问题一:论文的外文参考文献从哪里找呢 在中国期刊网ki/里找,有那种英文的文献,之后翻译过来。万方、维普都可以。或者直接到外人数据库找。 APS美国物理学会电子出版物 AIP美国物理研究所电子出版物 ASME美国机械工程师学会电子期刊 ASCE美国土木工程协会电子期刊 ACS美国化学学会数据库 IOP英国皇家物理学会户刊 RSC英国皇家化学学会期刊 AIAA美国航空航天学会 John Wiley电子期刊 Kluwer电子期刊 Springer LINK 电子期刊 EBSCO学术、商业信息数据库 Elsevier Science IEEE/IEE Electronic Library ACM Digital Library 但估计你们学校没有数据库。 如果找不到干脆找个中文的自己翻译过来算了。 问题二:外文参考文献怎么找 在中国期刊网ki/里找,有那种英文的文献,之后翻译过来。万方、维普都可以。或者直接到外人数据库找。 APS美国物理学会电子出版物 AIP美国物理研究所电子出版物 ASME美国机械工程师学会电子期刊 ASCE美国土木工程协会电子期刊 ACS美国化学学会数据库 IOP英国皇家物理学会期刊 RSC英国皇家化学学会期刊 AIAA美国航空航天学会 John Wiley电子期刊 Kluwer电子期刊 Springer LINK 电子期刊 EBSCO学术、商业信息数据库 Elsevier Science IEEE/IEE Electronic Library ACM Digital Library 但估计你们学校没有数据库。 如果找不到干脆找个中文的自己翻译过来算了。 问题三:写论文怎么找外文文献 中国知网――ki你可以访问国家图书馆,找到学士论文那一项,再往下分类。或者高级搜索外文文献。 斯普林格(Splinger)――外国网站,如果你们学校买了的话就可以看,很多检索需要验证IP的。 到最近的大学办个图书证,花钱办的,还要带身份证或者学生证。都有外文图书室的。 别的就要看您什么专业,有专业用的检索网站等等。 通过看相关的中文文献,找到他们用的参考书,再把那本书弄到手看看有没有用。(我常用)这个不会出错,而且经常有翻译版。 问题四:查找下载学术论文和外文文献都有哪些途径和方法?具体一点 最常见的是知网。对于外文文献主要还有以下一些网站。楼主要采纳哦! 问题五:毕业论文的外文文献去哪里能找到比较好的? 1、手工查找图书馆外文期刊常2、检索图书馆外文数据库 推荐两个外文数据库,分别是EBSCOhost(search.ebscohost)和WSN(worldscinet.lib.tsinghua.edu)。 3、利用搜索引擎检索 利用Google、GoogleScholar(谷歌学术scholar.google)或SCIRUS(scirus)等外文搜索引擎。 问题六:毕业论文的外文文献怎么找 有的 很多,是个人原创。 你好,帮你就是的,一份完整的 问题七:毕业论文的外文文献怎么找 有的 很多,是个人原创。 你好,帮你就是的,一份完整的 问题八:毕业论文外文文献在哪里找啊 15分 谷歌学术里可以找 不过你这个题目我估计是找不到外文文献的 问题九:一般在哪里下载英文论文文献 在淘宝里搜英文文献下载,就可以。也可以按店名来搜 “木虫屋” 就行,好像还可以代查,感觉挺方便的。 问题十:去哪找论文的外文文献? science鸡irect/在这个网站,就可以找对外文文献的.在all fiedls,输入关键词,
爱因斯坦的广义相对论预言:引力波的主要性质有:在真空中以光速传播;携带能量和与波源有关的信息;是横波,在远源处为平面波;最低次为四极辐射;辐射强度极弱;物质对引力波吸收效率极低,引力波穿透性极强,地球对引力波几乎是透明的;其偏振特性为两个独立的偏振态等。引力波是波动形式和有限速度传播的引力场。 爱因斯坦虽然在1916年曾预言加速的质量可能有引力波存在,但他提出的引力波与坐标的选取有关,在某一个参考系看来,引力波可能有能量,而换一个参考系可能就没有。因此在提出引力波存在的初期,包括爱因斯坦本人在内的大多数人对引力波都持怀疑态度。1956年,皮拉尼提出一个与坐标系选取无关的引力波定义;1957年,邦迪进而从理论上证明与坐标系选取无关的平面引力波的存在。1959年,邦迪、皮拉尼和罗宾森更进一步证明,静止物体在引力波脉冲作用下会产生运动,于是间接地证明引力波携带能量,并可被探测到。由于引力辐射极其微弱,目前还不能在实验室里发射可供探测的引力波,而大质量天体的激烈运动,比如双星体系公转、中子星自转、超新星爆发,理论预言的黑洞的形成、碰撞和捕获物质等过程,都能辐射较强的引力波。 多年来,各国科学家都在致力于探测引力波,美国马里兰大学的科学家韦伯首创用一根铝棒作为天线进行探测,并声称探测到了不能排除是引力波的信号,但其他科学家都没有得到这一结果,韦伯的结论没有得到公认。现在对引力波的研究方兴未艾,反引力或称反重力研究又提上了日程,这项研究可能获得的成果或许将彻底实现人类实现恒星际航行的梦想,科学家值得为这项研究投入毕生的精力和才华。中国科学家在这方面已经做了有价值的实验和研究。 自从英国科幻小说作者威尔斯描述了“反重力”(能够屏蔽重力影响,使宇宙飞船飞向月球)后,反重力已经成为人类一个多世纪的梦想。如果反重力是确实存在的,它必将改变整个世界。汽车、火车、轮船,所有你能想到的交通系统,都能通过从引力场中获取的能量驱动。这一会改变世界科学界和航空航天界禁忌的反重力研究,目前再次受到人们的关注,因为有消息说世界上最大的飞机制造商波音公司正在探索一些新概念,这些新概念可能在将来某一天彻底改变一个世纪来的推进技术。 波音公司进行的反重力研究概括起来就是该公司一个名为“先进空间推进技术重力研究(Grasp)”的项目。《简氏防务周刊》获得的一份有关文件阐述了波音公司认为该项目获得成功的重大意义。文件中写道:“如果反重力是确实存在的,它必将改变整个航空航天事业。”这种评价可能还不够。如果反重力是确实存在的,它必将改变整个世界。汽车、火车、轮船,所有你能想到的交通系统,都能通过“无推进剂推进”———一种从重力场中获取能量的模式来驱动。 尽管,反重力是人们一个美好的梦想,但是传统科学长期认为,反重力是不可能的。1992年4月,已故的英国索尔福德大学教授、当时担任英国航天防御系统战略项目负责人的布赖恩·扬在伦敦机械工程师学会发表演讲,他在演讲中解释了为什么进行反重力研究与航空航天业乃至世界都有关。“Grasp”简报说明了波音公司为什么必须雇佣俄罗斯材料专家叶夫根尼·波德克列特诺夫的原因。波德克列特诺夫声称发明了可以屏蔽重力影响的装置。 1992年,任职于芬兰坦佩雷技术大学的波德克列特诺夫向一家英国物理学杂志提交了一篇论文,他描述了被置于高速旋转的超导体(极低温度时失去电阻)上面的一个物体如何失去将近2%的重量。这篇论文泄漏给了一家报纸。一来因为它涉及禁忌的“反重力”概念,二来因为它在主流物理界掀起了轩然大波,波德克列特诺夫被学校开除了。但这位俄罗斯人的研究吸引了美国国家航空航天局的注意,该局早已同亨茨维尔亚拉巴马大学的一位研究员有联系,这位研究员宣称她能制造出一种类重力场,能够利用高速旋转超导体排斥或吸引物体。 在20世纪90年代中期,位于亚拉巴马州的美国国家航空航天局马歇尔航天中心在重复波德克列特诺夫的实验时失败了。但是,该中心承认,不知道这位俄罗斯人制作超导盘的独特方法,它在很大程度上是在盲目地进行研究。 几年前,美国国家航空航天局向俄亥俄州哥伦布超导元件公司支付60万美元,制造波德克列特诺夫曾使用过的装置,并且聘请了这位俄罗斯人做顾问。这项实验虽然被延期了,但该项实验的负责人罗恩·科措尔自信实验可以完成。现任职于莫斯科化学研究中心的波德克列特诺夫,进一步发展了自己的思想。他同意大利科学家乔瓦尼·莫达内塞联合发表了一篇论文,详细介绍了一种“冲量重力发生器”的研究工作,它能对所有物体产生一种斥力。该设备使用一个强放电源“发射器”和一个超导“发射器”,制造出了一种“重力冲量”。波德克列特诺夫说:“时间很短,沿着放电的线路以极快的速度(实际上是瞬时)进行传播,经过许多不同物体,没有任何显著的能量损失。”他说,实验结果是对光束击中的任何物体都产生了推力作用,大小同物体质量成正比。波德克列特诺夫在调整一个激光瞄准装置时说,他的实验装置已经显示有能力击倒1公里外的物体,他声称,这一装置用同样的能量可以击倒200公里外的物体。正是波德克列特诺夫的“冲量重力发生器”的研究工作引起了波音公司的注意。在那份“Grasp”简报中,波音公司描述了该装置发出的光束如何不受任何电磁屏蔽影响,可以穿透任何物体而达到目标。
《大学物理-光学》百度网盘资源免费下载
链接:
大学物理-光学|3.偏振.mp4|2.干涉.mp4|1.衍射.mp4
