英国学者瑞利(Rayleigh)于1887年首先在理论上确定了自由界面附近瑞利面波的存在。在以往的地震勘探中,这种瑞利面波被作为干扰波。近年来,国内、外学者对瑞利面波进行了深入的研究,在理论和应用方面都取得了较大的进展,利用它进行测试变为现实。
一、瑞利波在半无限大空间的传播
在自由界面(如地面)上进行竖向激振时,均会在其表面附近产生瑞利波,而瑞利波有3个与工程质量检测有关的主要特征:
(1)在分层介质中,瑞利波具有频散特性;
(2)瑞利波的波长不同,穿过的深度也不同;
(3)瑞利波的传播速度与介质的物理力学性质密切相关。
研究证明,瑞利波能量约占整个地震波能量的67%,且主要集中在地表下—个波长范围内,而传播速度代表着半个波长(λr/2)范围内介质震动的平均传播速度。因此,一般认为瑞利波法的测试深度为半个波长,而波长与速率及频度有如下关系:
设瑞利波的传播速度为υr,频率为fK,则波长为λr=υr/fK当速度不变时,频率越低,测试深度就越大。
瑞利波勘探法根据震源形式不同可分为两大类:一类为稳态法;另一类为瞬态法。同样,瑞利波检测方法分为瞬态法和稳态法两种。这两种方法的区别在于震源不同。
瞬态法是在激震时产生一定频率范围的瑞利波,并以复频波的形式传播;而稳态法是在激震时产生相对单一频率的瑞利波,并以单一频率波的形式传播。前些年,主要以稳态激振方法为主,其测试原理是利用扫频仪和功率放大器发出的谐波电流,推动电磁激振器对地面产生稳态面波,由相隔一定距离的拾振器将接收到的面波振动,转换为电压量送入计算机(频谱分析仪)进行相关计算,从而得出频散曲线。
由于稳态激振面波勘探方法设备较为复杂,重量大,测试费用高;为克服这些缺点,随之根据其原理,便出现了瞬态面波勘探方法,与稳态法相比其设备较为轻便,测试速度快。但也有许多缺点:其一是瞬态激振的功率密度谱分布不均,许多频率能量太小,随机干扰大,以至于频散曲线与理论相差太大,常常无法利用。其二是仍按照稳态激振面波勘探方法接收地面震动波,致使所有的波(如反射波、折射波、直达波等)均作为干扰波而与面波混在一块,有可能导致误差较大的结果,这也是瞬态激振面波勘探方法主要缺点之一。
为了克服这些缺点,目前发展了一种新的面波勘探方法——瞬态多道瑞利波勘探技术。它的激振可采用不同材料和质量的锤(或重物)下落激振,在地面布置多个拾震器,并选择最佳面波接收窗口接收震动,通过多次叠加和多道相关叠加,使得频谱能量加大,干扰减小。
设Z≥0为弹性空间,点震源位于坐标原点,且介质中的每点都作简谐运动,设u、υ、w分别表示质点沿x、y、z方向的位移,则波动方程的表达式为:
土体原位测试与工程勘察
式中:θ= ;λ为拉梅常数;k为弹性系数;ρ为介质的密度;▽2为拉普拉斯算子。
以下假定所引入的力对于z轴对称,并在极坐标(r,θ,z)中讨论问题。又设q为垂直于z轴的位移分量,w为z方向的位移分量。两种坐标的关系为:
土体原位测试与工程勘察
引入波动位φ与ϕ满足:
土体原位测试与工程勘察
式中:h2=ρp2/(λ+2k);k2=ρp2/k。
对式(7-9)试求其变量分离形式的解(略去时间因子eipt)得到:
土体原位测试与工程勘察
式中:α2=ξ2-k2;β2=ξ2-k2。
将式(7-10)代入式(7-8)得到位移表达式为:
土体原位测试与工程勘察
应力表达式为:
土体原位测试与工程勘察
二、瞬态点震源激发的瑞利波场中的位移表达式
设震源位于坐标原点,在时刻t=0作用,则初始条件和边界分别为:
土体原位测试与工程勘察
由于当z→+∞时,必有φ→0,ϕ→0,故式(7-12)中的A=0、C=0,将式(7-13)代入式(7-12),并解系数行列式,得D= 。
若在地面施加一适当的竖向激振力(可用大锤敲击地面或吊升重物自由下落),则于地下介质中可产生纵波、横波和瑞利波。此时可用如下的波动方程来描述它们的运动:
土体原位测试与工程勘察
式中:ϕ,φ为质点位移场的势函数,υP和υS分别为纵波和横波的速度。
对于平面波可得(1)式的一个解为:
土体原位测试与工程勘察
土体原位测试与工程勘察
式中:υ1=[1-(υr/υP)];υ2=[1-(υr/υS)];N为波数,υr为瑞利波速;A、B为常数。
由(2)式可得到瑞利波传播的两个特性:一是瑞利波振幅随深度衰减,能量大致被限制在一个波长以内;二是由地面振动波的瞬时相位,可确定瑞利波传播的相速度。
瞬态面波法即根据这两个特性,在相距一定距离的地面两点安置拾振器,接收面波振动,再通过频谱分析,做出波长-波速频散曲线,从而算出地下土层的瑞利波速υr。瑞利波速υr和横波波速υS的关系为:
土体原位测试与工程勘察
当μ从0.25至0.5时,υr/υS从0.92至0.95。由此可将瑞利波波速换算成横波波速。
瞬态多道瑞利波是在地面上沿着面波传播的方向、布置间距相等的多个拾振器,一般可为12个或24个。选择适当的偏移距(震源到第一个拾振器的距离)和道间距(拾振器之间的距离),以满足最佳面波接收窗口和最佳探测深度。
将多个拾振器信号通过逐道频谱分析和相关计算,并进行叠加,可得出一条频散曲线,从而消除了大量的随机干扰,信号中各频率成分能量大为增强,从而使得地质体在频散曲线上的反映更加突出和判断准确性大大增强。
三、采集方法
在时域内,面波采集的质量好坏,直接影响到计算出的频散曲线。与反射法地震勘探方法相同,瞬态多道面波勘探也存在一个最佳窗口问题。弹性波在时间空间域内传播时,其各种波型(直达波、折射波、反射波、声波和面波)均遵循各自的传播规律,故在应用瞬态多道瑞利波方法时应注意的是:
(1)各道采样必须设计排列在面波域内,且采集到足够长的记录。
(2)尽量使采集到的波型单一,即:不使直达波的后续波或反射波、折射波干扰面波,同时避免周围的干扰振动。
(3)采集的波形不能失真。
根据以上原则,在设计排列时,应按照不同的探测深度选择不同的偏移距和道间距。偏移距较小时,产生的高频分量就大些,反之,浅部的信息就强些;若需突出深部信息,应使偏移距放大些,致使高频分量衰减,而低频分量突出。
同样也根据探测深度选择道间距。对于同样的道间距,反映深部的信号频率较低,传感器之间该频率的相位差较小,而为了突出有效信号,必须使相位差有一定的值,所以必须使道间距加大些。反之,减少道间距,避免相位差超过360°。
瞬态多道瑞利波法的激震,可采用大锤或吊高重物自由落下。一般地,对于深度在20~30m内,土质不是很软,采用24磅大锤敲击地面即可获得不错的频散曲线。如果深度加大、土质较软或提高探测质量,也可吊高重物自由落下,这种方法可获得较好的低频震动。
在产生撞击振源时,常常不可避免地产生二次撞击,如重物碰地回弹后再次撞地,有些人想方设法控制此二次震动,以获得干净的面波资料,结果影响了工作效率,其实这大可不必。我们知道,对于时域中分析的反射法或折射法地震勘探,二次激发必须排除,因为第二次激发波会叠加在第一次激发的波上,形成干扰。而在频域中则无此问题,这从以下推导可得佐证:
设地面上A点接收到第一次激振产生的振动为:y=f(x,t)
地面上A点接收到第二次激振产生的振动为:y=Cf(x,t-Δt)
C为小于1的比例系数,合成振动应为:y=f(x,t)+Cf(x,t-Δt)
将上式进行富里埃变换,并注意到富里埃变换的延时定理,可得:
Y=∑Xm=∑Um[f(x,t)+Cf(x,t-Δt)+iVmf(x,t)+Cf(x,t-Δt)]
式中:Um和Vm分别为频谱的实部和虚部。若令
土体原位测试与工程勘察
则有:
Xm=Am[f(x,t) ]+C·Am[f(x,t)] ·
若令 则有:
Xm=Am[f(x,t)]· ·(1+ )=Am[f(x,t)] ·B·
其中:
土体原位测试与工程勘察
