,输了的话,下的注就一点都拿不回来的赌局;但不适用于股票等投资行为。因为股票投资决策失误并不会导致如同赌局下注那样“这次输了的话就下注的资金都拿不回来”的情况。公式如下:f=[p(b+a)-a]/b其中,f是合理下注占比(相对于总资金);a是单次下注金额;b是每次下注a之后若是赢了的话能拿回的净利;p是赢的概率。现在假设有一种赌博机会,你可以不断重复下注。如果赢了,你用来投资的钱就翻倍;输了,钱就全部损失了。那么,你每次应该用你手中资金的多少去参与以便达到最好的回报?显然,一次就把全部钱都投进去不是一个好的策略,如果赌错了,根本就没有再捞回来的机会。假若你赢的概率是p=0.6,根据公式计算,正确的答案是:f=0.2,即一次投入20%的本金最为合适。也就是说,有6成把握的情况下,押上总资产的20%已经是全部了。(2)概率知识判断理财产品收益假设你在2004年在上述两家基金公司分别投资10000元和5000元,现在想知道哪家公司的收益高,以便今后重新做选择时参考。那么如何判断哪家基金公司收益高呢?分别算出每年的增长因子,用概率中的几何平均数可轻松算出Stivers基金公司的年平均回报率为7.62%,Trppi基金公司的年平均回报率为9.85%。该选择哪个进行投资,一目了然了。可能有朋友说这仅仅是个数学公式,算什么概率知识应用。我们来看下面的投资案例。(3)概率知识分析金融资产组合的收益率一位理财顾问认为来年的经济形势可能有四种情形。x表示大型股票基金的投资收益率,y表示政府长期债券基金的投资收益率。针对每种经济形势,理财顾问建立了x和y的概率分布众所周知,投资股票基金收益高但风险大,债券基金则相反,风险低却收益差。但股票风险究竟比债券高多少呢?以及如何建立金融资产组合投资,寻求风险最低而收益高的平衡点呢?这些都可以用二元经验离散型概率分布进行计算,具体方法不多累赘。通过计算金融资产组合的数学期望和方差(看上图),我们知道资产组合比单独投资于债券基金的收益高并且风险低,是不是又一次有点颠覆常理和认知啊。理财投资中,需要“把鸡蛋放在不同的篮子里”,进而降低投资风险。如果具有扎实的统计概率知识,能够对各种风险进行量化,以最佳比例去建立投资组合,收益绝对是杠杠的。专业的理财机构就是这么干的,如简七理财,长期投资的方法中有一种叫“止盈定投”,就是定投 + 一段时间获利后设置止盈点进行资产组合再平衡的策略。其核心引入了止盈机制,而止盈后的再平衡的投资组合如何设置当然是用相关公式算出来的了。(4)统计概率思维影响人生决策上面是纯概率数学知识在投资领域中的应用案例。生活中还有许许多多的案例,如保险公司的保费设定,都是有专业人士进行计算的,制定的保费当然不是为顾客着想了,其价格是为了实现保险公司的盈利最大化。生活中,我们做决定时如果拥有统计概率思维,将会有更理性的判断。如你想提高收入,究竟是该选择在现有公司努力、还是辞职去创业呢,相信也有很多人在纠结。运用决策树的思维,结合自己能力、优势、人脉、性格等方面去分析,相信最终的结果会理性很多。而人云亦云的跟随感觉或周边人的意见去做,往往会以惨痛的教训收场。因为你看到的别人成功,往往只是表面,背后的关键因素可能并不知晓。20多年前,两个美国人用计算机模拟开发的糖人实验游戏,说明了社会产生严重的贫富差距的原因。究竟为什么有人穷,为什么会有人富,到底是天注定还是靠打拼?实验告诉我们,“出身决定一切”并不是贫富分化产生的全部原因,“天赋秉异 + 出身位置 + 随机的运气”才是根本的原因。什么叫做“随机的运气”?即两个天赋秉异和出身都差不多的人,一个微不足道的选择差异,最终导致了其社会财富积累出现了天壤之别天赋秉异和出身位置,我们无法改变。但“随机的运气”属于后天可改变因素。看到这里,我们会明白,选择比努力更重要,而选择需要概率知识。因为多数人在面临选择甚至是人生的重大选择的时候,靠的是感觉而不是理性的思考和分析,可事实证明靠“感觉”的东西常常不准。因为靠感觉你依托的更多是以往的思维惯性。赌徒谬论、大数定律、用统计方法辨别政策与新闻真伪、投资领域中不靠直觉而是对大概率事件下注、量化金融产品的组合从而规避风险实现最大收益…………了解了这些,你还能说统计概率知识对你毫无用处吗?有时,只是我们不察觉而已,其实它就静静地藏在我们身旁的某个角落里,发现并拥有了这个超级武器,你就拥有了“开挂”的人生,无往而不胜。
大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
