首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

细胞组骨架的组成及功能研究论文

发布时间:

细胞组骨架的组成及功能研究论文

广义的细胞骨架概念是细胞核骨架、细胞质骨架、细胞膜骨架和胞外基质所形成的网络体系。核骨架、核纤层与中间纤维在结构上相互连接,贯穿于细胞核和细胞质的网架体系。

细胞骨架是由蛋白质与蛋白质搭建起的骨架网络结构,包括细胞质骨架和细胞核骨架。

细胞骨架系统的主要作用是维持细胞的一定形态,使细胞得以安居乐业。细胞骨架对于细胞内物质运输和细胞器的移动来说又起交通动脉的作用; 细胞骨架还将细胞内基质区域化;此外,细胞骨架还具有帮助细胞移动行走的功能。

细胞骨架的主要成分是微管、微丝和中间纤维。

第一个成分:微管

微管:为一细长中空而直的细管,长度不一,可达数微米,外径约25nm,内径12nm, 管壁厚4-5nm,中心是电子不透明的空腔。主要由α球蛋白和β球蛋白——微管球蛋白(tubulin)分别组成23条原丝,纵行螺旋排列而成,此外,还有一些起辅助作用的蛋白质存在。管外有时可见垂直伸出的臂状突出物(含微梁系统)

生理功能

① 维持细胞形状,起支架作用。

② 参与细胞壁的形成和生长。

③ 与细胞器及细胞的运动密切相关

第二个成分:微丝(Microfilament)

结构

较微管更细的纤丝,D=5(6)—8nm,由球形肌动蛋白和肌球蛋白聚合而成的细丝彼此缠绕成双螺旋丝。不同的细胞还另有不同的蛋白质与之结合。成束或分散在基质内。

功能

①起更致密的支架作用。

②与微管配合,控制细胞器的运动和。

③与胞质流动密切相关。

④胞内物质运输和细胞分裂时CS的移动中起作用。

参与收缩环的形成

参与细胞运动:伪足的形成

参与肌肉收缩:细肌丝主要由肌动蛋白组成,粗肌丝主要由肌球蛋白组成

第三个主要成分:中间丝(Intermediate fiber )

中间丝又称为:中间纤维、居间纤维

结构

一种D=10nm 左右的细长管状结构。动物细胞中普遍存在,玉米、烟草等植物中也发现。

功能

①加固细胞骨架,与微管、微丝一起维持细胞形态和参与胞内物质运输,并可固定细胞核。

②在细胞分裂时可能对纺锤体与CS由空间定向于支架作用。

这是锻炼自己的时候。 最好靠自己、

细胞骨架的类型:细胞骨架是细胞内以蛋白质纤维为主要成分的网络结构,由主要的三类蛋白纤丝(filamemt)构成:包括微管、微丝(肌动蛋白纤维)和中间纤维。细胞骨架的功能:细胞骨架对于维持细胞的形态结构及内部结构的有序性,以及在细胞运动,物质运输,能量转换,信息传递和细胞分化等一系列方面起重要作用。1. 作为支架,为维持细胞的形态提供支持结构,如红细胞质膜膜骨架结构的维持。2. 在细胞内形成一个框架结构,为细胞内的各种细胞器提供附着位点。细胞骨架是胞质溶胶的组织者,将细胞内的各种细胞器组成各种不同的体系和区域的网络结构。3. 为细胞器的运动和细胞内物质运输提供机械支持。细胞骨架作为细胞内物质运输的轨道,在有丝分裂和减数分裂过程中染色体向两极的移动,以及含有神经细胞产生的神经递质的小泡向神经细胞末端的运输都要依靠细胞骨架的机械支持。4. 为细胞从一个位置向另一位置移动。纤毛和鞭毛等运动器官主要是由细胞骨架构成的,另外如伪足的形成也是由细胞骨架提供机械支持。5. 为信使RNA(mRNA)提供锚定位点,促进mRNA翻译成多肽。5. 参与细胞的信号传导。有些细胞骨架成分常同细胞质膜的内表面接触,这对于细胞外环境中的信号在细胞内的传导起重要作用。6. 是细胞分裂的机器。有丝分裂的两个主要事件,核分裂和胞质分裂都与细胞骨架有关。

细胞骨架及其研究进展论文

本人学的是生物科学专业,写的综述可以吗?

植物细胞骨架的动态研究

摘要:植物细胞骨架由微管与植物的微丝和中间纤维共同组成,并参与众多的生命活动,如细胞形态建成、细胞器和囊泡运输、染色体迁移、细胞壁构建、细胞分裂与分化、信号转导等;并与其马达蛋白构成细胞内重要的动力系统,参与细胞内各种活动。本文主要从植物的微管骨架和微丝骨架两个方面,综述了植物细胞骨架的动态变化及功能特性。

关键词:植物细胞骨架 动态变化

1植物细胞骨架

细胞骨架(cytoskeleton,CSK)是位于细胞膜内侧面的蛋白质丝纤维网架系统。胞骨架由微管(microtubule)、微丝(mirofilament)和中间纤维(intermediate filament共同构成。微管是长而不分枝、直径在25nm左右的管状纤维。主要由a、p一微管蛋白(tubulin)和少量的微管结合蛋白(microtubule associated protein,MAP)构成。微管蛋白通过非共价结合形成异二聚体,异二聚体螺旋盘绕形成微管壁。微管结合蛋白是与微管特异结合并影响其结构与功能的一类微管辅助蛋白。它们可提高微管的稳定性,促使微管与其他细胞结构(如质膜、微丝、中间纤维等)交联,在细胞内沿微管转运囊泡和颗粒,通过与微管成核点的作用促进微管聚合。微丝是由肌动蛋白(actin)的亚单位组成的螺旋状结构,有极性。肌动蛋白以两种形态存在,聚合态纤维肌动蛋白(F-actin)及可溶性球状肌动蛋白(G-actin),两种形态的肌动蛋白之间存在着动态平衡,但只有聚合态肌动蛋白才具有生物学作用。中间纤维是一种直径介于微丝与微管之间的纤维状蛋白,在细胞核膜下形成一层坚固的核纤层,在胞质中形成网架结构,连接核膜、质膜及其他细胞骨架。微管蛋白和肌动蛋白在真核细胞中普遍存在,但植物细胞中是否存在类似动物细胞的中间纤维目前还无定论。

2 微管骨架

2.1 微管的结构及动态组装特性

微管(microtubule,MT)是真核生物中普遍存在的蛋白纤微结构,1963年最早发现于侧柏和水螅的细胞中,并被命名为微管[1-2]。微管的基本组成单位是微管蛋白(tubulin),包括α-微管蛋白、β-微管蛋白和r-微管蛋白。α-微管蛋白和β-微管蛋白通过非共价键头尾相连形成微管蛋白异二聚体,微管蛋白二聚体线性排列形成直径4~5nm、分子量约为100 kDa的原纤丝。原纤丝通过侧向连接形成微管壁。13条原纤丝平行排列构成中空管状的微管。

微管骨架具有不断解聚和聚合的动态特性,即单根微管在聚合态和解聚态之间随机转换。这一特性使得微管系统可以快速地重组以适应环境和生长发育的需要。动态的微管系统包括4种微管列阵,分别为间期周质微管列阵、早前期微管带、纺锤体、成膜体微管列阵。在植物活体细胞的各周期中,这些微管列阵都是高度动态的。动态微管与微管蛋白之间处于一个不断组装和去组装的转换中,微管的动态特性也称为微管解聚组装模型。目前微管的动态组装特性主要被描述为2种模型:踏车运动和动态不稳定模型。微管的动态和微管列阵的组织通常受微管结合蛋白(MAP)的调控。目前,微管骨架的动态特性越来越受到人们的关注。

2.2 微管参与植物细胞的形态建成及胞内物质转运

植物发育过程中,不同类型的细胞具有不同的细胞形态以适应不同的功能需要。这些细胞的形态建成与多种植物细胞骨架密切相关。微管在确定并保持细胞生长的方向性上发挥着重要作用,用微管特异性药剂处理植物叶片表皮铺板细胞,破坏微管列阵之后细胞形态出现异常[3]。Thitamadee等筛选出了微管蛋白α-tubulin的突变体left1和left2[4],突变体植株细胞的微管处于不稳定状态导致生长出的植株的根、下胚轴、叶片等器官均表现为螺旋生长。微管特异性药物处理还可导致各向异性生长的细胞改变原来的极性生长方向[5]。Collings等发现,促进微丝解聚的药物可加剧微管解聚,直接影响微管二聚体的状态,说明在调节细胞向异性生长过程中微管和微丝的动态对话起着非常重要的作用[6]。

在胞内运输和定位中,微管骨架也起着重要作用。参与细胞内物质运输的细胞骨架和马达蛋白质依赖于微管的驱动蛋白和动力蛋白以及微丝的肌球蛋白。通常认为,胞内物质的长途运输沿微管进行,而微丝在短途运输中发挥着重要作用,即微管在许多马达蛋白的辅助下起着胞内物质运输的轨道作用,破坏微管可影响细胞内的物质运输。在真核细胞内,mRNA必须运送到细胞质的特定部位才能进行翻译,RNA蛋白复合体就是沿着微管或微丝的轨道移动的[7,8]。

2.3 微管骨架的信号功能

微管参与植物细胞信号传递的功能成为近年来的研究重点。微管是植物细胞的重要组分,具有高度保守的动态特性,同时可与细胞中许多因子结合发挥传递运输的作用。当细胞受到内部或外部刺激后,细胞质会发生快速的动态重组,这些变化大多需要微管骨架的介导。周希明等研究发现,在细胞内添加药物破坏微管解聚、聚合的正常动态可显著抑制保卫细胞全细胞内向钾电流,说明微管的正常动态变化具有参与调节保卫细胞质膜上K+通道的活性,从而参与调节气孔运动[9]。

2.4 微管响应生物与非生物胁迫的动态变化

植物细胞微管受到外界环境刺激时也始终保持着动态特性,并响应外界生物或非生物胁迫发生相应的动态重排。微管的这种动态转换可参与或协助防卫物质形成天然防御屏障,从而抵抗病原菌的进一步入侵[10,11]。

拟南芥与卵菌纲病害oomycete互作中,菌丝侵染位点可附着在胞下发生细胞质聚集,微丝在侵染位点发生动态重组,呈放射状聚集;微管在侵染位点直接解聚,不形成放射状聚集[12,13]。Yuan等研究发现,拟南芥悬浮细胞在响应大丽轮枝菌毒素胁迫反应中,微管比微丝更快发生动态变化[14]。Wang等研究发现,拟南芥受到盐胁迫时周质微管发生重组,因此认为微管重组是植物耐盐的一种主动防卫机制[15]。

3 微丝骨架

3.1 微丝骨架的结构及动态变化

微丝又称肌动蛋白纤维(filamentactin,F-actin),是细胞骨架的主要成员,广泛存在于真核细胞中。肌动蛋白单体(global actin,G-actin)是构成微丝的基本单位,多个G-actin按照一定方式聚合形成微丝,二者处于聚合和解聚的动态平衡过程中。植物细胞内微丝骨架的功能是多种多样的,在胞质环流、花粉管萌发、气孔运动、物质运输、内吞和外分泌等过程中均起着重要作用。微丝骨架解聚和聚合的动态变化是实现这些功能的关键[16]。

在体外,肌动蛋白聚合成微丝的动力学过程可以分为3个阶段,即成核期(nucleation phase)、生长期(growth phase)及平衡期(equilibrium phase)。肌动蛋白在成核期开始聚合,该时期也是整个组装过程的关键时期。起始时,G-actin缓慢聚合形成一个较短的由3~4个亚基组成的寡聚体,以此作为微丝组装的“种子” 或“核心”(nucleus),进入快速生长期[17]。生长期肌动蛋白聚合成微丝片段时,形如箭头,其一端被称为负端(pointed end),另一端被称为正端(barded end)。微丝正端的聚合速度明显快于负端,因为微丝的生长延长主要受ATP的调节,一分子G-actin可结合一分子ATP,形成ATP-actin,它对微丝的正端有更高亲和力,使正端生长聚合速度快于负端。ATP-actin聚合到微丝纤维上,成为F-actin后,ATP随后水解为ADP,ADP-actin则容易发生脱落、解聚。最终,整个体系会达到一个稳定状态,即平衡期。此时,G-actin加到微丝上的聚合速率与微丝解聚速率相等,微丝的总长度维持相对稳定[18]。