物理问题解决与元认知研究【摘要】文章结合具体学科,分析了元认知在物理问题解决过程中的作用,以及如何通过物理问题解决对元认知进行有效开发。【关键词】物理;问题解决;元认知元认知( Metacognition)是弗拉维尔70年代提出的,此后关于元认知的研究越来越多,这些研究主要集中于阅读理解、记忆和问题解决三大领域,其中问题解决中的元认知研究是九十年代才开始的。研究表明学习能力强的学生元认知水平较高,元认知策略可以修补知识水平的欠缺以及补充、完善问题。本文采取与具体学科相结合的方式,从物理学科的特点出发,从元认知的实质出发,探讨元认知在物理问题解决过程中的作用以及如何对其有效开发。一、元认知在物理问题解决中的作用1976年弗拉维尔对元认知的定义:一个人所具有的关于自己思维活动和学习活动的知识及其实施的控制,是任何调节认知过程的认知活动。 1979年Kluwe认为:元认知是明确专门指向个人的认知活动的积极的、反省的认知加工过程; Schraw & Dennison( 1994)定义:元认知是关于个人对自己学习反省、理解、控制的一种能力。元认知概念包括三方面的内容:元认知知识、元认知体验、元认知监控三种成分。三者相互作用,相互联系,其中元认知监控是元认知中的核心成分,它是学习成功的关键。1. 元认知对物理问题解决的目标进行修正。[1] 元认知使得解题过程具有明确的目标指向性,使解题者的心理活动都朝着目标靠拢。目标是问题解决者主观经验的知觉,它既是问题解决的开始,也是问题解决的归宿,它对问题解决的进程进行指导。解题中问题解决者要监控其解题计划,制订切实可行的目标,致使物理问题解决得以顺利进行。2. 元认知操作驱动物理问题解决的策略。解决物理问题需要一定的策略。策略是在思维模式的作用下反应出来的,它影响着物理问题解决的效率。问题解决者在解题过程中通过以下方式进行认知操作。(1)激活思维并制定策略,即以目标为出发点,将物理材料放入已有的知识背景中,在操作系统的作用下激活认知结构。在元认知基础上,根据材料系统在认知结构中的相似性,寻求物理认知结构中的“相似点”,把问题改组为适合原有知识的形式,或把以前知识通过经验加工成适合现有问题的形式,从而制订解题策略;(2)改组和实施策略,即通过对问题解决进程的反馈,面对问题,有多种解题方法,问题解决者要进行自我评价,实质上就是对问题解决策略的评价,如果发现目标确信无疑而又达不到或不能顺利达到目标时,则将怀疑其策略,有必要对策略进行调整。3. 元认知增强解题者在物理问题解决中的主体意识。鉴于物理学科的特点,一般解决物理问题有一定的困难,这就要求解题者能自我激活,发挥自我作用,排除障碍,产生问题解决的欲望。而元认知在整个问题解决过程中存在着内反馈的调节。(1)通过元认知知识,使解题者能审清题意,对问题的类型、难易程度、所用的知识有初步了解,使其能主动选择有效解题策略;(2)元认知体验的自我启发作用,调动非智力因素参与,产生“知”与“不知”的认知体验和情感体验,产生一些新的思路和方法,对原有的思维进行扩充,可以克服障碍,调动解题者的积极性和自信心;(3)元认知的监控作用,体现在解决问题的整个阶段,解题的前计划,解题过程中的监测,解后的评价、反思。二、通过物理问题解决对学生进行元认知开发学生的元认知能力往往在解题过程中体现,并在解题过程中培养出来,龚志宁(1999)研究发现元认知策略导致学困生成绩低于优生。有人曾经对比优生与物理学困生解题过程研究中。发现元认知能力的高低一定程度决定物理成绩高低。为了让学生“学会学习”,我们应加强学生物理问题元认知能力的培养。1.激发学生的自我意识和培养学习动机。元认知能力的发展以一定的心理发展水平为基础,元认知在学生自我意识产生之后才发展起来。如果没有自我意识,学生不能对自己正在操作的认知对象进行积极的计划、监测、评价、反思。自我意识是以主体及其活动为意识对象,对人的认知活动起着监控作用。在解题学习中,人的自我意识是对自己在问题感知、表征、思考、记忆和体验的意识,对自己的目的、计划、行动以及行动效果的意识。2.剖析思维过程,加强思路教学。以往教师解题只注重解题过程本身以及解题的结果,而忽略学生元认知作用的过程。元认知是认知的认知,元认知时刻在发挥作用,要提高学生的元认知水平,应该让学生体会教师的元认知发挥过程。遇到一个新问题时,向学生示范自己如何分析、寻找有效策略,最终解决问题的整个过程。有时教师也会进入死胡同,但有能力排除障碍。有时教师也犯错,但他运用元认知监控可以修正问题…总而言之,展示教师思维过程,将教师自身过程的自我监控、自我调节展现给学生。[2]3.传授解题的元认知策略(1)善于利用波利亚“自我提示语”Polya波利亚在他的解题理论著作中所给出很多提示语,都是属于元认知的范畴。在解题时经常自觉地运用这些提示语,是提高解题元认知能力的有效途径。如果问得合适,就可能引出好的答案,引出正确的想法。他的基本模式为:第一步——阅读题意,表征问题;第二步——拟定计划,执行步骤;第三步——评价和反思(2)同学之间相互质问(Inquiry)和争论(Argument)质问是学生常采用的方法。学生对一些问题常常被动的接受,争论很少受到重视,但它与询问一样重要,(下转第194页)(上接第184页)通过争论对问题的理解能力比被动地接受强四倍,对一些思考型强的、有多种解法的问题,留给学生讨论,让学生说出自己的解题思路。为什么那样做?原因是什么?为什么选择这种方法?让同学之间相互质疑和争论,每个人对自己和他人的做法进行深入思考和反思,使学生对自己所解的题目有更深层的含义。4.加强不良结构问题的教学结构不良问题(ill-structured problem)相对结构良好问题(well-structured problem ),学生经常面对的是结构良好问题,目标定义明确,提供多种解题方法,而结构不良问题比较模糊,问题不明确,具有不清楚的目标和多样的解题方法,同时又属于开放型题目,对问题很难得到明确的方法。学生对知识不能迁移,而教育者往往对这方面重视不够。国外有这方面的研究,表明经过结构不良问题的训练,学生的元认知解题能力有很大提高。总之提高学生物理问题解决的元认知水平非一朝一夕所能实现的,需要师生共同协作。教师应把学生的元认知能力培养纳入自己的教学目标中,在问题教学中,不断渗透元认知知识和策略的训练内容。调动学生的主体意识,注意元监控的实施,只有这样,学生的元认知水平在物理问题解决中得到开发。【参考文献】[1]朱德全,宋乃庆.谈数学教学中的问题解决与元认知开发[J].学科教育研究,1997,(6).[2]周丽芳.元认知及其培养[J].天津市教科院学报,2002,(1).希望对您有帮助。
Springer LinkScience Direct
The Implications of Cognitive Studies for Teaching Physics 我用附件的形式把它发到你的email里了,有20页呢,希望对你有参考作用。
强烈推荐使用seek68数字图书馆,里头中外学术文献数据库应有尽有。
1. The NASA Astrophysics Data System -- 世界最大免费全文网站,超过300,000篇全文 主要学科:天体物理学 2. HighWire Press -- 世界第二大免费全文网站,超过235,812篇全文 主要学科:生物学、医学 3. arXiv.org 主要学科:物理、数学、非线性科学、计算机科学等。文件格式以PostScript为主,如没有相应的阅读软件,可以选择生成PDF文件格式。 4. Behavioral and Brain Sciences 主要学科:行为科学、脑科学 5. Centers for Disease Control and Prevention (CDC) 主要学科:医学 6. CogPrints 主要学科:心理学、神经科学、行为科学、语言学、人工智能、哲学 7. GPO Access 美国政府文献 8. Inter-university Consortium for Political and Social Research (ICPSR) 世界最大的社会科学文献网站 9. National Academy Press 美国国家科学院、国家工程院、医学协会等机构报告 10. National Center for Health Statistics (NCHS) 美国国家卫生统计中心的统计报告 11. NCSTRL 计算机科学研究报告和论文 12. Project Gutenberg Electronic Public Library 电子图书,2002前提供10000种全文电子图书 13. Thomas Legislative Information on the Internet 美国国会图书馆提供的美国国会报告和历史文献 14. UNESCO 联合国教科文组织提供的文档 15. United States Geological Survey 美国地质考察报告 16. World Development Sources (World Bank) 世界银行报告 17. Delphion 世界各国专利,可看到前十三页全文 18 美国数学学会(AMS)的三种免费期刊 BulletinElectronic Research Announcements Notices of the American Mathematical Society 19 Physics Today 美国物理学会(American Institute of Physics)提供的免费杂志 20 Frontiers in Bioscience 生物科学期刊和图书,文章被Biosis、CA、Medline等重要二次文献数据库引用 21 The World Wide Web Journal of Biology 被Biosis Previews引用 22 Science Magazine 23 Scientific American 24 ACM Digital Library 25 Issues in Science and Technology 《科学与技术问题》,美国。 