举一个例子:利用数学知识计算装修时所用窗子的面积、长、宽等,或是利用二次函数计算喷泉的半径等。再阐述一下这些应用对于生活的意义,比如说是生活变得更方便等等。参考范文:(网上搜来的,仅供参考)着科学的发展,数学在生活中的应用越来越广,生活的数学无处不在。而概率作为数学的一个重要部分,同样也在发挥着越来越广泛的用处。抽样调查,评估,彩票,保险等经常会遇到要计算概率的时候,举个例子在保险公司里有2500个同一年龄的人参加了人寿保险,在一年里死亡的概率为0.002,每个人一年付12元保险费,而在死亡的时候家属可以领取由保险公司支付的2000元,问保险公司盈利的概率是多少,公司获利不少于10000的概率是多少?这样的问题咋一看很难知道保险公司是否盈利,但经过概率统计的知识一计算就可以得知公司是几乎必定盈利的A={2500×12-2000X<0}={X>15}由此得知P=0.999931,而盈利10000以上的概率也有0.98305,以上的结果说明了为什么保险公司那样乐于开展保险业务的原因.除了保险,概率统计学对彩票也有有两个方面的应用 。据钱江晚报报道,彩票市场越来越火爆,据了解,南京某一期电脑福利彩票有一懂概率统计的彩民一个人中1个一等奖、3个二等奖、33个三等奖,有一期彩票有9注号码中一等奖,从而引发了无数彩民自己预测号码的愿望,概率统计方面的书籍也一下子走俏。许多平时见到符号就头疼的彩民也捧起概率书兴趣盎然地啃起来。东南大学经管院陈建波博士指出,概率书上讲的都是理论知识,一大堆数学计算公式,如何把概率书的理论运用到彩票选号中来,才是许多彩民关心的问题。实际上,概率统计学主要有两个方面的应用:一个方面是利用概率公式计算各种数字号码出现的概率值,然后选择最大概率值数字进行选号。举一个简单的例子,类似“1234567”七个数一直连续的彩票号码与非一直连续的号码出现的概率比例为:29:6724491(1:230000)左右,由于出现的概率值极低,因此一般不选这种连续号码。另一方面的应用是统计,即把以前所有中奖号码进行统计,根据统计得到的概率值来预测新的中奖号码,例如五区间选号法,就是根据统计进行选号的。南京的“专业”彩民则介绍一条选号规则———逆向选号法。从摇奖机的构造角度来说,它要保证每个数字中奖的概率都一样。虽然摇一次奖无法保证,摇100次奖也无法保证,但摇奖的次数越多,各个数字中奖的次数也必定越趋于平均。就像扔硬币,一开始就扔几次可能正反面出现的次数不一样,但随着扔的次数的增加,正反面出现的次数就会越来越接近。从这个角度考虑,在选号时就应该尽量选择前几次没中过奖的数字。这就是逆向选号法,即选择上一次或前几次没中奖的数字.......这也说明了概率的无所不在
这里也有绣山的- -
学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。 我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。 从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。 我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。 数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。
随着科学技术特别是信息技术的高速发展,数学建模的应用价值越来越得到众人的重视,
数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,以下是一篇关于数学建模教育开展策略探究的论文 范文 ,欢迎阅读参考。
大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和 创新思维 ,提高其素质和创新能力,实现向素质教育的转化和深入。
一、数学建模的含义及特点
数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学 方法 及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。一般来说",数学建模"包含五个阶段。
1.准备阶段
主要分析问题背景,已知条件,建模目的等问题。
2.假设阶段
做出科学合理的假设,既能简化问题,又能抓住问题的本质。
