摘要《数字信号处理》课程是一门理论性和实践性都很强, 它具备高等代数、数值分析、概率统计、随机过程等计算学科的知识; 要求我们学生掌握扎实的基础知识和理论基础。 又是跟其他学科密切相关,即与通信理论、计算机、微电子技术不可分,又是人工智能、模式识别、神经网络等新兴学科的理论基础之一。 本次数字滤波器设计方法是基于MATLAB的数字滤波器的设计。此次设计的主要内容为:IIR数字滤波器和FIR数字滤波器的设计关键词:IIR、FIR、低通、高通、带阻、带通Abstract"Digital Signal Processing" is a theoretical and practical nature are strong, and it has advanced algebra and numerical analysis, probability and statistics, random process such as calculation of discipline knowledge; requires students to acquire basic knowledge and a solid theoretical basis. Is closely related with other subjects, namely, and communication theory, computers, microelectronics can not be separated, but also in artificial intelligence, pattern recognition, neural network theory one of the emerging discipline. The digital filter design method is based on MATLAB for digital filter design. The main elements of design: IIR and FIR digital filter design of digital filterKey Words: IIR, FIR, low pass, high pass, band stop, band pass目录一、 前言 3二、 课程设计的目的 3三、 数字信号处理课程设计说明及要求 3四、 滤波器的设计原理 44.1 数字滤波器简介 44.2 IIR滤波器的设计原理 44.3 FIR滤波器的设计原理 54.4 FIR滤波器的窗函数设计法 6五、 设计内容 65.1 设计题目: 65.2设计程序代码及结果: 7六、 结束语 15七、 参考文献 16一、 前言数字信号处理(Digital Signal Processing,简称DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。随着信息时代和数字世界的到来,数字信号处理已成为今一门极其重要的学科和技术领域。数字信号处理在通信语音、图像、自动控制、雷达、军事、航空航天、医疗和家用电器等众多领域得到了广泛的应用。在数字信号处理应用中,数字滤波器十分重要并已获得广泛应用。二、 课程设计的目的1)三、 数字信号处理课程设计说明及要求所需硬件:PC机四、 滤波器的设计原理4.1 数字滤波器简介数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。可以设计系统的频率响应,让它满足一定的要求,从而对通过该系统的信号的某些特定的频率成分进行过滤,这就是滤波器的基本原理。如果系统是一个连续系统,则滤波器称为模拟滤波器。如果系统是一个离散系统,则滤波器称为数字滤波器。信号 通过线性系统后,其输出 就是输入信号 和系统冲激响应 的卷积。除了 外, 的波形将不同于输入波形 。从频域分析来看,信号通过线性系统后,输出信号的频谱将是输入信号的频谱与系统传递函数的乘积。除非 为常数,否则输出信号的频谱将不同于输入信号的频谱,某些频率成分 较大的模,因此, 中这些频率成分将得到加强,而另外一些频率成分 的模很小甚至为零, 中这部分频率分量将被削弱或消失。因此,系统的作用相当于对输入信号的频谱进行加权。4.2 IIR滤波器的设计原理IIR数字滤波器的设计一般是利用目前已经很成熟的模拟滤波器的设计方法来进行设计,通常采用模拟滤波器原型有butterworth函数、chebyshev函数、bessel函数、椭圆滤波器函数等。