1984年创刊,全年4期,ISSN 0748-5492,National Academy of Sciences,探讨和阐述科学、技术和卫生事业发展中的政策问题。 26 Bulletin of Symbolic Logic 《符号逻辑通报》,美国。 1995年创刊,全年4期,ISSN 1079-8986,刊载数学、哲学、计算机、语言学等领域中有关符号逻辑方面的论文、书评和会议论文摘要。 27 Progress of Theoretical Physics 《理论物理学进展》,日本。 1946年创刊,全年12期,ISSN 0033-068X,发表日本理论物理学者的研究成果。文章用英文、德文、法文发表。 28 Australian Journal of Physics 《澳大利亚物理学杂志》,澳大利亚。 1948年创刊,全年6期,ISSN 0004-9506,刊载物理学(从基本粒子到天体物理学)领域的研究论文、简讯和评论。 29 New Journal of Physics 《新物理学杂志》,英国。 1998年创刊,ISSN 1367-2630,是一种全文电子杂志,它在物理学领域相当具有权威性。该杂志编辑竭力通过出版对物理学家有益并能引起物理学家关注的高品质文章,从而把《新物理学杂志》办成本领域最主要的科学杂志。 30 Journal of Biological Chemistry 《生物化学杂志》,美国。 1905年创刊,全年52期,ISSN 0021-9258,Journal of Biological Chemistry Subscription,刊载生物化学领域的研究成果。高价刊。 31 Chemical and Pharmaceutical Bulletin 《化学与药学通报》,日本。 1953年创刊,全年12期,ISSN 0009-2363,发表生物分析化学、生物化学、药理学、毒理学和生物药学方面的研究论文及报告,用英文出版。 32 Journal of Micromechanics and Microengineering 《微型机械与微型工程杂志》,英国。 1991年创刊,全年4期,ISSN 0960-1317,刊载微型机电、微型机械和真空微电子技术方面的研究论文,涉及微型系统的控制、程序和建造、微型结构和器件、集成电路、电子与光子器件等基本结构、器械和系统设计研究。 33 VDI-Z 《德国工程师协会综合生产杂志》,德国。 1857年创刊,全年12期,ISSN 0042-1766,刊载机器制造、金属加工工艺、生产规划管理、生产系统、生产评价以及金属加工设备与系统等方面的论文,兼及行业新闻、新产品介绍。 34 Modern Machine Shop 《现代机械车间》,美国。 1928年创刊,全年12期,ISSN 0026-8003,全面报道制造与机械工业的新闻和技术信息,内容包括工程、工业机器人、研究与开发、程序设计、安全规则与设备等。 35 Process Engineering 《加工工程》,英国。 1920年创刊,全年12期,ISSN 0370-1859,刊载化工加工技术以及设备、材料和保养等方面的文章。 36 Signal 《信号》,美国。请采纳,谢谢
还有中国物理
刊物名称及刊号 主办单位 所属学科(一级)检索系统摘引情况应用力学学报ISSN1000-4939 CN61-1112 西安交通大学 力学 ISTIC实验力学ISSN1001-4888 CN34-1057 中国力学学会 力学 ISTIC力学与实践ISSN1000-0879 CN11-2064 中国力学学会 力学 ISTIC应用数学和力学ISSN1000-0887 CN50-1060 重庆交通学院 力学 EI(英文版);ISTIC固体力学学报(中、英文版)ISSN0254-7805 CN42-1250 中国力学学会 力学 ISTIC力学学报(中、英文版)ISSN0459-1879 CN11-2062 中国力学学会 力学 SCI、EI(英文版); ISTIC力学进展ISSN1000-0992 CN11-1774 中科院力学所 力学 ISTIC计算力学学报ISSN1007-4708 CN21-1373 中国力学学会 力学 ISTIC工程力学ISSN1000-4750 CN11-2595 中国力学学会 力学 EI; ISTIC计算物理ISSN1001-246X CN11-2011 中国核学会 物理学 ISTIC发光学报ISSN1000-7032, CN32-1116 物理学 光学 ISTIC物理学报(英文版)CN11-3028 中国物理学会 物理学 ISTIC光电子激光ISSN1005-0086 国家自然基金委 员会信息学部、 物理学 光学 EI; ISTIC声学技术1000-3630 中国科学院东湾研究站 物理学 声学 ISTIC电波科学学报ISSN1005-0388, CN41-1185 中国电子学会 物理学 无线电物理 ISTIC光学技术ISSN1002-1582, CN11-1897 中国兵工学会、北京理工大学、北京光电集团 物理学 光学 EI; ISTIC应用声学ISSN1000-310X, CN11-2121 中国电子学会应用声学学会 物理学 声学 ISTIC高压物理学报ISSN1000-5773, CN51-1147 物理学 凝聚态物理学 EI; ISTIC工程热物理学报ISSN0253-231X, CN11-2091 物理学 热学 ISTICCommunication in Theoretical Physics ISSN0253-6102 物理学 SCI,ISTIC红外技术ISSN1001-8891, CN53-1053 物理学 光学 激光与红外ISSN1001-5078, CN11-2436 中国光学学会光电子行业 物理学 EI低温物理学报ISSN1000-3258, CN34-1053 物理学 ISTIC固体电子学研究与进展ISSN1000-3819, CN32-1110 固体电子学的一级刊物 物理学 EI; ISTIC原子核物理评论ISSN1007-4627, CN62-1131 中国核学会 物理学 原子与分子物理学报ISSN1000-0364, CN51-1199 物理学 ISTIC激光杂志ISSN0253-2743 物理学 EI; ISTIC红外与毫米波学报ISSN1001-9014, CN31-1577 中国光学学会 物理学 EI; ISTIC高能物理与核物理ISSN0254-3052, CN11-1825 物理学 ISTIC应用激光ISSN1000-372X, CN31-1375 物理学 光学 EI; ISTIC中国激光ISSN0258-7025, CN31-1339 中国光学学会 物理学 光学 EI(英文版);ISTIC量子电子学ISSN1001-7577, CN34-1078 中国光学会基础专业委员会 物理学 ISTIC光子学报ISSN1004-4213, CN61-1235 物理学 ISTIC物理ISSN0379-4148, CN11-1957 中国物理学会 物理学 ISTIC量子光学学报ISSN1007-6654, CN14-1187 物理学 光学 ISTIC光学学报ISSN0253-2239, CN31-1252 物理学 光学 EI; ISTIC声学学报ISSN0371-0025, CN11-2065 物理学 声学 EI; ISTIC物理学报(中)ISSN1000-3290, CN11-1958 物理学 ISTICChinese Physics LetterssISSN0256-307X, CN11-1959 物理学 SCI物理学进展ISSN1000-0542, CN32-1127 中国物理学会 物理学 ISTIC数学物理学报(中、英)ISSN1003-3998 CN42-1226 中科物理与数学所 物理学 理论物理学 ISTIC(中文版)
物理学核心期刊有:1.物理学报2.光学学报3.高能物理与核物理4.光子学报5.中国激光6.物理7.原子与分子物理学报8.半导体学报 9.光谱学与光谱分析 10.强激光与粒子束 11.量子电子学报 12.物理学进展 13.声学学报 14.红外与毫米波学报 15.发光学报 16.核技术 17.大学物理 18.金属学报 19.低温物理学报 20.无机材料学报 21.高压物理学报 22.材料研究学报 23.波谱学杂志 24.量子光学学报 25.化学物理学报 26.计算物理 27.人工晶体学报 28.光学技术 29.原子核物理评论
物理化学好像也是的,其它的没有了~!都是英文的
其实植物生理领域最顶级的是Annual Review of Plant Physiology and Plant Molecular Biology(好像去年还是今年改名称为Annual Review of Plant Biology了) 影响因子:2004年16.24、2005年17.78、2006年19.837剩下的就是plant Physiology 和plant Cell 这两个了。如果你能在Annual Review上写篇综述,那么基本上就能评上院士了。在后两者上发文章....那是我们这里比较好的毕业要求...
