首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

离散数学期末总结论文

发布时间:

离散数学期末总结论文

先说难的吧!我想不论是哪个学校的学生,提到运筹学,没有一个不说它难的。我是不知道我们航院教导这门课程的难度有多大,但是只要你考研究生,考管理科学与工程这个专业,全国大部分高校,运筹学是肯定考的。那么就我所学的体会来看,运筹学确实不是那么容易学习。但是,它并不是不可攻破,关键看你自己是否下工夫。就拿线性规划来说,表格就得画很多个,如果你没有耐心,估计很难有收获。在学习的时候,我建议大家上课一定要认真听,因为书本上的东西,太过于抽象,不容易理解;而老师讲的,比较具体,你只要记下来,课下再看,一般都能看懂。做题一定不要贪多,因为一道题目的书写量很大,你如果做的太多,会因为题目做的很慢而丧失信心。从中选择几道题目,把它研究透,收获往往会更大,因为你现在的主要任务是入门,而不是急于求成。再说离散数学,大家一定不要被它的名字糊住。离散数学其实并不是很离散,因为如果你不是计算机专业的学生,学习这门课程,绝对不会讲的很深,只是一个入门而已。所以大家一定不要害怕。在学习中,要注意这么一些问题,一定要把题目读懂,反复推敲,因为我发现离散数学的一大难点在于你的语文功底,也即对于句子的理解能力考察;再者,一定要按规矩来解题目,不要标新立异,因为很多问题,你不按规矩,就很容易漏掉一些情况。而且,老师也不喜欢看那种不规范的答题方法,这样会增大它的改卷难度,所以大家一定要注意。这就是我对这两门课程的一些体会,仅供大家参考,希望能给大家带来帮助!

额。。。我不知道你们专业对离散的要求程度,不过我们也是最近才考的 觉得不会很难都是很基础的知识,只要上课听懂了老师的重点难点应该就没有问题了。我知道我说得有点泛,要对自己有信心才好。。加油了。

学术堂整理了一篇3000字的计算机论文范文,供大家参考:

范文题目:关于新工程教育计算机专业离散数学实验教学研究

摘要: 立足新工科对计算机类专业应用实践能力培养的要求,分析了目前离散数学教学存在的关键问题,指明了开展离散数学实验教学的必要性。在此基础上,介绍了实验教学内容的设计思路和设计原则,给出了相应的实验项目,并阐述了实验教学的实施过程和教学效果。

关键词:新工科教育;离散数学;计算机专业;实验教学

引言

新工科教育是以新理念、新模式培养具有可持续竞争力的创新型卓越工程科技人才,既重视前沿知识和交叉知识体系的构建,又强调实践创新创业能力的培养。计算机类是新工科体系中的一个庞大专业类,按照新工科教育的要求,计算机类专业的学生应该有很好的逻辑推理能力和实践创新能力,具有较好的数学基础和数学知识的应用能力。作为计算机类专业的核心基础课,离散数学的教学目标在于培养学生逻辑思维、计算思维能力以及分析问题和解决问题的能力。但长期以来“定义-定理-证明”这种纯数学的教学模式,导致学生意识不到该课程的重要性,从而缺乏学习兴趣,严重影响学生实践能力的培养。因此,打破原有的教学模式,结合计算机学科的应用背景,通过开展实验教学来加深学生对于离散数学知识的深度理解是实现离散数学教学目标的重要手段。

1.实验项目设计

围绕巩固课堂教学知识,培养学生实践创新能力两个目标,遵循实用性和可行性原则,设计了基础性、应用性、研究性和创新性四个层次的实验项目。

(1) 基础性实验

针对离散数学的一些基本问题,如基本的定义、性质、计算方法等设计了7个基础性实验项目,如表1所示。这类实验要求学生利用所学基础知识,完成算法设计并编写程序。通过实验将抽象的离散数学知识与编程结合起来,能激发学生学习离散数学的积极性,提高教学效率,进而培养学生的编程实践能力。

(2) 应用性实验

应用性实验是围绕离散数学主要知识单元在计算机学科领域的应用来设计实验,如表2所示。设计这类实验时充分考虑了学生掌握知识的情况,按照相关知识点的应用方法给出了每个实验的步骤。学生甚至不需要完成全部实验步骤即可达到实验效果。例如,在“等价关系的应用”实验中,按照基于等价类测试用例的设计方法给出了实验步骤,对基础较差的学生只需做完第三步即可达到“巩固等价关系、等价类、划分等相关知识,了解等价关系在软件测试中的应用,培养数学知识的应用能力。”的实验目的。

(3) 研究性实验研究性实验和应用性实验一样

也是围绕离散数学主要知识单元在计算机科学领域中的应用来设计实验,不同之处在于,研究性实验的实验步骤中增加了一些需要学生进一步探讨的问题。这类实验项目一方面为了使学生进一步了解离散数学的重要性,另一方面为了加强学生的创新意识与创新思维,提高计算机专业学生的数学素质和能力。表 3 给出了研究性试验项目。

(4) 创新性实验

在实际教学中还设计了多个难度较高的创新性实验题目,例如,基于prolog语言的简单动物识别

系统、基于最短路径的公交线路查询系统、简单文本信息检索系统的实现等,完成该类实验需要花费较长的时间,用到更多的知识。通过这些实验不仅有利于培养学生分析问题、解决问题的能力和创新设计能力,也有利于培养学生独立思考、敢于创新的能力。

3.实验教学模式的构建

通过实验教学环节无疑可以激发学生对课程的兴趣,提高课程教学效率,培养学生的实践创新能力。但是,近年来,为了突出应用性人才培养,很多地方本科院校对离散数学等基础理论课的课时进行了压缩,加之地方本科院校学生基础较差,使得离散数学课时严重不足,不可能留出足够的实验教学时间。针对这种情况,采用多维度、多层次的教学模式进行离散数学实验教学。

(1) 将实验项目引入课堂教学

在离散数学的教学过程中,将能反映在计算机科学领域典型应用的实验项目引入到课堂教学中,引导学生应用所学知识分析问题、解决问题。例如在讲授主析取范式时,引入加法器、表决器的设计,并用multisim进行仿真演示,让学生理解数理逻辑在计算机硬件设计中的作用。又如讲谓词逻辑推理时,引入前一届学生用Prolog完成的“小型动物识别系统”作为演示实验。这些应用实例能够让学生体会数理逻辑在计算机科学领域的应用价值,不仅激发学生的学习兴趣,提高课堂教学效率,也锻炼了学生的逻辑思维,培养了学生的系统设计能力。

(2) 改变课后作业形式,在课后作业中增加上机实验题目

由于课时有限,将实验内容以课后作业的形式布置下去,让学生在课余时间完成实验任务。例如讲完数理逻辑内容后,布置作业: 编写 C语言程序,实现如下功能: 给定两个命题变元 P、Q,给它们赋予一定的真值,并计算P、P∧Q、P∨Q的真值。通过完成,使学生掌握命题联结词的定义和真值的确定方法,了解逻辑运算在计算机中的实现方法。又如,把“偏序关系的应用”实验作为“二元关系”这一章的课后作业,给定某专业开设的课程以及课程之间的先后关系,要求学生画出课程关系的哈斯图,安排该专业课程开设顺序,并编写程序实现拓扑排序算法。通过该实验学生不仅巩固了偏序关系、哈斯图等知识,而且了解到偏序关系在计算机程序设计算法中的应用和实现方法。

(3) 布置阅读材料

在教学中,通常选取典型应用和相关的背景知识作为课前或课后阅读材料,通过课堂提问抽查学生的阅读情况。这样,不仅使学生预习或复习了课程内容,同时也使他们对相关知识点在计算机学科领域的应用有了一定的了解。例如,在讲解等价关系后,将“基于等价类的软件测试用例设计方法”作为课后阅读材料; 在讲解图的基本概念之前,将“图在网络爬虫技术中的应用”作为课前阅读材料; 货郎担问题和中国邮路问题作为特殊图的课后阅读材料。通过这些阅读材料极大地调动学生学习的积极性,取得了非常好的教学效果。

(4) 设置开放性实验项目

在离散数学教学中,通常选择一两个创新性实验项目作为课外开放性实验,供学有余力的学生学习并完成,图1给出了学生完成的“基于最短路径公交查询系统”界面图。同时,又将学生完成的实验系统用于日后的课堂教学演示,取得了比较好的反响。

(5) 利用网络教学平台

为了拓展学生学习的空间和时间,建立了离散数学学习网站,学习网站主要包括资源下载、在线视频、在线测试、知识拓展和站内论坛五个部分模块,其中知识拓展模块包含背景知识、应用案例和实验教学三部分内容。通过学习网站,学生不仅可以了解离散数学各知识点的典型应用,还可以根据自己的兴趣选择并完成一些实验项目。在教学实践中,规定学生至少完成1-2个应用性实验项目并纳入期中或平时考试成绩中,从而激发学生的学习兴趣。

4.结束语

针对新工科教育对计算机类专业实践创新能力的要求,在离散数学教学实践中进行了多方位、多层次的实验教学,使学生了解到离散数学的重要

性,激发了学生的学习兴趣,提高了学生程序设计能力和创新能力,取得了较好的教学效果。教学团队将进一步挖掘离散数学的相关知识点在计算机学科领域的应用,完善离散数学实验教学体系,使学生实践能力和创新思维得以协同培养,适应未来工程需要。

参考文献:

[1]徐晓飞,丁效华.面向可持续竞争力的新工科人才培养模式改革探索[J].中国大学教学,2017(6).

[2]钟登华.新工科建设的内涵与行动[J].高等工程教育研究,2017(3).

[3]蒋宗礼.新工科建设背景下的计算机类专业改革养[J].中国大学教学,2018( 11) .

[4]The Joint IEEE Computer Society/ACM Task Force onComputing Curricula Computing Curricula 2001 ComputerScience[DB / OL]. http:/ / WWW. acm. org / education /curric_vols / cc2001. pdf,2001.

[5]ACM/IEEE - CS Joint Task Force on Computing Curricula.2013. Computer Science Curricula 2013[DB / OL]. ACMPress and IEEE Computer Society Press. DOI: http: / / dx.doi. org /10. 1145 /2534860.

[6]中国计算机科学与技术学科教程2002研究组.中国计算机科学与技术学科教程2002[M].北京: 清华大学出版社,2002.

[7]张剑妹,李艳玲,吴海霞.结合计算机应用的离散数学教学研究[J].数学学习与研究,2014(1) .

[8]莫愿斌.凸显计算机专业特色的离散数学教学研究与实践[J].计算机教育,2010(14)

毕业论文是教学科研过程的一个环节,也是学业成绩考核和评定的一种重要方式。毕业论文的目的在于总结学生在校期间的学习成果,培养学生具有综合地创造性地运用所学的全部专业知识和技能解决较为复杂问题的能力并使他们受到科学研究的基本训练。标题标题是文章的眉目。各类文章的标题,样式繁多,但无论是何种形式,总要以全部或不同的侧面体现作者的写作意图、文章的主旨。毕业论文的标题一般分为总标题、副标题、分标题几种。总标题总标题是文章总体内容的体现。常见的写法有:①揭示课题的实质。这种形式的标题,高度概括全文内容,往往就是文章的中心论点。它具有高度的明确性,便于读者把握全文内容的核心。诸如此类的标题很多,也很普遍。如《关于经济体制的模式问题》、《经济中心论》、《县级行政机构改革之我见》等。②提问式。这类标题用设问句的方式,隐去要回答的内容,实际上作者的观点是十分明确的,只不过语意婉转,需要读者加以思考罢了。这种形式的标题因其观点含蓄,轻易激起读者的注重。如《家庭联产承包制就是单干吗?》、《商品经济等同于资本主义经济吗?》等。③交代内容范围。这种形式的标题,从其本身的角度看,看不出作者所指的观点,只是对文章内容的范围做出限定。拟定这种标题,一方面是文章的主要论点难以用一句简短的话加以归纳;另一方面,交代文章内容的范围,可引起同仁读者的注重,以求引起共鸣。这种形式的标题也较普遍。如《试论我国农村的双层经营体制》、《正确处理中心和地方、条条与块块的关系》、《战后西方贸易自由化剖析》等。④用判定句式。这种形式的标题给予全文内容的限定,可伸可缩,具有很大的灵活性。文章研究对象是具体的,面较小,但引申的思想又须有很强的概括性,面较宽。这种从小处着眼,大处着手的标题,有利于科学思维和科学研究的拓展。如《从乡镇企业的兴起看中国农村的希望之光》、《科技进步与农业经济》、《从“劳动创造了美”看美的本质》等。