3.建立阶段
从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。
4.求解阶段
对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。
5.验证阶段
用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。
二、加强数学建模教育的作用和意义
(一) 加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质
数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题, 因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。数学修养和素质自然而然得以培养并提高。
(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力
数学建模问题来源于社会生活的众多领域,在建模过程中,学生首先需要阅读相关的文献资料,然后应用数学思维、数学逻辑及相关知识对实际问题进行深入剖析研究并经过一系列复杂计算,得出反映实际问题的最佳数学模型及模型最优解。因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。
(三)加强数学建模教育有助于培养学生的创造性思维和创新能力
所谓创造力是指"对已积累的知识和 经验 进行科学地加工和创造,产生新概念、新知识、新思想的能力,大体上由感知力、 记忆力 、思考力、 想象力 四种能力所构成"[1].现今教育界认为,创造力的培养是人才培养的关键,数学建模活动的各个环节无不充满了创造性思维的挑战。
很多不同的实际问题,其数学模型可以是相同或相似的,这就要求学生在建模时触类旁通,挖掘不同事物间的本质,寻找其内在联系。而对一个具体的建模问题,能否把握其本质转化为数学问题,是完成建模过程的关键所在。同时建模题材有较大的灵活性,没有统一的标准答案,因此数学建模过程是培养学生创造性思维,提高创新能力的过程[2].
(四)加强数学建模教育有助于提高学生科技论文的撰写能力
数学建模的结果是以论文形式呈现的,如何将建模思想、建立的模型、最优解及其关键环节的处理在论文中清晰地表述出来,对本科生来说是一个挑战。经历数学建模全过程的磨练,特别是数模论文的撰写,学生的文字语言、数学表述能力及论文的撰写能力无疑会得到前所未有的提高。
(五)加强数学建模教育有助于增强学生的团结合作精神并提高协调组织能力建模问题通常较复杂,涉及的知识面也很广,因此数学建模实践活动一般效仿正规竞赛的规则,三人为一队在三天内以论文形式完成建模题目。要较好地完成任务,离不开良好的组织与管理、分工与协作[3].
三、开展数学建模教育及活动的具体途径和有效方法
(一)开展数学建模课堂教学
即在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模,介绍建模的过程和思想方法及建模中要注意的问题。案例教学法的关键在于把握两个重要环节:
案例的选取和课堂教学的组织。
教学案例一定要精心选取,才能达到预期的教学效果。其选取一般要遵循以下几点。
1. 代表性:案例的选取要具有科学性,能拓宽学生的知识面,突出数学建模活动重在培养兴趣提高能力等特点。
2. 原始性:来自媒体的信息,企事业单位的 报告 ,现实生活和各学科中的问题等等,都是数学建模问题原始资料的重要来源。
3. 创新性:案例应注意选取在建模的某些环节上具有挑战性,能激发学生的创造性思维,培养学生的创新精神和提高创造能力。
案例教学的课堂组织,一部分是教师讲授,从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,介绍如何通过合理的假设和简化建立优化的数学模型。还要强调如何用求解结果去解释实际现象即检验模型。另一部分是课堂讨论,让学生自由发言各抒己见并提出新的模型,简介关键环节的处理。最后教师做出点评,提供一些改进的方向,让学生自己课外独立探索和钻研,这样既突出了教学重点,又给学生留下了进一步思考的空间,既避免了教师的"满堂灌",也活跃了课堂气氛,提高了学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的[4].