肌动蛋白的解聚并不是简单的聚合的逆过程,这是因为肌动蛋白不能简单地由ADP-actin结合Pi转变成ATP-actin。取而代之的是,游离的ADP-actin在溶液中将结合的ADP迅速交换成ATP,而这个过程可以由肌动蛋白结合蛋白(actin binding proteins,ABPs) profilin加速其进行(Dos Remedios等2003)。很多ABPs对微丝的聚合和解聚过程有着重要的调节作用。此外,由于微丝的聚合需要在高于一定的G-actin浓度(临界浓度)条件下才能发生,因此,细胞中G-actin的浓度对于微丝骨架也有一定作用[19]。

3.2 植物微丝骨架与信号转导

植物微丝骨架与信号转导的研究还不深入,但也有许多实验推断微丝骨架与信号转导有关。1993年Sohesson A和Susanne Widell[20]用生化方法证明了微丝骨架与质膜紧密相连。他们以花椰菜为研究材料,用二相分配法提纯质膜囊泡,用免疫标记鉴定肌动蛋白,研究了膜连细胞骨架。当质膜囊泡内翻外时,肌动蛋白仍与膜紧密相连。用TritonX-100抽提质膜囊泡,产生一些不溶的颗粒沉淀,在不溶物中仍存在肌动蛋白和少量其它蛋白。这些结果说明微丝骨架与质膜共同被提纯,微丝骨架与质膜息息相关。这就暗示着微丝骨架可能参与信号转导过程。

近年来又有研究证明在植物细胞中存在细胞壁(CW)-质膜(PM)-细胞骨架(CTK)的连续体[21]。虽然这一连续体的结构组分与动物细胞有一定差异,但根据进化的保守性,人们认为在植物细胞间及细胞与外界环境的信息交换中它们类似于动物细胞中的ECM-PM-CTK连续体,有着同等的功能,并通过相似的机制起作用。植物细胞可以通过这一连续体成为紧密的线连结构,即细胞质骨架将细胞核、染色体、细胞溶质组分与细胞表面相连接,甚至通过细胞表面和细胞壁网络与相连细胞连接[22]。

动物细胞ECM-PM-CTK连续体中,存在层粘连蛋白(VN)、纤粘连蛋白(FN)。在植物的细胞壁中也发现了与VN、FN及整合素抗体起交叉反应的蛋白。显示植物分子与动物基质粘连分子有同源性的第一证据来自大豆种子一个多肽的研究,它与FN相似,多肽序列中包括Arg-Gly-Asp(RGD)花边序列(motif)。[20]这个短短的氨基酸序列在大部分基质粘连分子中出现,而且被整合素识别。已在西红柿的培养细胞壁中检测到了hVN和hFN免疫相关的蛋白,盐胁迫下类VN、FN蛋白含量更高。许多免疫学和功能研究的证据显示植物与动物系统粘连分子相似。

3.3 微丝骨架与细胞质流动的关系

对高等植物萌发花粉管的研究证明,花粉管中原生质的流动是肌动蛋白和肌球蛋白相互作用的结果,并且是花粉管生长的动力[23]。通过电镜观察、重酶解肌球蛋白的标记及肌动蛋白的分离等多方面的测试,发现绿豆、玉米及花椰菜等植物线粒体中确实存在肌动蛋白的微丝结构,揭示肌动蛋白和肌球蛋白的结合体系可能是线粒体膨胀与收缩运动的分子基础[24]。

4 展望

植物细胞骨架在细胞的生命活动中扮演着十分重要的角色。随着细胞生物学与生物物理、生物化学、遗传学、分子生物学、生物信息学等其他学科的交叉,细胞骨架的动态特性研究及微管功能将日益受到关注。微管蛋白与微管结合蛋白是微管骨架系统结构和功能的必需组分,与微管的组装、去组装动态特性密切相关。随着研究的不断深入,人们对植物微管的结构、组织、行为和相关蛋白的生化特性及蛋白或微管的调控等都将有更深的了解。人们对植物微丝的研究还落后于动物微丝的研究,但是对于植物细胞内的这一重要成分的了解已经越来越深刻。当今分子生物学的发展也为进一步从分子水平上揭示它的结构与功能起了极大的推动作用,因此很多问题最终会得到解决。

21世纪生命科学的研究进展和发展趋势 20世纪后半叶生命科学各领域所取得的巨大进展,特别是分子生物学的突破性成就,使生命科学在自然科学中的位置起了革命性的变化。很多科学家认为,在未来的自然科学中,生命科学将要成为带头学科,甚至预言21世纪是生物学世纪,虽然目前对这些论断还有不同看法,但勿庸置疑,在21世纪生命科学将继续蓬勃发展,生命科学对自然科学所起的巨大推动作用,决不亚于19世纪与20世纪上半叶的物理学。假如过去生命科学曾得益于引入物理学、化学和数学等学科的概念、方法与技术而得到长足的发展,那么,未来生命科学将以特有的方式向自然科学的其他学科进行积极的反馈与回报。当21世纪来临的时候,一些有远见的科学家、思想家与政治家将日益严重的诸多人类社会问题,如人口、地球环境、食物、资源与健康等重大问题的解决,莫不寄希望于生命科学与生物技术的进步。 2· 08·生命科学将成为21世纪自然科学的带头学科 20世纪50年代DNA双螺旋结构模型的发现,随后遗传信息传递“中心法则”的确立与DNA重组技术的建立使生命科学的面貌起了根本性的变化。分子生物学与遗传学的结合将用10一15年测定出人类基因组30亿个碱基对(遗传密码)的全序列,人体细胞约有10万个基因。人类基因组的“工作草图”迄今20%的测序已达99.99%的准确率和完成率,今后将要继续发现与阐明大量新的重要基因,诸如控制记忆与行为的基因,控制细胞衰老与程序性死亡的基因,新的癌基因与抑癌基因,以及与大量疾病有关的基因。将利用这些成果去为人类健康服务。 70年代后,分子生物学的发展,以基因工程为代表的生物工程的出现,生物技术通过对DNA链的精确切割与有目的地重组,使有目的地改良生物的性状与品质成为可能。迄今生物工程所取得的成就已在生产上显示出诱人的前景,尽管还存在有不少争议的问题,但很有可能成为21世纪的新兴产业。 发育生物学将要快速地兴起,它将要回答无数科学家100多年来孜孜以求而未解决的重大课题,一个受精卵通过细胞分裂与分化如何发育成为结构与功能无比复杂的个体,阐明在个体发育中时空上有条不紊的程序控制机理,从而为人类彻底控制动植物生长、发育创造条件。 RNA分子既有遗传信息功能又有酶功能的发现,为数十年踏步不前的难题“生命如何起源”的解决提供了新的契机。在21世纪,人们还要试图在实验室人工合成生命体。人们己有可能利用生物技术将保存在特殊环境中的古生物或冻干的尸体的DNA扩增,揭示其遗传密码,建立已绝灭生物的基因库,研究生物的进化与分类问题。 神经科学的崛起,预示着生命科学又一个高峰的来临。脑是含有1011细胞的无比复杂的高级结构体系,21世纪初从分子到行为水平的各个层次对脑功能的研究都将有重大突破,在阐明学习。记忆。思维。行为与感情机理等方面也将有重大进展。脑机能在理论上的进展将会促进新一代智能计算机的研制,这可能成为未来生命科学对自然科学与技术科学回报的最好例子。 生态学可能是最直接为人类生存环境服务并对国民经济持续与协调发展起重要作用的科学。生态学的理论与实践为中国三峡水库建设提供的决策依据就是一个例证。保护生物的多样性是当前生命科学最紧迫的任务之一。据可靠的数据说明每天约有100多种生物在地球上绝灭,很多生物在没有被人类认识以前就已消亡,这对人类无疑是一种灾难。生态学与生物多样性保护与利用的研究成果将指导人类遵循自然规律积极保护自己生存环境,否则人类的物质文明与精神文明都要受到灾难性影响。 顺应生命科学迅速发展的形势,发达国家政府及一些国际组织先后提出了《国际地圈及生物圈计划》、《人类基因组作图与测序计划》、《人类前沿科学计划》、《脑的十年》及《生物多样性利用与保护研究》等投资巨大的生命科学研究计划。其中仅《人类基因组作图与测序计划》,一项预算就高达30亿美元。 由于生命科学的发展,人才的需求量激增,近年除越来越多的物理学家,化学家与技术科学家被吸引到生物学研究领域外,以美国为例,近年统计48万博士学位获得者中从事生命科学的占51%。优秀青年科学家流向生命科学前沿,这是21世纪生命科学欣欣向荣的动力与源泉。 2. 08. 2 21世纪初生命科学的重大分支学科和发展趋势 80年代有远见的生物学家把分子生物学(包括分子遗传学)、细胞生物学、神经生物学与生态学列为当前生物科学的四大基础学科,无疑是正确地反映了现代生命科学的总趋势。遗传学(主要是分子遗传学)不仅当前是生物科学的带头学科,在今后多年还将保持其在生命科学中的核心作用。 有些科学家早就预测到,由于分子生物学、细胞生物学与遗传学的结合,必然促进发育生物学的蓬勃发展,从而提出发育生物学将成为21世纪生命科学的“新主人”,这种预测已逐渐变为现实。 分子生物学(包括分子遗传学)在生命科学中的主流地位,以及它在推动整个生命科学发展中所起的巨大作用是无可争辩的。细胞是生命活动基本的结构与功能单位,细胞生物学作为生物科学的基础学科地位必须给予重视。 很多生物科学家认为神经科学或脑科学的崛起将代表着生命科学发展的下一个高峰,然后将促进认知科学与行为科学的兴起。 生态学可能是最直接为人类生存环境服务,井对国民经济持续与协调发展起重要作用的学科。 A.分子生物学 分子生物学是在分子水平上研究生命现象本质与规律的学科。核酸与蛋白质(有人认为还有糖)是生命的最基本物质,因此核酸与蛋白质结构与功能的研究今后仍然是分子生物学研究的主要内容。蛋白质是生命活动的主要承担者,几乎一切生命活动都要依靠蛋白质(包括酶)来进行。蛋白质分子结构与功能的研究除了要阐明由氨基酸形成的并有一定顺序的肽链结构外,今后将特别重视肽链拆叠成的特定的三维空间结构,因为蛋白质生物功能与它的空间构型关系极为密切,核酸是遗传信息的携带者与传递者,遗传信息由DNA~RNA一蛋白质的传递过程,称为遗传信息传递的“中心法则”,是分子生物学(分子遗传学)研究的核心。其基本问题己比较清楚,当前研究的重点是: ①约经10一15年,人类基因组30亿个碱基对全序列(遗传密码)可以测出,这是具有里程碑意义的工作; ②真核生物基因表达过程在各层次上调节的研究仍然是今后相当长一段时间的任务。 分子生物学的概念、方法与技术和各学科的渗透,正在形成很多新的学科,诸如分子遗传学、细胞分子生物学、神经分子生物学、分子分类学、分子药理学与分子病理学等等。因此分子生物学在生命科学中的主导作用还将要持续下去。 B.遗传学 遗传学比分子生物学更具有自己独立的学科体系。但现代遗传学与分子生物学是不可分割、相互交叉的两个学科,且很难截然分开。 有些著名的遗传学家把遗传学概括称为基因学,因为现代遗传学主要是研究生物体遗传信息传递与表达的学科。基因携带的信息是由基因的结构所决定,信息的表达是由基因的功能实现的,因此遗传学研究的是基因的结构与功能。从遗传学的角度看,所有生命现象的机制,追根究底都会与基因的结构与功能相关。因此遗传学在今后较长时间仍然是生命科学的核心学科和推动力。 有人估计人体细胞内约有10万个基因,迄今弄清楚的不到5%,所以与重要生命活动有关与疾病有关的新基因的发现与阐明将是今后几十年的重要任务。 C.细胞生物学 著名生物学家威尔逊(Wilson)早在20世纪20年代就提出一句名言“一切生物学关键问题必须在细胞中找寻”,至今还有着很深的内涵。魏斯曼与摩尔根都曾先后试图在细胞研究的基础上建立遗传、发育与进化统一的理论,虽然当时没有找到具体解决的途径,但关于细胞的知识在生物科学中的重要性是显而易见的。细胞是一切生命活动结构与功能的基本单位,细胞生物学是研究细胞生命活动基本规律的科学,细胞的结构。细胞代谢、细胞遗传、细胞的增殖与分化,细胞信息的传递与细胞的通讯等是细胞生物学主要研究内容。虽然今后细胞生物学研究的内容是全方位的,但概括起来可能是两个基本点: 一是基因与基因产物如何控制细胞的重要生命活动,如生长、增殖、分化与衰老等,在此要涉及到一个全新的问题,细胞内外信号如何传递;二是基因产物一一蛋白质分子与其他生物分子如何构建与装配成细胞的结构,并行使细胞的有序的生命活动。 今后20多年,以下一些问题可望取得重要进展与突破: ①遗传信息的储存、复制与表达的主要执行者——染色体的结构与功能可能在不同的结构层次上得到阐明。 ②细胞骨架(包括核骨架与染色体骨架)的研究将得到全方位的进展。 ③细胞生物学与分子生物学、遗传学的结合,将在细胞分化机理研究方面有重要突破,为发育生物学快速发展奠定基础。 ④细胞衰老与细胞程序化死亡的机理将在更深层次上阐明。 ⑤以细胞分子生物学为骨干学科与其他学科结合,人工装配生命体的理想可能逐步 实现。 D.发育生物学 从一个受精卵通过细胞分裂与分化如何发育成为一个结构与功能复杂的个体,是至今未能解决的生命科学的重大课题,也是发育生物学的主课题。由于近几十年分子生物学、遗传学与细胞生物学所取得一一系歹(突破性成果与知识的积累,已为解决这一重大课题创造了条件,这也就是今后发育生物学应运而飞速发展的原因。 发育生物学当今要解决的基本问题是细胞的基因如何按一定的时空关系选择性地表达专一性的蛋白质,从而控制细胞的分化与个体发育。阐明基因在多层次水平上控制胚胎的发育就不仅是涉及到个别基因的问题,而是一系列调节基因在时空上的联系与配合,从而支配发育的程序。虽然这是难度极大的课题,但近年已初见端倪并有所突破。估计今后发育生物学将沿着这条道路深入下去,并可望取得丰硕的成果。 E.神经科学(或脑科学) 神经科学是研究人与动物神经系统(主要是脑)的结构与功能,在分子水平、神经网络水平、整体水平乃至行为水平阐明神经系统特别是脑的活动规律的学科群。脑的结构与功能是无比复杂的高级体系,含有10 11细胞。它是感觉、运动、学习、记忆、感情、行为与思维的活动基础。大脑细胞,口何指导人与动物的行为是未来生物学中最富潜力与最吸引人的领域;神经科学的崛起,预示着生命科学又有一个高峰的来临。神经科学或脑科学必然在下世纪促进认知科学与行为科学的兴起。因此各国政府投入巨资支持这一课题,包括美国总统签署的“命名1990年1月1日为脑的10年”不是没有道理的。 在今后几十年内可以预示到的神经科学突破性的进展可能包括: ①在分子到行为的各层次上阐明学习、记忆与认知等活动的基础; ②很快会发现与阐明一系列与记忆、行为有关的基因与基因产物; ③神经细胞的分化与神经系统的发育研究会有重大进展; ④脑机能在理论上的进展与突破(如模式识别、联想记忆、思维逻辑机理的阐明)会 促进新一代智能计算机与智能机器人的研制; ⑤一系列神经性疾病与精神病的病因可望在神经生物学研究中得到解释。 F.主态学(包括物种多样性保护研究) 生态学是研究有机体与周围环境——包括非生物环境与生物环境相互关系的科学。 由于生态学理论与应用是与世界环境保护。资源合理开发与保护,以至人类本身在地球上继续生存紧密相关的,尤其是地球环境日益恶化的情况下,生态学的重要性就变得十分突出。未来生态学的主要任务是协调人类活动与环境的关系。所以生态学经典学科的概念与研究内容必然要适应人类生存环境的保护与社会经济持续发展的要求而不断改变。 今后生态学研究的重点可能表现在以下方面: ①生态群落的多样性、稳定性与演变规律与人类活动的关系; ②全球气候变化对生态系统结构与功能的影响; ③生物多样性的保护和永续利用也是保护人类自身生存环境尤其是拯救濒临绝灭的 生物种类更加具有紧迫性; ④城市生态学与经济生态学将迅速发展; ⑤生态工程与生态技术将在国民经济建设中发挥作用。 G.空间生命科学 空间环境向生命科学提出了新的挑战,也为生命科学的发展提供了机遇。 21世纪人类的空间活动将要离开地球附近,探索月球及其他太阳系的大体。这就要求人在地球外各种环境中能长期地生活和工作,首先是在,长期空间飞行器中航行,月球站以及火星或火卫站等,空间医学必须有重大突破,解决长期在地外空间所遇到的宇航员骨质疏松,肌肉萎缩和兔疫功能变化等生理学难题,同时,与开拓大疆相关联的是受控生态系统,创造一个不需要外界补给,而使人们能在其中长期生活的环境。这些问题有希望在21世纪20一30年代解决,其中空间生理学问题有可能利用中医和中药的方法取得某些重大突破。 地球外层空间为研究重力生物学提供了理想的条件,重力条件对各种层次结构生物的影响仍然是21世纪重力生物学的主题,今后的研究重点将集中于细胞,绿色植物,一些微生物和小动物。特别是重力环境对哺乳动物细胞形态、结构、变异和基因表达的影响将是一个热点。重力生物学的学术意义在于揭示重力效应在生物进化过程中的作用,是自然科学的基本问题;另一方面,重力生物学的成果将是空间制药及空间生态系统等应用领域的基础,重力生物学的学术和应用都是下个世纪的重要课题,可望在21世纪20-30年代取得突破性的进展。 地外生物探索是生命起源的重大课题,其中地球以外的智能生物探索是一个长期的 课题。地球上的人类正在向外层空间发射电波和接收讯号。外星人与地球人之间可能存在的学术和技术差距不仅是一种危险,也是自然科学的重大前沿问题,将被持续地研究下去。 2. 08. 5 21世纪初生命科学最有可能突破的领域 ①人类基因组的全序列(遗传密码)将在10一15年测定完毕,为全部遗传信息的破译奠定基础。 ②与生命活动有关的重要基因与重要疾病有关的基因将被陆续发现,其中特别引人注目的是控制记忆与行为的基因、控制衰老与细胞程序性死亡的基因、控制细胞增殖的系列基因、胚胎发育多层次网络调节基因。新的癌基因与抑癌基因的发现与其生物学功能的释明将大大提高对生命本质的了解。 ③人与动物的高级生命活动:感知、思维、记忆、行为与感情的发生与活动机制在脑科学研究突破的基础上,有更深的认识。 ④癌症的治疗将有全面的突破,爱滋病的防治得到控制。 ⑤在阐明地球上原始生命起源的基础上,人类还可能在实验室合成生命体,这种生命体应具有原始细胞的基本特征。