IIR数字滤波器的设计步骤:(1) 按照一定规则把给定的滤波器技术指标转换为模拟低通滤波器的技术指标;(2) 根据模拟滤波器技术指标设计为响应的模拟低通滤波器;(3) 很据脉冲响应不变法和双线性不变法把模拟滤波器转换为数字滤波器;(4) 如果要设计的滤波器是高通、带通或带阻滤波器,则首先把它们的技术指标转化为模拟低通滤波器的技术指标,设计为数字低通滤波器,最后通过频率转换的方法来得到所要的滤波器。4.3 FIR滤波器的设计原理FIR滤波器通常采用窗函数方法来设计。窗设计的基本思想是,首先选择一个适当的理想选频滤波器(它总是具有一个非因果,无限持续时间脉冲响应),然后街区(加窗)它的脉冲响应得到线性相位和因果FIR滤波器。我们用Hd(e^jw)表示理想的选频滤波器,它在通带上具有单位增益和线性相位,在阻带上具有零响应。一个带宽wc 你自己整合吧,我没时间帮你整合,我给你提供一些程序:绝对正确的代码:程序1:fs=22050; %语音信号采样频率为22050x1=wavread('Windows Critical Stop.wav'); %读取语音信号的数据,赋给变量x1sound(x1,22050); %播放语音信号y1=fft(x1,1024); %对信号做1024点FFT变换f=fs*(0:511)/1024;figure(1)plot(x1) %做原始语音信号的时域图形title('原始语音信号');xlabel('time n');ylabel('fuzhi n');figure(2)freqz(x1) %绘制原始语音信号的频率响应图title('频率响应图')figure(3)subplot(2,1,1);plot(abs(y1(1:512))) %做原始语音信号的FFT频谱图title('原始语音信号FFT频谱')subplot(2,1,2);plot(f,abs(y1(1:512)));title('原始语音信号频谱')xlabel('Hz');ylabel('fuzhi');程序2:fs=22050; %语音信号采样频率为22050x1=wavread('Windows Critical Stop.wav'); %读取语音信号的数据,赋给变量x1t=0:1/22050:(size(x1)-1)/22050;y1=fft(x1,1024); %对信号做1024点FFT变换f=fs*(0:511)/1024;x2=randn(1,length(x1)); %产生一与x长度一致的随机信号sound(x2,22050);figure(1)plot(x2) %做原始语音信号的时域图形title('高斯随机噪声');xlabel('time n');ylabel('fuzhi n');randn('state',0);m=randn(size(x1));x2=0.1*m+x1;sound(x2,22050);%播放加噪声后的语音信号y2=fft(x2,1024);figure(2)plot(t,x2)title('加噪后的语音信号');xlabel('time n');ylabel('fuzhi n');figure(3)subplot(2,1,1);plot(f,abs(y2(1:512)));title('原始语音信号频谱');xlabel('Hz');ylabel('fuzhi');subplot(2,1,2);plot(f,abs(y2(1:512)));title('加噪后的语音信号频谱');xlabel('Hz');ylabel('fuzhi');根据以上代码,你可以修改下面有错误的代码程序3:双线性变换法设计Butterworth滤波器fs=22050;x1=wavread('h:\课程设计2\shuzi.wav');t=0:1/22050:(size(x1)-1)/22050;Au=0.03;d=[Au*cos(2*pi*5000*t)]';x2=x1+d;wp=0.25*pi;ws=0.3*pi;Rp=1;Rs=15;Fs=22050;Ts=1/Fs;wp1=2/Ts*tan(wp/2); %将模拟指标转换成数字指标ws1=2/Ts*tan(ws/2); [N,Wn]=buttord(wp1,ws1,Rp,Rs,'s'); %选择滤波器的最小阶数[Z,P,K]=buttap(