则对于α点:
同理,对于b点:
对于计算某点频率的相位差时,由于 ,因此,两次激发造成的延时叠加被减去了,所以它们在频率域中并不对相位差造成影响。
四、仪器、设备要求
1.仪器
瞬态多道瑞利波的数据采集,必须选用多道数据采集系统,最少12道以上,以24道为好。由于面波分析是在频率域中进行,各种频率成分能量差异很大,要想取得尽可能多的地下信息(尤其是地下深部的信息),而上部的信息又不能产生失真,故仪器的动态范围必须要大;AD转换一般要在16位以上(最好达20位),本机的噪音水平一定要低,折合输入端的噪音要小于或等于5微伏峰值电压;并且频响范围要宽,尤其低频频响要好,频率下限应小于1Hz,上限应大于1000Hz。这几项要求,均高于普通浅层地震仪。因此,可以说浅层地震仪可以做的工作,面波仪均适用,而面波仪所做的工作,浅层地震仪的指标往往不能满足。仪器的工作流程见示意图7-3。
图7-3 仪器工作流程示意图
2.拾振器
由于面波频率成分较低,所以必须选择低频拾振器。究竟频率下限是多少的拾振器可达到要求,则应根据场地地层波速值和探测深度确定。若以探测深度为波长一半计,则有:
土体原位测试与工程勘察
如果波速为200m/s, 为20m,则f为5Hz。这时,拾振器的下限频率至少要选择在5 Hz 以下。
3.仪器及参数
(1)SWS-1型多功能面波仪的主要技术指标
道数:12道、24道,可扩展为48道;
(测试时1道至多道可选)
放大器:瞬时浮点放大器;
模数转换:20 bit;
信号增强:32 bit;
采样率:30μs~8ms(分若干档);
采样点数:512~8192个样点(分若干档);
动态范围:120dB;
滤波器:高、低通模拟滤波;
CPU:80386或80486;
RAM:2 Mb,可扩为4 Mb、8 Mb、16 Mb;
硬盘容量:80 Mb,可扩为120或200 Mb;
软驱:1×3.5英寸,1.44 Mb;
显示屏:640×480点阵VGA液晶显示屏;可外配彩显显示彩色剖面;
打印与绘图:输出各种纪录与处理结果;
电源:DCl2V,24道额定功耗小于25W;
体积:45×34×15cm3;
重量:8.8kg;
使用环境:-5℃~+45℃
(2)数据采集参数
震源:大锤
震源距5m
道间距2m
全频率接收
五、资料和数据的处理
1.时间距离(X—T)域中的面波
(1)在时间(T)-距离(X)域中了解面波及干扰波的宏观特征,是处理和解释面波数据中首要的步骤。面波的多通道采集数据,在时间距离域中一般表示为二维坐标中的图形。其横坐标为各检波通道至震源的距离,纵坐标轴为震源激发后的传播时间,向下为时间增大。各通道接收的震波振幅数据,反映在相应距离的横坐标上,按到达时间表示为沿纵坐标的图形(横向摆动的波形或不同的色彩)。
图7-4是一个在沉积地层上取得的完整的面波振动记录。距离由距震源10m 到480m;时间从震源激发到2 s,包含了层状介质上地表接收到的面波及其他干扰波的基本波型。
(2)子波、同相轴、视速度、视周期,脉冲震源在地层中激发的振动,在时间上表现为短暂的波形,在传播中保持着基本相似而又缓慢变化的特征。震源激发的同一类的波型,在相近的接收通道上也表现出相似的波形,称为该波型的子波;同一波型在相近通道上子波相似特征点的连线,称为同相轴;它在时间-距离坐标中的斜率,体现了该波型沿地表传播的速度,称为视速度;同相轴越陡,视速度越小。子波波形两个正负主峰占的时间,称为视周期,可以用它估计波型的主频率。
(3)时间-距离域中的典型面波数据图形,图7-4中显示不同视速度和视周期的波型。震源在左边,由左向右子波的到达时间越来越迟,其中标示出的三组波型有:
图7-4 面波数据图形图
A:视速度大(同相轴平缓),视周期短(主频率高),它属于浅层折射波和反射波的波型;
C:视速度小(同相轴陡),视周期由短变长(主频率变低),它属于面波基阶模态的波型;
B:视速度比 C 较高(同相轴较缓),视周期由比 C 短(主频率较高),它属于面波的几个高阶模态的波型。
由图中面波的波型表现可以看出:邻近通道的子波波形变化平缓,说明地层横向相对均匀。出现明显的高阶模态波型(B),反映了地下存在分层结构。视周期较长的基阶模态波型(C)振幅较大而且稳定,表明面波能量所及的深度内,存在较高刚度的底部地层,能将面波能量折返到地表附近。
(4)正常地层中不同频率段的面波数据图形,脉冲震源产生的面波振动,包括宽频率范围内的各个频率组份。通过窄频带滤波,可以从时间-距离域中看出不同频率组份面波各模态的表现,以及干扰波的振幅变化,并了解在宽频率范围内提取面波频散数据的可能性。
图7-5 500~800频率段面波数据图形
图7-5是一个在分层地基上取得并未作滤波的面波原始记录,距离由距震源25m到47m,记录时间为1 s,包含了面波及其干扰波的基本波型。黄色的帚形框圈出面波振动数据的时间距离范围。上界的黄线界定了每秒 200m的视速度,下界的更陡斜边为每秒50m。黄色框外的上部出现的是较弱的反射和折射波,它们的主要振动能量,可以在数据处理时用如图的帚形时距窗口加以排除。窗口内下部是面波的基阶模态,而上部出现显著的高阶模态,视速度和视周期都和基阶模态有所差别,反映了地下存在分层结构。原始记录经过11 Hz的窄频带滤波。得到图7-6a所示的波型图形。
11 Hz频率段靠近面波基阶模态的视周期,基阶模态的振幅相对增强,但是较高视速度的高阶模态依然明显存在,表明同一频率的面波组份中存在不同视速度的模态。而且在左部的几个通道上,不同的模态合并到同一时间段内。在这样的距离段内,单一的时间频率分析是难以分离出不同的模态的。原始记录经过22 Hz的窄频带滤波得到如图7-6b的波型图形。
22 Hz 频率段靠近面波高阶模态的视周期,其高阶模态的振幅相对增强,而较低视速度的基阶模态也存在,也只有在距震源相应宽的距离段上,才有可能区分不同的模态。
将原始记录经过3Hz的窄频带滤波,得到如图7-6c所示的波型图形。记录的3Hz频率分量振幅很弱,显示图形时加大了振幅的增益。图形中出现的同相轴大部分都极平缓,具有很大的视速度(甚至表现出反向震源传播的视速度),其展布已经不能包含在面波的时间-距离窗口内。只有在更大的距离上(窗口的右下角)才显现具有低频面波视速度的面波成分。这些低频同相轴反映了大波长的波动组分,涉及的周边范围宽,一般属于水平地层中的低频反射鸣震,或者是来自采集排列旁侧的散射波场。它们的振幅在图示的3Hz频段超过了面波的幅度,构成对低频3Hz窄频带滤波后面波数据图形(图7-6c)面波的干扰。
这种低频干扰不是用简单的时间 距窗口能够排除的。如果脉冲震源没有足够的低频能量,它往往会掩没面波的低频组份,构成低频(反映大的深度)面波数据中出现过大的相速度。这种干扰现象在全频段的原始面波数据中并不明显,只有在窄频带滤波的时间-距离数据中才会明显暴露出来(图7-7)。
图7-6 窄频带滤波后面波数据图
图7-7 地层中含局部异常体的面波数据图形
该图中引发波形的震源位置在左边,正常地层的面波同相轴由左上方向右下方延伸。图中正常同相轴的中部出现向左下方的分支,表明面波向右方传播途中遇到局部异常介质,产生反向的散射。这种异常现象在多道的时间-距离域图形中容易判断,异常的水平位置也容易确定,但是难于判断异常体的深度。对面波的频散数据它也会造成扭曲。
(5)地表为高刚度层覆盖的地层面波数据图形:图7-8中明显可见的面波(同相轴视速度低,视周期长),反映了下覆地层的弹性波速,应属面波的基阶模态。其上部隐约可见视周期很短的振动,在左边距震源附近的通道上振幅大,反映较明显,它是属于高刚度层覆盖层造成的面波的高阶模态的反映(右图经放大后可以看得更清楚)。