1.MEF 2 对肌生成的作用及运动对其影响的分子机制 [J]. 中国运动医学杂志 ,28(5):585-590 ;2.世博会与体育发展 [J]. 体育文化导刊 ,2009,8:87-91 ;3.运动与骨代谢动物实验研究进展 [J]. 体育学刊 ,2009,16(6):107-112 ;4.优秀皮划艇运动员小周期训练期间血尿素氮的变化特征分析 [J]. 浙江体育科学 ,2009,31(1):126-128 ;5.运动与脂联素 [J]. 贵州体育科技 ,2009.1:56-59 ;6.运动中自由基的检测和适应性反应 [J]. 河北体育学院学报 ,2009,23(3):72-75 ;7.运动对绝经后女性骨代谢的影响 [J]. 辽宁体育科技 ,2009,31(1):23-25 ;8.废用性肌萎缩的治疗方法综述 [J]. 辽宁体育科技 ,2009,31(2):46-47 ;9. 不同运动方式对生长期大鼠骨密度和组织形态计量学指标的影响 [J]. 体育科学, 2008 , 28 ( 1 ) 54 - 58 ;10.纵跳对生长期大鼠骨密度、骨代谢生化指标的影响 [J]. 体育科学, 2008 , 28 ( 8 ) 45 - 49 ;11.社会经济及自然环境因素对大学生体格发育影响的性别差异 [J]. 中国学校卫生, 2008 , 29 ( 3 ) 249 - 251 ;12.田径运动员髌骨损伤机理及康复方法研究 [J]. 辽宁体育科技, 2008 , 30 ( 2 ) 31 - 32 ;13.mTOR 信号转导通路及运动对其影响的分子机制综述 [J]. 体育学刊。 2008 , 15 ( 6 ) :108-112 ;14 .不同运动负荷对心肌形态结构影响研究进展 [J]. 辽宁体育科技, 2008 , 30 ( 4 ) 20 - 22 ;15 .骨形成因子及其信号转导通路述评 [J]. 中国骨质疏松杂志, 2008 , 14 ( 9 ): 680 - 684 ;16 .运动诱导海马内 IGF-1 的变化与学习记忆能力的关系 [J]. 中国康复理论与实践, 2008 , 14 ( 10 ) 912 - 915 ;17.人体运动的形态学研究发展趋势综述 [J]. 沈阳体育学院学报, 2007 ,( 5 ) 51 - 53 ;18.大学生肥胖的现状与体质健康的相关性研究 [J]. 现代预防医学, 2007,34(23)4527-4530 ;19 .低氧和长时间游泳运动对小鼠骨骼肌低氧诱导因子 1 α和糖代谢酶活性的影响 [J]. 中国临床康复, 2006 , 10 ( 28 ) 82 - 8420.中国大学生 BMI 、血压、肥胖及与家人均收入的相关性分析 [J]. 现代预防医学, 2006 , 33 ( 8 );21.谷氨酰胺对机体免疫系统和运动能力的影响 [J]. 中国临床康复, 2006 , 10 ( 16 ) 150 - 151 ;22.细胞骨架及运动性骨骼肌微损伤研究进展 [J]. 体育学刊, 2006 , 13 ( 5 ) 48 - 52 ;23.我国大学生的体格与家庭社会经济因素及自然环境因素的相关性研究 [J]. 体育科学, 2006 , 26 ( 1 ) 37 - 42 ;24.运动对单羧酸转运蛋白的影响 [J]. 中国临床康复, 2006 , 10 ( 44 ) 155 - 157 ;25.可溶性转铁蛋白受体在运动医学中的应用 [J]. 中国临床康复, 2006 , 10 ( 44 ) 158 - 160 ;26.肌肉痉挛发生机制的探讨 [J]. 辽宁体育科技 , 2006 ,(4 ) ;27.日本人的吸烟现状与控烟对策 [J]. 现代预防医学, 2006 , 33 ( 6 );28.运动对葡萄糖转运载体蛋白 4 基因表达的调控 [J]. 中国临床康复, 2005 ,( 16 ) 191 - 192 ;29.中国大学生出生地域与体格及血压的相关性分析 [J]. 中国临床康复, 2005 , 9 ( 20 ) 180 - 182;

在这里你自己看看吧!!!!