N); %创建butterworth模拟滤波器[Bap,Aap]=zp2tf(Z,P,K);[b,a]=lp2lp(Bap,Aap,Wn); [bz,az]=bilinear(b,a,Fs); %用双线性变换法实现模拟滤波器到数字滤波器的转换[H,W]=freqz(bz,az); %绘制频率响应曲线figure(1)plot(W*Fs/(2*pi),abs(H))gridxlabel('频率/Hz')ylabel('频率响应幅度')title('Butterworth')f1=filter(bz,az,x2);figure(2)subplot(2,1,1)plot(t,x2) %画出滤波前的时域图title('滤波前的时域波形');subplot(2,1,2)plot(t,f1); %画出滤波后的时域图title('滤波后的时域波形');sound(f1,22050); %播放滤波后的信号F0=fft(f1,1024);f=fs*(0:511)/1024;figure(3)y2=fft(x2,1024);subplot(2,1,1);plot(f,abs(y2(1:512))); %画出滤波前的频谱图title('滤波前的频谱')xlabel('Hz');ylabel('fuzhi');subplot(2,1,2)F1=plot(f,abs(F0(1:512))); %画出滤波后的频谱图title('滤波后的频谱')xlabel('Hz');ylabel('fuzhi');程序4:窗函数法设计滤波器:fs=22050;x1=wavread('h:\课程设计2\shuzi.wav');t=0:1/22050:(size(x1)-1)/22050;Au=0.03;d=[Au*cos(2*pi*5000*t)]';x2=x1+d;wp=0.25*pi;ws=0.3*pi;wdelta=ws-wp;N=ceil(6.6*pi/wdelta); %取整wn=(0.2+0.3)*pi/2;b=fir1(N,wn/pi,hamming(N+1)); %选择窗函数,并归一化截止频率figure(1)freqz(b,1,512)f2=filter(bz,az,x2)figure(2)subplot(2,1,1)plot(t,x2)title('滤波前的时域波形');subplot(2,1,2)plot(t,f2);title('滤波后的时域波形');sound(f2,22050); %播放滤波后的语音信号F0=fft(f2,1024);f=fs*(0:511)/1024;figure(3)y2=fft(x2,1024);subplot(2,1,1);plot(f,abs(y2(1:512)));title('滤波前的频谱')xlabel('Hz');ylabel('fuzhi');subplot(2,1,2)F2=plot(f,abs(F0(1:512)));title('滤波后的频谱')xlabel('Hz');ylabel('fuzhi'); 需要学习如何设计滤波器并仿真 我可以教你如何设计 但是你需要一整篇的毕业设计 还是你自己动手吧! 这个我也想要啊,编程了用matlab 但是老师就说我算法不对,当给出噪声大于输入信号就是错的了-------------------------------- 天下没有免费的午餐 本论文主要研究了自适应滤波器的基本结构和原理,然后介绍了最小均方误差算法(LMS算法),并完成了一种基于MATLAB平台的自适应LMS自适应滤波器的设计,同时, 电梯控制系统设计基于西门子PLC的电梯控制系统 电梯控制系统设计基于西门子PLC的电梯控制系统 摘 要 FIR数字滤波器是数字信号处理的经典方法,其设计方法有多种,用DSP芯片对FIR滤波器进行设计时可以先在MATLAB上对FIR数字滤波器进行仿真,所产生的滤波器系数可以直接倒入到DSP中进行编程,在编程时可以采用DSP独特的循环缓冲算法对FIR数字滤波器进行设计,这样可以大大减少设计的复杂度,使滤波器的设计快捷、简单。关键词 FIR;DSP;循环缓冲算法1 引言在信号处理中,滤波占有十分重要的地位。数字滤波是数字信号处理的基本方法。数字滤波与模拟滤波相比有很多优点,它除了可避免模拟滤波器固有的电压漂移、温度漂移和噪声等问题外,还能满足滤波器对幅度和相位的严格要求。