图7-8 地表为高刚度层覆盖的地层面波数据图形
图7-8中面波的振幅由左向右随距离的增大急剧衰减,这是地表高刚度覆盖导致的特征漏能现象。和高刚度地层在底部的正常地层结构不同,震源的弹性能量在地表高刚度覆盖的下界面向下部地层漏失,其下再没有使它向上折返的界面条件。
在最简单的地层(均匀不分层)条件下,面波波速没有频散,根据时间频率域中的面波同相轴斜率,完全可以确定面波的速度,并藉以估算地层的刚度。而对于分层的地层,面波的速度将产生频散。如果各层的刚度随深度逐层增加,面波的弹性能量将偏向它的基阶模态,高阶模态的能量偏弱。这时,用简单的窄频带扫频滤波方法,也可以在时间-距离域估算面波的频散规律。面波应用研究的早期就是这样来获取面波的频散速度的。如果各层的刚度随深度起伏,特别是含有显著的软弱夹层,则面波高阶模态的能量将相应加强,这时就难以用简单的扫频滤波方法。如若在时间距离域内分清面波的模态和估算面波的频散,就不得不采取更复杂的数据处理方法。
目前存在不同性能的波场分频速度估计方法。二维频率波数域方法是一种通用方法,它有快速计算的功能,比较适用于多道线性阵列的波场分频速度估计。
2.频率-波数(F-K)域中的面波
面波的各个模态,在时间和距离上往往是相互穿插叠合的。在频率-波数域中,可以清楚地区分开面波不同模态的波动能量,从而能够单一地提取出基阶模态的频散数据。
(1)频率-波数谱、相速度、谱振幅 面波沿地表传播的波场,在时间和空间上都可以分解为正弦和余弦形式的波动组分,转换成二维的频谱。单个波动组分在时间上的频度,以每秒中的波动次数来计量,就是一般称的频率(F),单位为Hz,而在空间(距离)上的频度,以每米中的波动次数来计量,称为波数(K),单位为1/m。由频率-波数谱中某个波动组分的频率和波数,可以确定它的周期(T=1/F)和波长(L=1/K)。
这个波动组分的波形在波场中传播时,每个周期的时间前进一个波长,计算出的速度就是它的传播速度(υc=L/T,或υc=F/K),也称为该组分的相速度。由波动组分正弦和余弦分量的振幅,可以合成该组分的谱振幅,反映了该组分传播的弹性能量的大小。
运用二维傅里叶变换,可以将时间距离域的弹性波场数据,转换为频率-波数谱数据,表现为二维坐标中的图形。一般其左上角为坐标原点,纵坐标为频率轴,沿纵坐标向下波动频率增高,也就是在时间上波动越快。横坐标为波数轴,沿横坐标向右波数增多,也就是在空间上波长越短。
各个波动组分谱振幅的大小,用不同颜色的色标来表示,一般色度越亮,表示谱振幅越大。波动组分坐标点(F,K)和原点连线的斜率(F/K),体现了它的相速度。这条连线越陡该波动组分的相速度越大,越缓相速度越小。
离散数据的二维傅里叶变换,对于转换的频率和波数区间,都有相应的限定:转换的频率限(Fmax)是采样时间间隔(dT)的倒数的一半(Fmax=0.5/dT)。转换的波数限(Kmax)是采样道间距离(dX)的倒数的一半(Kmax=0.5/dX),对于单向传播的波场,最大波数可以扩大一倍(Kmax=1/dX)。在频率和波数限定区间以外,会出现变换折叠造成的干扰。
(2)面波的频率-波数谱向低频小波数(长波长)区延伸的表现 在频率 波数谱的左上角,频率降低、波数减小,反映大深度的波长较大的面波应该在这个区域内分布。但正就是在这个区域,波谱对不同类型波的相对分辨能力降低,如果基阶面波不具备较强的能量峰脊,就很难提取到正确的频散数据。图7-9显示了在频率-波数谱左上角经常遇到的图景:
它是一个实测的面波记录的频率波数谱上,阴影圈定了明显的基阶面波的能量峰,其中白色点标记出峰脊的位置。在反映低频波长较大的左上方(黑色框内),分布着一些弱的能量轴,难以作出明确的选择,可靠的频散数据低频端只能到此为止。
了解基阶面波能量峰向频率波数谱左上角延伸的一般规律,将有利于识别和提取频散数据。为此,可在这个面波记录的频率-波数谱上,标出由它得到的地层模型正演的基阶和高阶频散数据点,并且正演了原来未拾取到的左上角低频频散数据点。
图7-9 一个实测的面波记录的频率-波数谱
图7-10 频率-波数谱图形
在图7-10是标上了正演得到的频散数据点的实测记录频率-波数谱图形。其中白色点组成的线是正演的基阶频散数据,淡灰色点组成的两条线属正演的高阶频散数据。它们的中下部均能和谱图中相应的能量峰脊相吻合,说明正演采用的地层模型正确地反映了这部分谱图的面波能量。正演基阶频散数据线向左上方的延伸部分逐渐逼近频率波数坐标的原点,这就是基阶面波能量峰脊向低频小波数(长波长)区延伸的方向。
图7-10正演得到的频散数据点的实测记录是图中还以黑色直线标出地层最大剪切波速(底层)在频率-波数谱中反映的位置。在此黑线左方出现的能量峰其相速度都大于地层底层的波速,不属于面波能量的表现。
弹性波主要有两大类,在介质内部传播的波叫体波,如人们所熟知的纵波(P波)、横波(S波)等;沿介质自由表面传播的波叫表面波(Surface Wave),简称面波。表面波与体波不同,它沿界面传播,是波动现象集中在一个波长范围内的另一类弹性波。
英国人瑞雷首先以数学方法论证了表面波的存在,并说明了它的性质。根据瑞雷的理论,这个表面波是在弹性分界面处,由满足应力的边界条件而产生的波动现象,其涉及的范围集中于界面附近,所以在界面处波的振幅最大,离开界面,振幅迅速减小,这种波被命名为瑞雷波。乐夫则提出,当半无限弹性体表面存在另一密度、另一弹性常数的介质时,做水平振动传播的波有频散现象,这一频散波被称作乐夫波。研究表明,瑞雷波是由P波和SH波干涉生成的表面波,而乐夫波是SH波的多次反射波在界面干涉生成的表面波。对于不均匀介质,乐夫波和瑞雷波都具有频散特性。对于炸药震源或冲击振源,乐夫波的能量远小于瑞雷波的能量,往往难于观测到,所以面波勘探主要研究瑞雷波。
12.2.1基本原理
瑞雷波勘探是利用人工或机械震源激励,通过测量不同频率瑞雷波的传播速度来探测不同深度的岩土介质性质。瑞雷波有如下特性:在分层介质中传播的瑞雷波具有明显的频散特性;瑞雷波的波长不同,其穿透深度也不同;瑞雷波传播速度与横波速度有相关性。
利用瑞雷波的前两种特性,可以研究介质的物性变化,对沉积地层进行物性分层,探查地下空洞和掩埋物体;利用后一特性可以得到岩土层横波速度,进而计算出介质的物理力学参数。
在工程地质及地质灾害勘查中,瑞雷波勘探主要应用于以下几方面:
(1)工程地质勘查:利用实测的瑞雷波频散曲线,通过定量解释,可以得到各地质层的厚度及弹性横波的速度。速度的大小直接反映了地层的“软”“硬”程度,因此,可对第四系地层进行划分,确定地基的持力层。低速度带反映了地下赋存有软弱夹层,这类“软”地层对建筑物易造成危害,瑞雷波勘探可划分出软弱层的埋深及范围。
(2)地基加固处理效果评价:软地基的加固处理,就是通过不同的方法,如强夯、挤密置换化学处理等,使软地基变“硬”。瑞雷波法评价加固效果,是通过实测地基加固前后的波速差异,了解地基处理前后土体的物理力学性质的改善程度,同时可对处理后场地在水平方向的均匀性做出评价,并确定加固影响的深度和范围。
(3)岩土的物理力学参数原位测试:波速的大小与介质的物理力学参数密切相关,如密度、剪切模量、压缩模量、泊松比等。因此,通过对实测资料的反演拟合解释,可以得到岩、土层的横波速度、纵波速度、密度等参数,进而计算出其他物理力学参数。
(4)地下空洞及掩埋物探测:有时需要准确查明地下土洞、溶洞、废弃矿井以及各种地下掩埋物在地下的空间位置。用瑞雷波进行勘探时,当勘探深度达到这些物体的深度时,频率和速度关系曲线就会出现异常,据此可以确定其埋深及范围。