离散数学结课论文

组合数学概述 组合数学,又称为离散数学,但有时人们也把组合数学和图论加在一起算成是离散数学。组合数学是计算机出现以后迅速发展起来的一门数学分支。计算机科学就是算法的科学,而计算机所处理的对象是离散的数据,所以离散对象的处理就成了计算机科学的核心,而研究离散对象的科学恰恰就是组合数学。组合数学的发展改变了传统数学中分析和代数占统治地位的局面。现代数学可以分为两大类:一类是研究连续对象的,如分析、方程等,另一类就是研究离散对象的组合数学。组合数学不仅在基础数学研究中具有极其重要的地位,在其它的学科中也有重要的应用,如计算机科学、编码和密码学、物理、化学、生物等学科中均有重要应用。微积分和近代数学的发展为近代的工业革命奠定了基础。而组合数学的发展则是奠定了本世纪的计算机革命的基础。计算机之所以可以被称为电脑,就是因为计算机被人编写了程序,而程序就是算法,在绝大多数情况下,计算机的算法是针对离散的对象,而不是在作数值计算。正是因为有了组合算法才使人感到,计算机好象是有思维的。 组合数学不仅在软件技术中有重要的应用价值,在企业管理,交通规划,战争指挥,金融分析等领域都有重要的应用。在美国有一家用组合数学命名的公司,他们用组合数学的方法来提高企业管理的效益,这家公司办得非常成功。此外,试验设计也是具有很大应用价值的学科,它的数学原理就是组合设计。用组合设计的方法解决工业界中的试验设计问题,在美国已有专门的公司开发这方面的软件。最近,德国一位著名组合数学家利用组合数学方法研究药物结构,为制药公司节省了大量的费用,引起了制药业的关注。 在1997年11月的南开大学组合数学研究中心成立大会上,吴文俊院士指出,每个时代都有它特殊的要求,使得数学出现一个新的面貌,产生一些新的数学分支,组合数学这个新的分支也是在时代的要求下产生的。最近,吴文俊院士又指出,信息技术很可能会给数学本身带来一场根本性的变革,而组合数学则将显示出它的重要作用。杨乐院士也指出组合数学无论在应用上和理论上都具有越来越重要的位置,它今后的发展是很有生命力,很有前途的,中国应该倡导这个方面的研究工作。万哲先院士甚至举例说明了华罗庚,许宝禄,吴文俊等中国老一辈的数学家不仅重视组合数学,同时还对组合数学中的一些基本问题作了重大贡献。迫于中国组合数学发展自身的需要,以及中国信息产业发展的需要,在中国发展组合数学已经迫在眉睫,刻不容缓。 2. 组合数学与计算机软件 随着计算机网络的发展,计算机的使用已经影响到了人们的工作,生活,学习,社会活动以及商业活动,而计算机的应用根本上是通过软件来实现的。我在美国听到过一种说法,将来一个国家的经济实力可以直接从软件产业反映出来。我国在软件上的落后,要说出根本的原因可能并不是很简单的事,除了技术和科学上的原因外,可能还跟我们的文化,管理水平,教育水平,思想素质等诸多因素有关。除去这些人文因素以外,一个最根本的原因就是我国的信息技术的数学基础十分薄弱,这个问题不解决,我们就难成为软件强国。然而问题决不是这么简单,信息技术的发展已经涉及到了很深的数学知识,而数学本身也已经发展到了很深、很广的程度并不是单凭几个聪明的头脑去想想就行了,而更重要的是需要集体的合作和力量,就象软件的开发需要多方面的人员的合作。美国的软件之所以能领先,其关键就在于在数学基础上他们有很强的实力,有很多杰出的人才。一般人可能会认为数学是一门纯粹的基础科学,1+1的解决可能不会有任何实际的意义。如果真是这样,一门纯粹学科的发展落后几年,甚至十年,关系也不大。然而中国的软件产业的发展已向数学基础提出了急切的需求:网络算法和分析,信息压缩,网络安全,编码技术,系统软件,并行算法,数学机械化和计算机推理,等等。此外,与实际应用有关的还有许多许多需要数学基础的算法,如运筹规划,金融工程,计算机辅助设计等。如果我们的软件产业还是把眼光一直盯在应用软件和第二次开发,那么我们在应用软件这个领域也会让国外的企业抢去很大的市场。如果我们现在在信息技术的数学基础上,大力支持和投入,那将是亡羊补牢,犹未为晚;只要我们能抢回信息技术的数学基地,那么我们还有可能在软件产业的竞争中,扭转局面,甚至反败为胜。吴文俊院士开创和领导的数学机械化研究,为中国在信息技术领域占领了一个重要的阵地,有了雄厚的数学基础,自然就有了软件开发的竞争力。这样的阵地多几个,我们的软件产业就会产生新的局面。值得注意的是,印度有很好的统计和组合数学基础,这可能也是印度的软件产业近几年有很大发展的原因。 3. 组合数学在国外的状况 纵观全世界软件产业的情况,易见一个奇特的现象:美国处于绝对的垄断地位。造成这种现象的一个根本的原因就是计算机科学在美国的飞速发展。当今计算机科学界的最权威人士很多都是研究组合数学出身的。美国最重要的计算机科学系(MIT,Princeton,Stanford,Harvard,Yale,….)都有第一流的组合数学家。计算机科学通过对软件产业的促进,带来了巨大的效益,这已是不争之事实。组合数学在国外早已成为十分重要的学科,甚至可以说是计算机科学的基础。一些大公司,如IBM,AT&T都有全世界最强的组合研究中心。Microsoft 的Bill Gates近来也在提倡和支持计算机科学的基础研究。例如,Bell实验室的有关线性规划算法的实现,以及有关计算机网络的算法,由于有明显的商业价值,显然是没有对外公开的。美国已经有一种趋势,就是与新的算法有关的软件是可以申请专利的。如果照这种趋势发展,世界各国对组合数学和计算机算法的投入和竞争必然日趋激烈。美国政府也成立了离散数学及理论计算机科学中心DIMACS(与Princeton大学,Rutgers大学,AT&T 联合创办的,设在Rutgers大学),该中心已是组合数学理论计算机科学的重要研究阵地。美国国家数学科学研究所(Mathematical Sciences Research Institute,由陈省身先生创立)在1997年选择了组合数学作为研究专题,组织了为期一年的研究活动。日本的NEC公司还在美国的设立了研究中心,理论计算机科学和组合数学已是他们重要的研究课题,该中心主任R. Tarjan即是组合数学的权威。我所熟悉的美国重要的国家实际室(Los Alamos国家实验室,以造出第一颗原子弹著称于世),从曼哈顿计划以来一直重视应用数学的研究,包括组合数学的研究。我所接触到的有关组合数学的计算机模拟项目经费达三千万美元。不仅如此,该实验室最近还在积极充实组合数学方面的研究实力。美国另外一个重要的国家实验室Sandia国家实验室有一个专门研究组合数学和计算机科学的机构,主要从事组合编码理论和密码学的研究,在美国政府以及国际学术界都具有很高的地位。由于生物学中的DNA的结构和生物现象与组合数学有密切的联系,各国对生物信息学的研究都很重视,这也是组合数学可以发挥作用的一个重要领域。前不久召开的北京香山会议就体现了国家对生物信息学的高度重视。据说IBM也将成立一个生物信息学研究中心。由于DNA就是组合数学中的一个序列结构,美国科学院院士,近代组合数学的奠基人Rota教授预言,生物学中的组合问题将成为组合数学的一个前沿领域。 美国的大学,国家研究机构,工业界,军方和情报部门都有许多组合数学的研究中心,在研究上投入了大量的经费。但他们得到的收益远远超过了他们的投入,更主要的是他们还聚集了组合数学领域全世界最优秀的人才。高层次的软件产品处处用到组合数学,更确切地说就是组合算法。传统的计算机算法可以分为两大类,一类是组合算法,一类是数值算法(包括计算数学和与处理各种信息数据有关的信息学)。依我个人的浅见,近年来计算机算法又多了一类:那就是符号计算算法。吴文俊院士开创的机器证明方法就属于符号计算,引起了国际上的高度评价,被称为吴方法。而国际上还有专门的符号计算杂志。符号算法和吴方法跟代数组合学也有十分密切的联系。组合数学,数值计算(包括计算数学,科学计算,非线性科学,和与处理各种信息数据有关的信息学)和统计学可能是应用最广的数学分支,而组合数学的价值甚至不亚于统计学和数值计算。由于数学机械化近年来的发展和在计算机科学中的重要性,把数学机械化,科学计算和组合数学组合起来,就可以说是中国信息产业的基础。组合数学家H. Wilf和D. Zeilberger1998因为在组合恒等式的机械化证明方面的成果,获得1998年美国数学会的Steele奖。 Gian-Carlo Rota教授在他去年不幸逝世之前,还专门向我提出,希望我向中国有关部门和领导人呼吁,组合数学是计算机软件产业的基础,中国最终一定能成为一个软件大国,但是要实现这个目标的一个突破点就是发展组合数学。中国在软件技术上远远落后于美国,而在组合数学上则更是落后于美国和欧洲。如果中国只是想在软件技术上跟着西方走,而不在组合数学上下功夫,那么中国的软件将一直处于落后的状态。他特别强调组合数学在计算机科学中的作用,以及在大学计算机系加强组合数学教学和人才培养。 最近Thomson Science公司创刊的一份电子刊物《离散数学和理论计算机科学》即是一个很好的说明。它的内容涉及离散数学和计算机科学的众多方面。由于计算机软件的促进和需求,组合数学已成为一门既广博又深奥的学科,需要很深的数学基础,逐渐成为了数学的主流分支。本世纪公认的伟大数学家盖尔芳德预言组合数学和几何学将是下一世纪数学研究的前沿阵地。这一观点不仅得到国际数学界的赞同,也得到了中国数学界的赞同和响应。 加拿大在Montreal成立了试验数学研究中心,他们的思路可能和吴文俊院士的数学机械化研究中心的发展思路类似,使数学机械化,算法化,不仅使数学为计算机科学服务,同时也使计算机为数学研究服务。吴文俊院士指出,中国传统数学中本身就有浓厚的算法思想。 今后的计算机要向更加智能化的方向发展,其出路仍然是数学的算法,和数学的机械化。另外的一个有说服力的现象是,组合数学家总是可以在大学的计算机系或者在计算机公司找到很好的工作,一个优秀的组合数学家自然就是一个优秀的计算机科学家。相反,美国所有大学计算机系都有组合数学的课程。 除上述以外,欧洲也在积极发展组合数学,英国、法国、德国、荷兰、丹麦、奥地利、瑞典、意大利、西班牙等国家都建立了各种形式的组合数学研究中心。近几年,南美国家也在积极推动组合数学的研究。澳大利亚,新西兰也组建了很强的组合数学研究机构。值得一提的是亚洲的发达国家也十分重视组合数学的研究。日本有组合数学研究中心,并且从美国引进人才,不仅支持日本国内的研究,还出资支持美国的有关课题的研究,这样使日本的组合数学这几年的发展极为迅速。台湾、香港两地也从美国引进人才,大力发展组合数学。新加坡,韩国,马来西亚也在积极推动组合数学的研究和人才培养。台湾的数学研究中心也正在考虑把组合数学作为重点方向来发展。世界各地对组合数学的如此钟爱显然是有原因的,那就是没有组合数学就没有计算机科学,没有计算机软件。 4. 组合数学花絮 ** 在日常生活中我们常常遇到组合数学的问题。如果你仔细留心一张世界地图,你会发现用一种颜色对一个国家着色,那么一共只需要四种颜色就能保证每两个相邻的国家的颜色不同。这样的着色效果能使每一个国家都能清楚地显示出来。但要证明这个结论确是一个著名的世界难题,最终借助计算机才得以解决,最近人们才发现了一个更简单的证明。 ** 我国古代的河洛图上记载了三阶幻方,即把从一到九这九个数按三行三列的队行排列,使得每行,每列,以及两条对角线上的三个数之和都是一十五。组合数学中有许多象幻方这样精巧的结构。1977年美国旅行者1号、2号宇宙飞船就带上了幻方以作为人类智慧的信号。 ** 当你装一个箱子时,你会发现要使箱子尽可能装满不是一件很容易的事,你往往需要做些调整。从理论上讲,装箱问题是一个很难的组合数学问题,即使用计算机也是不容易解决的。 ** 在中小学的数学游戏中,有这样一个问题,一个船夫要把一只狼,一只羊和一棵白菜运过河。问题是当人不在场时,狼要吃羊,羊要吃白菜,而他的船每趟只能运其中的一个。他怎样才能把三者都运过河呢?这就是一个很典型、很简单的组合数学问题。 ** 我们还会遇到更复杂的调度和安排问题。例如,在生产原子弹的曼哈顿计划中,涉及到很多工序,许多人员的安排,很多元件的生产,怎样安排各种人员的工作,以及各种工序间的衔接,从而使整个工期的时间尽可能短?这些都是组合数学典型例子。 ** 航空调度和航班的设定也是组合数学的问题。怎样确定各个航班以满足 不同旅客转机的需要,同时也使得每个机场的航班起落分布合理。此外,在一些航班有延误等特殊情况下,怎样作最合理的调整,这些都是 组合数学的问题。 ** 对于城市的交通管理,交通规划,哪些地方可能是阻塞要地,哪些地方 应该设单行道,立交桥建在哪里最合适,红绿灯怎样设定最合理, 如此等等,全是组合数学的问题。 ** 一个邮递员从邮局出发,要走完他所管辖的街道,他应该怎样选择什么样的路径,这就是著名的"中国邮递员问题",由中国组合数学家管梅谷教授提出,著名组合数学家,J. Edmonds和他的合作者给出了一个解答。 ** 一个通讯网络怎样布局最节省?美国的贝尔实验室和IBM公司都有世界一流的组合数学家在研究这个问题,这个问题直接关系到巨大的经济利益。 ** 据说,假日饭店的管理中,也严格规定了有关的工序,如清洁工的第一步是换什么,清洗什么,第二步又做什么,总之,他进出房间的次数应该最少。既然,这样一个简单的工作都需要讲究工序,那么一个复杂的工程就更不用说了。 ** 库房和运输的管理也是典型的组合数学问题。怎样安排运输使得库房充分发挥作用,进一步来说,货物放在什么地方最便于存取(如存储时间短的应该放在容易存取的地方)。 ** 我们知道,用形状相同的方型砖块可以把一个地面铺满(不考虑边缘的情况),但是如果用不同形状,而又非方型的砖块来铺一个地面,能否铺满呢?这不仅是一个与实际相关的问题,也涉及到很深的组合数学问题。 ** 组合数学中有一个著名问题:是否存在稳定婚姻的问题。假如能找到两对夫妇(如张(男)--李(女)和赵(男)--王(女)),如果张(男)更喜欢王(女),而王(女)也更喜欢张(男),那么这样就可能有潜在的不稳定性。组合数学的方法可以找到一种婚姻的安排方法,使得没有上述的不稳定情况出现(当然这只是理论上的结论)。这种组合数学的方法却有 一个实际的用途:美国的医院在确定录取住院医生时,他们将考虑申请者的志愿的先后次序,同时也给申请排序。按这样的 次序考虑出的总的方案将没有医院和申请者两者同时后悔的情况。 实际上,高考学生的最后录取方案也可以用这种方法。 ** 组合数学还可用于金融分析,投资方案的确定,怎样找出好的投资组合以降低投资风险。南开大学组合数学研究中心开发出了"金沙股市风险分析系统"现已投放市场,为短线投资者提供了有效的风险防范工具。 总之,组合数学无处不在,它的主要应用就是在各种复杂关系中找出最优的方案。所以组合数学完全可以看成是一门量化的关系学,一门量化了的运筹学,一门量化了的管理学。 胡锦涛同志在1998年接见"五四"青年奖章时发表的讲话中指出,组合数学不同于传统的纯数学的一个分支,它还是一门应用学科,一门交叉学科。他希望中国的组合数学研究能够为国家的经济建设服务。 如果21世纪是信息社会的世纪,那么21世纪也必将是组合数学大有可为的世纪。

学术堂整理了一篇3000字的计算机论文范文,供大家参考:

范文题目:关于新工程教育计算机专业离散数学实验教学研究

摘要: 立足新工科对计算机类专业应用实践能力培养的要求,分析了目前离散数学教学存在的关键问题,指明了开展离散数学实验教学的必要性。在此基础上,介绍了实验教学内容的设计思路和设计原则,给出了相应的实验项目,并阐述了实验教学的实施过程和教学效果。

关键词:新工科教育;离散数学;计算机专业;实验教学

引言

新工科教育是以新理念、新模式培养具有可持续竞争力的创新型卓越工程科技人才,既重视前沿知识和交叉知识体系的构建,又强调实践创新创业能力的培养。计算机类是新工科体系中的一个庞大专业类,按照新工科教育的要求,计算机类专业的学生应该有很好的逻辑推理能力和实践创新能力,具有较好的数学基础和数学知识的应用能力。作为计算机类专业的核心基础课,离散数学的教学目标在于培养学生逻辑思维、计算思维能力以及分析问题和解决问题的能力。但长期以来“定义-定理-证明”这种纯数学的教学模式,导致学生意识不到该课程的重要性,从而缺乏学习兴趣,严重影响学生实践能力的培养。因此,打破原有的教学模式,结合计算机学科的应用背景,通过开展实验教学来加深学生对于离散数学知识的深度理解是实现离散数学教学目标的重要手段。

1.实验项目设计

围绕巩固课堂教学知识,培养学生实践创新能力两个目标,遵循实用性和可行性原则,设计了基础性、应用性、研究性和创新性四个层次的实验项目。

(1) 基础性实验

针对离散数学的一些基本问题,如基本的定义、性质、计算方法等设计了7个基础性实验项目,如表1所示。这类实验要求学生利用所学基础知识,完成算法设计并编写程序。通过实验将抽象的离散数学知识与编程结合起来,能激发学生学习离散数学的积极性,提高教学效率,进而培养学生的编程实践能力。

(2) 应用性实验

应用性实验是围绕离散数学主要知识单元在计算机学科领域的应用来设计实验,如表2所示。设计这类实验时充分考虑了学生掌握知识的情况,按照相关知识点的应用方法给出了每个实验的步骤。学生甚至不需要完成全部实验步骤即可达到实验效果。例如,在“等价关系的应用”实验中,按照基于等价类测试用例的设计方法给出了实验步骤,对基础较差的学生只需做完第三步即可达到“巩固等价关系、等价类、划分等相关知识,了解等价关系在软件测试中的应用,培养数学知识的应用能力。”的实验目的。

(3) 研究性实验研究性实验和应用性实验一样

也是围绕离散数学主要知识单元在计算机科学领域中的应用来设计实验,不同之处在于,研究性实验的实验步骤中增加了一些需要学生进一步探讨的问题。这类实验项目一方面为了使学生进一步了解离散数学的重要性,另一方面为了加强学生的创新意识与创新思维,提高计算机专业学生的数学素质和能力。表 3 给出了研究性试验项目。

(4) 创新性实验

在实际教学中还设计了多个难度较高的创新性实验题目,例如,基于prolog语言的简单动物识别

系统、基于最短路径的公交线路查询系统、简单文本信息检索系统的实现等,完成该类实验需要花费较长的时间,用到更多的知识。通过这些实验不仅有利于培养学生分析问题、解决问题的能力和创新设计能力,也有利于培养学生独立思考、敢于创新的能力。

3.实验教学模式的构建

通过实验教学环节无疑可以激发学生对课程的兴趣,提高课程教学效率,培养学生的实践创新能力。但是,近年来,为了突出应用性人才培养,很多地方本科院校对离散数学等基础理论课的课时进行了压缩,加之地方本科院校学生基础较差,使得离散数学课时严重不足,不可能留出足够的实验教学时间。针对这种情况,采用多维度、多层次的教学模式进行离散数学实验教学。

(1) 将实验项目引入课堂教学

在离散数学的教学过程中,将能反映在计算机科学领域典型应用的实验项目引入到课堂教学中,引导学生应用所学知识分析问题、解决问题。例如在讲授主析取范式时,引入加法器、表决器的设计,并用multisim进行仿真演示,让学生理解数理逻辑在计算机硬件设计中的作用。又如讲谓词逻辑推理时,引入前一届学生用Prolog完成的“小型动物识别系统”作为演示实验。这些应用实例能够让学生体会数理逻辑在计算机科学领域的应用价值,不仅激发学生的学习兴趣,提高课堂教学效率,也锻炼了学生的逻辑思维,培养了学生的系统设计能力。