低通有限冲激响应滤波器(低通FIR滤波器)有其独特的优点,因为FIR系统只有零点,因此,系统总是稳定的,而且容易实现线性相位和允许实现多通道滤波器。2 FIR滤波器的基本结构及设计方法2.1 FIR滤波器的基本结构设a i(i=0,1,2,…,N一1)为滤波器的冲激响应,输入信号为 x(n),则FIR滤波器的输入输出关系为: FIR滤波器的结构如图1所示:图12.2 FIR滤波器的设计方法 (1) 窗函数设计法 从时域出发,把理想的无限长的hd(n)用一定形状的窗函数截取成有限长的h(n),以此h(n)来逼近hd(n),从而使所得到的频率响应H(ejω)与所要求的理想频率响应Hd(ejω) 相接近。优点是简单、实用,缺点是截止频率不易控制。 (2) 频率抽样设计法从频域出发, 把给定的理想频率响应Hd(ejω)以等间隔抽样,所得到的H(k)作逆离散傅氏变换,从而求得h(k),并用与之相对应的频率响应H(ejω)去逼近理想频率响应Hd(ejω)。优点是直接在频域进行设计,便于优化,缺点是截止频率不能自由取值。(3) 等波纹逼近计算机辅助设计法前面两种方法虽然在频率取样点上的误差非常小,但在非取样点处的误差沿频率轴不是均匀分布的,而且截止频率的选择还受到了不必要的限制。因此又由切比雪夫理论提出了等波纹逼近计算机辅助设计法。它不但能准确地指定通带和阻带的边缘,而且还在一定意义上实现对所期望的频率响应实行最佳逼近。3 循环缓冲算法对于N级的FIR滤波器,在数据存储器中开辟一个称之为滑窗的N个单元的缓冲区,滑窗中存放最新的N个输入样本。每次输入新的样本时,一新样本改写滑窗中的最老的数据,而滑窗中的其他数据不需要移动。利用片内BK(循环缓冲区长度)寄存器对滑窗进行间接寻址,环缓冲区地址首位相邻。下面,以N=5的FIR滤波器循环缓冲区为例,说明循环缓冲区中数据是如何寻址的。5级循环缓冲区的结构如图所示,顶部为低地址。……由上可见,虽然循环缓冲区中新老数据不很直接明了,但是利用循环缓冲区实现Z-1的优点还是很明显的:它不需要数据移动,不存在一个极其周期中要求能进行一次读和一次写的数据存储器,因而可以将循环缓冲区定位在数据存储器的任何位置(线性缓冲区要求定位在DARAM中)。实现循环缓冲区间接寻址的关键问题是:如何使N个循环缓冲区单元首位相邻?要做到这一点,必须利用BK(循环缓冲器长度)器存器实现按模间接寻址。可用的指令有:… *ARx+% ;增量、按模修正ARx:addr=ARx,ARx=circ(ARx+1)… *ARx-% ;减量、按模修正ARx:addr=ARx,ARx=circ(ARx-1)… *ARx+0% ;增AR0、按模修正ARx:addr=ARx,ARx=circ(ARx+AR0)… *ARx-0% ;减AR0、按模修正ARx:addr=ARx,ARx=circ(ARx-AR0)… *+ARx(lk)% ;加(lk)、按模修正ARx:addr=circ(ARx+lk),ARx=circ(ARx+AR0)其中符号“circ”就是按照BK(循环缓冲器长度)器存器中的值(如FIR滤波其中的N值),对(ARx+1)、(ARx-1)、(ARx+AR0)、(ARx-AR0)或(ARx+lk)值取模。这样就能保证循环缓冲区的指针ARx始终指向循环缓冲区,实现循环缓冲区顶部和底部单元相邻。循环寻址的算法可归纳为:if 0 index + step < BK: index = index + stepelse if index + step BK: index = index + step – BKelse if index + step < BK: index = index + step + BK上述算法中,index是存放在辅助寄存器中的地址指针,step为步长(亦即变址值。步长可正可负,其绝对值晓予或等于循环缓冲区长度BK)。依据以上循环寻址算法,就可以实现循环缓冲区首位单元相邻了。 为了使循环缓冲区正常进行,除了用循环缓冲区长度寄存器(BK)来规定循环缓冲区的大小外,循环缓冲区的起始地址的k个最低有效位必须为0。K值满足2k>N,N微循环缓冲区的长度。4 FIR滤波器在DSP上的实现对于系数对称的FIR滤波器,由于其具有线性相位特征,因此应用很广,特别实在对相位失真要求很高的场合,如调制解调器(MODEM)。