细胞骨架及其研究进展论文范文

过去的生物学,对生命的认识仅仅是从个体水平上对生物进行形态描述和分析,以后随着科学技术的发展,才开始以实验为基础逐渐深入到生命本质的研究。今天,人类已经能够深入到细胞内部,对它的极其细微的结构和化学物质进行研究,取得了许多突破性的成就。1953年,对遗传物质DNA分子双螺旋结构的发现,是生物科学发展史上的一个里程碑,开创了现代生物学的全新时代,奠定了分子水平上研究生命现象的基础。分子生物学的诞生,有助于阐明生命活动的规律,揭示生命现象的本质。分子生物学的发展不可避免地影响到生命科学各个学科领域,改变了整个生物学的面貌;同时对医学和农业科学及其应用产生了巨大影响。在新的分支科学中,细胞生物学和神经生物学(或脑科学)的研究发展非常迅速。由此,它们和分子生物学(包括分子遗传学)一起成为了当代生命科学研究的三大热点。 分子生物学是在分子水平上研究生命活动及其规律的科学。它的主要研究内容是蛋白质、核酸和糖类等生物大分子的结构、功能及其相互组织和互相作用。目前发现,DNA分子结构具有多态性,是一种可塑的分子。它的功能不仅具有自我复制和指导蛋白质合成的作用,还有酶的活性,起某种催化作用。现在科学家的目光已由DNA转向RNA的研究。由于RNA结构的复杂性及其种类的多样性,决定了RNA具有多种生物学功能。它不仅在蛋白质合成上起重要作用,而且具有催化、调控基因表达、抑止转译、DNA和RNA剪接等重要功能。关于蛋白质的研究一直被科学家们所重视。目前人们除了要阐明肽链的一级结构以外,特别重视肽链如何折叠成为有功能作用的三维结构的蛋白质研究。除此以外,还发现蛋白质分子在一定程度上是处于运动之中,它们的功能与分子空间构型的运动性密切相关。关于蛋白质合成的研究,目前研究的热点己转到蛋白质合成后的分拣、运输到特定地点,以及蛋白质的修饰加工和降解。近年来,糖类的研究有许多新的研究成果,它们在细胞间不仅起黏附作用,而且能传递信息,是一类重要的信息分子。过去的分子生物学是在核酸和蛋白质水平上阐明生命现象,现在看来,显然是不够的。因为多细胞生物是由许多细胞集团组成的,它们以不同方式通过糖链分子相互黏附,彼此之间均有相互识别、相互作用和相互制约的关系,传递着各种不同的“生物信息”。因而不能忽视糖类物质的作用。由以上看出,进入21世纪,分子生物学对生物大分子结构与功能的前沿研究,已从单个大分子结构的研究转向生物大分子体系的研究;从晶体结构的研究转向溶液中天然构象及其动态变化的研究。由于分子生物学已深入到生命活动本质的探索,蛋白质、核酸及糖类等生物大分子的知识越来越多地在新闻媒体上广泛传播,几乎家喻户晓。在这种形势下,新课程标准和实验教材的教学内容应适当缩减有关形态学的知识,加强分子生物学的内容。原初中生物教学大纲和教材不敢涉及DNA等生物大分子的知识,现在看来应有所体现。因此,在新课程标准中加强了这方面的内容。 遗传学是专门研究基因的科学,其发展主流是认识基因,即从认识基因的存在、阐明基因的本质和研究基因的作用到分离基因、操作基因和改变基因,一直是20世纪生物科学研究的焦点之一,而且始终位于科学发展的前沿。通过对基因的研究发现,基因对生命的影响不是单一的,有必要扩展到基因组进行研究。因此,从20世纪90年代开始,研究基因组已成为国际生物学界最热门的研究对象。“基因组学”(genomics)在不到10年时间里,已从一门以测定基因组全序列为目标的方法学成为包括结构基因组学和功能基因组学的完整学科,开展这方面的研究是人所共知的“人类基因组计划”(GHP)。这项被誉为生物科学的“阿波罗计划”,自1990年启动以来,已基本完成了“人类基因组工作草图”的绘制工作。当然,这只是标志着人类认识自身新纪元的开始,完成人类基因组测序以后,还要认清上面的基因及其作用,因而又诞生了“后基因组计划”。这标志着遗传学已进入一个以序列信息为基础的新时期,改变了过去经典遗传学的从表型到基因型的研究方法,建立了反向遗传学,开拓了一个以序列为基础的生物学的新世纪。在研究基因作用过程中必然引伸到两个重大问题:一是基因表达的调控,这也是当今分子生物学研究的热点之一;另一是有关蛋白质的作用。目前发现,虽然对功能基因组研究有重大意义,但是由于蛋白质有其自身特有的活动规律,仅仅从基因的角度来认识生命活动是不够的。于是在1994年提出了蛋白质组(proteome)的概念,并诞生了从整体水平上研究细胞内蛋白质的组成及其活动规律的新兴学科——蛋白质组学(proteomics)。根据以上研究的进展,“基因”已成为人们所共知的名词术语,在课程内容标准和教材上不仅应提出基因的名词,而且要强调基因组的整体作用,介绍“人类基因组计划”的伟大意义。另外,在强调基因作用的同时,注意不要出现“基因决定一切论”的错误观点。 自20世纪80年代以来,由于分子生物学和分子遗传学研究的进展以及基因工程、反向遗传学方法的应用,在细胞学上取得了许多重大研究成果。在细胞结构上,由于生物膜系统的发现使细胞膜、细胞质和细胞核在形态上和功能上联成一个完整的统一体。细胞膜的作用不仅保持细胞和细胞器的完整性、相对独立性和稳定性;许多极为重要的生命活动,如能量转化和流动、物质的交换以及细胞内外、细胞间的信息传递都离不开膜的作用。因此,对细胞膜系统的研究是细胞生物学研究的热点之一。此外,近年来对细胞骨架(cytoske1eton)的发现是超微结构研究的一大进步,它对细胞器的空间分布、功能活动和细胞运动有着密切关系。关于细胞核骨架的研究,说明它与DNA复制、基因表达调控、RNA剪接、修饰和运输等都有重要作用。关于细胞功能的研究,虽然细胞中各种结构都有各自相对专一的功能,但它们是相互联系的,彼此协调一致,完成一个细胞的整体功能。综合地讲,在一个细胞里的生命活动主要体现3个方面:①物质的转化,即旧物质的分解,新物质的合成;②能量的转换和流动,包括从光能转换为化学能和能量的释放与利用;③信息的传递,其中有遗传信息的传递,即从DNA→RNA→蛋白质(基因的表达),也可以从DNA→DNA(基因的复制);生长发育的传递,即从细胞外(第一信号)→细胞膜(受体)→细胞质(第二信号)→某一生化反应或→细胞核(相应的基因被调节)。这个信号系统包括细胞内外的通讯联系、细胞间通讯、细胞的化学信号转导和以受体为介导的信号传递。另外,神经传导也是一个信息传递过程,从接受信息(感官)→传递信息(神经)→贮存信息(脑)→利用信息(产生反应)。细胞的生命活动就是物质转化、能量流动和信息传递的统一体。关于细胞内调控系统的研究。目前研究较多的有:细胞周期和细胞生长发育的调控。生命活动最基本的问题是发育生物学。它已成为现代生物学研究的热点和焦点。这里涉及细胞的分化、形态的建成和细胞的调亡等重大问题。由于细胞调亡与癌变等问题,以及人类的健康和寿命非常密切,从而引起科学家们的关注。由于细胞是生物体结构与功能的基本单位,有关细胞生物学的知识非常重要。因此,在新课程内容标准及教材中,有必要加强细胞生物学的内容。例如,在细胞结构上为了说明能量的转换与流动,不仅要讲解叶绿体的基本知识,而且增加了有关线粒体的内容;在细胞分裂中增加了染色体变化的内容;在细胞功能方面,体现细胞是物质转化、能量转换和信息传递的统一体。 脑科学(思维科学或神经生物学)是生命科学研究的又一前沿领域。探索和揭示脑的奥秘具有高度复杂性,蕴含着深奥的哲理,以及对人类有特殊重要的意义,所以已成为当代自然科学面临的最大挑战之一。近10年来,脑科学的研究得到了飞速的发展,因而被誉为“脑的10年”。有关脑科学的研究进展,将在高中生物学课程标准和教材中适当介绍;在初中生物课程标准和教材中涉及不多。不过,在标准中设置了“动物的运动与行为”主题,为今后学习脑科学奠定基础。

细胞骨架 细胞骨架是指真核细胞中的蛋白纤维网架体系。广义的细胞骨架包括细胞核骨架(核内骨架及分裂期染色体骨架和核纤层)、细胞质骨架(微丝、微管、中间纤维和微梁)、细胞膜骨架、细胞外基质。狭义的细胞骨架仅指细胞质骨架。细胞骨架(cytoskeleton)真核细胞中主要分布于细胞质的一种纤维状结构系统,包括三种不同类型的纤维,即:微管、微丝和中间纤维。这些不同的纤维是由不同的蛋白质亚单位(骨架蛋白)以特定的方式聚合形成的。细胞骨架在细胞内形成支持网络系统,以维持细胞形态。各种细胞运动如肌肉收缩、鞭毛摆动、纤毛煽动、有丝分裂期的染色体移动及各种细胞运动均依赖于细胞骨架。细胞骨架的一个最大特征是它的动力学可变性。这种动力学变化是适应于细胞内部的结构与功能而发生的,如有丝分裂期由微管组成的纺锤丝的延长与缩短。体外培养的成纤维细胞移动时,由细胞核至前进方向的微管不断延伸,相反方向的则不断缩短。延伸的细胞伪足的皮质部含有丰富的微丝,这些微丝或缩短甚至消失或重新恢复又延长。这些变化是在短时间内进行的,这种动力学变化的基础在于骨架蛋白不断聚合使纤维延长,或不断解聚使纤维缩短,甚至消失。因此,细胞骨架在细胞内处于不断的重组状态。细胞骨架的另一重要特征是从细胞核到细胞膜包括某些细胞器与之发生联系,这种联系由于细胞骨架本身具有的动力学变化而呈可逆的,由于这种联系而形成的以细胞骨架系统为主体纤维网络,在其周围附着和包埋着各种其他细胞结构和一些生物大分子的细胞质基质,由于细胞骨架的动力学变化而赋予细胞质基质也呈动力学变化特征。这种基质可决定细胞器及一些生物大分子的定位及运动,因而对细胞器及一些生物大分子的移动、运输、分泌等许多重要细胞学功能甚至整个细胞的代谢活动的调节都有密切关系。细胞骨架的概念既老又新,早在1879年,弗莱明(W.Flemming)首先观察和描述了有丝分裂过程,并指出细胞质由纤维网络及网络中的非纤维物质组成。但长期以来,由于方法学的限制,未能真正观察到细胞骨架的形态和结构,更不知骨架纤维的组成成分。60年代由于电镜技术的改进,开始在电镜切片中看到骨架纤维。60年代末以来,相继分离提纯了各种骨架蛋白,并制备出相应的抗体。1974年,拉扎里季斯(E.Lazarides)和韦伯(K.Weber)首先应用间接免疫荧光技术研究了细胞骨架。间接免疫荧光技术的应用把细胞骨架的研究推进到一个新阶段,使细胞骨架在整个细胞中的分布才有可能观察到。此后10余年的研究对细胞骨架的结构与功能积累了大量资料,70年代中期以来细胞骨架研究的突破性进展,建立了细胞骨架的新概念,细胞骨架作为一种重要的细胞器得到了承认,细胞骨架的研究已成为细胞生物学中最大的分支学科之一。但无论是电镜技术或免疫荧光方法均是对固定后的细胞进行研究的。由于细胞骨架具有动力学变化的特征,对其在活细胞中的结构和功能的研究受到一定的限制。最近新发展的影像增强技术使在活细胞内对细胞骨架的观察有了可能,特别是这种方法结合荧光猝灭技术,对在分子水平上弄清细胞骨架的结构与功能将是个有力的推动。 编辑词条

蛋白的化学组成及功能研究论文

蛋白质是保证机体健康最重要的营养素,它是维持和修复机体以及细胞生长所必需的,它不仅影响机体组织如肌肉的生长,还参与激素的产生、免疫功能的维持、其它营养物质和氧的转运以及血红蛋白的生成、血液凝结等多方面。蛋白质的蛋白质食物来源可分为植物性蛋白质和动物性蛋白质两大类。虽然动物蛋白质和植物蛋白质的营养价值都是人体所必需的,但随着现代生活水平的提高,人们日常摄入动物蛋白质含量越来越多,植物蛋白质的摄入量却越来越少。营养学研究发现,食用过多的动物蛋白质有害于肾脏健康。植物蛋白质中,豆类、谷物含有丰富的蛋白质,特别是大豆含蛋白质高达36%~40%,氨基酸组成也比较合理,在体内的利用率较高,是植物蛋白质中非常好的蛋白质来源。麦弗逊植物蛋白粉天然的植物原料,优质可靠。

蛋白质的基本单位就是氨基酸,由此可知氨基酸中的大多数官能团蛋白质也有。所以,蛋白质所含有的化学组成不外乎以下几种官能团:肽键,甲基,亚甲基,次甲基,羧基,氨基,苯基(苯丙氨酸特有),甲硫基(蛋氨酸特有),吲哚基(色氨酸特有),酰胺基(天冬酰胺特有,也可以看做一个氨基酸内的肽键),咪唑基(第二十一种儿童必需氨基酸,精氨酸特有),苯酚基(酪氨酸特有),亚吡咯烷基(脯氨酸特有),就这么多了。蛋白质所含的元素只有五种:碳氢氧氮硫。