(2) 改变课后作业形式,在课后作业中增加上机实验题目

由于课时有限,将实验内容以课后作业的形式布置下去,让学生在课余时间完成实验任务。例如讲完数理逻辑内容后,布置作业: 编写 C语言程序,实现如下功能: 给定两个命题变元 P、Q,给它们赋予一定的真值,并计算P、P∧Q、P∨Q的真值。通过完成,使学生掌握命题联结词的定义和真值的确定方法,了解逻辑运算在计算机中的实现方法。又如,把“偏序关系的应用”实验作为“二元关系”这一章的课后作业,给定某专业开设的课程以及课程之间的先后关系,要求学生画出课程关系的哈斯图,安排该专业课程开设顺序,并编写程序实现拓扑排序算法。通过该实验学生不仅巩固了偏序关系、哈斯图等知识,而且了解到偏序关系在计算机程序设计算法中的应用和实现方法。

(3) 布置阅读材料

在教学中,通常选取典型应用和相关的背景知识作为课前或课后阅读材料,通过课堂提问抽查学生的阅读情况。这样,不仅使学生预习或复习了课程内容,同时也使他们对相关知识点在计算机学科领域的应用有了一定的了解。例如,在讲解等价关系后,将“基于等价类的软件测试用例设计方法”作为课后阅读材料; 在讲解图的基本概念之前,将“图在网络爬虫技术中的应用”作为课前阅读材料; 货郎担问题和中国邮路问题作为特殊图的课后阅读材料。通过这些阅读材料极大地调动学生学习的积极性,取得了非常好的教学效果。

(4) 设置开放性实验项目

在离散数学教学中,通常选择一两个创新性实验项目作为课外开放性实验,供学有余力的学生学习并完成,图1给出了学生完成的“基于最短路径公交查询系统”界面图。同时,又将学生完成的实验系统用于日后的课堂教学演示,取得了比较好的反响。

(5) 利用网络教学平台

为了拓展学生学习的空间和时间,建立了离散数学学习网站,学习网站主要包括资源下载、在线视频、在线测试、知识拓展和站内论坛五个部分模块,其中知识拓展模块包含背景知识、应用案例和实验教学三部分内容。通过学习网站,学生不仅可以了解离散数学各知识点的典型应用,还可以根据自己的兴趣选择并完成一些实验项目。在教学实践中,规定学生至少完成1-2个应用性实验项目并纳入期中或平时考试成绩中,从而激发学生的学习兴趣。

4.结束语

针对新工科教育对计算机类专业实践创新能力的要求,在离散数学教学实践中进行了多方位、多层次的实验教学,使学生了解到离散数学的重要

性,激发了学生的学习兴趣,提高了学生程序设计能力和创新能力,取得了较好的教学效果。教学团队将进一步挖掘离散数学的相关知识点在计算机学科领域的应用,完善离散数学实验教学体系,使学生实践能力和创新思维得以协同培养,适应未来工程需要。

参考文献:

[1]徐晓飞,丁效华.面向可持续竞争力的新工科人才培养模式改革探索[J].中国大学教学,2017(6).

[2]钟登华.新工科建设的内涵与行动[J].高等工程教育研究,2017(3).

[3]蒋宗礼.新工科建设背景下的计算机类专业改革养[J].中国大学教学,2018( 11) .

[4]The Joint IEEE Computer Society/ACM Task Force onComputing Curricula Computing Curricula 2001 ComputerScience[DB / OL]. http:/ / WWW. acm. org / education /curric_vols / cc2001. pdf,2001.

[5]ACM/IEEE - CS Joint Task Force on Computing Curricula.2013. Computer Science Curricula 2013[DB / OL]. ACMPress and IEEE Computer Society Press. DOI: http: / / dx.doi. org /10. 1145 /2534860.

[6]中国计算机科学与技术学科教程2002研究组.中国计算机科学与技术学科教程2002[M].北京: 清华大学出版社,2002.

[7]张剑妹,李艳玲,吴海霞.结合计算机应用的离散数学教学研究[J].数学学习与研究,2014(1) .

[8]莫愿斌.凸显计算机专业特色的离散数学教学研究与实践[J].计算机教育,2010(14)

关于【组合数学】的论文 生活中矩阵的应用摘要:矩阵作为一种重要的工具,在生活的方方面面都存在应用。比如科学地选彩票号码,图形的变换处理,控制监控系统都存在了矩阵的痕迹。矩阵在各个领域的应用为我们展示了矩阵的广泛实用性。矩阵实现了对组合的优化,对质量的管理优化,会变得越来越重要。关键词:矩阵 应用 优化 一.矩阵的概念在开始讨论矩阵应用前,先了解一下矩阵及相关的一些概念。在数学上,矩阵是指纵横排列的二维数据表格,最早来自于方程组的系数及常数所构成的方阵,这一概念由19世纪英国数学家凯利首先提出。一些矩阵在农业,经济,通信等领域都存在许多特别的应用。二.矩阵的特别的应用 1.矩阵应用在选彩票号码一些彩民由于未了解“旋转矩阵”的作用,都采取旧式的复式投注方式(即完全复式),完完整整地拿去打彩,一些对复式投注进行深入研究的彩民发现进行复式投注浪费了不少成本。据研究者发现约有三分之一号码组合,实际上是不可能中奖或极难中奖的。据说在美国彩票史上,Gail Howard运用一种叫做“旋转矩阵”投注选号法,奇迹般地中出了74个大奖。这种“旋转矩阵”法,是一种基于“旋转矩阵”数学原理构造的选号法,其核心是:以极低的成本实现复式投注的效果。那么如何以极低的成本实现复式投注的最佳效果呢?这是由“旋转矩阵”法优点决定的。实际上,旋转矩阵是教你如何科学地组合号码。与完全复式投注组合号码的方法相比,旋转矩阵有着投入低、中奖保证高的优点。举个例子讲,10个号码的中6保5型的旋转矩阵的含义就是,你选择了10个号码,如果其中包含了6个中奖号码,那么运用该矩阵提供的14注号码,你至少有一注中对5个号码的奖。本矩阵只要投入28元,而相应的复式投注需要投入420元。大家知道,用10个号码,只购买其中的14注,如果你胡乱组合的话,即使这10个号码中包含有6个中奖号码,你也很可能只中得一些小奖。而运用旋转矩阵的话,就可以得到一个对5个号码的奖的最低中奖保证。旋转矩阵是世界上著名的彩票专家、澳大利亚数学家底特罗夫研究的,它可以帮助您锁定喜爱的号码,提高中奖的机会。首先您要先选一些号码,然后,运用某一种旋转矩阵,将你挑选的数字填入相应位置。如果您选择的数字中有一些与开奖号码一样,您将一定会中一定奖级的奖。当然运用这种旋转矩阵,可以最小的成本获得最大的收益,且远远小于复式投注的成本。 (1)旋转矩阵的原理在数学上涉及到的是一种组合设计:覆盖设计。而覆盖设计,填装设计,斯坦纳系,t-设计都是离散数学中的组合优化问题。2.矩阵在透视投影应用三维计算机图形学中另外一种重要的变换是透视投影。与平行投影沿着平行线将物体投影到图像平面上不同,透视投影按照从投影中心这一点发出的直线将物体投影到图像平面。这就意味着距离投影中心越远投影越小,距离越近投影越大。 最简单的透视投影将投影中心作为坐标原点,z = 1 作为图像平面,这样投影变换为 x' = x / z; y' = y / z,用齐次坐标表示为:这个乘法的计算结果是 (xc,yc,zc,wc) = (x,y,z,z)。在进行乘法计算之后,通常齐次元素 wc 并不为 1,所以为了映射回真实平面需要进行齐次除法,即每个元素都除以 wc: 更加复杂的透视投影可以是与旋转、缩放、平移、切变等组合在一起对图像进行变换。比如给定n个点,m个操作,构造O(m+n)的算法输出m个操作后各点的位置。操作有平移、缩放、翻转和旋转 这里的操作是对所有点同时进行的。其中翻转是以坐标轴为对称轴进行翻转(两种情况),旋转则以原点为中心。如果对每个点分别进行模拟,那么m个操作总共耗时O(mn)。利用矩阵乘法可以在O(m)的时间里把所有操作合并为一个矩阵,然后每个点与该矩阵相乘即可直接得出最终该点的位置,总共耗时O(m+n)。假设初始时某个点的坐标为x和y,下面5个矩阵可以分别对其进行平移、旋转、翻转和旋转操作。预先把所有m个操作所对应的矩阵全部乘起来,再乘以(x,y,1),即可一步得出最终点的位置。3.矩阵在质量问题中的运用 矩阵是从多维问题的事件中,找出成对的因素,排列成矩阵图,然后根据矩阵图来分析问题,确定关键点的方法,它是一种通过多因素综合思考,探索问题的好方法。 在复杂的质量问题中,往往存在许多成对的质量因素.将这些成对因素找出来,分别排列成行和列,其交点就是其相互关联的程度,在此基础上再找出存在的问题及问题的形态,从而找到解决问题的思路。 矩阵图的形式:A为某一个因素群,a1、a2、a3、a4、…是属于A这个因素群的具体因素,将它们排列成行;B为另一个因素群,b1、b2、b3、b4、…为属于B这个因素群的具体因素,将它们排列成列;行和列的交点表示A和B各因素之间的关系。按照交点上行和列因素是否相关联及其关联程度的大小,可以从中得到解决问题的启示。 质量管理中所使用的矩阵图,其成对因素往往是要着重分析的质量问题的两个侧面,如生产过程中出现了不合格品时,着重需要分析不合格的现象和不合格的原因之间的关系,为此,需要把所有缺陷形式和造成这些缺陷的原因都罗列出来,逐一分析具体现象与具体原因之间的关系,这些具体现象和具体原因分别构成矩阵图中的行元素和列元素。 矩阵图法的用途十分广泛.在质量管理中,常用矩阵图法解决以下问题: ①把系列产品的硬件功能和软件功能相对应,从中找出研制新产品或改进老产品的切入点,进行多变量分析、研究从何处入手以及以什么方式收集数据 。②明确应保证产品质量特性及与管理机构或保证部门的关系,使质量保证体制更可靠; ③当生产工序中存在多种不良现象,且它们具有若干个共同的原因时,搞清这些不良现象及其产生原因的相互关系,进而把这些不良现象一举消除。 ④明确产品的质量特性与试验测定仪器、试验测定项目之间的关系,力求强化质量评价体制或使之提高效率;(2)三,对矩阵应用的感悟 上述的矩阵应用说明了矩阵不仅仅是解方程组的工具,而且它是一种有用的工具,不仅仅在数学领域,还在经济,计算机领域等领域。相信在不久的未来,矩阵会变得越来越重要。矩阵的作用会越来越多地让人们发现。在线性代数数学书中,方程组可以转换为矩阵,再通过矩阵来简单,快速地解决问题。在质量管理问题上,它采用矩阵图来找出切入点,了解原因,使质量效率提高。 相信在不久的未来,矩阵对于优化问题的应用会越来越广泛,触及面会越来越多。矩阵是生活变得更简单,方便。参考文献:[1] 《科学通报》蒋昌俊,吴哲辉..,1989. [2] 求解约束矩阵方程及其最佳逼近的迭代法的研究彭亚新.湖南大学,2005.

河南利技大学考研离散数学准备资料可以从以下几方面入手:1.参考书:《离散数学及其应用》、《离散数学教程》、《离散数学及应用》等书籍。2.课程讲义:获取对应的离散数学课程讲义,仔细阅读,掌握其中的基础概念和运算方法。3.试题:可以查阅教材中出现的练习题,熟悉题型,不断练习,从而掌握离散数学的基本技能。4.网络资料:可以搜索网络上的资料,了解离散数学的最新动态,充实自身的知识储备。