(5)公路、机场跑道疲乏质量无损检测:利用人工激发的高频瑞雷波,可以测得路面、路基的波速以及各结构层的厚度,进而推算出路面的抗剪、抗压强度及路基的载荷能力。该方法可用于机场跑道和高等级公路疲乏的检测,并可实现质量随年代变化的连续监控。
(6)饱和砂土层的液化判别:根据场地内饱和砂土层的埋深,地下水位等地质条件,可以计算出该饱和砂土层的液化临界波速值,判别其液化的可能性。实测波速大于该临界值,则为非液化层,小于该临界值则为液化层。
(7)其他方面的应用:瑞雷波勘探还可用于场地土类型、类别划分,滑坡、边坡调查,堤坝隐患危险性预测,基岩的完整性评价,桩基沉没入土深度测量等。
12.2.2观测方法
瑞雷波沿地面表层传播,在地面沿波的传播方向,以一定的道间距△x设置N+1个检波器,就可以检测到瑞雷波在N△x长度范围内的传播过程。设瑞雷波的频率为fi,相邻检波器记录的瑞雷波到达的时间差为△t或相位差为△φ,则相邻道△x长度内瑞雷波的传播速度为:
地质灾害勘查地球物理技术手册
在 N△x范围内的平均波速为
12.2.2.1稳态瑞雷波勘探
地质灾害勘查地球物理技术手册
稳态瑞雷波勘探的原理是使用稳态的电磁激振器在地面进行竖向激振,通过改变激振频率,可以得到一组与fi相对应的vRi值,测得一条vR—f曲线,由 ,也可将vR—f曲线转换为vR—λR曲线。稳态面波勘探法原理如图12-3所示。
图12-3稳态法原理示意图
12.2.2.2瞬态瑞雷波勘探
瞬态法与稳态法的区别之一是震源不同,瞬态法采用冲击振源或炸药震源产生一定频率范围的复频波,不同频率的瑞雷波叠加在一起,以复频波的形式向前传播。瞬态法记录的信号要经过频谱分析和相位分析,求得各个频率分量的瑞雷波,并用互谱法求得相邻检波器间相位移△φi,则相邻道距△x内瑞雷波的传播速度vRi即可求得。分析全部频率的瑞雷波,进而得到一条vR—f曲线或vR—AR曲线。瞬态面波勘探法如图12-4所示。
图12-4瞬态法原理示意图
12.2.3技术要求
12.2.3.1观测方式
面波勘探一般采用纵观测系统,即激振点和检波器排列在一条直线上,以一定间隔布点。观测方式有以下几种:
(1)一端激震,两道或多道观测。检波点距应小于最小波长,最小偏移距可与检波点距相等。
(2)两端分别激震,两道或多道观测。
(3)对于两道观测,当探测的目的地层为速度分层时,可采用定距测量方式,即两个检波器之间的道距不变,完成一个物理点测量。当探测目标体是地下空洞等地下埋设物时,可采用变距测量方式,即固定震源和一个检波器的位置不变,以一定的间距移动,另一个检波器进行测量。也可以定距、变距、两种测量方式结合进行,一般可大致确定空洞的中心位置和顶底面埋深。
(4)两道观测方式信噪比较低,在没有开发出更好的观测技术之前,建议采用多道观测方式。多道观测方式有以下优点:①可以在时间剖面上准确识别面波所在的时间窗位置,从而为合理设计面波观测“窗口”提供依据。②可以在多道采集的有效面波记录上,根据波形的时序关系分析波的来源,判断采集到的面波、绕射波以及其他干扰波是直接还是间接来自激发振源,据此正确选定布设测线的方向、振源位置以及选择激发时刻。③在多道采集的面波记录上可以区分开基本振型和高阶振型的面波,从而为合理选用不同振型的面波,解决不同地质问题创造条件。
12.2.3.2瑞雷波的激发
(1)稳态激振的频率范围和频率间隔与勘探深度、分辨率以及地质条件等因素有关,勘探深度H与波长λR成正比(H=βλR)。β为波长深度转换系数,一般取0.65。
(2)稳态激振的优点是不同频点的能量分布比较均匀,激发高频比较容易做到;缺点是设备笨重,如果要求勘探深度达到60m,设备的重量就要超过1000kg。
(3)瞬态激振可采用不同重量和不同材质的手锤或落锤进行垂向激振,也可采用炸药等其他激振方式,以满足不同探测深度和不同探测精度的要求。
12.2.3.3数据采集
(1)稳态激振器的安置应与地面均匀、紧密耦合,并使其保持竖直状态,开始先给激振器一定频率的电流使之起振,当激振器工作稳定后,方可进行采集与接收。
(2)应根据勘探深度和分辨率选用固有频率不同的检波器,检波器的振幅和相位一致性要好,安置检波器时应注意与地面垂直并紧密耦合,不同接触条件可采用不同的耦合方式,如生石膏、橡皮泥和黄油等,对于泥土地面可直接插入土中。
(3)合理确定采样率。根据不同的勘探目的层确定采样率,对于浅层宜采用较高的采样率,而对于较深的目的层则应采用较低的采样率,以增加低频段的频点数,提高深层的分辨率。
(4)发挥多道采集数据的优势,通过试验,合理选择观测“窗口”和排列走向,以避开或减小干扰波的影响。
12.2.4数据处理
12.2.4.1稳态面波勘探
(1)瑞雷波传播速度的计算方法有两种,一种为时间差法,一种为互相关分析法。前者是利用同相位目视对比取值计算,精度差、效率低,后者通过计算机对全部记录进行处理,有利于提高效率和vR的计算精度。
(2)测得各频点的瑞雷波速度,即可绘制vR—f曲线,但频率f不能直接表示深度,在实际应用中,一般绘制vR—βλR曲线,β为波长深度转换系数。
(3)解释方法多采用半波长法,但此方法有时不够精确,实际应用中需作修正或改进。推断地层厚度的方法,目前有一次导数极值点法和拐点法。计算层速度的方法有渐近线法、H极值法和近似计算法以及层厚度、层速度等综合解释法等。
(4)由深度—波速曲线计算瑞雷波层速度时,当地层的平均速度随深度增加而增大时,应用公式计算速度:
地质灾害勘查地球物理技术手册
式中:Hn为第n点深度(m);Hn-1为第n-1点深度(m);vRn-1为第n-1点深度以上的平均速度(m/s);vRn为Hn~Hn-1深度间隔的层速度(m/s)。
当地层平均速度随深度增加而减小时,应按(公式12.4)计算层速度:
地质灾害勘查地球物理技术手册
当不考虑地层平均速度随深度变化趋势时,可用(公式12.5)计算层速度
地质灾害勘查地球物理技术手册
瑞雷波速度与横波速度有一定差异,其大小与地层泊松比有关,可按表12-2进行修正。
表12-2瑞雷波与横波速度比值随泊松比变化一览表
12.2.4.2瞬态面波勘探
(1)屏幕上显示了多道面波记录,确定面波的时间—空间域窗口,经过富氏变换,将数据由时间—空间域转换到频率—波数域,得到二维振幅谱图像。在振幅谱图像上选取带通滤波的窗口,进行二维滤波拾取面波信息,由此得出面波频散曲线。
(2)根据面波频散曲线可进行地层分层。首先根据已知地质资料和频散曲线形状,给出地层分层的初始模型和拟和误差,拟和程序应利用最优化算法计算出理论频散曲线,反复修改各层厚度和波速参数,使理论频散曲线与实测频散曲线得到最好的拟合,求得各层厚度和速度值。
12.2.5成果的表达形式
无论是稳态面波勘探还是瞬态面波勘探,都需求出不同频率(即不同波长)的瑞雷波速度,得到一条面波相速度频散曲线,在此基础上进行波速分层和解释。在实际应用中,一般绘制vR—βλR曲线,β为波长深度转换系数,即以vR为横坐标,βλR为纵坐标。因为βλR直接代表着深度,所以,vR—βλR曲线的变化直接反映了瑞雷波随深度的变化情况。图12-5是典型的瑞雷波勘探成果图。
图12-5瑞雷波法勘探成果图(孙党生等实测)
12.2.6展望
瑞雷波法可用于解决浅部工程地质和地质灾害问题,例如洞穴、掩埋物、堤坝隐患探测、公路和机场跑道检测、地层分层、地基加固处理效果检查等,虽然在国内只有短短十几年时间,但该方法以其浅层分辨率高、应用范围广、方便、快速等优点,已引起科研、生产部门的高度重视。随着该方法的理论和应用研究的不断深入,除可应用瑞雷波的波速外,瑞雷波的衰减特性、椭圆率的变化等各种信息的综合利用,必将开拓瑞雷波勘探更加广泛的应用领域。应用天然源的面波勘探也是今后发展方向。
12.2.7仪器设备