(二)开展数模竞赛的专题培训指导工作
建立数学建模竞赛指导团队,分专题实行教师负责制。每位教师根据自己的专长,负责讲授某一方面的数学建模知识与技巧,并选取相应地建模案例进行剖析。如离散模型、连续模型、优化模型、微分方程模型、概率模型、统计回归模型及数学软件的使用等。学生根据自己的薄弱点,选择适合的专题培训班进行学习,以弥补自己的不足。这种针对性的数模教学,会极大地提高教学效率。
(三)建立数学建模网络课程
以现代 网络技术 为依托,建立数学建模课程网站,内容包括:课程介绍,课程大纲,教师教案,电子课件,教学实验,教学录像,网上答疑等;还可以增加一些有关栏目,如历年国内外数模竞赛介绍,校内竞赛,专家点评,获奖心得交流;同时提供数模学习资源下载如讲义,背景材料,历年国内外竞赛题,优秀论文等。以此为学生提供良好的自主学习网络平台,实现课堂教学与网络教学的有机结合,达到有效地提高学生数学建模综合应用能力的目的。[5,6]
(四)开展校内数学建模竞赛活动
完全模拟全国大学生数模竞赛的形式规则:定时公布赛题,三人一组,只能队内讨论,按时提交论文,之后指导教师、参赛同学集中讨论,进一步完善。笔者负责数学建模竞赛培训近 20 年,多年的实践证明,每进行一次这样的训练,学生在建模思路、建模水平、使用软件能力、论文书写方面就有大幅提高。多次训练之后,学生的建模水平更是突飞猛进,效果甚佳。
如 2008 年我指导的队荣获全国高教社杯大学生数学建模竞赛的最高奖---高教社杯奖,这是此赛设置的唯一一个名额,也是当年从全国(包括香港)院校的约 1 万多个本科参赛队中脱颖而出的。又如 2014 年我校 57 队参加全国大学生数学建模竞赛,43 队获奖,获奖比例达 75%,创历年之最。
(五)鼓励学生积极参加全国大学生数学建模竞赛、国际数学建模竞赛
全国大学生数学建模竞赛创办于 1992 年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛, 国际大学生数学建模竞赛是世界上影响范围最大的高水平大学生学术赛事。参加数学建模大赛可以激励学生学习数学的积极性,提高运用数学及相关工具分析问题解决问题的综合能力,开拓知识面,培养创造精神及合作意识。
四、结束语
数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,而高校数学教学改革的目的之一是要着力培养学生的创造性思维,提高学生的创新能力。因此应将数学建模思想融入教学活动中,通过不断的数学建模教育和实践培养学生的创新能力和应用能力从而提高学生的基本素质以适应社会发展的要求。
参考文献:
[1]辞海[M].上海辞书出版社,2002,1:237.
[2]许梅生,章迪平,张少林。 数学建模的认识与实践[J].浙江科技学院学报,2003,15(1):40-42.
[3]姜启源,谢金星,一项成功的高等教育改革实践[J].中国高教研究,2011,12:79-83.
[4]饶从军,王成。论高校数学建模教学[J].延边大学学报(自然科学学版),2006,32(3):227-230.
[5]段璐灵。数学建模课程教学改革初探[J].教育与职业,2013,5:140-142.
[6]郝鹏鹏。工程网络课程教学的实践与思考[J]科技视界,2014,29:76-77.