离散数学论文结束语

大学数学是大学生必修的课程之一,由于大一是过渡期,在大一开设数学这门课程对于教学质量有着重要的作用。下面是我为大家整理的大一数学论文,供大家参考。大一数学论文 范文 篇一:《数学学科德育 教育 渗透思考》 摘要:结合数学学科的特点教师对学生进行道德教育,数学教师要善于在学科教学中渗透德育教育,培养学生尊重事实的科学态度,正确的学习目的,理性思考的精神和科学的态度,培养学生辩证唯物主义世界观,增强学生喜爱数学的兴趣,培养学生高尚的人格特征和思想道德修养。 关键词:数学学科;渗透;德育教育 我国教育部印发《中等职业学校德育大纲》指出,学校要充分发挥主导作用,与家庭、社会密切配合,拓宽德育途径,实现全员、全程、全方位育人。上至教育部下至学校都越来越意识到在学生中进行德育教育的重要性,那么在学校怎么能更好地开展德育教育呢?学科德育就是进行德育教育的重要阵地之一。现今各个国家都把德育教育作为一项非常重要的工作,并且都在积极探讨在学科教学中如何渗透德育教育。因此,我们职业学校的每个教师都应该努力探索德育教育的本质和特点,充分发挥德育的主 渠道 作用。数学学科作为学校学科教育的重要组成部分,有其独特的风格和特点,也应承担着德育教育的任务。第一,数学是一门研究客观物质世界的数量关系及空间形式科学,具有严密的符号体系、独特的公式结构和图像语言,其显著的特点有:高度的抽象性、严密的逻辑性、应用的广泛性和内涵的辩证性。第二,数学学科学习的目的是掌握一定的数学基础知识,形成一定的数学素养,是对学生一生受用的 方法 和能力。这些数学能力包括:空间想象能力、 逻辑思维 能力、基础运算能力和数学建模能力等。第三,数学课作为职业学校 文化 基础课之一,所用资源少,易开展教学活动。结合数学学科的特点,笔者认为可以从以下几点进行德育教育。 1根据中职学校数学学科的特点和数学课的现状,教师的人格 品行和良好的师生关系是进行德育教育的关键数学学科的特点给人的感觉是枯燥、无味,对于职业学校的学生更是如此。德育要讲究艺术性,要充分发挥情感的感染作用。作为一名数学教师在数学课上每位教师尊重和顺应人性、同学的个性,保护同学的尊严,发掘和表扬学生的内在情感,调动他们积极的心理因素。教师动之以情,才能激发学子之情,使之乐其所学。学生感受到教师对他们的关心,从心底上认可这个教师,从而真正建立起新型的科学的师生关系。 2结合数学教材内容,向学生进行爱祖国和爱科学的教育 在用到正负数及运算法则时,教师给学生说明或是让学生自己上网查找相关内容,可以知道在世界闻名的数学典籍《九章算术》中,就已经提出了相关概念,使得代数学早于西方于公元前2000年就已经产生了;著名的勾股定理、“杨辉三角”、圆周率的计算以及著名数学家陈景润的“陈氏定理”、华罗庚发起和推广的优选法等,我国科学的成就令世界各地的每个炎黄子孙自豪,可以激发起学生强烈的爱科学、爱国情和民族自豪感,同时激励学生学习的进取向上精神。 3培养正确的学习动机和目的,提高学生学习数学兴趣,增强社会责任感 我们学习数学的最终目的是能用数学,因而不管是教师还是学生都应该知道数学在我们生活中或是我们所学专业课上的应用。例如我们在学习圆柱时,就可以和汽车专业所学的发动机上的气缸联系起来讲解表面积和体积相关知识;我们在学习分段函数时,就可以和与我们生活相关的水费、电费、出租车收费联系起来等。 4结合数学学科的特点,培养学生理智的思考、按客观规律办事的良好的人格特征 数学是一门自然科学,科学的问题来不得半点虚假,数学语言的精确性使得数学中的结论不会模棱两可。伽利略:世界的奥秘是本巨大的书,而这本书是用数学语言写成的。越来越多的人认为数学语言是各种科学的通用语言,可见数学语言的精确性。在数学的观点下,一加一只能等于2不可能是其他结果,但在其他的学科就不一定了。不管是数学语言还是通过数学推理得到的结果都不允许有任何弄虚作假的行为存在。我们在日常教学中,应该结合数学的思考方式与 学习方法 ,培养学生事实求是,有根有据,勇于改正错误的科学态度和自觉按客观规律办事习惯。 5结合数学学科的特点,对学生进行辩证唯物主义世界观的教育 数学本身的发生和发展过程中就充满着唯物辩证法。恩格斯曾把数学作为“辩证的辅助工具和表现方式”。数学从实践中发现了问题,然后分析已知存在的问题,找出它们间的关系,利用数学知识, 总结 出来的规律,然后回到实践中检验和运用,这正是体现了辩证唯物主义中从感性—理性—实践的认识论观点。 6挖掘数学教材中的美育素材,通过美学教育,培养学生高尚情操和思想道德修养 我国著名数学家华罗庚说:“数学本身也有无穷的美妙。”数学中的符号、图形、数字排列等都蕴藏着丰富的美育因素。可以告诉学生,圆就代表我们的班集体或者是我们的国家,每个同学就像圆上一个个离散的点,集体的形象与荣誉与我们每个人都是息息相关的。在学习集合的交、并、补的运算时,除了说明符号的简洁、和谐美的同时也可灌输团体意识。在学习直角坐标系时,就可以给学生灌输我们做人也应该方方正正坚持自己的原则。学习点的时候,每个点都是由一对有序的实数组成的,可以把坐标看成是在社会中影响我们自身发展的先天因素和后天因素,而后天因素主要决定了我们未来的发展,从而鼓励每个学生从现在开始努力学习、认真做人、锻炼各种能力,一定会有美好的将来。在教学过程中引导学生发现美、欣赏美、讨论美,逐步培养学生的审美意识审美情趣,培养学生高尚情操和思想道德修养,有助于学生全面发展。 综上所述,结合数学学科的特点对学生进行德育教育是可行的。在数学学科教学中,虽然不能像语文、政治那样直接、系统地对学生进行德育教育,但只要我们善于挖掘教材中的德育因素,在教学过程中实事求是,联系实际,善于引导,就能行之有效地进行德育渗透,使学生学习知识的同时各方面的素质不断提高。 参考文献: [1]中等数学教学中的德育新论,网络. [2]高等数学教学中的德育渗透[J].吉林省经济管理干部学院学报. 大一数学论文范文篇二:《浅谈数学教学德育教育的渗透》 摘要:德育在学校教育中占有举足轻重的地位,是方向、是灵魂,位居各育之首。数学作为基础教育的一门重要学科,在培养学生德育方面,应发挥重要的作用。因此,教师应在数学教学中努力寻找德育点,有机渗透德育,把教书与育人紧密地结合在一起。 关键词:小学数学;数学教学;德育教育; 一、引言 有句话说“百年教育、德育为先”,可见学校教育将德育教育放在相当重要的位置。如今,随着社会的快速进步和科学技术的迅猛发展,小学数学德育教育如何从传统的教育模式中挣脱出来,注入完善的、科学性的内涵,形成一套行之有效的新教育模式。数学虽作为一门理性学科,却蕴含着丰富德育内容。可以根据这门学科的特点,进行德育渗透的教育,使得小学生不仅学到书本的知识,还懂得做人的道理! 二、将德育教育渗透到数学学科教材中 根据数学这门学科的特点,以及小学生的接受能力,注入德育教育的、形象生动的图画和有说服力的内容。做到有机结合,自然渗透的效果。众所周知,小学阶段是 儿童 、青少年身心发展的关键时期,对于刚刚步入学校的低年级学生来说,是认知社会和接受新鲜事物的萌芽期,所以小学数学德育教育工作从此刻开始,进行渗透德育教育。小学数学德育教育如细雨,润物无声,数学学科是沙土。在数学教学过程中,教师无时无处不渗透着细雨之水。而小学生犹如长在沙土里的嫩草,吸吮着沙土中的水分。因此,小学数学中德育渗透,就是将德育本身的因素与数学学科所具有的因素有机地结合起来,使德育内容在潜移默化中逐步形成学生个体内在的思想品德。而数学教材是教学工作主要使用的教学工具,也是授课的依据,更是小学生获取知识与理解做人的来源,由此,编制科学有效的数学教材为课堂授课提供有益的方式。在人们以往的观念中,德育教育应该只是和语文、思想品德等学科有关,以目前的教育内涵来看,这种观念是落后的,也是十足错误的。教育学家赫尔巴特曾有教育 名言 :“教学如果没有进行道德教育,只是一种没有目的的手段,道德教育如果没有教学,就是一种失去了手段的目的”。由此可见,将德育教育渗透到数学教学课堂中来是最为重要的,也是最具有原则性的教育。 三、将德育教育渗透到数学教学课堂中 教师在课堂上教学时,充分挖掘数学教材中的德育因素与知识,渗透德育教育。诸如小学数学教材中的例题、习题、注释、解析中,融入不少进行德育的、形象生动的图画,以及由说服力的数学数据或知识点。将德育因素融合数学知识进行传授、能力培养和思想品德教育为一体的综合性教学模式。把显性的教学问题和隐性的德育教育有机地结合起来,从而实现数学的育人功能。无论是在备课中,还是在课堂上,教师要善于找准在数学教学中德育渗透的切入点,以提高课堂教学实效。可以结合教学内容进行德育渗透中华民族悠久灿烂的数学史源远流长,博大精深。也可以运用现代信息技术、多媒体教学手段,将要授课的内容加入生动的德育元素。重要的是在小学数学教学中,要充分联系教材,联系小学生生活实际,善于将渗透德育教育延申到课堂内外。 四、课堂内外相结合,通过数学活动进行渗透德育教育 在小学数学教学的过程中,德育渗透不能只局限在课堂上,还应该与课外学习有机结合,教师可以开展一些课外数学活动渗透德育。要增强数学课堂的趣味性与实践性,营造一种轻松愉快的情境,注重数学知识与现实生活的联系,使学生意识到数学并不是枯燥无味的,数学离不开生活,生活中处处有数学,从而让学生乐此不疲地致力于学习内容。引导学生学会学以致用将知识回归生活,做到学以致用是数学学习的本质归宿,学生要有将数学知识运用到生活中的意识。如在学习乘法估算后,让学生回家后调查每个人一天的用水量,回学校后估算全班60人一天的用水量,再估算全校三千多人的用水量。在巩固新知的同时让学生体会到了水资源的宝贵,珍惜水资源、节约水资源的思想就会在小学生们小小的心灵扎根。又如,在学生学过统计后,让学生回家后调查自己家庭每天使用垃圾袋的数量,然后通过计算一个班的家庭,一个星期,一个月,一年使用垃圾袋的数量,结合我校附近的垃圾场影响环境的现象,最终总结出垃圾袋对环境造成的影响,这样让学生既可以掌握有关数学知识,又对他们进行了环保教育。再比如,培养小学生动手动脑的能力时,督促小学生手、口、脑、眼、耳多种感官并用,这样做,不但能扩大小学生的信息源,创设良好的思维情境。也能满足小学生好动、好奇的特性。例如:教学“长方体认识”,可以先出示学生日常生活中熟悉的长方体实物,如:火柴盒、粉笔盒、砖头等,这些物体都是长方体。然后让学生自己列举长方体实物(书柜、木箱、厚书、铅笔盒等),通过感知实物,学生对什么样的物体是长方体获得了初步的感性认识,从而感受美、享受美。 五、结合数学学科特点,通过德育渗透,培养良好习惯 数学是一门严谨的学科,科学性与逻辑性很强,但可以让小学生在学好数学的同时从中养成严格、认真的好习惯。显而易见,小学生计算粗心,错误率高。而提高计算能力就一定要养成仔细计算的习惯。在平时的教学训练中,教师要时时提醒学生不要抄错数,看清是什么运算,加减时注意进位和退位等等,在这里就不一一举例了。简而言之,只要教师善于挖掘、善于捕捉,时时注意、注重在数学课堂中对学生的德育渗透,数学学科的的德育教育一定会取得很好的成效,最终达到德育、智育的双重教育目的。 参考文献: [1]齐建华.数学教育学[M].郑州大学出版社.2006.07 [2]管建福.小学数学教学艺术[M]2000 大一数学论文范文篇三:《浅谈大学数学素质拓展课程的教学实践》 0 引言 数学不仅是一种科学的语言和工具,是众多科学与技术必备的基础,而且是一门博大精深的科学,更是一种先进的文化,在人类认识世界和改造世界的过程中一直发挥着重要的作用与影响。建设创新型国家的战略构想,需要大批拔尖创新人才,作为大学中重要基础课的大学数学课程,对此负有重要的责任。数学中许多新概念、新方法的引入和发展,众多数学问题和相关实际问题的解决,十分有利于大学生创新精神、 创新思维 和创新能力的培养[1]。 在大学数学课程学习的过程中,培养学生应用数学的意识和兴趣,逐步提高学生的应用能力是大学数学课程教学改革的重要方向。当前大学数学课的教学,大多仍是以教材为中心,以课堂为中心,实践教学较少,课外科技活动的配合注意不够。这些也都是影响学生数学应用意识和应用能力培养的重要因素,应当有所改革。多年来的教学改革实践表明:开设数学拓展课程与数学选修课程,是激发学生学习数学积极性,培养学生数学应用能力和创新能力的一条行之有效的重要途径。 1 开设数学选修课程的必要性 数学的教学不能仅仅是看出知识的传授,而应该使学生在学习知识、培养能力和提高素质诸方面都得到教益,兼顾数学文化和教学素养方面的要求。 大学非数学专业数学课程分为必修和选修课程,一般工科的本科学生高等数学,线性代数,概率论与数理统计为必修课程。而选修课程则由学生依据自身发展需求和学习时间规划,自主选择。选修型课程以拓展知识结构。数学类选修课的目的是引导学生广泛涉猎不同学科领域[2],拓宽知识面,学习不同学科的思想和方法,进一步打通专业,拓宽知识结构,强化素质,自觉养成主动学习、独立思考的习惯,不断提高自我建构知识、能力和素质的本领,培养探索和创新精神。全面提升素养。促进学生个性的发展和学校办学特色的形成,是一种体现不同基础要求、具有一定开放性的课程。 大学数学教育应以培养学生数学能力和提高学生的数学素养为目标。当前,数学课程教学内容与社会的发展不适应问题主要表现在课程教学内容未能及时反映数学发展的最新成果,依然固守形式演绎体系而忽略了非常重要但非演绎的、非严格的重要内容;局限于于课本,只讲课本中呈现的内容而忽略了课程内容的来源与出处的讲解[3]。在教学上,大学数学教学方式单一,越来越形式化,过于注重概念、定理的推导和证明、计算以及解题的技巧,使得数学远离我们周围的世界,远离我们的日常生活。过分强调数学的逻辑性和严密性,导致学生觉得数学过于抽象无法理解[4]。在教学过程中采用传统陈旧的教育理念:重理论轻计算、重技巧轻思想、重推理轻应用。 在具体教学过程中,多数教师仍局限于传授知识本身,特别是局限于解题方法与技巧的训练,而对于如何在知识载体上培养学生的数学思想、 理性思维 和审美情操,提高他们的数学素养,却重视不够。应积极引导教师运用自己的科研能力去深入钻研教学内容,改进 教学方法 ,在传授数学知识的过程中落实数学在培养学生能力和素质方面的作用。应全面落实“知识传授,能力培养,素质提高”三位一体的教育理念[5]。 数学上的不少概念、方法或理论,有些本身就来自其在现实生产和生活中的原型,并且和人文、管理、工程技术有着密不可分的联系,发现并指出这些的联系,对激发学生学习数学的兴趣,增强他们对数学的理解,是大有益处的。当然这也要求教师广泛的涉猎不同的学科领域,对大学数学教师无疑是一个新的挑战。 2 已开设的拓展课程及模块建设 在上述思想指引下,同时为了适应社会的更高要求和不同层次学生的自身需求,结合我校的实际情况,学校出台相应课程改革 措施 ,主要开展了两个方面的建设工作: 2.1 拓展课程的模块建设:在现有的工科数学必修课《高等数学》、《线性代数》、《概率论与数理统计》等课程的基础上,开设了《数学建模》、《工程数学中的理论与方法》、《数学文化》、《投资理财常识》等课程,建立并完善了各门课程的课程简介、教学大纲、教学进度及推荐参考书目等,并结合多媒体的教学手段,搭建并完成了《数学建模》课程的网络教学平台,已对全校师生开放。现正在进行《数学文化》、《工程数学中的理论与方法》两门课程的网络平台建设工作。所开设的《工程数学中的理论与方法》,拟开设的《工程问题中的数学计算-MATLAB》主要针对我校的理、工、农、医专业的学生;《投资理财常识》及拟开设的《运筹学》主要针对我校管经类、质量工程类的学生。 2.2 拓展实践的模块建设:以素质拓展作为目标的课程设置,旨在提高学生应用数学知识解决实际问题的动手能力和创新能力,我们主要加强了以下几个方面的工作: ①以项目管理的方式鼓励学生积极参加各类科技活动:提倡学生积极申报项目,如大创项目等,鼓励学生积极参与教师的各类研究项目中,以科研小组或科技小组的形式,发表小论文、小发明、小制作、小专利等; ②以培养学生创新意识为导向的各类学科竞赛活动:为进一步培养学生利用理论知识来解决实际问题的分析能力和应用能力,积极鼓励学生参加各类学科竞赛,如:大学生数学建模比赛、大学生统计建模比赛、大学生创业设计大赛等; ③以学习的态度鼓励学生参加 社会实践 和社会调查活动。社会是一个丰富的大舞台,只有融入社会这个大舞台,才能不断积累社会 经验 ,不断增长社会实践的活动能力,从而提高自身的社会管理和适应能力,将来能更快和更好的为社会服务。 3 取得的成绩和存在的不足 数学建模课程是以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分析和解决问题的全过程,提高他们分析问题和解决问题的能力,提高他们学习数学的兴趣和应用数学的意识与能力。 工程中的数学理论与方法主要在我校特定的环境下,在学习完工程类数学必修课的基础上,针对高年级学生,加深和延拓数学的理论知识和计算方法,为数学知识要求高的专业(如工程力学专业、通信工程专业等)及准备报 考研 究生的同学提供数学帮助。 数学文化课程在探讨数学文化的起源、收集了众多的数学 故事 和数学家的故事基础上,结合数学思想、数学方法的形成和发展,阐述了数学发展和数学教育中的人文成分,揭示了数学与社会、数学与其他文化的关系。通过该门课程的学习,让学生更进一步了解生活中的数学、数学中的美,学会欣赏数学文化及弘扬数学文化,推动数学教学的进程。 投资理财常识主要向学生介绍股票基金,期货彩票等的基础知识和交易技巧,教学中用到一些基础性的数学知识如差分方程,大数定理等,更多的则是经济、管理人文知识的熏陶,通过学习该课程,学生感觉数学的应用领域广泛,从而进一步激发学生学习数学的积极性。 通过对我校教学情况的初步了解,尤其是针对昆明理工大学数学类拓展课程开设情况的深入调查,发现大多数的学生对课程满意或非常满意。学生感觉最大的收获在于拓展了知识层面,开拓了视野,感觉数学比以前教材中的内容要丰富和有趣的多。但在《数学文化》这类知识性比较强的课程上,学生输入的多,输出的少,不利于学生知识水平的提高。另外,学生对所开设的选修课程知识了解甚少。这表明,学生进行学习所依托的课程知识基础薄弱。通过统计《数学建模》课程学生对课程、教师和自己的期望中了解到,大多数的学生期望通过老师的讲授,能够在课堂上全面了解所学课程知识。只有半数学生希望老师给学生提供自己动手的机会,更多的学生还是习惯于在课堂上扮演倾听的角色,缺乏用数学解决实际问题的意识和能力。最后,担任选修课程的大学数学教师自身的课程水平和教学能力也有待进一步提高。开设大学数学选修课程对广大数学教师也是一个很大的挑战。尤其是在开设的初期,教师除了要改变自己的教学理念和教学方法,还要努力扩大自己的知识面,制定教学大纲,完善教材和教学内容。 4 结束语 大学数学教学是高等教育的一个有机的组成部分,大学数学选修课程是以数学知识与应用技能、学习策略和跨学科运用为主要内容。如何建立和完善行之有效的大学数学提高阶段的课程体系,以满足新时期学生对数学学习的需求以及国家和社会对人才培养的需要,成为当今高校大学数学教学管理部门越来越关注的问题。大学数学选修课程的开设,适应了社会的更高需求,同时也满足了更高层次学生的自身需要。但是,要真正实现课程开设的目的,仍需更多的努力,不断的完善。 首先,急需向各高校教学管理部门、教师,尤其是学生传达课程改革的必要性,提供良好的改革环境和条件。 其次,要用科学的教学理念改革数学选修课程教学实践,完善教学内容,改善教学方法,实施科学的课程评估方式。如“投资理财常识”之类的课程,已不是单纯的数学基础课程,除用到一些基础性的数学知识外,更多的则是经济、管理人文知识,能否将这类课程纳入人文类选修课程,使学社学习知识的同时,获得相应的学分,这是教学管理部门需要解决的问题。 第三,时刻以学生为中心,所开设课程要能够满足学生的需要,能够激发学生的学习兴趣。 第四,教师要进一步提高和完善自己,适应学生的个性要求,改善教学方法,开发学生的主动性和创造性,全面提高学生的综合素质。 最后,针对课程教学中出现的问题,和课程教学效果要能够做到及时调查,不断对课程及教学做出相应调整和改善。大学数学选修课程的开设顺应了时代的要求和学生的需要,只要对之进行不断的完善,必然能够为较高层次的学生开拓出一片新的天地,为他们将来更好地适应社会的需求做好储备。 猜你喜欢: 1. 学习大学数学的心得 2. 数学文化论文3000字 3. 数学大学本科生毕业论文 4. 大学数学科技论文范文 5. 大学数学教育论文范文