现在的名字叫 Annual Review of Plant Biology 植物生理学其目的在于认识植物的物质代谢、能量转化和生长发育等的规律与机理、调节与控制以及植物体内外环境条件对其生命活动的影响。包括光合作用、植物代谢、植物呼吸、植物水分生理、植物矿质营养、植物体内运输、生长与发育、抗逆性和植物运动等研究内容。定义 植物生理学(plant physiology)是研究植物生命活动规律及其与环境相互关系、揭示植物生命现象本质的科学。意义 植物生理学是植物学的一部分。但它同时也可看作普通生理学的一个分支。植物的基本组成物质如蛋白质、糖、脂肪和核酸以及它们的代谢都与其他生物(动物、微生物)大同小异。但是,植物本身又有一些独特的地方,如:①能利用太阳能 ,用来自空气中的 CO2和土壤中的水及矿物质合成有机物,因而是现代地球上几乎一切有机物的原初生产者。②植物扎根在土中营固定式生活,趋利避害的余地很小,必须能适应当地环境条件并演化出对不良环境的耐性与抗性。③植物的生长没有定限,虽然部分组织或细胞死亡,仍可以再生或更新,不断地生长。④植物的体细胞具全能性,在适宜的条件下,一个体细胞经过生长和分化,就可成为一棵完整的植株。因此植物生理学在实践上、理论上都具有重要的意义。发展简史 产生 植物生理学的起源一般都追溯到16世纪荷兰人范埃尔蒙的实验。他把一条柳枝栽在盆中,每天浇水,5年以后柳枝增重30倍,而盆中土的重量减少甚微,因此他认为植物的物质来源不是土而是水。这是第一次用实验的方法研究植物的生理现象。到18世纪后期和19世纪初期,英国的J·普里斯特利,荷兰的J·英恩豪斯等人陆续发现了光合作用的主要环节,证明绿色植物能在光下将空气中的CO2和土壤中的水合成有机物并放出O2。意大利人M·马尔皮基,英国S·黑尔斯,法国J·B·布森戈,德国J·von·李比希,英国C·R·达尔文等人分别发现或阐明了植物中的物质运输、水分吸收与蒸腾、氮素营养、矿质吸收、植物的感应性和运动等现象。随着知识的积累和系统化,1800年,瑞士的J·塞内比埃撰写并出版了世界上第一部《植物生理学》。走向微观 19世纪后期德国的J·von·萨克斯首先开设了植物生理学专门课程。在他和他的学生们努力下,植物生理学从植物学中独立出来,成为一个专门的学科。特别是20世纪20~30年代,由于物理、化学、微生物学和普通生理学的进展以及生物化学、生物物理学的兴起,使植物生理学深入到细胞水平。30~40年代进入细胞器水平,如以离体的线粒体、叶绿体来分析呼吸和光合等作用的机理,50年代以后,更深入到大分子的组合,生物膜的结构与功能,离体酶系的作用,以至电子传递系统机理等纵深方面,跨入分子水平或亚分子水平,成为分子生物学的一个方面。就研究的时间尺度而论,从范埃尔蒙实验的5年缩短到几天,几小时,甚至缩短到秒级,毫秒(10-3秒)级,微秒(10-6秒)级,纳秒(10-9秒)级甚至皮秒(10-12秒)级了。走向宏观 植物生理学发展的另一端是走向宏观。由对植物个体,扩展到群体、群落的研究。因为无论是在人为的农田或自然界中,植物都是聚集在一起,很少单株生存;农业生产也常是以土地面积为单位,而不是按单株来计算产量。因此必须注意群体的结构和活动;植物体与外界环境及其他植物之间的相互影响和关系;通风透光、土壤水肥供应情况以及共生和互斥的现象和机理。这样植物生理学就与生态学接壤,并发展出了植物生理生态学和生态生理学这两门分支学科。定量及模拟阶段 近代植物生理学家的研究工作,已部分进入定量的阶段,在引入电子计算机等新技术后,开始了对植物生理活动的数学模拟。因为植物几乎是吸收和转化太阳能的唯一成员,所以在探讨生命起源、开发能源、宇宙航行、地球外生命以及仿生模拟等问题时,植物生理学也是必不可缺的。最早记录 远在3000多年前(公元前14~前11世纪),中国的甲骨文中就有涉及植物生理活动的关于农业耕耘施肥的记述。其后在《氾胜之书》(约公元前100),《齐民要术》(533~544),《天工开物》(1637)等专著中更有许多阐述。明末《天工开物》的著者宋应星(1587~1660)在与范埃尔蒙差不多同时所著的《论气》一书中曾说:“气从地下催腾一粒,种性小者为蓬,大者为蔽牛干霄之木,此一粒原本几何?其余皆气所化也。”已明确指出了植物利用空气来生长。在中国的发展史 中国比较系统的实验性植物生理学是从国外引进的。20世纪20年代初,钱崇澍、张珽留学回国后,开始讲授植物生理学;李继侗1927年起先后在南开大学、清华大学,罗宗洛自1931年起先后在中山大学、中央大学、浙江大学、中央研究院,汤佩松自1933年起先后在武汉大学、清华农业研究所等处建立了植物生理实验室。他们的研究成果至今仍常为国外文献所引用。他们所教育的第一、二代学生,是国内本学科的主力。30~40年代由于抗日战争和战后国内的动乱,各大学及研究所颠沛流离,植物生理学亦与其他科学一样未得充分发展,专业队伍总共不过30人。1949年以后,植物生理的研究和教学工作发展很快,在有关植物生理学的各个领域里,都程度不等地开展了工作,尤其是在光合作用等方面的研究,取得有重要意义的结果。目在中国设有中国科学院上海植物生理研究所;各大地区的植物研究所及各高等院校中,设有植物生理学研究室(组)或教研室(组);农林等部门设立了作物生理研究室(组)。中国植物生理学会自1963年成立后,已召开过4次全国性的代表大会,并出版了论文集。许多省、市、自治区陆续成立了地方性植物生理学会。中国植物生理学会主办了《植物生理学报》和《植物生理学通讯》两刊物,北京植物生理学会主办有不定期刊物《植物生理生化进展》。学科内容 现代植物生理学研究一般分为以下10个方面。光合作用①光合作用。绿色植物的特殊功能。它们有光合色素,能吸收太阳光。色素在受激发后发生电荷分离,电子经过一系列的载体传递后,引起氧化还原反应:在一端分解水分子,放出氧气;另一端还原辅酶Ⅱ,同时造成质子(氢离子)转移,形成叶绿体中类囊体膜内外的电位差和氢离子浓度差,推动腺苷三磷酸(ATP)的合成。这样 ,将光能转变成还原辅酶Ⅱ与ATP中的化学能,最后经过一系列的酶反应,把从空气中吸入的CO2固定并还原成碳水化合物。[2] 植物代谢②植物代谢。可以分为两大方面 ,一方面是合成代谢——将光合作用产生的比较简单的有机物通过一系列酶反应,组成更复杂的包括大分子的有机物如蛋白质,核酸、酶、纤维素等,构成植物身体的组成部分;或贮存物如淀粉、蔗糖、油脂,以供其生命活动中所需的能量。另一方面是分解代谢——把大分子的物质水解(或磷酸解)成为简单的糖磷酯 ,再经过糖酵解形成丙酮酸,同时产生少量的ATP和还原的辅酶(NADH或NADPH)。植物呼吸③植物呼吸。同动物一样,植物也进行呼吸,但没有像鳃、肺那样专门进行气体交换的呼吸器官。分解代谢所形成的还原的辅酶或几种简单的有机酸,经过一系列的电子传递(呼吸链),最后把吸入的氧气还原成水。电子传递和末端氧化是在线粒体内进行的。电子传递同时偶联着ATP的形成,供应各种生命活动的能量需要。呼吸作用(respiration)是氧化有机物并释放能量的异化作用(disassimilation) 。有氧呼吸(aerobic respiration)指生活细胞利用分子氧将体内的某些有机物质彻底氧化分解, 形成CO2和H2O,同时释放能量的过程。无氧呼吸(anaerobic respiration)一般指生活细胞在无氧条件下利用有机物分子内部的氧,把某些有机物分解成为不彻底的氧化产物,同时释放能量的过程。植物水分生理④植物水分生理。植物的生活需要大量的水分,其中只有一小部分用于光合作用和代谢过程,绝大部分是在阳光照射下,气孔(器)开放、进行光合作用时,从叶面蒸发出去的。陆生植物适应于蒸腾作用对水分的需求,演化出各种结构。由发达的根系从土壤中吸收水分,通过木质部的导管或管胞输送到地上部的叶和其他器官。进入大气时所经过的气孔能控制水分的散失。在干旱地区的植物,更有减少蒸腾的特殊构造和代谢方式。植物矿质营养⑤植物矿质营养。除CO2和水外,植物还需要多种化学元素。需要量较大的氮(N)、磷(P)、钾(K),是农业上常需以肥料形式施加的元素。需要量次之的为钙(Ca)、硫(S)、镁(Mg)、铁(Fe),是构成植物体内生活物质包括某些酶的必要成分。此外还需一些微量元素,如锰(Mn)、锌(Zn)、硼(B)、铜(Cu)、钼(Mo)等。植物体内运输⑥植物体内运输。植物没有血液循环系统,但制造有机物质的光合器官(叶子)位于地上,吸收土壤中无机养料和水分的根系处于地下,生殖器官(花、种子、果实)等则要从两者取得营养物质的供应。适应地上部与地下部之间和各种器官之间物质运输的需要,植物演化出两种特殊的通道,即主要输送水和溶于其中的矿质元素的木质部,和主要输送有机物的韧皮部中的筛管。生长与发育⑦生长与发育。生长主要是通过细胞的分裂和膨大,发育是通过细胞的分化而形成不同的组织和器官。植物的生长发育受内在因素和外界环境的制约,具有一定的阶段性和季节性。在寒、暖、雨、旱季节变化明显的地区的植物常有休眠期。种子多在冬季或旱季到来之前形成,在休眠状态下度过不良环境。从营养生长(叶、茎、根的生长)向生殖生长(分化花芽、开花、结实)转化的过程常与自然环境的年度变化相偶合。植物有一系列感受环境变化的机制,光周期现象是其中之一。植物的细胞具有很大的全能性,身体许多部分的细胞,离体后在人工培养基中,都可以脱分化而长成愈伤组织。在适当的情况下,又可以再分化,形成根、茎、叶等器官以至长成完整的植株。植物激素⑧植物激素。植物没有神经系统,各器官间的生理活动,除随营养物的供求关系相互制约以外,大都是通过一些特殊的化学物质来相互调节和控制的。这种化学物质称为植物激素,它们在某些部位形成,转移到另一些部位起作用。如最先发现的生长素就是在生长顶端形成,促进下面的细胞伸长。随后相继发现许多其他激素,如脱落酸、赤霉素、细胞分裂素、乙烯。除去通过化学物质而调节控制之外,植物中也能有迅速的物理的信息传导,如电位的变化。抗逆性⑨抗逆性。不同植物对不良环境的耐性和抗性的差异很大,有的能在极干旱的条件下生存,有的能抵抗低温。品种之间的差异也很大,在自然界中,不同生境中植物的分布很大程度上是由它们对不良环境的抗御能力决定的。在农业生产上,扩大作物的种植,了解抗逆性的生理机理,有助于采取措施以提高抗逆性,或为育种工作中抗逆品种的筛选提供生理指标。植物运动⑩植物运动。生活在水中的低等植物,有些具有特殊器官如鞭毛,可以游泳,作趋光运动。陆生植物虽然着生位置固定,却并非完全不能运动。根有向地(重力)性,叶子有向光性,是通过生长来运动,称为生长运动。有些植物能做机械运动,如睡莲的花昼开夜合;合欢的复叶晚间闭拢;含羞草和食虫植物猪笼草等,动作更为迅速。