大部分数学知识是抽象的,概念比较枯燥,造成学生学习困难,而数学建模的运用,在很大程度上可以将抽象的数学知识转化成实体模型,让学生更容易理解和学习数学知识。教师要做的就是了解并掌握数学建模的方法,并且把这种 教学方法 运用到数学教学中。
对教师来说,发现好的教学方法不是最重要的,而是如何把方法与教学结合起来。通过对数学建模的长期研究和实践应用,笔者 总结 了数学建模的概念以及运用策略。
一、数学建模的概念
想要更好地运用数学建模,首先要了解什么是数学建模。可以说,数学建模就像一面镜子,可以使数学抽象的影像产生与之对应的具体化物象。
二、在小学数学教学中运用数学建模的策略
1.根据事物之间的共性进行数学建模
想要运用数学建模,首先要对建模对象有一定的感知。教师要创造有利的条件,促使学生感知不同事物之间的共性,然后进行数学建模。
教师应做好建模前的指导工作,为学生的数学建模做好铺垫,而学生要学会尝试自己去发现事物的共性,争取将事物的共性完美地运用到数学建模中。在建模过程中,教师要引导学生把新知识和旧知识结合起来的作用,将原来学习中发现的好方法运用到新知识的学习、新数学模型的构建中,降低新的数学建模的难度,提高学生数学建模的成功率。如在教学《图形面积》时,教师可以利用不同的图形模板,让学生了解不同图形的面积构成,寻找不同图形面积的差异以及图形之间的共性。这样直观地向学生展示图形的变化,可以加深学生对知识的理解,提高学生的学习效率。
2.认识建模思想的本质
建模思想与数学的本质紧密相连,它不是独立存在于数学教学之外的。所以在数学建模过程中,教师要帮助学生正确认识数学建模的本质,将数学建模与数学教学有机结合起来,提高学生解决问题的能力,让学生真正具备使用数学建模的能力。
建模过程并不是独立于数学教学之外的,它和数学的教学过程紧密相连。数学建模是使人对数学抽象化知识进行具体认识的工具,是运用数学建模思想解决数学难题的过程。因此,教师要将它和数学教学组成一个有机的整体,不仅要帮助学生完成建模,更要带领学生认识数学建模的本质,领悟数学建模思想的真谛,并逐渐引导学生使用数学建模解决数学学习过程中遇到的问题。
3.发挥教材在数学建模上的作用
教材是最基础的教学工具,在数学教材中有很多典型案例可以利用在数学建模上,其中很大一部分来源于生活,更易于小学生学习和理解,有助于学生构建数学建模思想。教师要利用好教材,培养学生的建模能力,帮助学生建造更易于理解的数学模型,从而提高学生的学习效率。如在教学加减法时,教材上会有很多数苹果、香蕉的例题,这些就是很好的数学模型,因为贴近生活,可以激发学生的学习兴趣,培养学生数学建模的能力,所以教师应该深入研究教材。
数学建模是一种很好的数学教学方法,教师要充分利用这种教学方法,真正做到实践与理论完美结合。
1、层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。
2、多属性决策是现代决策科学的一个重要组成部分,它的理论和方法在工程设计、经济、管理和军事等诸多领域中有着广泛的应用,如:投资决策、项目评估、维修服务、武器系统性能评定、工厂选址、投标招标、产业部门发展排序和经济效益综合评价等.多属性决策的实质是利用已有的决策信息通过一定的方式对一组(有限个)备选方案进行排序或择优.它主要由两部分组成:(l) 获取决策信息.决策信息一般包括两个方面的内容:属性权重和属性值(属性值主要有三种形式:实数、区间数和语言).其中,属性权重的确定是多属性决策中的一个重要研究内容;(2)通过一定的方式对决策信息进行集结并对方案进行排序和择优。
3、灰色预测模型(Gray Forecast Model)是通过少量的、不完全的信息,建立数学模型并做出预测的一种预测方法.当我们应用运筹学的思想方法解决实际问题,制定发展战略和政策、进行重大问题的决策时,都必须对未来进行科学的预测.预测是根据客观事物的过去和现在的发展规律,借助于科学的方法对其未来的发展趋势和状况进行描述和分析,并形成科学的假设和判断。
4、Dijkstra算法能求一个顶点到另一顶点最短路径。它是由Dijkstra于1959年提出的。实际它能出始点到 其它 所有顶点的最短路径。