稳态面波勘探仪器设备见表12-3。
表12-3GR-810仪器系统的配置(稳态)
续表
瞬态面波勘探仪器设备见表12-4。
表12-4瞬态面波勘探系统
《油气田地面工程》北大核心的
核心期刊的话今年版面早就征集完了
《价值工程》统计源科技核心 明年3月
最新的北大中文核心期刊:石油、天然气类1.石油勘探与开发2.石油学报3.石油与天然气地质4.石油实验地质5.天然气工业6.石油化工7.石油物探8.中国石油大学学报.自然科学版9.天然气地球科学10.西南石油大学学报.自然科学版11.石油钻采工艺12.新疆石油地质13.测井技术14.油气地质与采收率15.大庆石油地质与开发16.钻采工艺17.油田化学18.石油钻探技术19.石油炼制与化工20.石油地球物理勘探21.特种油气藏22.石油机械23.西安石油大学学报.自然科学版24.钻井液与完井液25.石油学报.石油加工26.大庆石油学院学报27.油气田地面工程28.海相油气地质29.中国海上油气
石油勘探与开发油田化学石油地球物理勘探油气地质与采收率油气储运中国海上油气石油钻探技术大庆石油学院学报石油物探油气田地面工程石油学报.石油加工测井技术断块油气田
工程地质勘查论文
工程地质勘查为调查工作,进行是为了研究影响建筑的地质因素,水文条件、一些天然的地质现象、岩土的力学性质及地质构造为地质勘查的主要因素。以下是我整理的工程地质勘查论文,欢迎阅读。
1 岩土工程地质勘察技术应用现状
1.1 地质勘察的技术问题
岩土工程地质勘察工作是确保岩土工程能够实施的关键所在。
目前在地质勘察技术应用过程中还存在着一些问题。地质勘察人员在勘察过程中,需要根据岩土的各种性质来对界面进行划分,从而区别性进行对待,但在实际工作中,界面划分上缺乏针对性。在对岩土进行取样时全面性,特别是在取样时某些原状岩土样本极易被忽视,这就导致岩土室内试验缺乏全面性, 其所得出来的各项参数触及面狭窄。
部分岩土地质勘察人员由于自身勘察能力不高,这就导致野外作业和资料整理分析的能力有限, 使其无法有效的胜任勘察工作的实际需求。另外在勘察工作中,与建筑结构的结合缺乏,往往造成勘察工作存在较强的片面性。
1.2 导致地质勘察技术问题存在的原因
首先,地质勘察过程中勘察依据不足,在勘察报告中缺乏对建筑项目相关资料的分析,这就导致在勘察工作中不能有针对性的进行勘测点的布置, 从而所勘察出来的结果会无法满足建筑工程施工的要求。 而且工程所处范围内的最大限度荷载也没有进行综合考虑,这就导致勘察工作不到位情况的发生。 特别是在工程桩基施工过程中,如果某地段如果有特殊的岩土结构出来,则在桩基施工过程中需要改用水桩,这就需要对建筑物结构设计进行重新修改,导致大量的人力、物力和财力资源浪费发生。
其次,勘察工作缺乏合理性。 在勘察过程中,由于不同建筑物的在勘察工作中其勘察间距及勘察点布置都具有较大的差别性,但在勘察工作具体操作过程中,由于作业不按规范要求进行,从而导致孔深不足及勘察点超范围等现象时常发生。 在地质勘察工作中,由于对勘察等级缺乏考虑,这就导致往往按普通标准进行的地质勘察时,在测试过程中发现地基条件良好,但在后期剪切波速测试过程中往往会发现在钻孔深度内存在特殊结构的岩层。 最后,当前地质勘察水平较为落后,在碎石土层时,往往采用静力触探法进行,这就导致触控试验过程中缺乏连贯性, 在对岩层进行钻进过程中,由于对岩心采取率较为忽略,从而导致钻探效果缺乏全面性。
2 岩土工程地质勘察技术
2.1 地质勘察测绘
岩土工程地质勘测测绘,是对岩土的地貌地形、变化情况和地质条件等情况进行测绘,具体内容包括:在岩土工程勘察界限内外的一定宽度内,调查是否存在滑坡、土洞和坍塌等不良地质现象,以及岩石、软弱层地质体的出露部位、范围和分布,按照一定比例将这些调查内容标示在图纸之上;岩土所在地的气候等水文气象,以及周边生活和生产建筑物对岩土的破坏程度等的调查,并对岩石的特征、风化程度,所在位置的地貌与岩土层关系进行分析,初步划分地貌单元;调查岩土位置的地下水情况,包括地下水的类型、水位情况和流量等,并按照一定比例标示在测绘图纸上。 以上的调查内容除了标示在图纸之上,还要进行调查情况的野外照相或者素描,作为编制地质勘查报告的基本资料。
2.2 钻探技术
在岩土工程地质勘察工作中, 需要通过岩土钻探来掌握第一手资料,而且在钻探过程中对其技术性要求较高,所以在钻探过程中需要有效的掌握一些切实可行的方法,确保钻探技术水平能够更好的发挥出来。
1)钻探技术的选择。在不同的地质环境下,所选择的钻探技术也会有所不同。 当钻探在地下水以上的地层进行时,采用勺型钻锤击干法掏土钻进法为宜,这种钻探方法具有简单和便捷的特点,但利用这种方法进行钻探过程中会给土层带来较大的干扰,所以当钻探深度具有较高要求时,这种方法则不宜使用。 当针对多种岩土工程勘察的深度时,则可以利用岩芯回转泥浆护壁钻进法进行钻探。 在普通地质勘察工作中,往往会选择双管单动个别进、冲击钻探等钻进方法进行工作。
2)钻进深度的控制。在对岩土层的分层深度进行测量时,需要严格控制误差,确保其测量误差在小于 5cm. 在利用岩芯回转泥浆护壁钻进法进行钻进过程中, 为了能够更好的实现对分层精度的控制,则需要严格控制非连续取芯钻进的回次进尺,通常情况下是需要将其控制在 2m之内。
3)针对不同性质的'岩土,控制取芯率。当岩土性质不同时,则需要针对不同性质来对其取芯率进行控制。 对于土层其取芯率需要达到 100%, 在对岩石风化的残积土进行钻探时, 其取芯率则以85%为宜。而半岩半土的取芯率控制在 90%,破碎岩控制在 65%,软质岩控制在 65%,而完整岩则将其取芯率控制在 80%为最佳。
4)在钻进过程中,需要根据钻进的回次来对钻探记录进行填写,这些记录可以作为钻探技术进行应用时的必要依据。
2.3 取样和试验技术
首先,取样技术。 取样需要根据工程地基的情况进行采取,一般采集中风化和微风化岩的上部位置, 因为这些风化带具有过渡的特点,而上部位置就具有代表意义,其他位置超风化带实验值过于离散。
采集后的样本做及时蜡封处理,用胶带包括岩样,以防止其水分流失,并分类妥善保存,每种样本都要有标签清楚记录孔段的深度,然后送到土木试验地点进行土样和岩样的分析和试验。其次,原位试验,即在保证检测对象不被扰动和破坏的天然状态下,通过各种试验手法进行指标测定。 原位试验是岩土工程地质勘察的重要部分,获取岩土的设计参数,也是岩土工程施工质量检验的重要手段。 原位试验的方法很多,包括荷载、静力触探和标准贯入试验等。
试验方法具体根据工程条件和需求而定,常用的试验方法是标准贯入试验法。根据《 建筑地基基础设计规范》规定,标准贯入试验是自动落锤的试验法。该法应根据地基的条件,以 1~1.5m为一次钻进单元深度,如果地质为松土,则钻进深度应该结合实际而定, 风化残积土和全风化带钻进以 1.5m为一次钻进单元深度,强风化带以 2~2.5m为一次钻进单元深度。 最后,编写地质勘察报告。 严格按照相关规定要求进行编写,编写的前应该将各类勘察资料进行汇总整理,结合实际拟定大纲后再进行编写,内容包括勘察基本内容、地质条件、工程分析评价以及相关的结论和建议。
3 结论
岩土工程地质勘察属于综合型的工作,不仅具有复杂性,而且还具有较强的多变性特点,当前岩土工程地质勘察技术在应用过程中还存在一些不足之处, 所以需要针对产生这些问题存在的原因进行分析,从综合运用各种勘察技术来提高地质勘察的技术含量,综合、客观的对地质环境进行判断和评价,确保为建筑工程的施工提供科学的各项岩土工程地质勘察数据,确保施工的顺利进行。
参考文献
[1] 刘湛省。岩溶地区铁路工程地质勘察浅探[J].西部探矿工程,2010( 7) :15.