请见下面两个链接:第一个影响因子6.367,第二个影响因子9.653,都是植物生理方面的国际顶级杂志。
这个太多了,有上百种!以下是根据影响因子结合引文量及“二八律”选出的18种核心期刊,其IF均高于2.0,所占比率约20%。可供读者投稿和检索参考。(1) Annual Review of Plant Biology(ANNU REV PLANT BIOL)《植物生理学和植物分子生物学年评》创刊于1950年,全年1期,原版刊号588B0002;国际刊号:1040-2519;综论植物生理学和植物分子生物学领域的研究进展与成果。影响因子为15.615。(2) Trends in Plant Science (TRENDS PLANT SCI)《植物科学趋势》创刊于1996年,全年12期。原版刊号:588C0008;国际刊号:1360-1385;为从分子生物学到生态学的基础植物科学研究提供跨学科论坛。影响因子为13.405。(3) Plant Cell (Plant Cell)《植物细胞》创刊于1989年,全年12期。原版式刊号:588B0005*;国际刊号:1040-4651;发行出版机构地址:Plant Physiology, P.O. Box 15501 Rockville, MD 20855-2768, USA.ED: American Society of Plant Physiologists。 侧重于植物发育的基因表达的调节以及分子和遗传基础方面的研究。影响因子为10.679。(4) Current Opinion in Plant Biology (CURR OPIN PAANT BIOL)《植物生物学新见》全年6期,原版刊号:588C0084;国际刊号:1369-5266;发行出版机构地址:Current Biology Ltd., 84 The Obalds Rd, London WC1X 8RR, England。影响因子为8.945。(5) Annual Review of Phytopathology (ANNU REV PHYTOPAYHOL)《植物病理学年评》创刊于1963年,全年1期。原版刊号:588B0009;国际刊号:0066-4286;发行出版机构地址:Annual Reviews Inc,评论植物科学领域的研究成果和进展。影响因子为8.257。(6) Plant Journal (PLANT J)《植物杂志》创刊于1991年,全年24期。原版刊号:588C0082;国际刊号:0960-7412;发行出版机构地址:Blackwell Science Ltd., Journal Subscriptions,刊载植物分子科学领域的研究论文。影响因子为5.914。(7) Plant Physiology (PLANT PHYSIOL)《植物生理学》由美国植物生理学会主办,创刊于1926年,全年12期。原版刊号:588B0005;国际刊号:0032-0889;发行出版机构地址:Plant Physiology, P.O. Box 15501 Rockville, MD 20855-2768, USA. ED: American Society of Plant Physiologists。刊载本学科以及生物化学、分子生物学、环境生物学、细胞生物学等研究成果。影响因子为5.634。(8) Plant Molecular Biology (PLANT MOL BIOL)《植物分子生物学》创刊于1984年,全年18期,16开,每期80页。原版刊号:582LB071;国际刊号:0167-4412;发行出版机构地址:Kluwer Academic Publishers, Journals Department, Distribution Centre刊载植物分子生物学与植物分子遗传学基础理论和遗传工程方面的研究论文和实验报告。影响因子为3.795。(9) Critical Reviews in Plant Sciences (CRIT REV PLANT SCI)《植物科学评论》创刊于1983年,全年6期。原版刊号:588B0010;国际刊号:0735-2689;发行出版机构地址:CRC Press Inc.,评论植物科学领域的研究成果和进展。影响因子为3.641。(10) Plant Cell and Environment (PLANT CELL ENVIRON)《植物、细胞与环境》创刊于1978年,全年12期,12开,每期84页。原版刊号:588C0072;国际刊号:0140-7791;发行出版机构地址:Blackwell Science Ltd.刊载绿色植物生理学,包括植物细胞生理学、植物生物化学、环境生理学、农作物生理学和生理生态等方面的研究论文。影响因子为3.613。(11) Molecular Plant-Microbe Interactions (MOL PLANT MICROBE IN)《分子植物与微生物相互作用》创刊于1988年,全年12期,12开,每期56页。原版刊号:582B0109;国际刊号:0897-0282;发行出版机构地址:American Phytopathological Society, 刊载研究论文和评论,包括分子生物学、分子病理遗传学、微生物和植物的共生作用及其对栽培植物、野生植物和植物产品的影响。影响因子为3.580。(12) Journal of Experimental Botany (J EXP BOT)《实验植物学杂志》创刊于1950年,全年12期,18开,每期124页。原版刊号:588C0002;国际刊号:0022-0957;发行出版机构地址:Oxford University Press, 刊载植物生理、生化、生物物理、实验农学等方面的研究论文。读者对象为植物学家、园艺学家、土壤学家、环境与海洋生物学家。影响因子为3.180。(13) Plant and Cell Physiology (PLANT CELL PHYSIOL)《植物和细胞生理学》创刊于1959年,全年12期,16开,每期250页。原版刊号588D0057;国际刊号:0032-0781;发行出版机构地址:日本植物病理学会,T170-8484日本东京都丰岛区驹ごめ1-43-11;发表高等植物和微生物的生理与生化以及生物技术等领域的基础与应用方面的研究论文。影响因子为3.159。(14) New Phytologist (NEW PHYTOL)《新植物学家》创刊于1902年,全年12期,18开,每期156页。原版刊号588C0055;国际刊号:0028-646X;发行出版机构地址:Cambridge University Press, 刊载植物学各领域的研究论文、评论与书评,涉及生物物理学、生理学、生物化学、植物化学、生物技术、生态学等学科。影响因子为3.118。(15) Planta (PLANTA)《植物学》创刊于1925年,全年15期,12开,每期96页。原版刊号:588E0003;国际刊号:0032-0935;发行出版机构地址:Springer-Verlag,Heidelberger Platz3, D-14197 Berlin, Germany;刊载植物生物学原始论文,侧重分子细胞生物学、超微结构、生物化学、新陈代谢、生长、发育、形态发生、生态环境生理学、作物技术、植物与微生物相互作用等方面。影响因子为3.053。(16) Journal of Plant Growth Regulation (J PLANT GROWTH REGUL)《植物生长调节杂志》创刊于1982年,全年4期,18开,每期66页。原版刊号588E0008;国际刊号:0721-7595;发行出版机构地址:Springer-Verlag,Heidelberger 报道植物分子生物学、植物生理学、植物学、生化学、林学、园艺学和农学中有助于基础和应用研究的最新发现,侧重除莠剂在内的天然和全盛物质及其对植物生长发育的影响。影响因子为2.778。(17) Phytopathology (PHYTOPATHOLOGY)《植物病理学》创刊于1911年,全年12期,12开,每期126页。原版刊号:588B0006;国际刊号:0031-949X;发行出版机构地址:American Phytopathological Society, 刊载植物病理学的基础研究论文,图像精密。影响因子为2.450。(18) Australian Journal of Plant Physiology (AUST J PLANT PHYSIOL)《澳大利亚植物生理学杂志》创刊于1974年,全年8期,18开,每期100页。国际刊号:588UA002;国际刊号:0310-7841;发行出版机构地址:CSIRO Publications, 刊载植物生理学领域的研究论文、评论、简报。涉及生物化学、生物物理学、遗传学、细胞生物学结构和分子生物学等。影响因子为2.398。