Dijkstra算法是一种标号法:给赋权图的每一个顶点记一个数,称为顶点的标号(临时标号,称T标号,或者固定标号,称为P标号)。T标号表示从始顶点到该标点的最短路长的上界;P标号则是从始顶点到该顶点的最短路长。
5、Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。
6、模拟退火算法是模仿自然界退火现象而得,利用了物理中固体物质的退火过程与一般优化问题的相似性从某一初始温度开始,伴随温度的不断下降,结合概率突跳特性在解空间中随机寻找全局最优解。
7、种群竞争模型:当两个种群为争夺同一食物来源和生存空间相互竞争时,常见的结局是,竞争力弱的灭绝,竞争力强的达到环境容许的最大容量。使用种群竞争模型可以描述两个种群相互竞争的过程,分析产生各种结局的条件。
8、排队论发源于上世纪初。当时美国贝尔电话公司发明了自动电话,以适应日益繁忙的工商业电话通讯需要。这个新发明带来了一个新问题,即通话线路与电话用户呼叫的数量关系应如何妥善解决,这个问题久久未能解决。1909年,丹麦的哥本哈根电话公司A.K.埃尔浪(Erlang)在热力学统计平衡概念的启发下解决了这个问题。
9、线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。决策变量、约束条件、目标函数是线性规划的三要素。
10、非线性规划:非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。20世纪50年代初,库哈(H.W.Kuhn) 和托克 (A.W.Tucker) 提出了非线性规划的基本定理,为非线性规划奠定了理论基础。这一方法在工业、交通运输、经济管理和军事等方面有广泛的应用,特别是在“最优设计”方面,它提供了数学基础和计算方法,因此有重要的实用价值。
数学建模全国优秀论文相关 文章 :
★ 数学建模全国优秀论文范文
★ 2017年全国数学建模大赛获奖优秀论文
★ 数学建模竞赛获奖论文范文
★ 小学数学建模的优秀论文范文
★ 初中数学建模论文范文
★ 学习数学建模心得体会3篇
★ 数学建模论文优秀范文
★ 大学生数学建模论文范文(2)
★ 数学建模获奖论文模板范文
★ 大学生数学建模论文范文
论数学建模在经济学中的应用【摘 要】当代西方经济认为,经济学的基本方法是分析经济变量之间的函数关系,建立经济模型,从中引申出经济原则和理论进行决策和预测。【关键词】经济学 数学模型 应用在经济决策科学化、定量化呼声日渐高涨的今天,数学经济建模更是无处不在。如生产厂家可根据客户提出的产品数量、质量、交货期、交货方式、交货地点等要求,根据快速报价系统(根据厂家各种资源、产品工艺流程、生产成本及客户需求等数据进行数学经济建模)与客户进行商业谈判。一、数学经济模型及其重要性数学经济模型可以按变量的性质分成两类,即概率型和确定型。概率型的模型处理具有随机性情况的模型,确定型的模型则能基于一定的假设和法则,精确地对一种特定情况的结果做出判断。由于数学分支很多,加之相互交叉渗透,又派生出许多分支,所以一个给定的经济问题有时能用一种以上的数学方法去对它进行描述和解释。具体建立什么类型的模型,既要视问题而定,又要因人而异。要看自己比较熟悉精通哪门学科,充分发挥自己的特长。数学并不能直接处理经济领域的客观情况。为了能用数学解决经济领域中的问题,就必须建立数学模型。数学建模是为了解决经济领域中的问题而作的一个抽象的、简化的结构的数学刻划。或者说,数学经济建模就是为了经济目的,用字母、数字及其他数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构的刻划。而现代世界发展史证实其经济发展速度与数学经济建模的密切关系。数学经济建模促进经济学的发展;带来了现实的生产效率。在经济决策科学化、定量化呼声日渐高涨的今天,数学经济建模更是无处不在。如生产厂家可根据客户提出的产品数量、质量、交货期、交货方式、交货地点等要求,根据快速报价系统与客户进行商业谈判。