例如:一个N=8的FIR滤波器,若a(n)=a(N-1-n),就是对称FIR滤波器,其输出方程为:y(n)= a0x(n)+ a1x(n-1)+ a 2x(n-2)+ a 3x(n-3)+ a 3x(n-4)+ a 2x(n-5)+ a1x(n-6)+ a0x(n-7)总共有8次乘法和7次加法,如果改写成: y(n)= a0 [x(n)+ x(n-7)]+ a1 [ x(n-1)+ x(n-6)]+ a 2 [ x(n-2)+ x(n-5)]+ a 3 [ x(n-3)+ x(n-4)]则变成4次乘法和7次加法。可见,乘法运算的次数减少了一半。这是对称FIR的又一个优点。对称FIR滤波器C54X实现的要点如下:(1)数据存储器中开辟两个循环缓冲算区:新循环缓冲区中存放新数据,旧循环缓冲区中存放老数据。循环缓冲区的长度为N/2。 (2)设置循环缓冲区指针:AR2指向新循环缓冲区中最新的数据,AR3指向旧循环缓冲区中最老的数据。 (3)在程序存储器中设置系数表。 (4)AR2+ AR3 AH(累加器A的高位),AR2-1AR2,AR3-1 AR3 (5)将累加器B清零,重复执行4次(i=0,1,2,3):AH*系数ai+B B,系数指针(PAR)加1。AR2+ AR3AH,AR2和AR3减1。 (6)保存和输出结果。 (7)修正数据指针,让AR2和AR3分别指向新循环缓冲区中最老的数据和旧循环缓冲区中最老的数据。 (8)用新循环缓冲区中最老的数据替代旧循环缓冲区中最老的数据,旧循环缓冲区指针减1。 (9)输入一个新的数据替代新循环缓冲区中最老的数据。 重复执行第(4)至(9)步。 在编程中要用到FIRS(系数对称有限冲击响应滤波器)指令,其操作步骤如下: FIR Xmem,Ymem,Pmem 执行 Pmad PAR 当(RC)≠0 (B)+(A(32-16))×(由PAR寻址Pmem)B ((Xmem)+(Ymem))<<16A (PAR)+1PAR (RC)-1RC FIRS指令在同一个及其周期内,通过C和D总线读2次数据存储器,同时通过P总线读一个系数 本文对FIR滤波器在DSP上的实现借助了MATLAB,其设计思路为:(1)MATLAB环境下产生滤波器系数和输入的数据,并仿真滤波器的滤波过程,可视化得到滤波器对动态输入数据的实时滤波效果;(2)将所得滤波器系数直接导入CCStudio中,再把滤波器的输入数据作为CCStudio设计的滤波起的输入测试数据存储在C54x数据空间中; (3)在CCStudio环境下结合FIR滤波的公式适用汇编语言设计FIR滤波程序,使用MATLAB产生的滤波器系数和输入测试数据进行计算,把输入数据和滤波结果借助CCStudio菜单中的View/Graph/Time/Frequency子菜单用图形方式显示出来(结果如图2);图2 (a)输入数据(Input)图2(b)滤波后的数据(Output) 将FIR滤波的入口数据地址改为外部I/O空间或McBSP口的读写数据地址,或数据空间内建缓冲地址;将FIR滤波的结果数据地址改为外部I/O空间或McBSP口的输出数据地址,或数据空间内建缓冲地址,则完成了基于C54xDSP的实时数据FIR滤波程序。参考文献:[1] 程佩青.数字信号处理教程[M].北京:清华大学出版社 1999年[2] 孙宗瀛,谢鸿林.TMS320C5xDSP原理设计与应用[M].北京:清华大学出版社.2002年[3] 陈亚勇等 编著.MATLAB信号处理详解[M].北京:人民邮电出版社.2001年[4] Texas Instruments.TMS320C54x Assembly Language Tools User’s Guide[5] Texas Instruments.TMS320C54x DSP Programmer’s Guide 天下没有免费的午餐 ·ADSL接入网技术研究 (字数:24985,页数:36) ·直序扩频技术的仿真与应用 (字数:14521,页数:37) ·音频数字水印的实现 (字数:15331,页数:28) ·DVB系统设计 (字数:14318,页数:28) ·PAM调制解调系统设计 二 (字数:9181,页数:31 ) ·上位PC机与下位单片机之间进行串口通信 (字数:12645,页数:30) ·图像梯形退化校正的研究与实现 (字数:12616,页数:34) ·简易数字电压表设计实现 (字数:7436,页数:24 ) ·基于计算机视觉库OpenCV的文本定位算法改进 (字数:9674,页数:32 ) ·基于编码的OFDM系统的C语言设计与实 (字数:11190,页数:34) ·基于ofdm系统的接受分集技术 (字数:11057,页数:28) ·基于FPGA的交织编码器设计 (字数:13239,页数:39) ·红外异步数字通信的数据采集装置设计与实现 (字数:19577,页数:68) ·Visual C++环境下的基于肤色图像的人脸检测算法 (字数:11186,页数:28) ·PAM调制解调系统设计 (字数:13922,页数:43) ·P2P网络通信设计 (字数:8075,页数:39 ) ·NAND Flash设备 (字数:10928,页数:49) ·MPEG4播放技术 (字数:13207,页数:38) ·Butterworth滤波器设计 (字数:8348,页数:28 ) ·基于单片机的智能教师点名器 (字数:10627,页数:29) ·基于CPLD的CDMA扩频调制解调器建模设计与实现 (字数:14327,页数:63) ·带CC1100无线收发模块基本控制系统 (字数:15224,页数:50) ·基于CPLD的CMI码传输系统设计 (字数:11429,页数:41) ·一个简单光纤传输系统的设计 (字数:12785,页数:37) ·基于MCS51微控制器的FSK调制解调器设计——电路设计 (字数:13439,页数:39) ·中小型网络的设计与配置 (字数:16254,页数:42) ·基于AT89S52的FSK调制解调器设计 (字数:14064,页数:45) ·远端光纤收发器断电断纤的识别 (字数:15759,页数:89) ·脉冲成形BPSK调制电路的设计与实现 (字数:11472,页数:36) ·基于XR2206的函数信号发生器设计与实现 (字数:9179,页数:31 ) ·基于MCS51微控制器的FSK调制解调器的设计——程序设计 (字数:12191,页数:46) ·基于CPLD的QPSK调制器实现——电路设计 (字数:11621,页数:33) ·QPSK调制器的CPLD实现——程序设计 (字数:5973,页数:30 ) ·基于卷积码的BPSK基带系统C语言实现 (字数:9361,页数:30 ) ·白噪声发生器的设计 (字数:11398,页数:34) ·基于单片机的机床控制系统 (字数:12085,页数:35) ·低压电力线载波通信模块设计 (字数:15460,页数:68) ·基于SH框架的电子技术交流平台 (字数:10333,页数:38) ·带隙基准电压源的设计 (字数:10396,页数:31) ·电子计时器系统设计与实现 (字数:9780,页数:31 ) ·无线局域网的组建与测试 (字数:17392,页数:48) ·抑制载波双边带调幅电路的设计 (字数:9787,页数:24 ) ·宽带放大器的设计与实现 (字数:12200,页数:36) ·基于单片机的遥控芯片解码的设计与实现 (字数:9802,页数:39 ) ·多种正交幅度调制QAM误码率仿真及星座图的优化 (字数:10967,页数:43) 高效率音频功率放大器的研制白林景,邵光存,李岸然,常兴连,王振伟(山东省科学院激光研究所,山东济宁 272100) 摘 要:本设计以高效率D类功率放大器为中心,输出开关管采用高速场效应管,连接成互补对称H桥式结构,兼有输出1: 1双变单电路和输出短路保护功能,比较理想地实现了输出功率大于2w,平均效率可达到75%的高效音功率放大器。关键词:D类音频功率放大器; PWM调制器; H桥功率放大器中图分类号: TN722. 1 文献标识码:A引言全球音频领域数字化的浪潮以及人们对音频节能环保的要求,要求我们尽快研究开发高效、节能、数字化的音频功率放大器。传统的音频功率放大器工作于线性放大区,功率耗散较大,虽然采用推挽输出,仍然很难满足大功率输出;而且需要设计复杂的补偿电路和过流,过压,过热等保护电路。D类开关音频功率放大器的工作于PWM模式,将音频信号与采样频率比较,经过自然采样,得到脉冲宽度与音频信号幅度成正比例变化的PWM波,经过驱动电路,加到MOS的栅极,控制功率器件的开关,实现放大,放大的PWM信号送入滤波器,还原为音频信号。从而实现大功率高效率的音频功率放大器。系统电路本文采用H型桥式D类功率放大电路,电路如图一所示。图一 音频功率放大器电路(1) 三角波产生电路利用NE555构成的多谐振荡器以恒流源的方式对电容线性冲、放电产生三角波。