组成蛋白质的主要化学成分是氨基酸。所以蛋白质一定包含的元素是c(碳)、h(氢)、o(氧)、n(氮),有些蛋白质可能还会含有p、s、fe(铁)、zn(锌)、cu(铜)、b(硼peng)、mn(锰)、i(碘)、mo(钼)等元素。

21世纪生命科学的研究进展和发展趋势 20世纪后半叶生命科学各领域所取得的巨大进展,特别是分子生物学的突破性成就,使生命科学在自然科学中的位置起了革命性的变化。很多科学家认为,在未来的自然科学中,生命科学将要成为带头学科,甚至预言21世纪是生物学世纪,虽然目前对这些论断还有不同看法,但勿庸置疑,在21世纪生命科学将继续蓬勃发展,生命科学对自然科学所起的巨大推动作用,决不亚于19世纪与20世纪上半叶的物理学。假如过去生命科学曾得益于引入物理学、化学和数学等学科的概念、方法与技术而得到长足的发展,那么,未来生命科学将以特有的方式向自然科学的其他学科进行积极的反馈与回报。当21世纪来临的时候,一些有远见的科学家、思想家与政治家将日益严重的诸多人类社会问题,如人口、地球环境、食物、资源与健康等重大问题的解决,莫不寄希望于生命科学与生物技术的进步。 2· 08·生命科学将成为21世纪自然科学的带头学科 20世纪50年代DNA双螺旋结构模型的发现,随后遗传信息传递“中心法则”的确立与DNA重组技术的建立使生命科学的面貌起了根本性的变化。分子生物学与遗传学的结合将用10一15年测定出人类基因组30亿个碱基对(遗传密码)的全序列,人体细胞约有10万个基因。人类基因组的“工作草图”迄今20%的测序已达99.99%的准确率和完成率,今后将要继续发现与阐明大量新的重要基因,诸如控制记忆与行为的基因,控制细胞衰老与程序性死亡的基因,新的癌基因与抑癌基因,以及与大量疾病有关的基因。将利用这些成果去为人类健康服务。 70年代后,分子生物学的发展,以基因工程为代表的生物工程的出现,生物技术通过对DNA链的精确切割与有目的地重组,使有目的地改良生物的性状与品质成为可能。迄今生物工程所取得的成就已在生产上显示出诱人的前景,尽管还存在有不少争议的问题,但很有可能成为21世纪的新兴产业。 发育生物学将要快速地兴起,它将要回答无数科学家100多年来孜孜以求而未解决的重大课题,一个受精卵通过细胞分裂与分化如何发育成为结构与功能无比复杂的个体,阐明在个体发育中时空上有条不紊的程序控制机理,从而为人类彻底控制动植物生长、发育创造条件。 RNA分子既有遗传信息功能又有酶功能的发现,为数十年踏步不前的难题“生命如何起源”的解决提供了新的契机。在21世纪,人们还要试图在实验室人工合成生命体。人们己有可能利用生物技术将保存在特殊环境中的古生物或冻干的尸体的DNA扩增,揭示其遗传密码,建立已绝灭生物的基因库,研究生物的进化与分类问题。 神经科学的崛起,预示着生命科学又一个高峰的来临。脑是含有1011细胞的无比复杂的高级结构体系,21世纪初从分子到行为水平的各个层次对脑功能的研究都将有重大突破,在阐明学习。记忆。思维。行为与感情机理等方面也将有重大进展。脑机能在理论上的进展将会促进新一代智能计算机的研制,这可能成为未来生命科学对自然科学与技术科学回报的最好例子。 生态学可能是最直接为人类生存环境服务并对国民经济持续与协调发展起重要作用的科学。生态学的理论与实践为中国三峡水库建设提供的决策依据就是一个例证。保护生物的多样性是当前生命科学最紧迫的任务之一。据可靠的数据说明每天约有100多种生物在地球上绝灭,很多生物在没有被人类认识以前就已消亡,这对人类无疑是一种灾难。生态学与生物多样性保护与利用的研究成果将指导人类遵循自然规律积极保护自己生存环境,否则人类的物质文明与精神文明都要受到灾难性影响。 顺应生命科学迅速发展的形势,发达国家政府及一些国际组织先后提出了《国际地圈及生物圈计划》、《人类基因组作图与测序计划》、《人类前沿科学计划》、《脑的十年》及《生物多样性利用与保护研究》等投资巨大的生命科学研究计划。其中仅《人类基因组作图与测序计划》,一项预算就高达30亿美元。 由于生命科学的发展,人才的需求量激增,近年除越来越多的物理学家,化学家与技术科学家被吸引到生物学研究领域外,以美国为例,近年统计48万博士学位获得者中从事生命科学的占51%。优秀青年科学家流向生命科学前沿,这是21世纪生命科学欣欣向荣的动力与源泉。 2. 08. 2 21世纪初生命科学的重大分支学科和发展趋势 80年代有远见的生物学家把分子生物学(包括分子遗传学)、细胞生物学、神经生物学与生态学列为当前生物科学的四大基础学科,无疑是正确地反映了现代生命科学的总趋势。遗传学(主要是分子遗传学)不仅当前是生物科学的带头学科,在今后多年还将保持其在生命科学中的核心作用。 有些科学家早就预测到,由于分子生物学、细胞生物学与遗传学的结合,必然促进发育生物学的蓬勃发展,从而提出发育生物学将成为21世纪生命科学的“新主人”,这种预测已逐渐变为现实。 分子生物学(包括分子遗传学)在生命科学中的主流地位,以及它在推动整个生命科学发展中所起的巨大作用是无可争辩的。细胞是生命活动基本的结构与功能单位,细胞生物学作为生物科学的基础学科地位必须给予重视。 很多生物科学家认为神经科学或脑科学的崛起将代表着生命科学发展的下一个高峰,然后将促进认知科学与行为科学的兴起。 生态学可能是最直接为人类生存环境服务,井对国民经济持续与协调发展起重要作用的学科。 A.分子生物学 分子生物学是在分子水平上研究生命现象本质与规律的学科。核酸与蛋白质(有人认为还有糖)是生命的最基本物质,因此核酸与蛋白质结构与功能的研究今后仍然是分子生物学研究的主要内容。蛋白质是生命活动的主要承担者,几乎一切生命活动都要依靠蛋白质(包括酶)来进行。蛋白质分子结构与功能的研究除了要阐明由氨基酸形成的并有一定顺序的肽链结构外,今后将特别重视肽链拆叠成的特定的三维空间结构,因为蛋白质生物功能与它的空间构型关系极为密切,核酸是遗传信息的携带者与传递者,遗传信息由DNA~RNA一蛋白质的传递过程,称为遗传信息传递的“中心法则”,是分子生物学(分子遗传学)研究的核心。其基本问题己比较清楚,当前研究的重点是: ①约经10一15年,人类基因组30亿个碱基对全序列(遗传密码)可以测出,这是具有里程碑意义的工作; ②真核生物基因表达过程在各层次上调节的研究仍然是今后相当长一段时间的任务。 分子生物学的概念、方法与技术和各学科的渗透,正在形成很多新的学科,诸如分子遗传学、细胞分子生物学、神经分子生物学、分子分类学、分子药理学与分子病理学等等。因此分子生物学在生命科学中的主导作用还将要持续下去。 B.遗传学 遗传学比分子生物学更具有自己独立的学科体系。但现代遗传学与分子生物学是不可分割、相互交叉的两个学科,且很难截然分开。 有些著名的遗传学家把遗传学概括称为基因学,因为现代遗传学主要是研究生物体遗传信息传递与表达的学科。基因携带的信息是由基因的结构所决定,信息的表达是由基因的功能实现的,因此遗传学研究的是基因的结构与功能。从遗传学的角度看,所有生命现象的机制,追根究底都会与基因的结构与功能相关。因此遗传学在今后较长时间仍然是生命科学的核心学科和推动力。 有人估计人体细胞内约有10万个基因,迄今弄清楚的不到5%,所以与重要生命活动有关与疾病有关的新基因的发现与阐明将是今后几十年的重要任务。 C.细胞生物学 著名生物学家威尔逊(Wilson)早在20世纪20年代就提出一句名言“一切生物学关键问题必须在细胞中找寻”,至今还有着很深的内涵。魏斯曼与摩尔根都曾先后试图在细胞研究的基础上建立遗传、发育与进化统一的理论,虽然当时没有找到具体解决的途径,但关于细胞的知识在生物科学中的重要性是显而易见的。细胞是一切生命活动结构与功能的基本单位,细胞生物学是研究细胞生命活动基本规律的科学,细胞的结构。细胞代谢、细胞遗传、细胞的增殖与分化,细胞信息的传递与细胞的通讯等是细胞生物学主要研究内容。虽然今后细胞生物学研究的内容是全方位的,但概括起来可能是两个基本点: 一是基因与基因产物如何控制细胞的重要生命活动,如生长、增殖、分化与衰老等,在此要涉及到一个全新的问题,细胞内外信号如何传递;二是基因产物一一蛋白质分子与其他生物分子如何构建与装配成细胞的结构,并行使细胞的有序的生命活动。 今后20多年,以下一些问题可望取得重要进展与突破: ①遗传信息的储存、复制与表达的主要执行者——染色体的结构与功能可能在不同的结构层次上得到阐明。 ②细胞骨架(包括核骨架与染色体骨架)的研究将得到全方位的进展。 ③细胞生物学与分子生物学、遗传学的结合,将在细胞分化机理研究方面有重要突破,为发育生物学快速发展奠定基础。 ④细胞衰老与细胞程序化死亡的机理将在更深层次上阐明。 ⑤以细胞分子生物学为骨干学科与其他学科结合,人工装配生命体的理想可能逐步 实现。 D.发育生物学 从一个受精卵通过细胞分裂与分化如何发育成为一个结构与功能复杂的个体,是至今未能解决的生命科学的重大课题,也是发育生物学的主课题。由于近几十年分子生物学、遗传学与细胞生物学所取得一一系歹(突破性成果与知识的积累,已为解决这一重大课题创造了条件,这也就是今后发育生物学应运而飞速发展的原因。 发育生物学当今要解决的基本问题是细胞的基因如何按一定的时空关系选择性地表达专一性的蛋白质,从而控制细胞的分化与个体发育。阐明基因在多层次水平上控制胚胎的发育就不仅是涉及到个别基因的问题,而是一系列调节基因在时空上的联系与配合,从而支配发育的程序。虽然这是难度极大的课题,但近年已初见端倪并有所突破。估计今后发育生物学将沿着这条道路深入下去,并可望取得丰硕的成果。 E.神经科学(或脑科学) 神经科学是研究人与动物神经系统(主要是脑)的结构与功能,在分子水平、神经网络水平、整体水平乃至行为水平阐明神经系统特别是脑的活动规律的学科群。脑的结构与功能是无比复杂的高级体系,含有10 11细胞。它是感觉、运动、学习、记忆、感情、行为与思维的活动基础。大脑细胞,口何指导人与动物的行为是未来生物学中最富潜力与最吸引人的领域;神经科学的崛起,预示着生命科学又有一个高峰的来临。神经科学或脑科学必然在下世纪促进认知科学与行为科学的兴起。因此各国政府投入巨资支持这一课题,包括美国总统签署的“命名1990年1月1日为脑的10年”不是没有道理的。 在今后几十年内可以预示到的神经科学突破性的进展可能包括: ①在分子到行为的各层次上阐明学习、记忆与认知等活动的基础; ②很快会发现与阐明一系列与记忆、行为有关的基因与基因产物; ③神经细胞的分化与神经系统的发育研究会有重大进展; ④脑机能在理论上的进展与突破(如模式识别、联想记忆、思维逻辑机理的阐明)会 促进新一代智能计算机与智能机器人的研制; ⑤一系列神经性疾病与精神病的病因可望在神经生物学研究中得到解释。 