试论职业理想与大学学习的关系 --以计算机专业为例摘 要:职业理想是人们在职业上依据社会要求和个人条件,借想象而确立的奋斗目标,即个人渴望达到的职业境界。大学学习会对我们的职业理想产生相当的影响,甚至决定我们将来的职业.职业理想是人们对职业活动和职业成就的超前反映,大学学习则为职业理想奠定一个坚实的基础. 关键词:职业理想、工作、大学、计算机、网络工程、学习一、 先论述职业理想(一)职业理想的特点1、职业理想具有差异性职业是多样性的。一个人选择什么样的职业,与他的思想品德、知识结构、能力水平、兴趣爱好等都很大的关系。政治思想觉悟、道德修养水准以及人生观决定着一个人的职业理想方向。知识结构、能力水平决定着一个人的职业理想追求的层次。个人的兴趣爱好、气质性格等非智力因素以及性别特征、身体状况等生理特征也影响着一个人的职业选择。因此,职业理想具有一定的个体差异性。2、职业理想具有发展性一个人的职业理想的内容会因时因地因事的不同而变化。随着年龄的增长、社会阅历的增强、知识水平的提高,职业理想会由朦胧变得清晰,由幻想变得理智,由波动变得稳定。因此,职业理想具有一定的发展性。孩提时代,想当一名警察,长大后却成了一名教师的事实就说明了这一点3、职业理想具有时代性社会的分工、职业的变化,是影响一个人职业理想的决定因素。生产力发展的水平不同、社会实践的深度和广度的不同,人们的职业追求目标也会不同,因为职业理想,它总是一定的生产方式及其所形成的职业地位、职业声望在一个人头脑中的反映。计算机的诞生,从而演绎出与计算机相关的职业,如计算机工程师、软件工程师、计算机打字员等等职业。不仅要求从业人员有较高的理论知识素养,而且要求有较强的动手能力,属于高技能人才中知识技能型人才。(二) 职业理想的作用1、职业理想的导向作用理想是前进的方向,是心中的目标。人生发展的目标是通过职业理想来确立,并最终通过职业理想来实现。俄国的托尔斯泰曾说过:“理想是指路的明灯,没有理想就没有坚定的方向,就没有生活。”同学们在现阶段的学习生活中也已经深切地感受到,一旦学习目的不明确,学习的热情就会低落,学习的效果就不明显。因此,有了明确的、切合实际的职业理想,再经过努力奋斗,人生发展目标必然会实现2、职业理想的调节作用职业理想在现实生活中具有参照系的作用,它指导并调整着我们的职业活动。当一个人在工作中偏离了理想目标时,职业理想就会发挥纠偏作用,尤其是在实践中遇到困难和阻力时,如果没有职业理想的支撑,人就会心灰意冷、丧失斗志。此外,如果一个人只把自己的追求定位在找过“好工作”上,即便是将来有实现的可能,也不能算是崇高的职业理想,因为,这样的理想一旦实现,他就会不思进取,甚至虚度年华。总之,一个人只有树立正确的职业理想,无论是在顺境或者是在逆境,都会奋发进取,勇往直前。3、职业理想的激励作用职业理想源于现实又高于现实,它比现实更美好。为使美好的未来和宏伟的憧憬变成现实,人们会以坚忍不拔的毅力、顽强的拼搏精神和开拓创新的行动去为之努力奋斗。12岁时,周恩来就发出“为中华之崛起而读书”的誓言,表达了他从小立志振兴中华的伟大志向。同学们,你们现在是学生,你们有什么样的理想啊!我想,我们应该向敬爱的周总理学习,从小立志,树立一个崇高的人生目标,然后,为实现这个目标坚持不懈,奋斗不止,为人民,为国家做出贡献,这样的人生才有意义。二、 再论述大学学习我是一名网络工程专业的学生,该专业属于计算机的一部分。计算机专业一直是全国各大高校的热门专业,发展迅猛.伴随着互联网的发展,计算机专业人才的短缺现象将会越来越严重.在我国,IC人才、网络存储人才、电子商务人才、信息安全人才、游戏技术人才严重短缺;在软件人才层次结构上,水平高的系统分析员和有行业背景的项目策划人员偏少,同时软件蓝领也比较缺乏。我觉得对于网络工程专业的学生来说,学历只是一个敲门砖,有句话说的好,学历不是万能的,没有学历是万万不能的,这句话放在网络工程专业的学生身上最合适,一般企业对于学历都是面试过后再要求拿出学历来的,如果你学历低一点,能力高一点公司也是会要的!我想我们应该更注重技能方面的学习!对于学习编程方面,我了解到好多同学自学完后,知识点都懂了,就是不知道如何穿起来去写项目,而且是写东西不知道如何下手,这就是典型的大学教育方式,学生只会看书,不去理解编程思想!一开始我自己也是这样的情况。后来有同学向我建议多写项目,多到网上找一些实际项目的源代码或教学视频,不要只看不写,重在实践,有可能你觉得你很简单,但是照着抄一遍都有可能运行不起来,有可能是标点的格式不对,我觉得要多动手,多调试程序!对于想找C方面的开发的同学,建议要找实习的公司才能学得出来,C是绝对不能参加培训班的,因为C不是一年两年能培训出来的,不像JAVA,可能JAVA半年就能培训出一个成手的开发人员,而C是不可能的!从上课安排上来说,也不是说一天上七八个小时就是好的,要合理的安排,每天整天上课,你不去练习又怎么能记住,软件开发不是别的东西,听懂就行,你不去写,是肯定不行的!要把讲过的东西吸收,理解才可以,开发学的是思想,不是去单纯的写代码,你去公司是用你的想法去实现客户想要的东西,所以重在理解的基础去去开发,学习编程思想是很重要的!在大学四年得时间里有三年是用于学习课本知识,因此在实际操作方面很容易造成技术薄弱。大学低年级的课程,主要包括公共课和基础课。这些课程的特点是:一是比中学具有更强的理论性和系统性,要求学生提高分析与概括的能力;二是大班上课提问题的机会减少,要记下一些问题自己钻研或课后提问;三是讲课速度较快,教师讲解的顺序与教科书不一定完全一致,内容上有所取舍,也有所补充,着重点也不同。学生听课时要摸清教师的思路,抓住重点、难点,提高记笔记的能力。网络工程专业的学习首先就是要注重计算机语言的学习。这相当于学习一门全新的语言,这门语言和我们平时接触到的计算机有很大差异。一般来说,非计算机专业的人耶不会去接触计算机语言。有的人会觉得计算机语言很奇妙、很生动,学起来劲头十足;反之,也就有人觉得它艰涩、难懂,学起来不知所云,有的甚至放弃直接转专业。对计算机专业兴趣比较浓厚的人大多会自己主动去学习更多的计算机知识和锻炼自己的技术。而不感兴趣的人则会感到无力,只能尽力去完成老师布置的作业。其实,不管怎么样,大学是一个很好的学习环境,里面也有很不错的资源和机会。但是,机会是留给有准备的人,如果没做好准备,很肯能你就和机会擦肩而过了。在学校里面,我们应该抓住每一个可以学习的机会,充分利用学校提供的各种资源。三、 论述职业理想与大学学习的关系大学的学习主要是理论方面的知识。很多人都会觉得枯燥无味,可是它的重要性却是不容忽视的。就业形势日益严峻,我们因该消除盲目心态,明确上大学的目的和自己肩负的责任。我们应该着手设计自己的职业生涯规划书,制定长远目标和阶段性目标及切实可行的措施。首先,我们应该消除盲目心态。明确上大学的目的和自己肩负的任务,着手设计大学职业生涯规划书,制定长远目标和阶段性目标及切实可行的措施。第二,我们要调整学习方法。大学的学习目的、内容、方法都有别于中学,更注重主动性、创造性和广泛性。因此,要及时调整学习方法,变被动为主动,尽快适应大学学习。第三,我们要克服自卑心理。我们要懂得人没有自卑的理由,任何人都有自己的长处和短处,所谓“尺有所长,寸有所短”,要坚信自信会使你取得成功。同时,和自信的人交朋友,你会发现自己也慢慢自信起来。第四,我们要培养自己的独立能力。学会安排自己的生活,管好自己,合理安排经济开支,学会精打细算;培养人际交往能力,建立和谐的人际关系。第五,我们要修养自己的个性品质。通过参加各种有意义的活动,树立远大的理想,确立正确的人生观、价值观和世界观。如通过参加社会实践活动、先进人物报告会、党课等多种途径来陶冶自己的情操,提高自己的综合素质。计算机专业就业前景我国从事计算机工作的专业人员不到100万人,伴随经济结构的调整,科技兴国战略的进一步实施,科学、工业、国防和教育事业需要一大批高素质的计算机专门人才.就很多毕业生而言,与其说是“就业困难”,不如说是“就业迷茫”,不知道自己应该从事什么样的工作。很多学生在初入大学时持有“大一大二先轻松一下,大三大四再努力也不迟”的心态,对自己的未来发展缺乏科学的规划,这往往成为他们面对就业压力时感到手足无措的一个重要原因。大学作为大学生职业生涯规划的第一站,起着至关重要的作用。首先,要树立正确的职业理想。大学生一旦确定自己理想的职业,就会依据职业目标规划自己的学习和实践,并为获得理想的职业积极准备相关事宜。其次,正确进行自我分析和职业分析。自我分析即通过科学认知的方法和手段,对自己的兴趣、气质、性格和能力等进行全面分析,认识自己的优势与特长、劣势与不足。职业分析是指在进行职业生涯规划时,充分考虑职业的区域性、行业性和岗位性等特性,比如职业所在的行业现状和发展前景,职业岗位对求职者的自身素质和能力的要求等。第三,构建合理的知识结构。要根据职业和社会发展的具体要求,将已有知识科学地重组,建构合理的知识结构,最大限度地发挥知识的整体效能。第四,培养职业需要的实践能力。除了构建合理的知识结构外,还需具备从事本行业岗位的基本能力和专业能力。大学生只有将合理的知识结构和适用社会需要的各种能力统一起来,才能立于不败之地。从具体实施来看,职业生涯规划应从大一做起,并根据自己的长期目标,在不同阶段采取不同的行动计划。比如,一年级为试探期,这一时期要初步了解职业,特别是自己未来希望从事的职业或与自己所学专业对口的职业,但由于学习任务繁重,不宜过多参加实践活动;二年级为定向期,要通过参加各种社会活动,锻炼自己的实际工作能力,最好能在课余时间寻求与自己未来职业或本专业有关的工作进行社会实践,以检验自己的知识和技能,并根据个人兴趣与能力修订和调整职业生涯规划设计;三年级为冲刺期,在加强专业学习、寻求工作和准备考研的同时,把目标锁定在与实现自己的目标有关的各种信息上;四年级为分化期,大部分学生对自己的出路都应该有了明确的目标,这时可对前三年的准备做一个总结:检验已确立的职业目标是否明确,准备是否充分,对存在的问题进行必要的修补。 学校和社会是有差距的,其运行规则和社会的运行规则有很大不同。这种环境的隔离,往往使得“象牙塔”里的大学生对社会的看法趋于简单化、片面化和理想化。一些企业对应届毕业生表示出冷淡,其中一个重要原因就是刚毕业的大学生缺乏工作经历与生活经验,角色转换慢,适应过程长。他们在挑选和录用大学毕业生时,同等条件下,往往优先考虑那些曾经参加过社会实践,具有一定组织管理能力的毕业生。这就需要大学生在就业前就注重培养自身适应社会、融入社会的能力。借助社会实践平台,可以提高大学生的组织管理能力、心理承受能力、人际交往能力和应变能力等。此外,还可以使他们了解到就业环境、政策和形势等,有利于他们找到与自己的知识水平、性格特征和能力素质等相匹配的职业。适者生存,生存是为了发展。对社会和环境的适应应该是积极主动的,而不是消极的等待和却步。大学生只有具备较强的社会适应能力,走入社会后才能缩短自己的适应期,充分发挥自己的聪明才智。因此,在不影响专业知识学习的基础上,大胆走向社会、参与包括兼职在内的社会活动是大学生提升自身就业能力和尽快适应社会的有效途径。 从一定意义上说,能力比知识更重要。所以招聘单位也都希望得到这样的人才。但面试时间很短,因此他们就从面试者的一言一行、一举一动中进行判断。一位礼仪专家曾说:“教养体现于细节,细节展现素质。”因为一些小事情或一些不经意的细节往往会透露出一个人的内心世界,显现出一个人的本质,招聘方就能从中迅速产生判断,结果就可能会影响到一个人的前程。而这些都不是大学生短时间靠突击就能具备的,需要长时间的培养。如果你拥有良好的全面素质,你就会比别人拥有更多的机遇。 大学生在求职过程中,要想把握住更多的机会,就必须具备较高的综合素质。在知识面广、专业技术精通、业务能力强的基础上,还必须提高个人的修养,在日常的生活、学习中养成良好的习惯,以避免因为一些细节问题而影响自己的前程。要想提高个人的修养,就必须掌握一些必备的礼仪知识。 实事求是讲,在诸多专业里计算机专业平均起步收入应该是很高的,而且就业面比较宽,对于一个本科毕业生,各个行业都可以找到合适的工作.但我们也应该注意到,计算机是一门快速发展,日新月异的学科,时时刻刻都有新的理论,知识,产品被推出.如果想在这个行业做好,无论作哪个层次,都得不停地充实自己.是个学校都有计算机系,就业市场是大,就业竞争也很激烈.在大学学习时打好基础,就能更加靠近我们的职业理想,也更有可能去实现我们的职业理想。而不是让自己成为啃老一族,成为“毕业等于失业”的大学生。英国作家福斯特有一篇小说,题为《带风景的房间》。我想,这“带风景的房间”一定是一间位置极佳的屋子,打开窗户可以瞥见不同的景观。也许,在你的人生旅程中,一扇窗户已经关上,但请打开另一扇窗子,那边有很多新的风景等待你去发现、去欣赏!参考文献:1、作者:钟声、张晋 《离散数学》 中国铁道出版社2、作者:于晓坤、邓文新 《大学信息技术基础》 中国铁道出版社3、作者:严蔚敏、吴伟民 《数据结构》 青华大学出版社4、作者:孙辉、吴润秀 《C语言程序设计教程》 人民邮电出版社5、作者: 陈俊荣 《网页程序设计》 清华大学出版社

已我发了一个已经通过评审过 的专业论文 完全可以放心使用!!!