物理问题解决与元认知研究【摘要】文章结合具体学科,分析了元认知在物理问题解决过程中的作用,以及如何通过物理问题解决对元认知进行有效开发。【关键词】物理;问题解决;元认知元认知( Metacognition)是弗拉维尔70年代提出的,此后关于元认知的研究越来越多,这些研究主要集中于阅读理解、记忆和问题解决三大领域,其中问题解决中的元认知研究是九十年代才开始的。研究表明学习能力强的学生元认知水平较高,元认知策略可以修补知识水平的欠缺以及补充、完善问题。本文采取与具体学科相结合的方式,从物理学科的特点出发,从元认知的实质出发,探讨元认知在物理问题解决过程中的作用以及如何对其有效开发。一、元认知在物理问题解决中的作用1976年弗拉维尔对元认知的定义:一个人所具有的关于自己思维活动和学习活动的知识及其实施的控制,是任何调节认知过程的认知活动。 1979年Kluwe认为:元认知是明确专门指向个人的认知活动的积极的、反省的认知加工过程; Schraw & Dennison( 1994)定义:元认知是关于个人对自己学习反省、理解、控制的一种能力。元认知概念包括三方面的内容:元认知知识、元认知体验、元认知监控三种成分。三者相互作用,相互联系,其中元认知监控是元认知中的核心成分,它是学习成功的关键。1. 元认知对物理问题解决的目标进行修正。[1] 元认知使得解题过程具有明确的目标指向性,使解题者的心理活动都朝着目标靠拢。目标是问题解决者主观经验的知觉,它既是问题解决的开始,也是问题解决的归宿,它对问题解决的进程进行指导。解题中问题解决者要监控其解题计划,制订切实可行的目标,致使物理问题解决得以顺利进行。2. 元认知操作驱动物理问题解决的策略。解决物理问题需要一定的策略。策略是在思维模式的作用下反应出来的,它影响着物理问题解决的效率。问题解决者在解题过程中通过以下方式进行认知操作。(1)激活思维并制定策略,即以目标为出发点,将物理材料放入已有的知识背景中,在操作系统的作用下激活认知结构。在元认知基础上,根据材料系统在认知结构中的相似性,寻求物理认知结构中的“相似点”,把问题改组为适合原有知识的形式,或把以前知识通过经验加工成适合现有问题的形式,从而制订解题策略;(2)改组和实施策略,即通过对问题解决进程的反馈,面对问题,有多种解题方法,问题解决者要进行自我评价,实质上就是对问题解决策略的评价,如果发现目标确信无疑而又达不到或不能顺利达到目标时,则将怀疑其策略,有必要对策略进行调整。3. 元认知增强解题者在物理问题解决中的主体意识。鉴于物理学科的特点,一般解决物理问题有一定的困难,这就要求解题者能自我激活,发挥自我作用,排除障碍,产生问题解决的欲望。而元认知在整个问题解决过程中存在着内反馈的调节。(1)通过元认知知识,使解题者能审清题意,对问题的类型、难易程度、所用的知识有初步了解,使其能主动选择有效解题策略;(2)元认知体验的自我启发作用,调动非智力因素参与,产生“知”与“不知”的认知体验和情感体验,产生一些新的思路和方法,对原有的思维进行扩充,可以克服障碍,调动解题者的积极性和自信心;(3)元认知的监控作用,体现在解决问题的整个阶段,解题的前计划,解题过程中的监测,解后的评价、反思。二、通过物理问题解决对学生进行元认知开发学生的元认知能力往往在解题过程中体现,并在解题过程中培养出来,龚志宁(1999)研究发现元认知策略导致学困生成绩低于优生。有人曾经对比优生与物理学困生解题过程研究中。发现元认知能力的高低一定程度决定物理成绩高低。为了让学生“学会学习”,我们应加强学生物理问题元认知能力的培养。1.激发学生的自我意识和培养学习动机。元认知能力的发展以一定的心理发展水平为基础,元认知在学生自我意识产生之后才发展起来。如果没有自我意识,学生不能对自己正在操作的认知对象进行积极的计划、监测、评价、反思。自我意识是以主体及其活动为意识对象,对人的认知活动起着监控作用。在解题学习中,人的自我意识是对自己在问题感知、表征、思考、记忆和体验的意识,对自己的目的、计划、行动以及行动效果的意识。2.剖析思维过程,加强思路教学。以往教师解题只注重解题过程本身以及解题的结果,而忽略学生元认知作用的过程。元认知是认知的认知,元认知时刻在发挥作用,要提高学生的元认知水平,应该让学生体会教师的元认知发挥过程。遇到一个新问题时,向学生示范自己如何分析、寻找有效策略,最终解决问题的整个过程。有时教师也会进入死胡同,但有能力排除障碍。有时教师也犯错,但他运用元认知监控可以修正问题…总而言之,展示教师思维过程,将教师自身过程的自我监控、自我调节展现给学生。[2]3.传授解题的元认知策略(1)善于利用波利亚“自我提示语”Polya波利亚在他的解题理论著作中所给出很多提示语,都是属于元认知的范畴。在解题时经常自觉地运用这些提示语,是提高解题元认知能力的有效途径。如果问得合适,就可能引出好的答案,引出正确的想法。他的基本模式为:第一步——阅读题意,表征问题;第二步——拟定计划,执行步骤;第三步——评价和反思(2)同学之间相互质问(Inquiry)和争论(Argument)质问是学生常采用的方法。学生对一些问题常常被动的接受,争论很少受到重视,但它与询问一样重要,(下转第194页)(上接第184页)通过争论对问题的理解能力比被动地接受强四倍,对一些思考型强的、有多种解法的问题,留给学生讨论,让学生说出自己的解题思路。为什么那样做?原因是什么?为什么选择这种方法?让同学之间相互质疑和争论,每个人对自己和他人的做法进行深入思考和反思,使学生对自己所解的题目有更深层的含义。4.加强不良结构问题的教学结构不良问题(ill-structured problem)相对结构良好问题(well-structured problem ),学生经常面对的是结构良好问题,目标定义明确,提供多种解题方法,而结构不良问题比较模糊,问题不明确,具有不清楚的目标和多样的解题方法,同时又属于开放型题目,对问题很难得到明确的方法。学生对知识不能迁移,而教育者往往对这方面重视不够。国外有这方面的研究,表明经过结构不良问题的训练,学生的元认知解题能力有很大提高。总之提高学生物理问题解决的元认知水平非一朝一夕所能实现的,需要师生共同协作。教师应把学生的元认知能力培养纳入自己的教学目标中,在问题教学中,不断渗透元认知知识和策略的训练内容。调动学生的主体意识,注意元监控的实施,只有这样,学生的元认知水平在物理问题解决中得到开发。【参考文献】[1]朱德全,宋乃庆.谈数学教学中的问题解决与元认知开发[J].学科教育研究,1997,(6).[2]周丽芳.元认知及其培养[J].天津市教科院学报,2002,(1).希望对您有帮助。
21世纪是知识爆炸的时代,大学物理也不例外。这是我为大家整理的大学物理学术论文,仅供参考!
中学物理中的物理模型
摘要:本文阐述了物理模型的概念、功能,中学物理教材中常见的六种物理模型,物理模型在中学物理教学中地位和作用,以及中学阶段在物理模型的教学过程中应该注意的若干问题。
关键词:中学物理;教学;物理模型
一、物理模型的概念及功能
物理学所分析、研究的实际问题往往很复杂,有众多的因素,为了便于着手分析与研究,物理学往往采用一种“简化”的方法,对实际问题进行科学抽象化处理,保留主要因素,略去次要因素,得出一种能反映原物本质特性的理想物质(过程)或假想结构,此种理想物质(过程)或假想结构就称之为物理模型。
物理模型按其设计思想可分为理想化物理模型和探索性物理模型。前者的特点是突出研究客体的主要矛盾,忽略次要因素,将物体抽象成只具有原物体主要因素但并不客观存在的物质(过程),从而使问题简化。如质点模型、点电荷模型、理想气体模型、匀速直线运动模型等等。后者的特点是依据观察或实验的结果,假想出物质的存在形式,但其本质属性还在进一步探索之中。如原子模型、光的波粒二象性模型等等。
人们建立和研究物理模型的功能主要在于:
一是可以使问题的处理大为简化而又不会发生大的偏差,从中较为方便地得出物体运动的基本规律;
二是可以对模型讨论的结果稍加修正,即可用于对实际事物的分析和研究;
三是有助于对客观物理世界的真实认识,达到认识世界,改造世界,为人类服务之目的。
二、中学物理教材中经常碰到的几种物理模型
物理模型就它在实际问题中所扮演角色或所起作用的不同,可分为:
1.物理对象模型 即把物理问题的研究对象模型化。
例如质点,舍去和忽略形状、大小、转动等性能,突出它具有所处位置和质量的特性,用一个有质量的点来描述,又如点电荷、弹簧振子、单摆、理想变压器、理想电表等等,都是属于将物体本身的理想化。
另外诸如点光源、电场线、磁感线等,则属于人们根据它们的物理性质,用理想化的图形来模拟的概念。
2.物理过程模型 即把研究对象的实际运动过程进行近似处理。排除其在实际运动过程中的一些次要因素的干扰,使之成为理想的典型过程。
如研究一个铁球从高空中由静止落下的过程。首先应考虑吸引力,由公式F=GMm�r2可知,铁球越接近地面,F就越大,其次还要考虑空气阻力、风速、地球自转等影响。这样考查铁球下落运动过程就显得十分复杂,研究起来十分不便。为此,我们在研究过程上突出铁球下落的主要因素,即受重力作用,而忽略其它次要影响,并把重力视为恒力,通过如此简化,使研究问题简化,其研究结果也不致影响到基本规律的正确性。从而成为物理学中一个典型的运动过程,即自由落体运动。这种物理模型称之为过程模型。