二、构建经济数学模型的一般步骤1.了解熟悉实际问题,以及与问题有关的背景知识。2.通过假设把所要研究的实际问题简化、抽象,明确模型中诸多的影响因素,用数量和参数来表示这些因素。运用数学知识和技巧来描述问题中变量参数之问的关系。一般情况下用数学表达式来表示,构架出一个初步的数学模型。然后,再通过不断地调整假设使建立的模型尽可能地接近实际,从而得到比较满意的结论。3.使用已知数据,观测数据或者实际问题的有关背景知识对所建模型中的参数给出估计值。4.运行所得到的模型。把模型的结果与实际观测进行分析比较。如果模型结果与实际情况基本一致,表明模型是符合实际问题的。我们可以将它用于对实际问题进一步的分析或者预测;如果模型的结果与实际观测不一致,不能将所得的模型应用于所研究的实际问题。此时需要回头检查模型的组建是否有问题。问题的假使是否恰当,是否忽略了不应该忽略的因素或者还保留着不应该保留的因素。并对模型进行必要的调整修正。重复前面的建模过程,直到建立出一个经检验符合实际问题的模型为止。一个较好的数学模型是从实际中得来,又能够应用到实际问题中去的。三、应用实例商品提价问题的数学模型:1.问题商场经营者即要考虑商品的销售额、销售量。同时也要考虑如何在短期内获得最大利润。这个问题与商场经营的商品的定价有直接关系。定价低、销售量大、但利润小;定价高、利润大但销售量减少。下面研究在销售总收入有限制的情况下.商品的最高定价问题。2.实例分析某商场销售某种商品单价25元。每年可销售3万件。设该商品每件提价1元。销售量减少0.1万件。要使总销售收入不少于75万元。求该商品的最高提价。解:设最高提价为X元。提价后的商品单价为(25+x)元提价后的销售量为(30000-1000X/1)件则(25+x)(30000-1000X/1)≥750000(25+x)(30-x)≥750[摘要]本文从数学与经济学的关系出发,介绍了数学经济模型及其重要性,讨论了经济数学模型建立的一般步骤,分析了数学在经济学中应用的局限性,这对在研充经济学时有很好的借鉴作用。即提价最高不能超过5元。四、数学在经济学中应用的局限性经济学不是数学,重要的是经济思想。数学只是一种分析工具数学作为工具和方法必须在经济理论的合理框架中才能真正发挥其应有作用,而不能将之替代经济学,在经济思想和理论的研究过程中,如果本末倒置,过度地依靠数学,不加限制地“数学化很可能阉割经济学的本质,以至损害经济思想,甚至会导致我们走入幻想,误入歧途。因为:1.经济学不是数学概念和模型的简单汇集。不是去开拓数学前沿而是借助它来分析、解析经济现象,数学只是一种应用工具。经济学作为社会科学的分支学科,它是人类活动中有关经济现象和经济行为的理论。而人类活动受道德的、历史的、社会的、文化的、制度诸因素的影响,不可能像自然界一样是完全可以通过数学公式推导出来。把经济学变为系列抽象假定、复杂公式的科学。实际上忽视了经济学作为一门社会科学的特性,失去经济学作为社会科学的人文性和真正的科学性。2.经济理论的发展要从自身独有的研究视角出发,去研究、分析现实经济活动内在的本质和规律。经济学中运用的任何数学方法,离不开一定的假设条件,它不是无条件地适用于任何场所,而是有条件适用于特定的领域在实际生活中社会的历史的心理的等非制度因素很可能被忽视而漏掉。这将会导致理论指导现实的失败。3.数学计量分析方法只是执行经济理论方法的工具之一,而不是惟一的工具。经济学过分对数学的依赖会导致经济研究的资源误置和经济研究向度的单一化,从而不利于经济学的发展。4.数学经济建模应用非常广泛,为决策者提供参考依据并对许多部门的具体工作进行指导,如节省开支,降低成本,提高利润等。尤其是对未来可以预测和估计,对促进科学技术和经济的蓬勃发展起了很大的推动作用。但目前尚没有一个具有普遍意义的建模方法和技巧。这既是我们今后应该努力发展的方向,又是我们不可推卸的责任。因此,我们要以自己的辛勤劳动,多实践、多体会,使数学经济建模为我国经济腾飞作出应有的贡献。参考文献:[1]孙红伟.商场经营管理中的几个数学模型分析[J].商场现代化,2006,(8).