2017大学数学论文范文

由于特殊函数是数学分析中的一种重要工具,因此特殊函数的学习及应用非常重要。但是特殊函数往往不是用一种方法就能解决的,它是多种方法的灵活运用,也是各种思想方法的集中体现,因此难度较大。下面是我整理的关于几类特殊函数的性质及应用的数学论文范文,欢迎大家阅读。

几类特殊函数的性质及应用

【摘要】本文将对数学分析中特殊函数,诸如伽玛函数、贝塔函数贝塞尔函数等超几何数列函数,具有特殊的性质和特点,在现实中得到大量的运用的函数。本文主要以简单介绍以上三种特殊函数性质,及其在其它领域的应用,诸如利用特殊函数求积分,利用特殊函数解相关物理学问题。本文首先以回顾学习几类常见特殊函数概念、性质,从而加深读者理解,然后以相关实例进行具体分析,从而达到灵活应用的目的。

【关键词】特殊函数;性质;应用;伽马函数;贝塔函数;贝塞尔函数;积分

1.引言

特殊函数是指一些具有特定性质的函数,一般有约定俗成的名称和记号,例如伽玛函数、贝塔函数、贝塞尔函数等。它们在数学分析、泛函分析、物理研究、工程应用中有着举足轻重的地位。许多特殊函数是微分方程的解或基本函数的积分,因此积分表中常常会出现特殊函数,特殊函数的定义中也经常会出现积分。传统上对特殊函数的分析主要基于对其的数值展开基础上。随着电子计算的发展,这个领域内开创了新的研究方法。

由于特殊函数是数学分析中的一种重要工具,因此特殊函数的学习及应用非常重要。本文归纳出特殊函数性质、利用特殊函数在求积分运算中的应用、特殊函数在物理学科方面的应用,利用Matlab软件画出一些特殊函数的图形,主要包含内容有:定义性质学习,作积分运算,物理知识中的应用,并结合具体例题进行了详细的探究和证明。

特殊函数定义及性质证明

特殊函数学习是数学分析的一大难点,又是一大重点,求特殊函数包含很多知识点,有很多技巧,教学中可引导学生以探究学习的方式进行归纳、总结;一方面可提高学生求函数极限的技能、技巧;另一方面也可培养学生的观察、分析、归类的能力,对学生的学习、思考习惯,很有益处。

特殊函数性质学习及其相关计算,由于题型多变,方法多样,技巧性强,加上无固定的规律可循,往往不是用一种方法就能解决的,它是多种方法的灵活运用,也是各种思想方法的集中体现,因此难度较大。解决这个问题的途径主要在于熟练掌握特殊函数的特性和一些基本方法。下面结合具体例题来探究特殊函数相关性质及应用。

2.伽马函数的性质及应用

2.1.1伽马函数的定义:

伽马函数通常定义是:这个定义只适用于的区域,因为这是积分在t=0处收敛的条件。已知函数的定义域是区间,下面讨论Г函数的两个性质。

2.1.2Г函数在区间连续。

事实上,已知假积分与无穷积分都收敛,则无穷积分在区间一致收敛。而被积函数在区间D连续。Г函数在区间连续。于是,Г函数在点z连续。因为z是区间任意一点,所以Г函数在区间连续。

2.1.3,伽马函数的递推公式

此关系可由原定义式换部积分法证明如下:

这说明在z为正整数n时,就是阶乘。

由公式(4)看出是一半纯函数,在有限区域内的奇点都是一阶极点,极点为z=0,-1,-2,...,-n,....

2.1.4用Г函数求积分

2.2贝塔函数的性质及应用

2.2.1贝塔函数的定义:

函数称为B函数(贝塔函数)。

已知的定义域是区域,下面讨论的三个性质:

贝塔函数的性质

2.2.2对称性:=。事实上,设有

2.2.3递推公式:,有事实上,由分部积分公式,,有

由对称性,

特别地,逐次应用递推公式,有

而,即

当时,有

此公式表明,尽管B函数与Г函数的定义在形式上没有关系,但它们之间却有着内在的联系。这个公式可推广为

2.2.4

由上式得以下几个简单公式:

2.2.5用贝塔函数求积分

例2.2.1

解:设有

(因是偶函数)

例2.2.2贝塔函数在重积分中的应用

计算,其中是由及这三条直线所围成的闭区域,

解:作变换且这个变换将区域映照成正方形:。于是

通过在计算过程中使用函数,使得用一般方法求原函数较难的问题得以轻松解决。

2.3贝塞尔函数的性质及应用

2.3.1贝塞尔函数的定义

贝塞尔函数:二阶系数线性常微分方程称为λ阶的贝塞尔方程,其中y是x的未知函数,λ是任一实数。

2.3.2贝塞尔函数的'递推公式

在式(5)、(6)中消去则得式3,消去则得式4

特别,当n为整数时,由式(3)和(4)得:

以此类推,可知当n为正整数时,可由和表示。

又因为

以此类推,可知也可用和表示。所以当n为整数时,和都可由和表示。

2.3.3为半奇数贝塞尔函数是初等函数

证:由Г函数的性质知

由递推公式知

一般,有

其中表示n个算符的连续作用,例如

由以上关系可见,半奇数阶的贝塞尔函数(n为正整数)都是初等函数。

2.3.4贝塞尔函数在物理学科的应用:

频谱有限函数新的快速收敛的取样定理,.根据具体问题,利用卷积的方法还可以调节收敛速度,达到预期效果,并且计算亦不太复杂。由一个函数的离散取样值重建该函数的取样定理是通信技术中必不可少的工具,令

称为的Fourier变换。它的逆变换是

若存在一个正数b,当是b频谱有限的。对于此类函数,只要取样间隔,则有离散取样值(这里z表示一切整数:0,)可以重建函数,

这就是Shannon取样定理。Shannon取样定理中的母函数是

由于Shannon取样定理收敛速度不够快,若当这时允许的最大取样间隔特征函数Fourier变换:

以下取样方法把贝塞尔函数引进取样定理,其特点是收敛速度快,且可根据实际问题调节收敛速度,这样就可以由不太多的取样值较为精确地确定函数。

首先建立取样定理

设:

其中是零阶贝塞尔函数。构造函数:

经计算:

利用分部积分法,并考虑到所以的Fourier变换。

通过函数卷积法,可加快收敛速度,使依据具体问题,适当选取N,以达到预期效果,此种可调节的取样定理,计算量没有增加很多。取:

类似地

经计算:

经计算得:

则有:设是的Fourier变换,

记则由离散取样值

因为,故该取样定理收敛速度加快是不言而喻的,通过比较得,计算量并没有加大,而且N可控制收敛速度。

例2.4,利用

引理:当

因为不能用初等函数表示,所以在求定积分的值时,牛顿-莱布尼茨公式不能使用,故使用如下计算公式

首先证明函数满足狄利克雷充分条件,在区间上傅立叶级数展开式为:

(1)

其中

函数的幂级数展开式为:

则关于幂级数展开式为: (2)

由引理及(2)可得

(3)

由阶修正贝塞尔函数

其中函数,且当为正整数时,取,则(3)可化为

(4)

通过(1)(4)比较系数得

又由被积函数为偶函数,所以

公式得证。

3.结束语

本文是关于特殊函数性质学习及其相关计算的探讨,通过对特殊函数性质的学习及其相关计算的归纳可以更好的掌握特殊函数在日常学习中遇到相关交叉学科时应用,并且针对不同的实例能够应用不同的特殊函数相关性质进行证明、计算,从而更加简洁,更加合理的利用特殊函数求解相关问题。有些特殊函数的应用不是固定的,它可以通过不止一种方法来证明和计算,解题时应通过观察题目结构和类型,选用一种最简捷的方法来解题。

参考文献:

[1] 王竹溪.特殊函数概论[M].北京大学出版社,2000.5,90-91.

[2] 刘玉琏.数学分析讲义(下册)[M].高等教育出版社,2003,331.

[3] 刘玉琏.数学分析讲义(下册)[M].高等教育出版社,2003,331.

[4]王坤.贝塔函数在积分计算中的应用.[J]科技信息,2012(34)

[5] 王纪林.特殊函数与数学物理方程[M].上海交通大学出版社,2000,96-98.

[6] 陶天方.由特殊函数表达的快速取样定理 [J]. 上海大学学报(自然科学版),1997,8(4):368-371.

[7]饶从军,王成.让数学建模活动促进数学教学改革[J].中央民族大学学报(自然科学版),2004,2.

[8]赵宜宾.一类特殊函数定积分的求解[J].防灾技术高等专科学校学报,2010,1(3):38-39.

[9]董林.降次公式的探究—兼论一个猜想的证明[J].教学通报,1992.2.

[10] 李德新.利用对称原理计算定积分的三种方法[J].高等数学研究,2004,7(6):41—42.

[11]翟忠信,龚东山.高等数学的教与学[J].高等理科教育,2004(6):29—34.

[12]胡淑荣. 函数及应用[J]. 哈尔滨师范大学学报.2002,18(4):12~15.

离散数学3000字论文

学术堂整理了一篇3000字的计算机论文范文,供大家参考:

范文题目:关于新工程教育计算机专业离散数学实验教学研究

摘要: 立足新工科对计算机类专业应用实践能力培养的要求,分析了目前离散数学教学存在的关键问题,指明了开展离散数学实验教学的必要性。在此基础上,介绍了实验教学内容的设计思路和设计原则,给出了相应的实验项目,并阐述了实验教学的实施过程和教学效果。

关键词:新工科教育;离散数学;计算机专业;实验教学

引言

新工科教育是以新理念、新模式培养具有可持续竞争力的创新型卓越工程科技人才,既重视前沿知识和交叉知识体系的构建,又强调实践创新创业能力的培养。计算机类是新工科体系中的一个庞大专业类,按照新工科教育的要求,计算机类专业的学生应该有很好的逻辑推理能力和实践创新能力,具有较好的数学基础和数学知识的应用能力。作为计算机类专业的核心基础课,离散数学的教学目标在于培养学生逻辑思维、计算思维能力以及分析问题和解决问题的能力。但长期以来“定义-定理-证明”这种纯数学的教学模式,导致学生意识不到该课程的重要性,从而缺乏学习兴趣,严重影响学生实践能力的培养。因此,打破原有的教学模式,结合计算机学科的应用背景,通过开展实验教学来加深学生对于离散数学知识的深度理解是实现离散数学教学目标的重要手段。

1.实验项目设计

围绕巩固课堂教学知识,培养学生实践创新能力两个目标,遵循实用性和可行性原则,设计了基础性、应用性、研究性和创新性四个层次的实验项目。

(1) 基础性实验

针对离散数学的一些基本问题,如基本的定义、性质、计算方法等设计了7个基础性实验项目,如表1所示。这类实验要求学生利用所学基础知识,完成算法设计并编写程序。通过实验将抽象的离散数学知识与编程结合起来,能激发学生学习离散数学的积极性,提高教学效率,进而培养学生的编程实践能力。

(2) 应用性实验

应用性实验是围绕离散数学主要知识单元在计算机学科领域的应用来设计实验,如表2所示。设计这类实验时充分考虑了学生掌握知识的情况,按照相关知识点的应用方法给出了每个实验的步骤。学生甚至不需要完成全部实验步骤即可达到实验效果。例如,在“等价关系的应用”实验中,按照基于等价类测试用例的设计方法给出了实验步骤,对基础较差的学生只需做完第三步即可达到“巩固等价关系、等价类、划分等相关知识,了解等价关系在软件测试中的应用,培养数学知识的应用能力。”的实验目的。

(3) 研究性实验研究性实验和应用性实验一样

也是围绕离散数学主要知识单元在计算机科学领域中的应用来设计实验,不同之处在于,研究性实验的实验步骤中增加了一些需要学生进一步探讨的问题。这类实验项目一方面为了使学生进一步了解离散数学的重要性,另一方面为了加强学生的创新意识与创新思维,提高计算机专业学生的数学素质和能力。表 3 给出了研究性试验项目。

(4) 创新性实验

在实际教学中还设计了多个难度较高的创新性实验题目,例如,基于prolog语言的简单动物识别

系统、基于最短路径的公交线路查询系统、简单文本信息检索系统的实现等,完成该类实验需要花费较长的时间,用到更多的知识。通过这些实验不仅有利于培养学生分析问题、解决问题的能力和创新设计能力,也有利于培养学生独立思考、敢于创新的能力。

3.实验教学模式的构建

通过实验教学环节无疑可以激发学生对课程的兴趣,提高课程教学效率,培养学生的实践创新能力。但是,近年来,为了突出应用性人才培养,很多地方本科院校对离散数学等基础理论课的课时进行了压缩,加之地方本科院校学生基础较差,使得离散数学课时严重不足,不可能留出足够的实验教学时间。针对这种情况,采用多维度、多层次的教学模式进行离散数学实验教学。

(1) 将实验项目引入课堂教学

在离散数学的教学过程中,将能反映在计算机科学领域典型应用的实验项目引入到课堂教学中,引导学生应用所学知识分析问题、解决问题。例如在讲授主析取范式时,引入加法器、表决器的设计,并用multisim进行仿真演示,让学生理解数理逻辑在计算机硬件设计中的作用。又如讲谓词逻辑推理时,引入前一届学生用Prolog完成的“小型动物识别系统”作为演示实验。这些应用实例能够让学生体会数理逻辑在计算机科学领域的应用价值,不仅激发学生的学习兴趣,提高课堂教学效率,也锻炼了学生的逻辑思维,培养了学生的系统设计能力。

(2) 改变课后作业形式,在课后作业中增加上机实验题目

由于课时有限,将实验内容以课后作业的形式布置下去,让学生在课余时间完成实验任务。例如讲完数理逻辑内容后,布置作业: 编写 C语言程序,实现如下功能: 给定两个命题变元 P、Q,给它们赋予一定的真值,并计算P、P∧Q、P∨Q的真值。通过完成,使学生掌握命题联结词的定义和真值的确定方法,了解逻辑运算在计算机中的实现方法。又如,把“偏序关系的应用”实验作为“二元关系”这一章的课后作业,给定某专业开设的课程以及课程之间的先后关系,要求学生画出课程关系的哈斯图,安排该专业课程开设顺序,并编写程序实现拓扑排序算法。通过该实验学生不仅巩固了偏序关系、哈斯图等知识,而且了解到偏序关系在计算机程序设计算法中的应用和实现方法。

(3) 布置阅读材料

在教学中,通常选取典型应用和相关的背景知识作为课前或课后阅读材料,通过课堂提问抽查学生的阅读情况。这样,不仅使学生预习或复习了课程内容,同时也使他们对相关知识点在计算机学科领域的应用有了一定的了解。例如,在讲解等价关系后,将“基于等价类的软件测试用例设计方法”作为课后阅读材料; 在讲解图的基本概念之前,将“图在网络爬虫技术中的应用”作为课前阅读材料; 货郎担问题和中国邮路问题作为特殊图的课后阅读材料。通过这些阅读材料极大地调动学生学习的积极性,取得了非常好的教学效果。

(4) 设置开放性实验项目

在离散数学教学中,通常选择一两个创新性实验项目作为课外开放性实验,供学有余力的学生学习并完成,图1给出了学生完成的“基于最短路径公交查询系统”界面图。同时,又将学生完成的实验系统用于日后的课堂教学演示,取得了比较好的反响。

(5) 利用网络教学平台

为了拓展学生学习的空间和时间,建立了离散数学学习网站,学习网站主要包括资源下载、在线视频、在线测试、知识拓展和站内论坛五个部分模块,其中知识拓展模块包含背景知识、应用案例和实验教学三部分内容。通过学习网站,学生不仅可以了解离散数学各知识点的典型应用,还可以根据自己的兴趣选择并完成一些实验项目。在教学实践中,规定学生至少完成1-2个应用性实验项目并纳入期中或平时考试成绩中,从而激发学生的学习兴趣。

4.结束语

针对新工科教育对计算机类专业实践创新能力的要求,在离散数学教学实践中进行了多方位、多层次的实验教学,使学生了解到离散数学的重要

性,激发了学生的学习兴趣,提高了学生程序设计能力和创新能力,取得了较好的教学效果。教学团队将进一步挖掘离散数学的相关知识点在计算机学科领域的应用,完善离散数学实验教学体系,使学生实践能力和创新思维得以协同培养,适应未来工程需要。

参考文献:

[1]徐晓飞,丁效华.面向可持续竞争力的新工科人才培养模式改革探索[J].中国大学教学,2017(6).

[2]钟登华.新工科建设的内涵与行动[J].高等工程教育研究,2017(3).

[3]蒋宗礼.新工科建设背景下的计算机类专业改革养[J].中国大学教学,2018( 11) .

[4]The Joint IEEE Computer Society/ACM Task Force onComputing Curricula Computing Curricula 2001 ComputerScience[DB / OL]. http:/ / WWW. acm. org / education /curric_vols / cc2001. pdf,2001.

[5]ACM/IEEE - CS Joint Task Force on Computing Curricula.2013. Computer Science Curricula 2013[DB / OL]. ACMPress and IEEE Computer Society Press. DOI: http: / / dx.doi. org /10. 1145 /2534860.

[6]中国计算机科学与技术学科教程2002研究组.中国计算机科学与技术学科教程2002[M].北京: 清华大学出版社,2002.

[7]张剑妹,李艳玲,吴海霞.结合计算机应用的离散数学教学研究[J].数学学习与研究,2014(1) .

[8]莫愿斌.凸显计算机专业特色的离散数学教学研究与实践[J].计算机教育,2010(14)

已我发了一个已经通过评审过 的专业论文 完全可以放心使用!!!