[2] 刘群。对堤防工程地质勘察规程中若干问题的探讨[J].人民长江,2015( 1) :14.
[3] 张淑杰。岩土工程地质勘察中控制质量的因素分析[J].黑龙江科学,2014( 10) :15.
[中图分类号] P634.8 [文献码] B [ 文章 编号] 1000-405X(2013)-7-229-2 中国地质调查局是我国目前唯一组织公益性地质钻探技术研究开发和推广应用的单位,自1999年成立以来,在组织地质钻探技术研究开发和推广应用方面开展了大量工作并做出了显著的成绩,对我国地质钻探技术的发展起到了较好的推动作用。面对地质工作大发展的新形势和实现地质工作现代化目标的要求,地质钻探技术如何发展,如何更好地起到对地质工作的支撑作用,笔者对这些问题有些不成熟的想法,在此发表,希望能抛砖引玉,与大家共同探讨地质钻探技术的发展问题。 1地质工作对钻探技术的需求 目前我国矿产资源紧缺,资源问题成为制约国家建设和国民经济发展的瓶颈问题,引起了国家政府和领导的高度重视。在国务院关于加强地质工作的决定提出的地质工作主要任务中,突出能源矿产勘查和加强非能源重要矿产勘查是两项首要任务。国家为此投入了大量经费,除了正在实施的国土资源大调查专项基金之外,又启动了危机矿山接替资源找矿专项基金和地质勘查基金。此外,地方、甚至个人也在找矿方面表现出很大的热情,并进行积极的投资。近年来,随着地质工作的加强,地质钻探工作量成倍增长,一些省区的年钻探工作量达到了几十万米。钻探工作项目资金来源有国土资源大调查、矿产资源补偿费、中央财政补贴、省资源补偿费、地方财政补贴、市场项目等。钻探工作量加大,使得对钻探设备和技术的需求同时加大。 2地质钻探技术应用现状 与世界先进的钻探技术相比,目前我国地质勘探工作中采用的钻探技术总体水平比较落后。钻探施工主要采用立轴式岩心钻机,基本上是20世纪80年代左右的设计。现代的全液压动力头钻机依靠进口,我国自己研制的产品已经开始出现,但还未得到大面积推广应用,而且现在只有个别钻深能力(1000m)的钻机,还未形成系列。钻探工艺方面,一些先进的钻进工艺方法还没有得到推广应用。金刚石绳索取心钻进方法虽得到了较多的应用,但还未能大面积普及。液动锤钻进(液动冲击回转钻进)方法的优点虽然为人们所认识,但由于该方法在恶劣的泥浆条件下使用时,钻具可靠性和寿命方面存在着一些问题以及这些年钻探现场管理水平的下降,使其在地质钻探中的应用较以前更少。一些具有较好前景的先进的钻进工艺方法,如绳索取心液动锤钻进方法和不提钻换钻头方法虽然都已研制成功,但实际应用很少。空气反循环取样钻进方法尽管具有高效率、低成本的特点,但由于没有得到地质人员的认可,至今未能得到推广。除此之外,目前地质钻探施工中所用的钻孔护壁堵漏技术、测斜技术等,基本上也是20世纪80年代左右的水平。由于采用的钻探技术水平不高,地质勘探中钻探工作的效率和效果不太理想,表现在台月效率较低、复杂地层钻进问题多、深孔钻进能力差、钻进成本高。这些问题的存在,使得钻探技术对地质工作的技术支撑效果受到影响。 3地质钻探技术发展目标 笔者认为,考虑地质钻探技术发展目标时应该分阶段,应该分成近期、中长期和远期。划分原则是:至2010年为近期,至2020年为中长期,至2050年为远期。 3.1远期(至2050年)目标 实现地质钻探技术的现代化应该是钻探技术发展的远期目标。在国务院关于加强地质工作的决定和国务院温家宝就贯彻决定所作的重要批示中,都明确地提出了要实现地质工作现代化。关于地质工作现代化的定义,目前尚无统一的说法。笔者的理解是:地质工作现代化的标志应该是,在地质工作中普遍采用具有现代世界先进水平的地质勘查技术。钻探技术是地质勘查技术的种类之一,地质钻探技术的现代化也应该符合此项标准。然而,此项目标的实现是一项长期和艰巨的任务,因为只有国家的整体工业技术水平达到了世界先进水平后,我国的地质钻探技术才有可能从总体上达到世界先进水平,地质钻探技术现代化与国家的现代化应该是基本同步的。邓小平同志在介绍中国实现现代化的三步走战略时,明确提出到2050年中国基本实现现代化,达到世界中等发达国家的水平。1999年10月22日,时任国家主席江泽民在英国剑桥大学发表演讲时向公众宣布:我们的目标是,到下世纪中叶,即中华人民共和国成立一百周年时,基本实现现代化。由此看来,我国地质钻探技术现代化实现的时间应该是21世纪中叶。 3.2中长期(至2020)年目标 地质钻探技术发展的中长期(至2020年)目标应该是:自主创新能力显著增强,地质钻探技术水平显著提高,自主研发的新型钻探设备和先进钻进工艺方法得到较大面积的推广应用,钻探装备与施工技术总体上接近发达国家水平。 3.3近期(至2010年)目标 地质钻探技术发展的近期(至2010年)目标应该是:初步完成2000m深度以内的新一代地质岩心钻探设备系列研制;改进完善一批先进的钻进工艺方法,使之达到推广应用的水平;取得一批深孔钻探、复杂地层钻探和高精度定向钻探技术研究成果;研发成功现代的深水井和煤层气井钻探用全液压动力头钻机;地质钻探科技成果转化和推广取得较显著的成效。 4地质钻探技术近期研发工作重点 中国地质调查局近期组织开展的地质钻探技术研发工作基本上是按照上述的近期目标的思路安排的,重点研究内容如下: (1)2000m深度以内的新一代地质岩心钻探设备系列;(2)满足覆盖区化探和异常查证需求、适应复杂地层条件的轻便、高效、多功能取样钻机及其配套的钻进工艺方法和器具;(3)1000m全液压动力头水井和煤层气井钻机及其配套的钻进工艺方法和器具;(4)改进完善一批先进的钻进工艺方法,包括冲击回转钻进方法、绳索取心冲击回转钻进方法、不提钻换钻头方法和深孔绳索取心方法;(5)解决复杂地层钻进技术难题,包括复杂地层钻孔护壁堵漏技术问题、复杂地层取心技术问题等;(6)高精度定向钻探技术,包括提高钻孔测量精度和定向钻进施工中靶精度的技术以及取心定向钻进技术;(7)万米科学超深孔钻探技术方案预研究。除了研究与开发工作以外,钻探新方法、新技术推广应用也是中国地质调查局钻探技术管理工作的重点之一,拟开展以下一些工作: ①新型岩心钻探机具应用培训;②地质调查浅层取样钻技术应用培训;③地质钻孔测量技术应用培训;④新型地质钻探泥浆体系应用培训;⑤节水钻进技术应用培训;⑥空气反循环取心钻进技术培训和应用示范;⑦车载式浅层取样钻机应用示范。 5几个值得强调的问题 5.1加强技术创新 技术创新的核心内容是科学技术的发明和创造,其直接结果是推动科学技术进步,提高社会生产力的发展水平,进而促进社会经济的增长。通过技术创新可实现技术跨越式发展,在短期内获得显著的技术经济效果,使一些常规方法难以解决的问题得到解决。这里举2个钻探技术领域技术创新取得显著成效的实例。第一个实例是科拉超深钻。