已经发了好几篇给你了,请注意查收一下。有几篇是自己做的,希望对你有用。
听数学建模课的感想今年,我选修了数学建模这门课,因为我感觉数学建模是非常有用的一门课,而且我对数学建模也非常感兴趣。在学习的过程中,我获得了很多知识,对我有非常大的提高。同时我有了一些感想和体会。数学建模属于一门应用数学,学习这门课要求我们学会如何将实际问题经过分析、简化转化为一个数学问题,然后用适当的数学方法去解决。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。在学习中,我知道了数学建模的过程,其过程如下:(1)模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。(2) 模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。(3) 模型建立:在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构。(尽量用简单的数学工具)(4) 模型求解:利用获取的数据资料,对模型的所有参数做出计算(估计)。(5) 模型分析:对所得的结果进行数学上的分析。(6) 模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。(7) 模型应用:应用方式因问题的性质和建模的目的而异。我还了解到学习数学建模的意义是:1、培养创新意识和创造能力2、训练快速获取信息和资料的能力3、锻炼快速了解和掌握新知识的技能4、培养团队合作意识和团队合作精神5、增强写作技能和排版技术6、荣获国家级奖励有利于保送研究生7、荣获国际级奖励有利于申请出国留学在学习了数学建模后,我有了很多体会,我认为数学建模带给我的是现在的指示,发散性思维,各种研究方法和手段。特别是对我们未来人生的奠基作用,毫不夸张地说,我们将在以后的人生享受它的思慧!通过数学建模,我学会了“我们”,培养了“三人同心,其利断金”的团队精神,数学建模教会了我顽强和忍耐,教会我做事谨慎,言如其实,教会我凡事要有自己的创新,不能局限于俗套,它还教会我踏踏实实做人,认认真真做事。是数学建模让我提高了自己,在今后,我会用数学建模的思想去思考问题。我相信,我会进步更多的!我永远不会忘了我的数学建模课!这是我写的,你看能不能用
五年级(!!)的国庆作业。大家只需要提出点子或者构思或者想法就可以了,具体操作和建模我都会弄的。作业核心:数学与生活要求:1、了解一项本地或全国、世界著名产品(范围不限),用所学的数学知识,通过数据分析,反映该产品在设计、管理、营销方面的独特做法和杰出贡献,写一篇数据分析报告。2、应用所学知识做一项自己喜欢的研究,内容不限。写一份体现数学作用、研究数据真实、图文并茂的微型研究报告。集思广益,希望大家踊跃回答。。。PS:也希望大家认真看完再答。。。
谁让我迷了眼。你让我迷了眼。素手白衣,挥墨纸上。花窗下,太阳笑开了眼。仔细瞧,个个扬着头,诚心祈祷你不要离去。又是谁在拉扯衣角,花了谁的妆。
动物数学气象学家Lorenz提出一篇论文,名叫「一只蝴蝶拍一下翅膀会不会在Taxas州引起龙卷风?」论述某系统如果初期条件差一点点,结果会很不稳定,他把这种现象戏称做「蝴蝶效应」。就像我们投掷骰子两次,无论我们如何刻意去投掷,两次的物理现象和投出的点数也不一定是相同的。Lorenz为何要写这篇论文呢?这故事发生在1961年的某个冬天,他如往常一般在办公室操作气象电脑。平时,他只需要将温度、湿度、压力等气象数据输入,电脑就会依据三个内建的微分方程式,计算出下一刻可能的气象数据,因此模拟出气象变化图。这一天,Lorenz想更进一步了解某段纪录的后续变化,他把某时刻的气象数据重新输入电脑,让电脑计算出更多的后续结果。当时,电脑处理数据资料的数度不快,在结果出来之前,足够他喝杯咖啡并和友人闲聊一阵。在一小时后,结果出来了,不过令他目瞪口呆。结果和原资讯两相比较,初期数据还差不多,越到后期,数据差异就越大了,就像是不同的两笔资讯。而问题并不出在电脑,问题是他输入的数据差了0.000127,而这些微的差异却造成天壤之别。所以长期的准确预测天气是不可能的。参考资料:阿草的葫芦(下册)——远哲科学教育基金会2、动物中的数学“天才”蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成。组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料。蜂房的巢壁厚0.073毫米,误差极小。丹顶鹤总是成群结队迁飞,而且排成“人”字形。“人”字形的角度是110度。更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契”?蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺的圆规也很难画出像蜘蛛网那样匀称的图案。冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。真正的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。奇怪的是,古生物学家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天。(生活时报)