毕业论文是教学科研过程的一个环节,也是学业成绩考核和评定的一种重要方式。毕业论文的目的在于总结学生在校期间的学习成果,培养学生具有综合地创造性地运用所学的全部专业知识和技能解决较为复杂问题的能力并使他们受到科学研究的基本训练。标题标题是文章的眉目。各类文章的标题,样式繁多,但无论是何种形式,总要以全部或不同的侧面体现作者的写作意图、文章的主旨。毕业论文的标题一般分为总标题、副标题、分标题几种。总标题总标题是文章总体内容的体现。常见的写法有:①揭示课题的实质。这种形式的标题,高度概括全文内容,往往就是文章的中心论点。它具有高度的明确性,便于读者把握全文内容的核心。诸如此类的标题很多,也很普遍。如《关于经济体制的模式问题》、《经济中心论》、《县级行政机构改革之我见》等。②提问式。这类标题用设问句的方式,隐去要回答的内容,实际上作者的观点是十分明确的,只不过语意婉转,需要读者加以思考罢了。这种形式的标题因其观点含蓄,轻易激起读者的注重。如《家庭联产承包制就是单干吗?》、《商品经济等同于资本主义经济吗?》等。③交代内容范围。这种形式的标题,从其本身的角度看,看不出作者所指的观点,只是对文章内容的范围做出限定。拟定这种标题,一方面是文章的主要论点难以用一句简短的话加以归纳;另一方面,交代文章内容的范围,可引起同仁读者的注重,以求引起共鸣。这种形式的标题也较普遍。如《试论我国农村的双层经营体制》、《正确处理中心和地方、条条与块块的关系》、《战后西方贸易自由化剖析》等。④用判定句式。这种形式的标题给予全文内容的限定,可伸可缩,具有很大的灵活性。文章研究对象是具体的,面较小,但引申的思想又须有很强的概括性,面较宽。这种从小处着眼,大处着手的标题,有利于科学思维和科学研究的拓展。如《从乡镇企业的兴起看中国农村的希望之光》、《科技进步与农业经济》、《从“劳动创造了美”看美的本质》等。

已发到你邮箱,请查收.

离散数学测度论论文

110 数学 a.. 110.11 数学史 b.. 110.14 数理逻辑与数学基础 a.. 110.1410 演绎逻辑学 亦称符号逻辑学 b.. 110.1420 证明论 亦称元数学 c.. 110.1430 递归论 d.. 110.1440 模型论 e.. 110.1450 公理集合论 f.. 110.1460 数学基础 g.. 110.1499 数理逻辑与数学基础其他学科 c.. 110.17 数论 a.. 110.1710 初等数论 b.. 110.1720 解析数论 c.. 110.1730 代数数论 d.. 110.1740 超越数论 e.. 110.1750 丢番图逼近 f.. 110.1760 数的几何 g.. 110.1770 概率数论 h.. 110.1780 计算数论 i.. 110.1799 数论其他学科 d.. 110.21 代数学 a.. 110.2110 线性代数 b.. 110.2115 群论 c.. 110.2120 域论 d.. 110.2125 李群 e.. 110.2130 李代数 f.. 110.2135 Kac-Moody代数 g.. 110.2140 环论 包括交换环与交换代数,结合环与结合代数,非结合环与非结合代数等 h.. 110.2145 模论 i.. 110.2150 格论 j.. 110.2155 泛代数理论 k.. 110.2160 范畴论 l.. 110.2165 同调代数 m.. 110.2170 代数K理论 n.. 110.2175 微分代数 o.. 110.2180 代数编码理论 p.. 110.2199 代数学其他学科 e.. 110.24 代数几何学 f.. 110.27 几何学 a.. 110.2710 几何学基础 b.. 110.2715 欧氏几何学 c.. 110.2720 非欧几何学 包括黎曼几何学等 d.. 110.2725 球面几何学 e.. 110.2730 向量和张量分析 f.. 110.2735 仿射几何学 g.. 110.2740 射影几何学 h.. 110.2745 微分几何学 i.. 110.2750 分数维几何 j.. 110.2755 计算几何学 k.. 110.2799 几何学其他学科 g.. 110.31 拓扑学 a.. 110.3110 点集拓扑学 b.. 110.3115 代数拓扑学 c.. 110.3120 同伦论 d.. 110.3125 低维拓扑学 e.. 110.3130 同调论 f.. 110.3135 维数论 g.. 110.3140 格上拓扑学 h.. 110.3145 纤维丛论 i.. 110.3150 几何拓扑学 j.. 110.3155 奇点理论 k.. 110.3160 微分拓扑学 l.. 110.3199 拓扑学其他学科 h.. 110.34 数学分析 a.. 110.3410 微分学 b.. 110.3420 积分学 c.. 110.3430 级数论 d.. 110.3499 数学分析其他学科 i.. 110.37 非标准分析 j.. 110.41 函数论 a.. 110.4110 实变函数论 b.. 110.4120 单复变函数论 c.. 110.4130 多复变函数论 d.. 110.4140 函数逼近论 e.. 110.4150 调和分析 f.. 110.4160 复流形 g.. 110.4170 特殊函数论 h.. 110.4199 函数论其他学科 k.. 110.44 常微分方程 a.. 110.4410 定性理论 b.. 110.4420 稳定性理论 c.. 110.4430 解析理论 d.. 110.4499 常微分方程其他学科 l.. 110.47 偏微分方程 a.. 110.4710 椭圆型偏微分方程 b.. 110.4720 双曲型偏微分方程 c.. 110.4730 抛物型偏微分方程 d.. 110.4740 非线性偏微分方程 e.. 110.4799 偏微分方程其他学科 m.. 110.51 动力系统 a.. 110.5110 微分动力系统 b.. 110.5120 拓扑动力系统 c.. 110.5130 复动力系统 d.. 110.5199 动力系统其他学科 n.. 110.54 积分方程 o.. 110.57 泛函分析 a.. 110.5710 线性算子理论 b.. 110.5715 变分法 c.. 110.5720 拓扑线性空间 d.. 110.5725 希尔伯特空间 e.. 110.5730 函数空间 f.. 110.5735 巴拿赫空间 g.. 110.5740 算子代数 h.. 110.5745 测度与积分 i.. 110.5750 广义函数论 j.. 110.5755 非线性泛函分析 k.. 110.5799 泛函分析其他学科 p.. 110.61 计算数学 a.. 110.6110 插值法与逼近论 b.. 110.6120 常微分方程数值解 c.. 110.6130 偏微分方程数值解 d.. 110.6140 积分方程数值解 e.. 110.6150 数值代数 f.. 110.6160 连续问题离散化方法 g.. 110.6170 随机数值实验 h.. 110.6180 误差分析 i.. 110.6199 计算数学其他学科 q.. 110.64 概率论 a.. 110.6410 几何概率 b.. 110.6420 概率分布 c.. 110.6430 极限理论 d.. 110.6440 随机过程 包括正态过程与平稳过程、点过程等 e.. 110.6450 马尔可夫过程 f.. 110.6460 随机分析 g.. 110.6470 鞅论 h.. 110.6480 应用概率论 具体应用入有关学科 i.. 110.6499 概率论其他学科 r.. 110.67 数理统计学 a.. 110.6710 抽样理论 包括抽样分布、抽样调查等 b.. 110.6715 假设检验 c.. 110.6720 非参数统计 d.. 110.6725 方差分析 e.. 110.6730 相关回归分析 f.. 110.6735 统计推断 g.. 110.6740 贝叶斯统计 包括参数估计等 h.. 110.6745 试验设计 i.. 110.6750 多元分析 j.. 110.6755 统计判决理论 k.. 110.6760 时间序列分析 l.. 110.6799 数理统计学其他学科 s.. 110.71 应用统计数学 a.. 110.7110 统计质量控制 b.. 110.7120 可靠性数学 c.. 110.7130 保险数学 d.. 110.7140 统计模拟 t.. 110.7199 应用统计数学其他学科 u.. 110.74 运筹学 a.. 110.7410 线性规划 b.. 110.7415 非线性规划 c.. 110.7420 动态规划 d.. 110.7425 组合最优化 e.. 110.7430 参数规划 f.. 110.7435 整数规划 g.. 110.7440 随机规划 h.. 110.7445 排队论 i.. 110.7450 对策论 亦称博奕论 j.. 110.7455 库存论 k.. 110.7460 决策论 l.. 110.7465 搜索论 m.. 110.7470 图论 n.. 110.7475 统筹论 o.. 110.7480 最优化 p.. 110.7499 运筹学其他学科 v.. 110.77 组合数学 w.. 110.81 离散数学 x.. 110.84 模糊数学 y.. 110.87 应用数学 具体应用入有关学科 z.. 110.99 数学其他学科

很遗憾,没有帮你找到向量值函数的确切分类号,但我查遍了中图网亦无所获,根据:O183向量(矢量)和张量分析 也许它属于O18 几何 拓扑类吧,下面的这个网址包含了所有的分类号,你可以再去查找一下,再下面就是我所知的分类号: • • • O1-0数学理论 • O1-6数学参考工具书 • O1-8计算工具 • O11古典数学 • O119中国数学 • O12初等数学 • O13高等数学 • O14数理逻辑、数学基础 • O15代数、数论、组合理论 • O17数学分析 • O18几何、拓扑 • O19动力系统理论 • O21概率论与数理统计 • O22运筹学 • O23控制论、信息论(数学理论) • O24计算数学 • O29应用数学 • • • O1-64数学表 • • O1-641乘法表、因数表、质数表 • O1-642倒数表 • O1-643乘方与开方表 • O1-644对数表 • O1-645三角函数表 • O1-646积分表 • O1-647概率论、数理统计用表 • O1-648特殊函数表 • O1-649计算数学用表 • O112中国古典数学 • O113/117各国古典数学 • O121算术 • O122初等代数 • O123初等几何 • O124三角 • O122.1代数式 • O122.2方程式 • O122.3不等式 • O122.4排列、组合、二项定理 • O122.5极大与极小 • O122.6对数、指数 • O122.7级数 • O123.1平面几何 • O123.2立体几何 • O123.3几何各论 • O123.4极大与极小 • O123.5轨迹与几何作图 • O123.6三角形与圆的几何学、近世几何学 • O124.1平面三角 • O124.2球面三角 • O141数理逻辑(符号逻辑) • O142应用数理逻辑 • O143数学基础 • O144集合论 • O141.1命题演算、谓词演算、类演算 • O141.2证明论 • O141.3递归论(递归函数、能行性理论) • O141.4模型理论 • O141.12谓词演算(命题函项演算) • O141.13类演算 • O141.41非标准分析 • O144.1基本概念 • O144.2悖论 • O144.3公理集合论 • O144.4类型论 • O144.5描述集合论(解析集合论) • O151代数方程论、线性代数 • O152群论 • O153抽象代数(近世代数) • O154范畴论、同调代数 • O155微分代数、差分代数 • O156数论 • O157组合数学(组合学) • O158离散数学 • O159模糊数学 • O151.1代数方程论 • O151.2线性代数 • O152.1有限群论 • O152.2交换群论(阿贝尔群论) • O152.3线性群论 • O152.4拓扑群论 • O152.5李群 • O152.6群表示论 • O152.7群的推广 • O152.8群论的应用 • O153.1偏序集合与格论 • O153.2布尔代数 • O153.3环论 • O153.4域论 • O153.5泛代数 • O154.1范畴论 • O154.2同调代数 • O154.3代数K-理论 • O156.1初等数论 • O156.2代数数论 • O156.3几何数论 • O156.4解析数论 • O156.5二次型(二次齐式) • O156.6超越数论 • O156.7丢番图分析(丢番图数论) • O157.1组合分析 • O157.2组合设计 • O157.3组合几何 • O157.4编码理论(代数码理论) • O157.5图论 • O157.6图论的应用 • O171分析基础 • O172微积分 • O173无穷级数论(级数论) • O174函数论 • O175微分方程、积分方程 • O176变分法 • O177泛函分析 • O178不等式及其他 • O172.1微分学 • O172.2积分学 • O174.1实分析、实变函数 • O174.2傅里叶分析(经典调和分析) • O174.3调和函数与位势论 • O174.4函数构造论 • O174.5复分析、复变函数 • O174.6特殊函数 • O174.61贝赛尔函数 • O174.62球面调和函数 • O174.63圆柱面调和函数 • O174.64椭圆面调和函数 • O174.66欧拉积分 • O174.51单复变数函数几何理论 • O174.52整数函数论、亚纯函数论(半纯函数论) • O174.53代数函数论 • O174.54椭圆函数、阿贝尔函数、自守函数 • O174.55拟共形映射(拟保角变换)、拟解析函数、广义解析函数 • O174.56多复变数函数 • O174.41逼近论 • O174.42插值论 • O174.43矩量问题 • O174.21正交级数(傅里叶级数) • O174.22傅里叶积分(傅里叶变换) • O174.23殆周期函数 • O174.11描述理论 • O174.12测度论 • O174.13凸函数、凸集理论 • O174.14多项式理论 • O175.1常微分方程 • O175.2偏微分方程 • O175.3微分算子理论 • O175.4高阶偏微分方程(组) • O175.5积分方程 • O175.6积分微分方程 • O175.7差分微分方程 • O175.8边值问题 • O175.9特征值及特征值函数问题 • O175.11解析理论 • O175.12定性理论 • O175.13稳定性理论 • O175.14非线性常微分方程 • O175.15抽象空间常微分方程 • O175.21稳定性理论 • O175.22一阶偏微分方程 • O175.23二阶偏微分方程 • O175.24数理方程 • O175.25椭圆型方程 • O175.26抛物型方程 • O175.27双曲型方程 • O175.28混合型方程 • O175.29非线性偏微分方程 • O176.1极小曲面方程 • O176.2等周问题 • O176.3大范围变分法 • O177.1希尔伯特空间及其线性算子理论 • O177.2巴拿赫空间及其线性算子理论 • O177.3线性空间理论(向量空间) • O177.4广义函数论 • O177.5巴拿赫代数(赋范代数)、拓扑代数、抽象调和分析 • O177.6积分变换及算子演算 • O177.7谱理论 • O177.8积分论(基于泛函分析观点的) • O177.91非线性泛函分析 • O177.92泛函分析的应用 • O177.99其他 • O181几何基础(几何学原理) • O182解析几何 • O183向量(矢量)和张量分析 • O184非欧几何、多维空间几何 • O185射影(投影)几何、画法几何 • O186微分几何、积分几何 • O187代数几何 • O189拓扑(形势几何学) • v O183.1向量分析 • O183.2张量分析 • O192整体分析、流形上分析、突变理论 • O193微分动力系统 • O221规划论(数学规划) • O223统筹方法 • O224最优化的数学理论 • O225对策论(博弈论) • O226排队论(随机服务系统) • O227库存论 • O228更新理论 • O229搜索理论 • v O241数值分析 • O242数学模拟、近似计算 • O243图解数学、图算数学 • [O244]程序设计 • O245数值软件 • O246数值并行计算 • O241.1误差理论 • {O241.2}最小二乘法 • O241.3插值法 • O241.4数值积分法、数值微分法 • O241.5数值逼近 • O241.6线性代数的计算方法 • O241.7非线性代数方程和超越方程的数值解法 • O241.8微分方程、积分方程的数值解法 • O242.1数学模拟 • O242.2近似计算 •