前苏联的工业技术发达程度比不上西方国家,却钻成了世界上唯一一口深度超万米的钻井——12262m深的科拉超深井。钻万米超深井的难度非常大。这口井之所以能钻进成功,是因为前苏联人在施工这口井时进行了大量的钻探技术创新,其中3项对钻进施工的成败起决定性作用的重大创新是:超前孔裸眼钻进方法;铝合金钻杆;带减速器的涡轮马达井底驱动。第二个实例是中国大陆科学钻探工程科钻一井。该项目是在坚硬的结晶岩中施工5000m连续取心钻孔。这种施工在我国没有先例,在世界上也属高难度钻井工程。该井在施工时采取了一系列的技术创新,涉及套管和钻进施工程序、取心钻进技术、扩孔钻进技术和井斜控制技术,最终获得了高效、优质的施工效果。由于采用螺杆马达-液动锤-金刚石取心钻进方法,使机械钻速提高50%以上,回次长度由3m提高到8~9m,大大节省了施工时间和成本。 5.2加强新方法、新技术推广应用 新方法、新技术从研发出来,到在钻探施工中得到普遍应用,通常需要花很长的时间,做大量的推广应用工作。推广应用工作包括宣传、现场演示、技术培训和技术交流等。这些环节工作效果的好坏,都会直接影响到科技成果转化及其得到实际应用所需的时间,影响地质钻探技术现代化的进程。为获得好的效果,该项工作应有计划、有组织地开展,因为研发单位通常只是从本单位的利益和眼前的利益考虑推广应用工作,而该项目工作的计划和组织实施需要一种全局性和长远的考虑。这些年来,在钻探技术研究与应用的所有环节中,科技成果推广应用是相对比较薄弱的环节,加强此方面工作是当务之急。 参考文献 [1]王达.探矿工程(地质工程)未来20年科技发展战略研究[J].探矿工程(岩土钻掘工程),2004,31(1).看了“地质钻探技术论文”的人还看: 1. 工程地质勘探中的钻探技术应用论文 2. 工程地质勘查论文 3. 工程地质勘察论文 4. 地质毕业论文范文 5. 地质学毕业论文范文
摘 要 随着现代勘探技术的发展,地质勘探的作用也越来越重要,它被用于很多的领域中。其中,地质勘探可以从工程地质勘探 、石油煤炭开采地质勘探等不 同的应用方面进行分 类。对 于每一个方向的运 用,都有相应的地质勘探技 术 ,为不同的应 用方 向进行研究提供 了一定的技术和理论指导 ,从 而建立新型 的地质勘探体 系,推进地质勘探技术的创新 ,促进 了我国地质勘探技术的发展。本文主要从工程地质勘探技术和石油煤炭地质勘探技术的概述、发展现状及发展趋势进行分析。关键词 地质勘探 技术 ;发展现状 ;发展趋势1 地质勘探技术的概述1.1工程地质勘探技术工程地质是一 门调查 、研究 、解决与人类活动和各种工程建筑有关 的地质问题的科学。工程建设中不可缺少的一部分就是工程地质勘探。随着勘探技术的发展 ,测量 、钻深等新技术、新方法 的运用 ,尤其是计算机的运用 ,使工程地质勘探的工作方法、质量标准等都有 了很大的进步,极大的推动了工程地质勘探技术的发展。一个工程的建设离不开工程地质勘探 ,它对工程制定方案和顺利的建设都有着不可替代的作用。1.2石油煤炭地质勘探技术石油煤炭地质勘探 主要是研究其形成和分布的基本规律、变化特征 、地质条件和一些勘探的技术 。石油煤炭勘探是在石油煤田普查 的基础上 ,进行的经济调查研究 、地质勘探工作。其中,石油煤炭开采技术的勘探是整个勘探工作 中的重要环节。2地质勘探技术的发展现状2.1工程地质勘探技术的发展现状工程地质勘探技术虽然有了很大的发展 ,但还是存在着一些问题,发展现状不是很乐观。主要表现在以下几个方面:1)工程地质勘探的质量问题。在工程地质勘探过程中,很多勘探的侧重点不 明确 ,勘探的针对性不强 ,勘探方法不正确 ,工程地质分析工作 中的计算公式与实际情况差别很大 ,从而使勘探的结论有误 。这些问题 的出现不仅会延误最佳的开发时机 ,还会给工程 留下一些隐患,严重影响了工程 的质量。2)工程地质勘探 的技术管理 问题 。一些工程单位提交 的勘探设计报告不是地质师写的 ,而且在编制人 中没有地质专业负责人 ,使得报告 中容易出现错误。这样会给总院审查增加难度 ,还会延误工程的报批时机。3)工程地质勘探的人员问题 。主要是 因为地质勘探需要优秀的技术人员,而在工程地质勘探 中,有一些人员不懂地质却提出不实际的勘探要求 ,有的对地质专业了解不透彻。这些都不利于工程地质勘探技术的发展。2.2石油煤炭地质勘探技术的发展现状我国的石油煤炭行业的集中度不高,开采相对比较分散,个体开采情况比较多,这样不仅会导致企业管理难度大,还不能保证石油煤炭的正常供 给。一些大型的石油煤炭企业的技术性 、安全性、可靠性都很有优势,要将其进行有效整合,国家要加强管理、统一规划 ,从而促进其发展。我 国石油煤炭地质勘探技术成果主要表现 以下几个方面 :1)石油煤炭地质基础研究从传统地质走向了地球系统科学研究阶段。我国开展了华北 、华南地球的资源评价研究课题 ,对于我国的石油煤炭资源的赋存规律有了基本的掌握 ,而且还将层序地层理论和方法运用在石油煤炭的地层划分中,从而拓宽了地质研究的思路。2)石油煤炭资源综合勘探技术取得突破性进展。主要根据了我 国石油煤 田的地质特点 ,合理 的运用地质勘探的新技术 ,并且充分利用现代勘探理论 ,从而建立了具有中国特色的石油煤炭综合勘探体系。3)石油煤炭地质勘查信息化和 “3s”技术取得显著进展。在地质勘探的各个领域中,计算机技术起着不可替代的作用 ,因此使地质报告编制实现了数字化 、信息化 ,而且还利用了GIS,建立了我 国 《石油煤炭资源信息系统 》。此外 ,在石油煤炭资源评价中,还大量运用 了遥感技术 ,形成了石油煤炭遥感技术体系。高光谱技术和高分辨率卫星遥感图像技术也有显著的进展。石油煤炭地质勘探技术取得了很大的进步 ,但还存在着 以下问题需要解决 :一是要解决中部能源基地中一些地形复杂的资源勘探技术问题,以及它所引起的水资源和环境问题;二是要加强西部地质研究 ,进一步提高资源勘探评价程度;i是要加强清洁石油煤炭技术的地质研究,为其清洁利用和环境保护提供一定的地质依据 ;四是要利用石油煤炭 的现代化开采,从而实现高产高效的生产 ;五是要加速石油煤炭的地质主流程信息化和资源信息化水平 。3地质勘探技术的发展趋势3.1工程地质勘探技术的发展趋势工程地质勘探技术虽然还存在着一些缺陷,面临着挑战,但是其发展趋势还是很乐观 ,存在着很多机遇 。因此 ,要尽量解决存在的问题 ,不断的创新 ,促进工程地质勘探技术的快速发展 。首先 ,要分清地质勘探的各项责任。即总院要负责工程地质勘探和一些技术管理 问题 ;各地方部 门要 负责好勘探 的合理周期 ,安排专业的勘探人员 ,不断采用新的勘探技术和设备 ,从而促进工程地质勘探技术的突破性发展。其次,工程地质勘探要抓住机遇,迎接挑战 ,培养优秀的地质勘探技术人员 ,不断的推动技术革新,促进勘探技术的进步和勘探结果的创新。