接通电源瞬间,NE555芯片的3脚输出高电平,二极管D2、D3 截止,D1、D4 导通, Vcc通过T1 , T2 , R1 ,D1 对电容C1 恒流充电,当C1 上电压达到2 /3Vcc时,NE555芯片的输出发生翻转,即3脚输出低电平,此时,D2、D3 导通, D1、D4 截止,电容C1 通过D2 , T3 ,T4 , R2 恒流放电,直到C1电压等于1 /3Vcc,电容又开始充电,如此循环,电容C1上可以得到线性度良好的三角波。为了提高带负载能力,输出通过由LM358A组成的电压跟随器。输出三角波频率的计算:电阻R1 上电压等于T1 的VVbe≈ 0. 7V,故流过R1 的电流I = 0. 7V /300Ω = 2. 33mA,忽略T1 的基极电流,则流过R1 的电流即为T2 的射级电流,约等于T2 的集电极电流,故C1 的充电电流约为2mA,同理, C1 的放电电流约为2mA。设充电时间为t1 ,放电时间为t2 ,则有:23Vcc =13Vcc +i ×t1C13Vcc =23Vcc -i ×t2C可得三角波的周期: T = t1 + t2 =2Vcc ×C3 ×i故三角波频率为: f =3 ×i2Vcc ×C(2)前置放大电路 前置放大电路采用低噪声、高速运放的NE5532运算放大器,组成增益可调的同相宽带放大电路。功放最大不失真输出时,负载上等效正弦波的电压峰峰值为VP - P ,载波调制的调制波(正弦波)最大峰峰— 27 —值为VP - Pm ax ,对应的调制放大增益为AV2 =VP - PVP - Pm ax,运算放大电路中反馈电阻为R8 ,反相端电阻R7 ,则前置放大器的增益AV1为:AV1 = 1 +R8R7,通过选取调制波的峰值电压VP - Pm ax和调整R8 的阻值,可实现整个功率放大单元的电压增益连续可调。(3)脉宽调制( PWM)电路 采用高速、精密的比较器芯片,以音频信号为调制波,频率为f的三角波为载波,两路信号均加上1 /2Vcc的直流偏置电压,通过比较器进行比较,得到幅值相同,占空比随音频幅度变化的脉冲信号。(4)驱动电路 驱动电路由施密特触发器芯片和三极管组成,两个三极管组成的互补对称式射极跟随器。PWM信号经过驱动电路后,形成两个前后沿更加陡峭的倒相脉冲,两脉冲之间有一定的死区时间,防止了桥式驱动电路出现直通现象。(5) H型桥式驱动电路 由场效应管组成的功率开关管和四阶巴特沃兹LC滤波电路组成。T9、T12导通, T10、T11截止时,负载上的电压降VM AB0 =Vcc; T10、T11导通,T9、T12截止时,负载上的电压降VAB = - Vcc,因此,负载上的电压降可达到2倍的电源电压。解调信号放大后经过LC滤波送到扬声器。(6)短路保护电路 短路(或过流)保护电路采用0. 1过流取样电阻与扬声器串联方式, 0. 1电阻上的取样电压经过由NE5532组成的减法放大器进行放大。电压放大倍数为:Av =R19R17经放大后的音频信号再通过由D9、C9、R20组成的峰值检波电路,检出幅度电平,送给电压比较器U7的“ + ”端,U7的“—”端电平设置为5. 1v,由R22和稳压管D12组成,比较器接成迟滞比较方式,一旦过载,即可锁定状态。正常工作时,通过0. 1上的最大电流幅度Im =Vcc /(R + 0. 1) , 0. 1上的最大压降为0. 1 ×Im ,经放大后输出的电压幅值为Vim ×AV = 0. 1 ×Im ×AV ,检波后的直流电压稍小于此值,此时比较器输出低电平, T13截止,继电器J1不吸合,处于常闭状态,电源Vcc通过常闭触点送给功放。一旦扬声器两端短路或输入电流过大, 0. 1上电流、电压增大,经过电压放大、峰值检波后,大于比较器反相端电压,则比较器翻转为高电平并自锁, T13导通,继电器吸合,切断功放Vcc电源,功放电路得到保护。R21、C11、D10、D11组成开机延时电路,防止开机瞬间比较器自锁,关机后C11上的电压通过D10快速放掉,以保证再开机时C11的起始电压为零。讨论D类放大器工作于开关状态,无信号输入时无电流,而导通时,没有直流损耗。事实上由于关断时器件尚有微小漏电流,而导通时器件并没有完全短路,尚有一定的管压降,故存在较少直流损耗,实际效率在80% - 90% ,是实用放大器中效率最高的。参考文献:[ 1 ]Wing - Hong, Lau , IEEE Trans. Realization ofDigitalAudi2o Amp lifier Using Zero - Voltage - Switched PWM PowerConverter, Circuits Syst . Vol 47,NO. 3,March 2000.