编辑本段简介名称来源 数学(mathematics;希腊语:μαθηματικ?)这一词在西方源自于古希腊语的μ?θημα(máthēma),其有学习、学问、科学,以及另外还有个较狭隘且技术性的意义-“数学研究”,即使在其语源内。其形容词意义为和学习有关的或用功的,亦会被用来指数学的。其在英语中表面上的复数形式,及在法语中的表面复数形式les mathématiques,可溯至拉丁文的中性复数mathematica,由西塞罗译自希腊文复数τα μαθηματικ?(ta mathēmatiká),此一希腊语被亚里士多德拿来指“万物皆数”的概念。(拉丁文:Mathemetica)原意是数和数数的技术。 我国古代把数学叫算术,又称算学,最后才改为数学。 要想学好数学,勤练才可以。数学史 基础数学的知识与运用是个人与团体生活中不可或缺的一部分。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅度的进展,直至16世纪的文艺复兴时期,因着和新科学发现相作用而生成的数学革新导致了知识的加速,直至今日。 今日,数学被使用在世界不同的领域上,包括科学、工程、医学和经济学等。数学对这些领域的应用通常被称为应用数学,有时亦会激起新的数学发现,并导致全新学科的发展。数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标。虽然许多以纯数学开始的研究,但之后会发现许多应用。 创立于二十世纪三十年代的法国的布尔巴基学派认为:数学,至少纯数学,是研究抽象结构的理论。结构,就是以初始概念和公理出发的演绎系统。布学派认为,有三种基本的抽象结构:代数结构(群,环,域……),序结构(偏序,全序……),拓扑结构(邻域,极限,连通性,维数……)。 编辑本段数学研究的各领域 数学主要的学科首要产生于商业上计算的需要、了解数字间的关系、测量土地及预测天文事件。这四种需要大致地与数量、结构、空间及变化(即算术、代数、几何及分析)等数学上广泛的子领域相关连著。除了上述主要的关注之外,亦有用来探索由数学核心至其他领域上之间的连结的子领域:至逻辑、至集合论(基础)、至不同科学的经验上的数学(应用数学)、及较近代的至不确定性的严格学习。 数量 数量的学习起于数,一开始为熟悉的自然数及整数与被描述在算术内的自然数及整数的算术运算。整数更深的性质被研究于数论中,此一理论包括了如费马最后定理之著名的结果。数论还包括两个被广为探讨的未解问题:孪生素数猜想及哥德巴赫猜想。 当数系更进一步发展时,整数被承认为有理数的子集,而有理数则包含于实数中,连续的数量即是以实数来表示的。实数则可以被进一步广义化成复数。数的进一步广义化可以持续至包含四元数及八元数。自然数的考虑亦可导致超限数,它公式化了计数至无限的这一概念。另一个研究的领域为其大小,这个导致了基数和之后对无限的另外一种概念:艾礼富数,它允许无限集合之间的大小可以做有意义的比较。 结构 许多如数及函数的集合等数学物件都有着内含的结构。这些物件的结构性质被探讨于群、环、体及其他本身即为此物件的抽象系统中。此为抽象代数的领域。在此有一个很重要的概念,即向量,且广义化至向量空间,并研究于线性代数中。向量的研究结合了数学的三个基本领域:数量、结构及空间。向量分析则将其扩展至第四个基本的领域内,即变化。 空间 空间的研究源自于几何-尤其是欧式几何。三角学则结合了空间及数,且包含有著名的勾股定理。现今对空间的研究更推广到了更高维的几何、非欧几何(其在广义相对论中扮演著核心的角色)及拓扑学。数和空间在解析几何、微分几何和代数几何中都有着很重要的角色。在微分几何中有着纤维丛及流形上的计算等概念。在代数几何中有着如多项式方程的解集等几何物件的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间。李群被用来研究空间、结构及变化。在其许多分支中,拓扑学可能是二十世纪数学中有着最大进展的领域,并包含有存在久远的庞加莱猜想及有争议的四色定理,其只被电脑证明,而从来没有由人力来验证过. 基础与哲学 为了搞清楚数学基础,数学逻辑和集合论等领域被发展了出来。德国数学家康托(Georg Cantor,1845-1918)首创集合论,大胆地向“无穷大”进军,为的是给数学各分支提供一个坚实的基础,而它本身的内容也是相当丰富的,提出了实无穷的存在,为以后的数学发展作出了不可估量的贡献。Cantor的工作给数学发展带来了一场革命。由于他的理论超越直观,所以曾受到当时一些大数学家的反对,就连被誉为“博大精深,富于创举”的数学家Pioncare也把集合论比作有趣的“病理情形”,甚至他的老师Kronecker还击Cantor是“神经质”,“走进了超越数的地狱”.对于这些非难和指责,Cantor仍充满信心,他说:“我的理论犹如磐石一般坚固,任何反对它的人都将搬起石头砸自己的脚.”他还指出:“数学的本质在于它的自由性,不必受传统观念束缚。”这种争辩持续了十年之久。Cantor由于经常处于精神压抑之中,致使他1884年患了精神分裂症,最后死于精神病院。 然而,历史终究公平地评价了他的创造,集合论在20世纪初已逐渐渗透到了各个数学分支,成为了分析理论,测度论,拓扑学及数理科学中必不可少的工具。20世纪初世界上最伟大的数学家Hilbert在德国传播了Cantor的思想,把他称为“数学家的乐园”和“数学思想最惊人的产物”。英国哲学家Russell把Cantor的工作誉为“这个时代所能夸耀的最巨大的工作”。 数学逻辑专注在将数学置于一坚固的公理架构上,并研究此一架构的成果。就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果-总存在一不能被证明的真实定理。现代逻辑被分成递归论、模型论和证明论,且和理论计算机科学有着密切的关连性。 恩格斯说:“数学是研究现定世界的数量关系与空间形式的科学。”编辑本段数学的分类 离散数学 模糊数学数学的五大分支 1.经典数学 2.近代数学 3.计算机数学 4.随机数学 5.经济数学数学分支 1.算术 2.初等代数 3.高等代数 4. 数论 5.欧几里得几何 6.非欧几里得几何 7.解析几何 8.微分几何 9.代数几何 10.射影几何学 11.几何拓扑学 12.拓扑学 13.分形几何 14.微积分学 15. 实变函数论 16.概率和统计学 17.复变函数论 18.泛函分析 19.偏微分方程 20.常微分方程 21.数理逻辑 22.模糊数学 23.运筹学 24.计算数学 25.突变理论 26.数学物理学广义的数学分类 从纵向划分: 1.初等数学和古代数学:这是指17世纪以前的数学。主要是古希腊时期建立的欧几里得几何学,古代中国、古印度和古巴比伦时期建立的算术,欧洲文艺复兴时期发展起来的代数方程等。 2.变量数学:是指17--19世纪初建立与发展起来的数学。从17世纪上半叶开始的变量数学时期,可以分为两个阶段:17世纪的创建阶段(英雄时代)与18世纪的发展阶段(创造时代)。 3.近代数学:是指19世纪的数学。近代数学时期的19世纪是数学的全面发展与成熟阶段,数学的面貌发生了深刻的变化,数学的绝大部分分支在这一时期都已经形成,整个数学呈现现出全面繁荣的景象。 4.现代数学:是指20世纪的数学。1900年德国著名数学家希尔伯特(D. Hilbert)在世界数学家大会上发表了一个著名演讲,提出了23个预测和知道今后数学发展的数学问题(见下),拉开了20世纪现代数学的序幕。 1900年,在巴黎国际数学家代表大会上,希尔伯特发表了题为《数学问题》的著名讲演。他根据过去特别是十九世纪数学研究的成果和发展趋势,提出了23个最重要的数学问题。这23个问题通称希尔伯特问题,后来成为许多数学家力图攻克的难关,对现代数学的研究和发展产生了深刻的影响,并起了积极的推动作用,希尔伯特问题中有些现已得到圆满解决,有些至今仍未解决。他在讲演中所阐发的想信每个数学问题都可以解决的信念,对于数学工作者是一种巨大的鼓舞。 希尔伯特的23个问题分属四大块:第1到第6问题是数学基础问题;第7到第12问题是数论问题;第13到第18问题属于代数和几何问题;第19到第23问题属于数学分析。 现在只列出一张清单: (1)康托的连续统基数问题。 (2)算术公理系统的无矛盾性。 (3)只根据合同公理证明等底等高的两个四面体有相等之体积是不可能的。 (4)两点间以直线为距离最短线问题。 (5)拓扑学成为李群的条件(拓扑群)。 (6)对数学起重要作用的物理学的公理化。 (7)某些数的超越性的证明。 (8)素数分布问题,尤其对黎曼猜想、哥德巴赫猜想和孪生素共问题。 (9)一般互反律在任意数域中的证明。 (10)能否通过有限步骤来判定不定方程是否存在有理整数解? (11)一般代数数域内的二次型论。 (12)类域的构成问题。 (13)一般七次代数方程以二变量连续函数之组合求解的不可能性。 (14)某些完备函数系的有限的证明。 (15)建立代数几何学的基础。 (16)代数曲线和曲面的拓扑研究。 (17)半正定形式的平方和表示。 (18)用全等多面体构造空间。 (19)正则变分问题的解是否总是解析函数? (20)研究一般边值问题。 (21)具有给定奇点和单值群的Fuchs类的线性微分方程解的存在性证明。 (22)用自守函数将解析函数单值化。 (23)发展变分学方法的研究。 从横向划分: 1.基础数学(Pure Mathematics)。又称为理论数学或纯粹数学,是数学的核心部分,包含代数、几何、分析三大分支,分别研究数、形和数形关系。 2.应用数学(Applied mathematics)。简单地说,也即数学的应用。 3 .计算数学(Computation mathematics)。研究诸如计算方法(数值分析)、数理逻辑、符号数学、计算复杂性、程序设计等方面的问题。该学科与计算机密切相关。 4.概率统计(Probability and mathematical statistics)。分概率论与数理统计两大块。 5.运筹学与控制论(Op-erations research and control)。运筹学是利用数学方法,在建立模型的基础上,解决有关人力、物资、金钱等的复杂系统的运行、组织、管理等方面所出现的问题的一门学科。编辑本段符号、语言与严谨 在现代的符号中,简单的表示式可能描绘出复杂的概念。此一图像即是由一简单方程所产生的。 我们现今所使用的大部分数学符号都是到了16世纪后才被发明出来的。在此之前,数学被文字书写出来,这是个会限制住数学发展的刻苦程序。现今的符号使得数学对于专家而言更容易去控作,但初学者却常对此感到怯步。它被极度的压缩:少量的符号包含著大量的讯息。如同音乐符号一般,现今的数学符号有明确的语法和难以以其他方法书写的讯息编码。 数学语言亦对初学者而言感到困难。如何使这些字有着比日常用语更精确的意思。亦困恼着初学者,如开放和域等字在数学里有着特别的意思。数学术语亦包括如同胚及可积性等专有名词。但使用这些特别符号和专有术语是有其原因的:数学需要比日常用语更多的精确性。数学家将此对语言及逻辑精确性的要求称为“严谨”。 严谨是数学证明中很重要且基本的一部份。数学家希望他们的定理以系统化的推理依着公理被推论下去。这是为了避免错误的“定理”,依着不可靠的直观,而这情形在历史上曾出现过许多的例子。在数学中被期许的严谨程度因着时间而不同:希腊人期许着仔细的论点,但在牛顿的时代,所使用的方法则较不严谨。牛顿为了解决问题所做的定义到了十九世纪才重新以小心的分析及正式的证明来处理。今日,数学家们则持续地在争论电脑辅助证明的严谨度。当大量的计量难以被验证时,其证明亦很难说是有效地严谨。编辑本段数学的发展史 世界数学发展史 数学,起源于人类早期的生产活动,为中国古代六艺之一,亦被古希腊学者视为哲学之起点。数学的希腊语μαθηματικ??(mathematikós)意思是“学问的基础”,源于μ?θημα(máthema)(“科学,知识,学问”)。 数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。第一个被抽象化的概念大概是数字,其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。 除了认知到如何去数实际物质的数量,史前的人类亦了解如何去数抽象物质的数量,如时间-日、季节和年。算术(加减乘除)也自然而然地产生了。古代的石碑亦证实了当时已有几何的知识。 更进一步则需要写作或其他可记录数字的系统,如符木或于印加帝国内用来储存数据的奇普。历史上曾有过许多且分歧的记数系统。 从历史时代的一开始,数学内的主要原理是为了做税务和贸易等相关计算,为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的。这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究。 到了16世纪,算术、初等代数、以及三角学等初等数学已大体完备。17世纪变量概念的产生使人们开始研究变化中的量与量的互相关系和图形间的互相变换。在研究经典力学的过程中,微积分的方法被发明。随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展。 数学从古至今便一直不断地延展,且与科学有丰富的相互作用,并使两者都得到好处。数学在历史上有着许多的发现,并且直至今日都还不断地发现中。依据Mikhail B. Sevryuk于美国数学会通报2006年1月的期刊中所说,“存在于数学评论数据库中论文和书籍的数量自1940年(数学评论的创刊年份)现已超过了一百九十万份,而且每年还增加超过七万五千份的细目。此一学海的绝大部份为新的数学定理及其证明。”编辑本段国外数学名家高斯 数 学 天 才 —— 高 斯 高斯是德国数学家、物理学家和天文学家。 高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出。7岁那年,高斯第一次上学了。 在全世界广为流传的一则故事说,高斯10岁时算出布特纳给学生们出的将1到100的所有整数加起来的算术题,布特纳当时给孩子们出的是一道更难的加法题:81297+81495+81693+…+100899。说完高斯也算完并把写有答案的小石板交了上去,当时只有他写的答案是正确的。数学史家们倾向于认为,高斯当时已掌握了等差数列求和的方法。一位年仅10岁的孩子,能独立发现这一数学方法实属很不平常。 高斯的学术地位,历来被人们推崇得很高。他有“数学王子”、“数学家之王”的美称。牛顿 牛顿是英国物理学家和数学家。 在学校里,牛顿是个古怪的孩子,就喜欢自己设计、自己动手,做风筝、日晷、滴漏之类器物。他对周围的一切充满好奇,但并不显得特别聪明。 后来,家里叫他停学,到他母亲的农场上去帮忙。在他母亲的农场上,看到一个苹果落在地上,便开始捉摸,这种将苹果往下拉的力会不会也在控制着月球。由此牛顿推导出物体的下落速度改变率与重力的大小成正比,而重力大小与距地心距离的平方成反比。后来牛顿的棱镜实验也使他一举成名。 牛顿有两句名言是大家所熟知的。他在一封信中写道:“如果我比别人看得远些,那是因为我站在巨人们的肩上。”据说他还讲过:“我不知道世人对我怎么看;但在我自己看来就好像只是一个在海滨嬉戏的孩子,不时地为比别人找到一块光滑的卵石或一只更美丽的贝壳而感到高兴,而我面前的 浩瀚的真理海洋,却还完全是个谜。”莱布尼茨 戈特弗里德·威廉·凡·莱布尼茨(Gottfried Wilhelm von Leibniz,1646年7月1日~1716年11月14日)德国最重要的自然科学家、数学家、物理学家、历史学家和哲学家,一位举世罕见的科学天才,和牛顿(1643年1月4日—1727年3月31日)同为微积分的创建人。他博览群书,涉猎百科,对丰富人类的科学知识宝库做出了不可磨灭的贡献。阿基米德 阿基米德(公元前287年—公元前212年),古希腊哲学家、数学家、物理学家。出生于西西里岛的叙拉古。阿基米德到过亚历山大里亚,据说他住在亚历山大里亚时期发明了阿基米德式螺旋抽水机。后来阿基米德成为兼数学家与力学家的伟大学者,并且享有“力学之父”的美称。阿基米德流传于世的数学著作有10余种,多为希腊文手稿。

毕业论文是教学科研过程的一个环节,也是学业成绩考核和评定的一种重要方式。毕业论文的目的在于总结学生在校期间的学习成果,培养学生具有综合地创造性地运用所学的全部专业知识和技能解决较为复杂问题的能力并使他们受到科学研究的基本训练。标题标题是文章的眉目。各类文章的标题,样式繁多,但无论是何种形式,总要以全部或不同的侧面体现作者的写作意图、文章的主旨。毕业论文的标题一般分为总标题、副标题、分标题几种。总标题总标题是文章总体内容的体现。常见的写法有:①揭示课题的实质。这种形式的标题,高度概括全文内容,往往就是文章的中心论点。它具有高度的明确性,便于读者把握全文内容的核心。诸如此类的标题很多,也很普遍。如《关于经济体制的模式问题》、《经济中心论》、《县级行政机构改革之我见》等。②提问式。这类标题用设问句的方式,隐去要回答的内容,实际上作者的观点是十分明确的,只不过语意婉转,需要读者加以思考罢了。这种形式的标题因其观点含蓄,轻易激起读者的注重。如《家庭联产承包制就是单干吗?》、《商品经济等同于资本主义经济吗?》等。③交代内容范围。这种形式的标题,从其本身的角度看,看不出作者所指的观点,只是对文章内容的范围做出限定。拟定这种标题,一方面是文章的主要论点难以用一句简短的话加以归纳;另一方面,交代文章内容的范围,可引起同仁读者的注重,以求引起共鸣。这种形式的标题也较普遍。如《试论我国农村的双层经营体制》、《正确处理中心和地方、条条与块块的关系》、《战后西方贸易自由化剖析》等。④用判定句式。这种形式的标题给予全文内容的限定,可伸可缩,具有很大的灵活性。文章研究对象是具体的,面较小,但引申的思想又须有很强的概括性,面较宽。这种从小处着眼,大处着手的标题,有利于科学思维和科学研究的拓展。如《从乡镇企业的兴起看中国农村的希望之光》、《科技进步与农业经济》、《从“劳动创造了美”看美的本质》等。

相关百科

热门百科

首页
发表服务