F.主态学(包括物种多样性保护研究) 生态学是研究有机体与周围环境——包括非生物环境与生物环境相互关系的科学。 由于生态学理论与应用是与世界环境保护。资源合理开发与保护,以至人类本身在地球上继续生存紧密相关的,尤其是地球环境日益恶化的情况下,生态学的重要性就变得十分突出。未来生态学的主要任务是协调人类活动与环境的关系。所以生态学经典学科的概念与研究内容必然要适应人类生存环境的保护与社会经济持续发展的要求而不断改变。 今后生态学研究的重点可能表现在以下方面: ①生态群落的多样性、稳定性与演变规律与人类活动的关系; ②全球气候变化对生态系统结构与功能的影响; ③生物多样性的保护和永续利用也是保护人类自身生存环境尤其是拯救濒临绝灭的 生物种类更加具有紧迫性; ④城市生态学与经济生态学将迅速发展; ⑤生态工程与生态技术将在国民经济建设中发挥作用。 G.空间生命科学 空间环境向生命科学提出了新的挑战,也为生命科学的发展提供了机遇。 21世纪人类的空间活动将要离开地球附近,探索月球及其他太阳系的大体。这就要求人在地球外各种环境中能长期地生活和工作,首先是在,长期空间飞行器中航行,月球站以及火星或火卫站等,空间医学必须有重大突破,解决长期在地外空间所遇到的宇航员骨质疏松,肌肉萎缩和兔疫功能变化等生理学难题,同时,与开拓大疆相关联的是受控生态系统,创造一个不需要外界补给,而使人们能在其中长期生活的环境。这些问题有希望在21世纪20一30年代解决,其中空间生理学问题有可能利用中医和中药的方法取得某些重大突破。 地球外层空间为研究重力生物学提供了理想的条件,重力条件对各种层次结构生物的影响仍然是21世纪重力生物学的主题,今后的研究重点将集中于细胞,绿色植物,一些微生物和小动物。特别是重力环境对哺乳动物细胞形态、结构、变异和基因表达的影响将是一个热点。重力生物学的学术意义在于揭示重力效应在生物进化过程中的作用,是自然科学的基本问题;另一方面,重力生物学的成果将是空间制药及空间生态系统等应用领域的基础,重力生物学的学术和应用都是下个世纪的重要课题,可望在21世纪20-30年代取得突破性的进展。 地外生物探索是生命起源的重大课题,其中地球以外的智能生物探索是一个长期的 课题。地球上的人类正在向外层空间发射电波和接收讯号。外星人与地球人之间可能存在的学术和技术差距不仅是一种危险,也是自然科学的重大前沿问题,将被持续地研究下去。 2. 08. 5 21世纪初生命科学最有可能突破的领域 ①人类基因组的全序列(遗传密码)将在10一15年测定完毕,为全部遗传信息的破译奠定基础。 ②与生命活动有关的重要基因与重要疾病有关的基因将被陆续发现,其中特别引人注目的是控制记忆与行为的基因、控制衰老与细胞程序性死亡的基因、控制细胞增殖的系列基因、胚胎发育多层次网络调节基因。新的癌基因与抑癌基因的发现与其生物学功能的释明将大大提高对生命本质的了解。 ③人与动物的高级生命活动:感知、思维、记忆、行为与感情的发生与活动机制在脑科学研究突破的基础上,有更深的认识。 ④癌症的治疗将有全面的突破,爱滋病的防治得到控制。 ⑤在阐明地球上原始生命起源的基础上,人类还可能在实验室合成生命体,这种生命体应具有原始细胞的基本特征。 回答者: monkeynobd - 高级经理 六级 5-22 18:16给楼主论文: 分子细胞基因组的研究 随着结构分析技术的发展,现在已有几千个蛋白质的化学结构和几百个蛋白质的立体结构得到了阐明。70年代末以来,采用测定互补DNA顺序反推蛋白质化学结构的方法,不仅提高了分析效率,而且使一些氨基酸序列分析条件不易得到满足的蛋白质化学结构分析得以实现。 发现和鉴定具有新功能的蛋白质,仍是蛋白质研究的内容。例如与基因调控和高级神经活动有关的蛋白质的研究现在很受重视。 蛋白质-核酸体系 生物体的遗传特征主要由核酸决定。绝大多数生物的基因都由 DNA构成。简单的病毒,如λ噬菌体的基因组是由 46000个核苷酸按一定顺序组成的一条双股DNA(由于是双股DNA,通常以碱基对计算其长度)。细菌,如大肠杆菌的基因组,含4×106碱基对。人体细胞染色体上所含DNA为3×109碱基对。 遗传信息要在子代的生命活动中表现出来,需要通过复制、转录和转译。复制是以亲代 DNA为模板合成子代 DNA分子。转录是根据DNA的核苷酸序列决定一类RNA分子中的核苷酸序列;后者又进一步决定蛋白质分子中氨基酸的序列,就是转译。因为这一类RNA起着信息传递作用,故称信使核糖核酸(mRNA)。由于构成RNA的核苷酸是4种,而蛋白质中却有20种氨基酸,它们的对应关系是由mRNA分子中以一定顺序相连的 3个核苷酸来决定一种氨基酸,这就是三联体遗传密码。 基因在表达其性状的过程中贯串着核酸与核酸、核酸与蛋白质的相互作用。DNA复制时,双股螺旋在解旋酶的作用下被拆开,然后DNA聚合酶以亲代DNA链为模板,复制出子代 DNA链。转录是在 RNA聚合酶的催化下完成的。转译的场所核糖核蛋白体是核酸和蛋白质的复合体,根据mRNA的编码,在酶的催化下,把氨基酸连接成完整的肽链。基因表达的调节控制也是通过生物大分子的相互作用而实现的。如大肠杆菌乳糖操纵子上的操纵基因通过与阻遏蛋白的相互作用控制基因的开关。真核细胞染色质所含的非组蛋白在转录的调控中具有特殊作用。正常情况下,真核细胞中仅2~15%基因被表达。这种选择性的转录与转译是细胞分化的基础。 蛋白质-脂质体系 生物体内普遍存在的膜结构,统称为生物膜。它包括细胞外周膜和细胞内具有各种特定功能的细胞器膜。从化学组成看,生物膜是由脂质和蛋白质通过非共价键构成的体系。很多膜还含少量糖类,以糖蛋白或糖脂形式存在。 高等植物的性状主要由核基因控制,其遗传遵循孟德尔规律。1900年Coorence和Baut等人就已发现影响质体表型的一些突变不符合孟德尔遗传规律;1962年里斯(Ris)和Plont证明植物叶绿体中存在遗传物质DNA。现已证明,植物细胞质中的叶绿体和线粒体都含有自己的DNA及整套的转录和翻译系统,能够合成蛋白质。高等植物的叶绿体和线粒体基因组,多数在有性杂交过程中表现为母性遗传。其机制有两种解释:一是认为雄配子不含有细胞质,因而没有胞质基因;另一种观点是雄配子含有少量的细胞质,其细胞器在受精前即已解体,失去功能。胞质基因组的母性遗传,大大限制了胞质基因的遗传研究,利用有性杂交方法难以知晓当胞质基因处于杂合状态时的遗传和生理效应及其对表型的影响。近年来发展起来的体细胞杂交技术为胞质基因的研究开辟了一条新途径。本文拟对植物体细胞杂交后代胞质基因重组的多样性,创制胞质杂种的可能途径及胞质基因组的传递等问题加以说明。 1 植物体细胞杂交后代胞质基因组重组的多样性 体细胞杂交时,核基因组、线粒体基因组和叶绿体基因组三者均既可以单亲传递又可以双亲传递,因而可以产生许多有性杂交难以产生的核-质基因组的新组合类型。Kumar等人根据已有的实验结果结合理论推导提出,植物体细胞杂交一代理论上可以产生48种类型,而相应的有性杂交一代只能产生两种类型。48种类型可分为亲型、核杂种和胞质杂种3类。胞质杂种即是具有一个亲本的细胞核和双亲细胞质的植株或愈伤组织,它是研究胞质基因组的好材料。 2 创制胞质杂种的方法 2.1 “供体-受体”原生质体融合技术 这是目前最为可行的方法,由Zelcer等(1987)提出。其原理基于生理代谢互补,利用高于致死剂量的电离辐射处理供体原生质体使其核解或完全失活,细胞质完整无损;再用碘乙酸或碘乙酚胺处理受体原生质体以使其受到暂时抑制而不分裂,这样双亲原生质体融合后,只有融合体能够实现代谢上的补偿,进行持续分裂,形成愈伤组织或再生植株,这些融合体就是各种各样的胞质杂种。此技术的优点是双亲不需任何选择标记,适用范围广,可行性强,缺点是适宜的辐射剂量难以掌握。 2.2 “胞质体-原生质体”融合法 所谓胞质体是指去核后的原生质体。该法由Maliga提出。优点是避免了电离辐射可能产生的不利影响,缺点是制备胞质体尚存在一些技术性的困难。最近Lesney等人提出了一种能够从悬浮系原生质体制备大量胞质体的方法。 2.3 其它的可能途径 (1)根据双亲原生质体形态上的差异或通过荧光染料标记来机械分离融合体,然后进行微培养。(2)利用分别由核基因组和质基因组编码的抗药性状,通过双重抗性选择获得胞质杂种。(3)原生质体直接摄取外缘细胞器。(4)通过显微注射或电激法实现细胞器转移。 3 胞质杂种中双亲胞质基因的传递遗传学 3.1 叶绿体基因组 胞质杂种中,叶绿体基因组的传递分为单亲传递和双亲传递两种。单亲传递是指胞质杂种愈伤组织及由之再生的植株只含有亲本之一的叶绿体基因组。这种分离机制目前尚不清楚。关于叶绿体基因组的分离是否随机的问题,由于研究者们采用的试验材料不同得出两种结论:一种是叶绿体基因组的随机分离,这在品种间、种间及属间原生质体融合中都被观察到;另一种是叶绿体基因组的非随机分离(即亲本之一的叶绿体基因组优先保留),如弗利克(Flick)和埃文(Evens,1982)在烟草的研究中表明,所有的N.nesophila和N.tabacum体细胞杂种都只具有N.nesophila叶绿体基因组,类似的例子很多。双亲传递是指胞质杂种中,同时含有双亲的叶绿体基因组,其在体细胞杂种以后的有性繁殖过程中能够保持稳定,既然双亲叶绿体能够共存,理论上二者就有可能发生重组。事实上,叶绿体基因组重组现象已被观察到,但频率很低。 3.2 线粒体基因组 胞质杂种中,线粒体基因组的传递方式是双亲传递,且发生活跃的重组,产生丰富的新类型。然而在分析线粒体基因组重组类型时不可忽视由于离体培养而诱发的线粒体基因组分子内重组(突变)的可能性,因为离体培养过程中不仅使核基因组产生大量变异,而且对于某些植物,也可诱发线粒体基因组发生变异。 4 植物胞质基因组控制的重要性状 目前已基本阐明的由叶绿体基因组编码的性状主要是一些抗药性状。如:链霉素抗性、林肯霉素抗性等。在与线粒体基因组有关的性状中,研究最多的是胞质型雄性不育性状。许多学者在不同植物上研究发现,雄性不育系与其同型保持系之间在线粒体DNA内切图谱或其编码的蛋白上存在明显差异。如在玉米上已发现T型雄性不育植株的线粒体基因组发生了多至7次重组,且主要发生于26s rRAN基因附近,产生一个嵌合基因,因此导致转录时阅读框架发生了改变,如果这个嵌合基因发生了缺失或小段插入,则阅读框架恢复正常,育性也随之恢复。 总之,植物体细胞杂交是胞质基因组及其所控制性状研究的有效途径,关于胞质性状的研究对于某些植物已从分子水平上深入到了与雄性不育相关的特异线粒体DNA片段及相应的特殊蛋白,但仍有许多问题有待深入研究。这些问题的阐明将会使得从分子水平上改良雄性不育性状成为可能。是真的哦