教材中的匀速直线运动、简谐振动、弹性碰撞;理想气体的等温、等容、等压、绝热变化等等都是将物理过程模型化。
3.物理条件模型 如自由落体运动规律就是在建立了“忽略空气阻力,认为重力恒定”的条件模型之后才得出来的。力学中的光滑斜面;热学中的绝热容器;电学中的匀强电场、匀强磁场等等,也都是把物体所处的条件理想化了。
4.物理等效模型 即通过充分挖掘原有物理模型的特征去等效具有相似性质或特点的现象和相似运动形态的物质和运动。如将理想气体分子等效为弹性小球,并用弹性小球对器壁的碰撞去解释和推导气体压强公式,用单摆振动模型去等效类比电磁振荡过程等等。
5.物理实验模型 在实验的基础上,抓住主要矛盾,忽略次要矛盾,然后根据逻辑推理法则,对过程作进一步的分析,推理,找出其规律,得出实验结论。
如伽利略就是从斜槽上滚下的小球滚上另一斜槽,后者坡度越小,小球滚得越远的实验基础上提出了他的理想实验――在无摩擦力情况下,从斜槽滚下的小球将以恒定的速度在无限长的水平面上永远不停地运动下去,从而推翻了延续两千多年的“力是维持物体运动的不可缺少”的结论,为惯性定律(牛顿第一定律)的产生奠定了基础。
再如在研究电场强度时,设想在电场中放置一个不会引起电场变化的点电荷,去考查它在各点的F�q值等等。
6.物理数学模型 即建立以物理模型为描述对象的数学模型,进行对客观实体近似的定量计算,从而使问题由繁到简。如单摆的摆线与竖直方向的夹角不得大于50,使弧线计算转化为三角计算等等。
三、物理模型在中学物理教学中的地位和作用
1.建立正确鲜明的物理模型是物理学研究的重要方法和有力手段之一
物理学所研究的各种问题,在实际上都涉及许多因素,而模型则是在抓住主要因素,忽略次要因素的基础上建立起来的。它具有具体形象、生动、深刻地反映了事物的本质和主流这一重要属性。
如“质点”模型,在物体的宏观平动运动中,描述运动的物理量位移、速度、加速度等对同一物体来说其上各点都相同,在这些问题的研究中,运动物体的大小和形状是可不考虑的,故可将运动物体质点化,即用质点模型来取代真实运动的物体。
2.正确鲜明的物理模型本身就是重要的物理内容之一,它与相应的物理概念、现象、规律相依托
人们认识原子结构的进程中,从汤姆逊模型到卢瑟福模型的飞跃就是生动的反映。
爱因斯坦光电效应方程的建立成功地解释了光电效应,而它是建立在反映光粒子性的“光子”模型之上的。
诸多的事实都在说明大凡物理现象、过程、规律都直接与之相应的物理模型关联着;一定的物理模型又是最生动最集中地反映着相应的物理概念、现象、过程和规律,二者密不可分。
3.正确鲜明的物理模型的建立,使许多抽象的物理问题变得直观化、具体化、形象化
例如,电场线对电场的描述,磁感线对磁场的描述。分子模型对理解分子动理论的基本观点,原子核式结构对a粒子散射实验现象的解释;光子模型对光的粒子性的理解等等,凡是学物理的人都会感受到物理模型所给予的无可争辩的重要作用。
四、物理模型的教学要着眼于学生掌握建立正确鲜明的物理模型这一根本方法
物理模型是物理基础知识的一部分,属物理概念的范畴。学习前人为我们创造的各种物理模型是完成教学内容的重要组成部分,培养学生掌握这一方法,即对一个具体的物理内容、现象或过程能反映出一幅鲜明的“物理图景”,是培养学生科学思维能力的一个重要方面。为此,我们在教学中应注意如下几点:
1.讲清各物理模型设计的依据。物理模型看上去是独立的,但设计物理模型的思想是相通的。
2.讲授物理模型要前后呼应,触类旁通。运动学中建立的“质点”模型,发展到质点动力学中,万有引力定律中,以至物体转动问题中,还可引伸到单摆中的摆球,弹簧振子中的振子,甚至帮助我们建立电学中的点电荷模型,光学中的点光源模型。
3.物理模型思维贯穿在物理教学的过程中,随着人们对某个物理问题认识的不断深刻和提高,物理模型也必将随之完善和准确。例如对于光本性的问题,人们从牛顿的微粒说,惠更斯的波动说、电磁说、粒子说到波粒二象性,在此发展过程中光的模型也随之一次次地得到深化。
4.在平时的例题教学中也是处处体现了物理模型的重要地位和作用。解答各类物理习题,学生能否依据题意建立起相应的物理模型,是解题成败的重要环节。如果解题者所理解的题意中的物理模型与命题者的设计模型一致,题意就必然变得清晰鲜明,习题的难点便会随之而突破,这种例子是垂手可得的。
总之,物理模型的教学确实需要我们予以足够的重视,这个问题对提高我们的物理教学水平关系甚大。
物理猜想与中学物理教学
【摘 要】阐述物理猜想在中学物理教学中的意义及教师在物理课堂教学中引导学生进行物理猜想的方法。
【关键词】中学 物理猜想 物理教学
【中图分类号】 G 【文献标识码】 A
【文章编号】0450-9889(2014)11B-0076-02
随着基础教育课程改革的逐步深入,在新课程标准中,对高中生在学习物理过程中的学习能力提出了更高的要求,由此教会学生运用物理猜想方法可以让学生更有效地学好物理。为了促进中学生学会运用物理猜想方法,新课程的物理教材刻意设计了许多研究物理现象的活动。以此增进学生对物理知识的理解,提高学生学习物理知识的能力,例如提出问题、猜想与假设、合作与交流等能力。这些基本能力是确保科学研究各种物理现象得以顺利进行的前提和基础。只有通过猜想、假设,并经过许多的研究活动,才能使研究物理现象过程顺利完成。根据笔者这十多年的教学经验,总结出物理猜想对高中物理教学的作用以及如何通过物理猜想提高物理教学的经验,现浅谈自己的看法。
一、物理猜想对中学物理教学有着重要的意义
新课标义务教育阶段的物理课程中,提出要鼓励学生积极大胆地进行科学研究,使学生从基本的科学研究过程中学到科学研究的方法,最终达到提高他们的科学研究能力的目的。使学生养成尊重事实、大胆想象的科学习惯,发扬研究真理的科学精神;培养学生敢于质疑、勇于创新、战胜困难的信心和决心。在中学物理教学中教师的作用是引导学生进行科学猜想,引导学生进行科学探索活动,提升他们的科学探索创新能力。鼓励他们在研究活动过程中,根据已经了解的物理知识和物理现象,进行猜想与假设,然后设计实验,通过亲自动手做实验来验证自己的猜想与假设。因此,要达到新课标中的要求,笔者认为猜想在新课程标准的教学过程中的运用起到了关键的作用。物理猜想的运用是教育教学发展的要求,也是促进物理教育教学改革和发展的需要。笔者认为运用物理猜想法在中学物理教学中有以下几个重要的意义。
1.提高学生学习兴趣和增进学生学习主动性
学生往往对新生事物比较好奇,都希望能够尽快了解其中的知识、规律和奥秘。如果在中学物理教学过程中多鼓励学生对所要学习的物理现象猜想出其可能出现的某些现象或规律,那么不但能增强学生的新奇心,而且还能激发学生的探究意识和能力,使他们更能积极地深入到学习新知识当中。锻炼和培养中学生的物理猜想能力,能提高学生对研究物理问题的兴趣和欲望。兴趣和欲望正是学生学习物理知识的动力。因此,物理猜想是提高学生学习兴趣和增进学生主动学习的好方法。
2.提高学生的思维能力
在中学物理教学过程中,教师要经常通过提出问题并引导学生根据他们现有知识和理解问题的能力进行猜想,经过观察、实验、归纳、总结等进行严格推理和验证,使学生在学习物理知识的过程中逐渐提高他们的发散思维能力,也使他们思想更加灵活。因此通过猜想法不仅使学生容易理解和掌握物理知识,而且有利于提高学生的思维能力。
3.有利于学生巩固所学的物理知识
物理猜想是学生根据自己的思维意识进行推测,是开放性的思维方式。经过对事物仔细观察和辩别认识,提高了学生对事物整体性的研究,促进学生的思维进程,使学生迅速地理解和掌握新知识。如果这些新知识是由学生自己主动猜想后经过验证推理得来的,那么学生就比较容易接受。因此,这些物理现象及规律就会深深刻印在学生的心里,巩固这些新的物理知识。
4.培养学生创新能力
在新课程标准中,特别着重对中学生创新能力培养。科学的物理猜想是培养中学生创新能力的主要方法之一。科学的物理猜想对中学生创新能力的培养起着积极的作用,它能提高学生的反应能力和灵活解题能力。因此,科学的物理猜想能够非常有效地提高中学生的创新能力。
二、教师在物理课堂教学中引导学生进行物理猜想的方法
教师在教学过程中为了尽可能地发挥学生的想象能力,要根据学生现已掌握的物理知识、兴趣爱好和想象能力等引导学生提出猜想。教师如何更好地引导学生运用已掌握的物理知识和技能来构建出新的物理猜想呢?笔者认为,教师在实际教学过程中需要讲究提出猜想一些方法。
1.启发学生根据自己各种经历、各种经验和已学的知识提出猜想
科学发展的经验告诉我们,科学的猜想并非胡乱猜测,它需要有科学依据,要根据学生的经历、经验、生活常识等提出猜想。爱因斯坦创立的“相对论”起初就是根据前人的经验、自己的经历以及自己掌握的科学知识提出的猜想,然后通过观察、推理、推导、证明,才提出了理论依据,最后才建立了举世闻名的“相对论”。例如,在学习“自由落体运动”时,先让学生观察羽毛和铁片在有空气的玻璃管中同时下落的情况,再启发他们猜想如果将玻璃管中的空气抽出后,再让羽毛和铁片同时下落会出现什么情况。让学生猜想并记下这些猜想,然后通过演示实验让学生观察,最后得出结论。这种通过启发学生猜想和实验演示相结合的教学方法,更能加深学生理解所学的物理知识。
2.激励学生讨论,诱发物理猜想