[ 2 ]Ashok Bindra. All - digital App roach HikesAudio Quality InConsumer Product.[ 3 ]李子升,吴锦铭,钟国新. 高效率音频功率放大器.[ 4 ]李振玉,姚光圻. 高效率放大及功率合成技术. 中国铁道出版社, 1985.[ 5 ]陈伟鑫. 新型实用电路精选指南. 电子工业出版社.[ 6 ]瞿安连. 应用电子技术. 北京科学出版社, 2003.[ 7 ]王金明等编著. 数字系统设计. 电子工业出版社出版.[ 8 ]全国大学生电子设计竞赛获奖作品精选. 1994 - 1999.[ 9 ]虎永存,现代音响技术, D类放大器的原理和电路, 1998年第5期.[ 10 ]无线电2004合订本第2、3期. 无线电杂志社,人民邮电出版社.这个是从付费论文网站上买的,真珍贵的 大学是干嘛的地方?无论多高的学历和职称,不会设计、制造教具,不会设计、制造教学仪器,不会维修仪器和设备;用你父母的钱进口教学仪器模仿了委托工厂仿制就是佼佼者;用你父母的钱请校外的人来维修设备、从校外采购配件;用你父母的钱请教学仪器生产企业提供教学实验讲义,将作者填上他们的名字就有教学突出成就奖;教你背诵的公式和外语,永远也比不上美国麻省理工学院在网上公开的教材内容。学生也不要埋怨学费贵,除了上面教师的原因,你们自己的基础实验、专业课就上的迷迷糊糊的,高额投资下的创新实验项目、挑战杯、科技竞赛、毕业论文、商业开发,都见不得阳光,将真金白银变成了一堆堆的垃圾!!!! 应用电子技术的文章不难的,写创新的即可。之前也不懂,还是学长给的文方网,写的《CMOS掉电检测及保护电路设计》,靠谱的说有射极电阻的基本电路中双极型晶体三极管工作状态的一种判断方法论较大规模数字逻辑电路进化实现有源功率因素校正电路控制方法的研究基于单片机的升压电路设计与仿真基于AT89S52单片机广告灯控制电路设计的教学基于FPGA的无机EL显示模块控制电路设计串联补偿逆变电路的电压累加现象研究辅导材料(二) 学习单元电路的方法和技巧一种新颖的磁耦合式无源无损吸收电路EDA软件在电路设计中的合理应用基于LMH6505直流耦合型可变增益超声接收电路的设计 优先出版基于可编程模拟器件的精密整流电路设计超声波户外散雾传感器电路装置一款无电压比较器的欠压保护电路一体化轨道电路方向继电器应用实例分析DS18B20温度测量电路的设计与仿真三相交流电动转辙机5线制道岔电路模拟试验新方法基于Protel DXP的模拟电路的仿真分析InGaP/GaAs HBT射频功率放大器在片温度补偿电路研究电子电路实验教学模式的探索与实践电路模型的改进及若干相应结果交流伺服电机驱动控制器单元电路的设计分析上海集成电路产业发展整体态势与对策建议25Hz相敏轨道电路的计算调谐区绝缘化无碴轨道对轨道电路传输性能的影响分析稳定静态工作点电路的分析25 Hz相敏轨道电路抗干扰分析及改进方案40MS/s全差分采样-保持电路的设计单通道传输多路监控信号的电路设计电路分析模拟实验演示系统提速道岔转换电路的故障处理基于LabVIEW的舰用空压机控制电路虚拟检测平台设计 优先出版超大规模集成电路设计基础 第一讲 微电子技术概况深圳集成电路设计产业化基地管理中心文件深集管[2005]021号关于召开《2006’(第四届)泛珠三角集成电路业联谊暨市场推介会》的通知简述彩电保护执行电路与保护显示电路(上)跟我学修VCD、SVCD机(九)RF信号处理电路和数字信号处理(DSP)电路变频器的滤波电路设计有源电路和无源电路术语的讨论绝热CMOS与传统CMOS接口电路的设计PCB板中时钟电路的EMC问题探究在电路分析教学中引入Matlab软件浅析数字电路实验的设计ZPW-2000A站内移频电码化N+1 FS电路的改进五线制提速道岔电路技术改进探讨 我这边能帮有题目, 试试OA图书馆吧。输入相应关键词英文即可。 loushang bucuo 已发送。不过我不是专业人士,不知找的是不是你需要的。不过还是希望能用得到~ 要外文文献,一般都是在网站\网店\图书馆找,您这个看起来有些专业,FIR 滤波器是在数字信号处理(DSP)中经常使用的滤波器,在Labview中还没应用过.毕业论文滤波器设计
调滤波器毕业论文
滤波电路设计毕业论文
数字滤波器设计论文英文文献