细胞骨架相关文献综述论文

奥斯丁爱上爱上

肿瘤转移一说是当今肿瘤医学的一个误区,离开这个误区,癌症就能预防、就能治愈。 首先是遗传基因,其次的不良生活习惯中的大量、长期摄入致癌物,当人体免疫力下降时,致癌物的作用是让肿瘤生长的元凶。 肿瘤转移、扩散的特性是:因大量的致癌物的原因,患者的全身都有癌症细胞了,只是那个组织器官的内环境适宜肿瘤生长时、免疫力低下时,肿瘤就开始生长,直至全身免疫丧失,肿瘤就扩散到全身,这一过程有的仅仅十几天,有的十几年。要看患者的自身健康条件。

肿瘤的转移,是由肿瘤的类型决定的,并不是都会转移

原文链接: Huilin Shao, Hyungsoon Im, Cesar M. Castro, Xandra Breakefield, Ralph Weissleder and Hakho Lee. New Technologies for Analysis of Extracellular Vesicles. Chem Rev. 2018 Feb 28;118(4):1917-1950. doi: 10.1021/acs.chemrev.7b00534.

该综述发表在Chemical Reviews杂志上,影响因子高达54.301分,对细胞外囊泡的研究方法总结非常全面,基本上目前EVs研究中用到的研究方法,这篇综述都有介绍,十分详尽!通讯作者是哈佛大学的Hakho Lee教授。

Extracellular Vesicles (EVs) 细胞外囊泡是由细胞主动释放的多样的纳米级膜囊泡。类似大小的囊泡可根据其生物发生、大小和生物物理性质进一步分类(如外泌体、微囊泡)。虽然EVs最初被认为是细胞碎片,因此未被重视,但现在EVs越来越多地被认为是细胞间通信和疾病诊断和预后的循环生物标志物的重要载体。

该综述的内容包含:

生物流体(Biofluids)中含有大量的EVs,这些EVs可以从Parental Cells转移不同的分子去其他细胞,包括:蛋白,mRNA/miRNA,DNA等。

EV的形成决定了其膜组成。 微小囊泡的膜组成最能反映其Parental Cells(母细胞)的质膜。 相反,外泌体中已经鉴定出特异性的内体蛋白分子,这反映出外泌体形成的机制。内体分选复合物(ESCRT)已被广泛认为用于调节和引导特定分子进入MVB的腔内囊泡。ESCRT及其四个主要复合物(ESCRT 0,I,II和III)负责传递泛素化蛋白,用于溶酶体降解和蛋白回收。最近的研究表明,特定的ESCRT家族蛋白的耗竭可以改变外泌体的蛋白质含量和细胞释放外泌体的速率。更有趣的是,发现外泌体富含ESCRT系统的成分(例如TSG101和Alix),可用作外泌体识别的标记。 ESCRT不是介导外泌体形成的唯一机制。其他不依赖ESCRT的过程似乎也能以相互交织的方式参与其形成和分泌。外泌体也富含ESCRT非依赖性的分子。例如,四跨膜蛋白CD9,CD63和CD81已被证明参与内体小泡运输。小GTP酶的Rab家族参与小泡运输和与质膜融合表明这些蛋白在释放外泌体中的作用。另外,外泌体中神经酰胺水平升高,抑制鞘磷脂会引起的外泌体释放减少,表明鞘磷脂酶与囊泡释放有关。 外泌体和微囊泡都包含核酸,包括miRNA,mRNA,DNA和其他非编码RNA。自从最初发现EV含有RNA,人们一直非常关注EV RNA用作诊断生物标志物。在开创性的工作中,Skog等人发现胶质母细胞瘤患者的血清外泌体含有特征性的突变mRNA(EGFRvIII mRNA)和miRNA,可用于提供诊断信息。这些核酸的发现导致了这样的假设,即EVs可以在细胞之间转移遗传信息。确实,瓦拉迪等人和Skog等表明,EV含有转移进入宿主细胞后仍然可以翻译的mRNA。EV中也有逆转座子和其他非编码RNA的表达。逆转录转座子序列和miRNA以及可翻译的mRNA都通过EV进行转移,这些成果突出了EVs作为遗传信息的载体和传播者的重要性。

虽然传统的光学显微镜的衍射极限接近EV的大小,但是不能产生清晰的图像。高分辨率EV图像需要通过电子显微镜(EM)或原子力显微镜(AFM)得到。然而,这些方法的通量有限,因为需要专门的染色方案和设备。

(a)扫描电子显微镜(SEM)提供三维的表面拓扑信息。

(b)透射电子显微镜(TEM)具有出色的图像分辨率,可结合免疫金标记一起使用来提供分子表征。

(c)冷冻电镜(cryo-EM)无需大量处理即可分析EV形态。

动态光散射 (DLS),也称作 光子相关光谱 或 准弹性光散射 ,是一种物理表征手段,用来测量 溶液 或 悬浮液 中的 粒径分布 ,也可以用来测量如高分子浓溶液等复杂 流体 的行为。当光射到远小于其波长的小颗粒上时,光会向各方向散射( 瑞利散射 )。如果光源是 激光 ,在某一方向上,我们可以观察到散射光的强度随时间而波动,这是因为溶液中的微小颗粒在做 布朗运动 ,且每个发生散射的颗粒之间的距离一直随时间变化。来自不同颗粒的散射光因相位不同产生建设性或破坏性干涉。所得到的强度随时间波动的曲线带有引起散射的颗粒随时间移动的资讯。动态光散射实验易受灰尘或杂质影响,故样品的 过滤 和 离心 十分重要。 动态光散射用于表征蛋白质、高分子、胶束、糖和纳米颗粒的尺寸。如果系统是单分散的,颗粒的平均有效直径可以求出来,这一测量取决于颗粒的心,表面结构,颗粒的浓度和介质中的离子种类。DLS也可以用于稳定性研究,通过测量不同时间的粒径分布,可以展现颗粒随时间聚沉的趋势。随着微粒的聚沉,具有较大粒径的颗粒变多。同样,DLS也可以用来分析温度对稳定性的影响。 动态光散射是收集溶液中做布朗运动的颗粒散射光强度起伏的变化,通过相关器将光强的波动转化为相关曲线,从而得到光强波动的速度,计算出粒子的扩散速度信息和粒子的粒径。 小颗粒样品的布朗运动速度快,光强波动较快,相关曲线衰减较快,大颗粒反之。 在外泌体研究中,动态光散射测量敏感度较高,测量下限为10纳米。相对于SEM技术来说,样品制备简单,只需要简单的过滤,测量速度较快。但是动态光散射技术由于是测量光强的波动数据,所以大颗粒的光强波动信号会掩盖较小颗粒的光强波动信号,所以动态光散射不适合大小不一的复杂外泌体样本的测量,只适合通过色谱法制备的大小均一的外泌体的尺寸测量,并且无法测量样品中外泌体的浓度。

纳米粒子跟踪分析(NTA) 是一种光学粒子跟踪方法,用于确定粒子的浓度和大小分布。用光束照射样品中的粒子。当粒子散射光并经历布朗运动时,摄像机记录下每个粒子的路径以确定平均速度和扩散率。与DLS的体散射测量不同,NTA跟踪单个粒子的散射。 然后,此信息将用于数学计算浓度(即视野中的粒子数量)和尺寸分布(即通过Strokes-Einstein方程的流体动力学直径,图5b)。 为了准确定量异质囊泡的浓度和大小,NTA程序需要精确优化摄像头和分析设置。 可能需要使用不同设置进行单独测量,以获取异质混合物中EV子集的准确读数。

EVs在大小、起源和分子组成上都是异质性的;除此之外,它们还存在于不同的复杂的生物流体中,包括血、胸腔积液、腹水、乳汁、唾液、脑脊液和尿液。这些流体中还含有大量的非囊泡大分子结构,可能会干扰EV的分析。所以EV的分离和富集显得尤为重要。

超速离心法(80%)和密度梯度离心法(20%)是最常见的两种高通量混合分离法。根据它们分离机制,这些方法可以分为三大类:密度、亲和和大小。

用不同的离心力将颗粒分离:以较低的离心力(300g)去除细胞碎片,而以较高的离心力(100000g)对EV进行沉淀和浓缩。尽管该方法是应用最广泛的金标准,但它也有许多缺点,如体积大、仪器昂贵、处理时间长、过程繁琐、被聚集的蛋白质和核蛋白颗粒污染以及需要大量的样品。

蔗糖梯度离心法是一种更为严格的超速离心法,它有助于进一步分离不同密度的囊泡,通常用于分离外泌体(悬浮密度为1.15至1.19 g/mL)。在这种方法中,一个包含不同大小囊泡和大分子的样品在一个密度从上到下递增的梯度表面上被分层。在离心过程中,不同的分子以不同的速率通过梯度沉积。由于其分辨率更高,该方法被认为可以分离更高纯度的EVs(特别是外泌体);然而,它面临着许多与超速离心法相关的限制。更加新的等渗梯度(如碘黄醇梯度)法被认为效果更好。

最近,基于聚合物共沉淀法的商业试剂盒(例如,ExoQuick, Exo-Spin)已被开发用于EV富集。这些试剂采用降低EV的水合作用(从而降低溶解度)导致沉淀,然后在低离心力的情况下,沉淀的EV产物可以很容易地、重复性地分离出来,从而避免了长时间的超速离心法操作。然而,这些试剂盒对于大规模使用来说是昂贵的,而且对于EV来说缺乏特异性。该方法还容易产生非均相聚合物颗粒。由于这些试剂均降低了EV和蛋白质的溶解度,因此该方法还可共沉淀脂蛋白和Ago-2 RNA复合物。因此,共沉淀法作为EV分离方法受到了限制。

大小排阻色谱法根据它们的分子大小通过凝胶过滤来分离囊泡和其他分子。这种凝胶由含有特定大小分布孔隙的球形珠组成。当样品进入凝胶时,小分子扩散到孔隙中,而大分子则直接洗脱。因此,大分子比小分子更早地离开色谱柱,这使得分子的停留时间与色谱柱的大小相关联成为可能。近年来,该分离方法已被应用于从复杂的生物媒介中分离纯化囊泡。Sepharose, GE Healthcare; qEV, iZon等商业公司也正在开发商业的产品以简化EV富集,这些产品的排除柱都大约是75纳米孔径的树脂。蛋白质和其他较小的污染分子被滞留在孔径中,而较大的囊泡(>75 nm)可以迅速通过并在空隙中被洗脱。大小排阻法可将EV与可溶性蛋白分离;为提高分离的效率和分辨率,需要考虑多种因素,包括介质类型、孔径、EV与介质之间的相互作用、柱的尺寸、柱的填充以及流速等。

为了提高复杂生物流体的EV分离效率和特异性,人们开发了多种新的EV富集方法。然而,与传统方法相比,这些新方法中的大多数具有较低的吞吐率,应加以解决使之变得实用。

基于分子大小的分离是一种很有潜力的方法,可以将EV与大型细胞碎片分离开来。各种微流体过滤系统已经被开发出来,用于从大的细胞碎片和蛋白质聚集物中分离EV,这些系统大部分是基于分子大小差异。例如,Rho等人构建了一种微流控设备,该设备使用膜过滤器对未处理的血液样本进行筛选,来分离EV。膜过滤器的大小∼1μm。在膜的下方插入一个毛细管,用于引导过滤后的EV进入收集通道。膜过滤器和毛细管导向器夹在两个环形磁铁之间;这种设置在进行大量的样品处理时可以方便地更换过滤器集。

Lee等人最近使用声波以无接触方式对EV进行细分。这种分离利用超声波驻波,根据囊泡的大小和密度对其施加不同的声交互作用力。该装置由一对相互交错的换能器(IDT)电极组成,用以产生跨流动通道的驻波表面声波。

EV蛋白主要来源于胞质膜、胞质醇,而非其他胞内细胞器(如高尔基体、内质网、细胞核等)。EV蛋白质的构成提示了囊泡的生物发生和cargo sorting(这个翻译有点怪)。因此国际细胞外囊泡组织建议应该仔细鉴定EV蛋白,特别是跨膜蛋白和胞质蛋白。

在哺乳动物中,跨膜蛋白和脂质结合的细胞外蛋白(如内贴蛋白)都与微囊泡和外泌体有关。外泌体的跨膜蛋白富含四聚体蛋白(如CD9、CD63和CD81)一个具有四个跨膜结构域的蛋白质超家族。四聚体蛋白参与细胞膜的转运和生物合成的成熟,在外泌体中高表达,这一特性使得四聚体蛋白被用于外泌体的定量和表征。然而,需要注意的是,四聚体蛋白并不只在外泌体中唯一表达。另一方面,微囊泡富含整合素、选择素和CD40配体,表明它们来自于细胞的质膜,EV富含特异的跨膜蛋白受体(如表皮生长因子受体/ EGFRs)和黏附蛋白(如上皮细胞黏附分子/EpCAM)。由于许多跨膜蛋白参与了正常生理和疾病的发病机制,它们被用作重要的病理生理学EV生物标志物。