在教学过程中学生引导学生进行猜想时,应该将学生分成几个组,让各组提出各自不同的猜想,并由他们各自陈述自己猜想的理由和依据。激励他们讨论、争辩,经过讨论和争辩提高他们对物理猜想的兴趣和对物理猜想的积极性。例如,在学习“牛顿第二定律”时,将同学们分成两个小组,一组猜想物体的加速度与力的关系,另一组猜想物体的加速度与质量的关系,然后让他们分别做实验,得出结论。教师在课堂中认真听取各组学生的观点后,引导诱发他们讨论并猜想加速度与力及质量的关系,最后总结出牛顿第二定律。这样能更好地完成教学任务,取得更好的教学效果。
3.鼓励学生大胆猜想
在教学过程中许多学生由于害怕自己提出的猜想被其他同学取笑或者自己提出的猜想不正确被老师责怪而羞以启齿,这时教师应该鼓励、引导学生大胆猜想,消除他们的顾虑。例如,研究玻璃的折射率时,可以猜想单色光通过平行玻璃砖后传播方向是否发生改变。先鼓励学生大胆进行猜想其出射的方向,并记下来。不管他们的猜测是否合理、准确,教师都要持平和的态度,让实验验证结果。只有这样才能提高学生的学习积极性,增强学生科学猜想的意识。
4.创造良好的猜想条件
在教学过程中,当教学到有利于培养学生猜想能力的内容时,教师应该积极引导鼓励学生进行猜想。例如,在“楞次定律”教学中,教师在课堂演示让磁体的N极靠近闭合的铝环的实验之前,先启发学生猜想让磁体的N极靠近闭合的铝环时会看到什么现象,让磁体的N极去靠近有缺口的铝环时又会看到什么现象。然后通过实验引导学生注意观察实验现象。同样,让磁体的S极去靠近闭合的铝环时又会出现什么情况。总之,教师要尽最大可能为学生进行猜想创造条件。
物理猜想既是一种自由尝试,也是一种严谨的创造,因此,在教学过锃中,教师要善于抓住每一个有利于提高学生猜想能力的机会,鼓励学生大胆猜想,从而提高他们的思维能力,增加他们学习物理的兴趣,进而提高物理教学的效率。
【参考文献】
[1]王较过,孟蓓.物理探究教学中培养“猜想与假设”能力的策略[J].当代教师教育,2008(6)
[2]付红周.新课程下全方位认识猜想及其在物理教学中的培养・高中物理[M].北京:人民教育出版社,2012
[3]林东槟.物理探究教学中培养猜想与假设能力的策略[J].实验教学与仪器.2013(4)
[4]蔡严娟.新课改物理探究教学中猜想与假设能力的培养[J].现代教育科研论坛.2011(5)
关于大学物理实验教学实践与思考摘要:实验在物理教学中有着不可替代的重要地位。通过实验提高学习物理的兴趣,培养实践能力、分析能力,形成严谨的、实事求是的世界观,同时还培养学生的实验观察和操作能力,全面提高物理教育教学质量。关键词:物理;实验;教学 实验在物理教学中有着不可替代的重要地位,通过实验提高学习物理的兴趣,培养实践能力、分析能力,形成严谨的、实事求是的世界观。如何进行物理实验教学是教师们研究的问题,下面谈此观点仅供参考。 1.提高教师自身素质是上好实验课的前提 教学中要真正运用好物理实验,提高教学质量,发挥独特的作用,需要提高教师自身素质是上好实验课的前提:①教师要有物理学理论和实验知识;有教育学、心理学和教学法的知识;亲手实践;②具备良好的实验能力和实验技能,通过不断学习实验教学能力和知识水平提高;③有钻研和创新精神;对疑难实验进行专题学习和研究、改进方法,接受新的教育理论和思想,指导教学实践;④积极参加针对物理实验中对实验的设计,测量操作技巧、改进方法及排除故障的创造性能力,实验考核的命题能力等培训及各级物理实验研讨会,提高自身素质。 2.利用实验史和事例,激发氛围 实验教学中:①对物理史上著名实验介绍。如:《科学之旅》中介绍了“伽利略对摆动的探究”从而发现“摆的等时性原理”,并根据这个原理制作“机械摆钟”。点评:展示科学发现、技术发明的过程;展示科学家创造思维和创新精神,同时对学生进行科学精神和创新意识的培养。②介绍典型物理实验事例,培养创新意识和欲望。如:教学凝固后,介绍“姆潘巴”现象及其发现过程,同时介绍中央电视台《走近科学》栏目的片段:上海某中学三位学生在物理老师的指导下,经历几个月、做了上百次实验,获得上万个数据,最后论证“姆潘巴”现象不存在。向学生介绍此事例:A要求学生向坦桑尼亚中学生姆潘巴和上海的几位中学生学习,学习他们敢于质疑、有实验探究的精神;B用榜样的示范作用来激励学生的创新意识和创新精神,从而激发创新氛围。 3.实验教学中需强调的注意事项 动手实验是学生参与实践的具体过程,师在实验前强调实验室规则和要求:(1)实验前必须完成预习内容;(2)按分好的组坐好,不得乱动器材;(3)实验时不能大声喧哗;(4)实验完后将器材摆放整齐,经检查后可离开;(5)不能将器材带出实验室,如有损坏及时说明:另外带危险性或损坏性的实验,要先检查,避免损坏和意外。如:①在用电流表测量电路时,开关应断开,电流表应与被测部分串联,注意电流必须从电流表的正极流入负极流出,被测电流不超过电流表的量程,不能将电流表不经过用电器而直接接在电源的两端。在此检查后闭合开关进行实验:②在“做”观察水的沸腾实验时,注意酒精灯的正确使用。即:不允许用酒精灯去引燃另一盏酒精灯,使用完后不能用嘴去吹灭酒精灯,应用灯帽盖灭,操作过程如果不当,洒出的酒精燃烧,用湿抺布盖灭。 4.提倡动手实验,掌握其方法 学生动手实验的作用:①学生动手实验有利于调动学习兴趣和积极性。据统计:喜欢物理的占84%,不喜欢占3%。②学生对学习内容的巩固程度与学习的方式关系很大。据统计:通过听讲授,能记住25%;能看到实物或现象能记住40%;双方都做到能记住65%;看到实物或现象自己又描述过,能记往83%;既动手边做边描述能记住97%。所以在物理实验教学中让学生动手实验,在实验的基础上讨论、分析,归纳概念和规律,有利于学生理解和掌握知识。③教育家陶行知提倡手脑并用的学习方式,教学中提倡动手实验,正是遵循陶行知先生的教育理论去实践的,培养实验能力。 ④动手实验是学习研究过程,在直接参与动手实验过程中,逐渐认识到实验是获得物理事实的根据;是检验假设真理性的标准;逐步领会科学家是如何通过物理实验获得物理事实,得出概念和规律的。点评:通过长期动手实验的训练,能掌握学习和研究的基本方法。 5.实验教学有利于培养观察能力,提高分析能力 观察是人们对客观事物、现象感知过程中的一种最直接的方法。物理课本中的每个概念和规律一般由观察、实验、分析、归纳概念、规律应用、实际问题等构成,为了提高观察能力,在引导观察实验现象时应注意:①从什么地方观察,发生什么现象?现象发生变化过程的条件是什么?②观察同时思考、分析、比较、归纳此现象有什么特征?说明什么问题?③如何判断推理,概括有关性质和规律?逐步形成边观察边思考的习惯、掌握观察方法和提高观察能力。如:观察水被加热至沸腾时,提出问题让学生边实验、边思考:A、开始加热的烧杯底和内壁是否有小气泡?怎样产生的?B、初始阶段如水温度有什么变化?为什么?小气泡在上升至水面过程中其体积有什么变化?C、当水中有大量气泡产生,并迅速上升过程中,体积不断增大,到水面破裂时,温度是否变化?瓶口出现的“白气”是什么?D、如果沸腾时间较长,还会看到水位比加热前有些下降为什么?这将膨胀、热传递、气化、液化等知识有机地联系起来,从而提高观察和思维分析能力。 6.把“测量、验证”型实验变为探究性实验 目前中考实验设计题需要学生具有探究性实验能力的有力体现,这就要求学生具备多种机智或具备发散思维、换元思维、转向思维和创优思维等思维能力。这些能力都靠平时培养。如:教学“恒定电流”后,根据学生以学知识,将“伏安法测电阻”实验改为:有5种不同测量电阻实验的分套器材,请根据各套器材设计不同的实验并比较哪种方法测得电阻值较准确,分析其原因。器材:共用器材为待测电阻R(10Ω,0.5A),电源,电键,滑动变阻器,导线若干。测量方法;①伏特表、安培表各1 个,共用器材;②伏特表2 个,电阻箱1 个,共用器材;③安培表2 个,电阻箱1 个,共用器材;④伏特表1 个,电阻箱1 个,共用器材;⑤安培表1 个,电阻箱1 个,共用器材。评析:改进后的实验称为物理教学中的实验探究,此方法的特点是:培养学生创造思维的多向选择性,使学生积极主动地探究知识。 7.借助多媒体将实验达到效果 造成学习物理知识困难的原因是学生缺乏物理实验和分析、概括规律的能力。如:教学《惯性》时,借助多媒体运用抽拉活动片模拟演示小车遇到障碍物阻力而停止运动,而小车上的木块没有受到障碍物的阻力,由于惯性保持原来的运动状态仍向前运动,而因木块底部与小车面的摩擦,使木块底部受到摩擦力作用不能继续向前运动,只好倒向前方,利用多媒体图像再用“慢镜头”展示在学生面前,同时对小车、木块及两者之间的关系进行逐个分析,由于图像清晰,模拟逼真,讲解和观察、理解,能收到良好的效果。 8.开展课外动手实验,发展创造力 教师在物理实验教学中开设课外实验,以开阔视野,拓展知识面,发展动手实验的创造力。如:①组织物理课外兴趣活动小组,指导动手搞小制作。如:制作橡皮测力计、潜望镜、土电话等;②组织用物理知识解决实际问题,培养分析、解决实际问题的能力,如:开展实地测量、电路安装等社会实践活动;③开展科技活动,如:举办物理晚会、撰写物理论文等。在这些活动中,教师悉心辅导,帮助克服困难,让学生有表现的机会,互帮互学,逐步培养有趣的爱好和创造能力及团结协作精神,从中领略到成功的喜悦,同时能发展创造力。 总之,实验教学过程中,不断地激发学习兴趣,培养实验观察能力和操作能力,充分能挖掘各种智力因素,全面提高教育教学质量。 参考文献 [1] 林立,新课标和初中物理教材中学物理,2008.[2] 浦荣.开发型物理实验的研究和探索 2009.10.30[3]探究式教学在物理实验中的应用[J].中学物理,2007. [4]袁冬媛.大学物理实验教程[M].长沙:中南大学出版社,2002.