EV相关的囊内蛋白具有多种功能。它们包括具有膜或受体结合能力的参与囊泡运输的胞质蛋白,如TSG101、ALIX、annexin和Rabs。EV还富含细胞骨架蛋白(如:内酯、肌凝蛋白和小管蛋白)、分子伴侣蛋白(如:热休克蛋白/HSPs)、代谢酶(如:烯醇化酶、甘油醛3-磷酸脱氢酶/GAPDH和核糖体蛋白)。有趣的是,最近的研究发现EV蛋白可以被受体细胞有效地运输和接收,从而在体内和体外引起强烈的细胞反应。这带来了EV作为治疗和药物载体的新机遇。

EV蛋白的定量和特征鉴定不仅对阐明EV的生物发生和cargo sorting有重要意义,而且对鉴别生理和病理标志物也有重要意义。然而,传统的蛋白质分析,包括Western blotting和酶联免疫吸附试验(ELISA),通常需要大样本量、大量处理和/或庞大的专门仪器,因而不太适合临床应用。

在EV蛋白评估时,Western blotting可能是最常用的技术,用于提示与EV相关的靶蛋白的存在。在这个过程中,纯化的囊泡制剂(通常通过现行的梯度超离心法金标准制备)可以用含有变性剂和蛋白酶抑制剂的缓冲裂解液进行处理。然后用十二烷基硫酸钠聚丙烯酰胺凝胶电泳(SDS−PAGE)分离蛋白裂解物,然后转移到膜上,对特定的蛋白target进行免疫印迹。虽然这种方法有很长的准备和处理时间(> 10h),但是Western blotting可以提供关于蛋白质分子大小的有用信息。

不像Western blotting,ELISA只能在相对较小的范围内对目标蛋白进行定量,质谱分析可实现高通量肽谱分析。纯化的EV制剂经过酶消化和肽分离,然后用质谱仪电离分析。在这个复杂的过程中,多个步骤严重影响EV蛋白组学分析。除了有效的EV纯化,质谱分析之前的肽分馏被认为是鉴定囊泡蛋白的一个重要前提。通常通过三种主要方法实现:(1)SDS−PAGE,(2)二维液相色谱和(3)基于等电聚焦的分馏。 值得注意的是,既然质谱分析可以鉴定消化后的肽片段,那么适当的蛋白质鉴定、定量和验证是必要的。已经有两种用于定量的技术方法:基于标签的和无标签的。在基于标签的定量分析中,标签(等压或同位素)被用于比较分析。无标签的定量分析中,色谱强度的谱计数被应用。识别出的候选蛋白可以使用其他传统的蛋白质技术如Western blotting进行验证。在检测灵敏度方面,质谱法通常不如基于抗体的技术敏感。 虽然质谱分析需要大量的准备和处理时间(数天),但它可以提供高通量、定量和EV比较蛋白质组分析。到目前为止,已有成千上万的囊泡蛋白被系统分类,蛋白质-蛋白质相互作用分析。基于质谱的哺乳动物和细菌EV的蛋白质组学分析的详细讨论已经在一些综述中被强调。这些网络和相互作用的研究有助于阐明EV载体的功能活动及其在细胞间远距离通信中的重要作用。

为了解决EV蛋白质定量相关的技术挑战,新一代生物传感器正在开发中。与传统的蛋白质检测方法相比,这些生物传感器利用独特的传感机制,可以检测各种大小和分子含量的EV。这些技术中的许多只需要更小的样本量和更少的样本处理过程,因此非常适合于医疗应用。

流式细胞术是一种基于光散射和荧光激活来分选单个大颗粒(如细胞或微米大小的实体)的强大的技术,然而,传统的流式细胞术对检测直径小于500 nm的小颗粒的灵敏度和分辨率有限。此外,它还受到高光学背景的影响,由于鞘层流体中存在小颗粒(约200 nm)。用传统流式细胞术量化EV时,大量的小EV可能被忽略或者计数偏低:可能同时有多个小的囊泡被照亮被计数成一个单独的事件,这种现象被称为“群体理论”。 为了解决传统流式细胞术的弊端,微米大小的乳胶珠被用来绑定多个囊泡。然后用荧光抗体对结合的EV进行染色,并对其蛋白标记物进行鉴定。然而,这种方法缺乏分析单个囊泡的能力,并且不能区分不同的囊泡亚群,这可能会导致特征的丢失。

该技术主要基于磁性纳米粒子(MNPs)。由于大多数生物物质天然缺乏铁磁背景,这种传感几乎不受同系统中其他生物样品的干扰。因此,即使光学上浑浊的样品对磁场也是透明的;当靶分子被特定的MNPs靶向时,它们与自然的生物背景形成了强烈的对比。在基于核磁共振(NMR)的磁检测中,MNPs置于NMR磁场中,产生局部磁场,改变周围水分子的横向弛豫率,放大分析信号。因此,核磁共振减少了样本处理过程,提高了检测灵敏度,已经被开发用于多个医疗点应用(例如,直接从血液样本中检测循环肿瘤细胞和细菌)。 但是将这种技术运用在EV检测上却遇到了挑战,因为EV明显比肿瘤细胞小1到2个数量级。Shao等人开发了一种专门用于EV检测和蛋白质分析的新分析技术。此方法采用两步生物正交点击化学方法来标记EV,这种小分子(<200 Da)标记策略并没有显著增加抗体或MNP的大小,从而提高了从非结合抗体和MNPs中保留目标囊泡的效率。使用微流控芯片上微核磁共振(μNMR)直接测量EV来确定EV生物标志物的丰度。 相比传统的蛋白技术,μNMR系统表现出更好的检测灵敏度:比WB和ELASA灵敏10 3 倍。Shao等人利用这种集成技术可研究在培养皿中生长的多形性胶质母细胞瘤(GBM)细胞系中的EV。比较蛋白分析证实,EV确实反映了其亲代细胞的蛋白概况,组合GBM的四种标志物(EGFR、EGFRvIII、PDPN和IDH1) R132H)可用于区分癌症来源的EVs与宿主细胞来源的EVs。

鉴于EV的尺寸小,一种新的快速无标签EVs检测方案:表面等离子体共振(SPR)被提出。SPR是指在入射光照射下,金属介电界面上传导电子的集体振荡。不同于其他基于时敏荧光和化学发光探针的光学检测方法,SPR传感检测金属-介电介面附近生物分子结合相关的局部折射率变化,应用于无标签和实时检测。

RNA是EV携带的主要核酸。与细胞中的RNA相比,eEV运输的RNA通常更短(通常<200个核苷酸,但也有长达5 kb的)。它们主要是非编码rna,包括microRNA(miRNA)、tRNA (tRNA)、长链非编码RNA (lnRNA)和片段化的mRNA。编码mRNA (mRNA)已在长度为200~1000个核苷酸的转录组中被识别。mRNA可以翻译成蛋白质,而miRNA可以调节受体细胞中靶mRNA的翻译。EV中RNA的数量和性质可以根据其来源的细胞类型而变化。 由于它们在受体细胞中保留了功能,研究人员提出了有趣的假设,即可能存在专门的机制将不同的RNA分配给EV运输到特定的受体细胞,或可能利用这些机制运送治疗性RNA到特定的部位。这是一个活跃的研究领域,已经有一些综述对其进行阐述。

近年来的研究发现,EV中含有相当比例的母细胞的mRNA,其中许多是细胞特异性的mRNA。这些mRNA分子通常以片段的形式存在于EV中,保护其不被RNA酶降解,使它们成为强有力的循环生物标志物。 此外,已在多个研究中得到证实:EV中一些<2 kb的mRNA分子能够编码支持蛋白质合成的多肽(即,蛋白质翻译的功能)。这些研究强调了EV作为特定的细胞信使在影响受体细胞和促进细胞间通讯等多方面的作用。

miRNA是一类小的非编码rna(一般为17 - 24个核苷酸),通常通过靶向mRNA的3’非翻译区介导转录后基因沉默。通过抑制蛋白质的翻译,EV miRNAs在许多生物过程中都是强有力的调控因子。不同于EV中的循环mRNA,miRNA可以以多种稳定形式存在于体液中。除了被包裹在EV中,循环miRNA还可以被加载到高密度脂蛋白或结合到囊泡外的AGO2蛋白上。目前的证据表明,虽然大多数循环miRNA都与RNA结合蛋白相结合,但在EV中也能发现少量的miRNA。然而,miRNAs在EV中的分布仍不清楚。与mRNA的情况一样,EVs中的miRNA表达反映了其细胞来源,但与亲代细胞略有不同。一些miRNA已被发现优先表达在EV中,并在受体细胞中保持功能以调节蛋白翻译。最近的研究还发现,在哺乳动物细胞培养中常用的胎牛血清可能在体外EV制备过程中导致miRNA伪影。

通过NGS,我们还发现有其他类型的RNA存在EV中。这些RNA包括tRNA,rRNA,小核RNA(snRNA)、小核仁RNA (snoRNA)以及长链非编码RNA (lncRNA)。参见上表。

最近的研究表明某些EV可能含有DNA片段。这些DNA是双链片段,范围从100个碱基对(bp)到2.5 k bp,EV外部还有一些与之相关的>2.5k bp的DNA片段。这些片段代表整个基因组DNA,可用于鉴定亲代肿瘤细胞中存在的突变。虽然有可信的证据表明在EV中存在DNA,但其功能尚未确定。

EV核酸作为一种潜在的循环生物标志物和受体细胞间的调节因子已被广泛研究。传统的核酸提取和分析工具已经成功地为我们理解EV核酸奠定了重要的基础。由于EVs中核酸的含量较低,开发高效的提取方法和灵敏的检测策略是非常重要的,特别是在小样本中对稀有目标分子进行检测。

随着人们对利用EV核酸作为微创诊断标记的兴趣日益浓厚,新的生物传感器技术已被开发出来,使提取和分析变得更加高效、快速。这些新平台中有许多提供了对目标核酸标记的敏感定量,并且能够在复杂的生物学背景下识别疾病标记,甚至包括单核苷酸点突变。这为个性化临床医疗开辟了许多新的机会。

虽然传统PCR是检测基因/转录突变的强大技术(例如,EGFRvIII缺失突变),但其敏感性有限,其在检测单核苷酸突变方面存在很多不足。这个问题与EVs特别相关,因为在野生型转录本的大背景中,突变转录本的比例很低。Chen等人最近采用了一种液滴数字PCR (ddPCR)技术来检测EV中的罕见突变。

Shao等人最近开发了一种综合微流控平台,用于现场EV核酸分析,该平台集成了三个功能模块:靶向富集EVs,芯片上RNA分离,实时RNA分析。这个平台被称为免疫磁性外泌体RNA(iMER)分析平台:利用抗体功能化的磁珠从宿主来源的囊泡中分离癌症特异性EVs,然后在芯片上裂解免疫磁珠吸附的囊泡。当EV裂解液通过玻璃珠过滤器时,选择性吸附EV RNA并从过滤器中洗脱,用于反转录和qPCR分析。为了简化分析过程,所有关键部件都集成到一个芯片盒中。 随着该系统的发展,作者研究了核蛋白的两个mRNA靶标,MGMT(6-甲基鸟嘌呤)

肿瘤是一种复杂的结构,包括恶性细胞和周围的基质细胞,如内皮细胞、成纤维细胞和免疫细胞。最近的研究表明,EVs在肿瘤微环境中促进细胞间通讯,从而调节疾病的发生、发展,并且在治疗反应方面发挥重要作用。

这一大块儿的其他内容大家感兴趣的话可以阅读原文献。

在大多数神经退行性疾病(如阿尔茨海默病、帕金森病、额颞叶痴呆)中存在类似的疾病进展模型,其中错误折叠的蛋白质自结合形成有序的聚合体并在细胞中聚集。阿尔茨海默病(AD)中,淀粉样蛋白的Abeta肽的形成可能是这些蛋白聚合体中最著名的。帕金森疾病(PD)中,另一种类型的聚合体在细胞内形成,主要由alpha-synuclein(突触核蛋白)组成,称为路易小体。最近的研究表明,许多神经退行性疾病中涉及的错误折叠蛋白出现在EV中。因此,这些囊泡为检测和监测神经退行性疾病带来了新的希望。 AD是一种迟发性神经系统疾病:由于神经变性而导致记忆和认知能力的逐渐丧失。虽然AD的确切病因仍是一个有争议的话题,但很明显,与Aβ肽相关的斑块沉积和与tau蛋白相关的神经纤维缠结对疾病的进展是非常重要的。这些淀粉样肽来源于淀粉样前体蛋白(APP)的蛋白水解过程。这一

相关百科

热门百科

首页
发表服务