3.2 石油煤炭地质勘探技术的发展趋势只有明确 目标 ,加大力度 ,依靠先进 的科学技术 ,提高地质勘探的精度 ,保障地质勘查 的质量 ,才能推进石油煤炭地质勘探技术的创新。我们要沿着 “加强石油煤炭地质勘探 的基础研究 ,最大限度 的发现新的资源 ;不断加大资源综合勘探技术的创新力度 ,满足人们 对资源的需求 ;改 革石 油煤 炭地质勘探的科技体制 ,培养新型的精干高效 的地质技术创新队伍 ”这一基本思路 ,实现石油地质勘探技术的可持续发展。1)大力发展石油煤炭资源的综合勘探技术。要加强多元地质信息符合技术 的研究 ,建立高精度 的地质模型 ,从而提高地质勘探的精度 ,为地质报告研究提供一定的依据。2)组织开展新一轮的石油煤炭资源评价 。要运用新的地质理论和资源评价方法,研究并制定出一套科学的石油煤炭资源的评价理论和方法,并且要多开展一些基础评价 ,强调石油煤炭资源的用途,正确认识我国石油煤炭资源的潜力,建立石油煤炭资源的信息系统 ,不断促进石油煤炭地质勘探技术的革新,促进我国地质勘探技术的发展。3)加强清洁石油煤炭技术的地质基础研究。其核心技术是洁净煤技术 ,与煤岩学、煤化学等基础理论结合在一起 ,并且利用地质地球化学 的角度进行分析 ,从而为勘探技术 的改进提供一定的依据。4)推进石油煤炭地质信息和3s技术产业化。发展石油煤炭地质勘查的主流程信息化,实现地质勘探技术的采集、研究的信息化 。加强高分辨率卫星图以及数字宇航摄技术的运用 ,促进地质范围以内,密度全部大于3.29g/cm ,相对密度大于95.7%。表面上的颜色一致均匀 ,没有任何斑点。2)相分析。通过x射线衍射检验说明 ,试块样 品中可能含有ZnS(2H—f0r珊)、ZnS(10H+8H)、磷石英和方石英相 ,没有出现其它杂峰。靶材 中各相组成均达到了镀膜的要求 。3)热等静压适用工艺制度 :加压介质是氩气。加热时温度为1100℃,压强是 120MPa,一个小时的保温保压。4)热压 较好 的工艺制度 :室内温度到 1050~C之间 ,每分钟2℃一5。c升温速度 ,开始在600~C时加压 ,30分钟的保温保压之后直接进行卸压。4结束语本文简要介绍了电子靶材的热等静压与热压工艺 ,经过研究两种工 艺都能够生产出符合要求的靶材 ,满足 了使用溅射 的要求。参考文献[1]努力古.溅射靶材的制备及发展趋势[J].新疆有色金属,2008,5.【2】刘志坚.溅射靶材的应用及制备初探fJ】.南方金属,2009,6.作者简介陈卫 飞 (1978一 ),男 ,湖南株洲人 ,本科 ,工程师 ,研究方 向ITO、靶材、有色金属材料。量 的增加和产品流通的活跃 ,我市农产品市场流通体系已远远不能满足市场需要 ,销售渠道单一 ,冷藏、储运设备落后 ,制约 了产品外销市场的拓展。建议在市场建设,预冷库、冷藏车配备以及品牌打造等方面给予大力扶持。3)支持建设市级农产品质量安全检测中心 。农产品质量安全事关 民生 ,事关农业发展和农 民增收的大事 。但是 ,固原市农产品质量安全检测工作 由于检测设备简陋 ,检测人员水平低 ,经费不足 ,农产 品质量安全还存在着很大 隐患 ,建设固原市农产 品包括畜产品为一体的农产品质量安全检测中心势在必行。建议 自治区支持建设 固原市市级农产品质量安全检测中心。以开展质量安全监测监控,保证品牌农产品质量安全 。参考文献【1宁夏中部干旱带及南部山区设施农业发展建设规划【M】.[2]固原市设施及旱作节水农业发展规划[M].作者简介孙丽琴 (1968一 ),原州区人,宁夏大学农学系本科 ,1986年参加工作时间,现为农艺师,从事农业技术推广工作 。勘探技术 的发展。4结束语总而言之 ,地质勘探技术对矿产资源 、能源资源的勘探具有着重要的作用,直接影响着资源的勘探 、开发和综合利用。虽然我国的地质勘探技术在短时间内取得了巨大的进步 ,研究了一系列地质勘探工程的新技术 、新方法、新设备。但我们还要意识到其存在的问题,要通过一些具体措施,使我国的地质勘探技术走向更加完善的发展趋势 ,从而不断满足我国经济快速发展对资源、能源的需求。参考文献[1]定武.谈现行地质勘探工作改革的几个问题册.地质与勘探,2OlO,4.【2】王树江.浅谈地质勘探技术发展啊.民营科技,2010,10[3】姚振义.煤 田地质与勘探方法阴.中国矿业出版社,2Ol1,6.是否可以解决您的问题?
[石油工程]气藏水平井合理配产摘 要目前,运用水平井开发油气藏受到越来越多的油田工作者推崇。但用水平井开发气藏要受到多种因素的制约,诸如渗透率各向异性、水平井长度、气层厚度、水平井位置、地层损害程度等,对于低渗透气藏还要考虑启动压力梯度、应力敏感等因素的影响。不同的气藏类型,其所考虑的因素也有所不同,产能公式求解也相应不同。运用水平气井流入动态曲线分析可以更直观的分析参数变化所引起的产量变化关系,了解影响产能的因素。本文就气藏水平井合理配产方面,总结了各类气藏水平井开发的实用公式,讨论了气藏开发的影响因素,分析了相关因素对水平井产量和流入动态的影响,最终得到了气藏水平井开发的实用范围及特点。在获得确定气藏水平井产能实用公式基础上,根据气藏水平井配产的相关方法,通过实例分析,了解了气藏水平井长度、避水程度因素对水平井产能的影响,绘制了无阻流量增量随避水程度变化的关系曲线图,最终确定了合理的水平段长度和避水程度,最后应用经验法配产,获得了该井的合理产量。关键词:气藏;水平井;影响因素;配产目 录1 绪论 11.1立论依据及研究的目的及意义 11.2国内外研究现状 11.2.1水平气井产能公式的提出 11.2.2水平井产能分析概要 21.2.3气井配产研究 31.2.4气藏水平井产能影响因素 41.2.5气井配产限制因素 51.3本文的研究目标、技术路线及所完成的工作 61.3.1研究目标 61.3.2技术路线 61.3.3本文完成的工作 62 气藏水平井开发公式及影响因素分析 72.1裂缝性气藏水平井求解公式 82.1.1非达西流动对水平井产能的影响 92.1.2裂缝性有水气藏水平井公式及分析 122.2凝析气藏水平井的公式及分析 122.3启动压力梯度和应力敏感效应对低渗透气藏水平井产能的影响 132.4气藏水平井产能影响因素 192.4.1气层厚度及水平井段长度的影响 202.4.2各向异性的影响 212.4.3地层损害的影响 222.5底水驱气藏水平井 242.5.1底水锥进气井临界产量确定常用方法 242.5.3边、底水气藏气井开采特征 252.6气井工作制度分析 262.7水平气井流入动态曲线分析 272.7.1水平气井长度对水平气井流入动态曲线的影响 272.7.2气层厚度对水平气井流入动态曲线的影响 282.7.3各向异性对水平气井流入动态曲线的影响 292.7.4地层损害对水平气井流入动态曲线的影响 313 气藏水平井合理配产方法 333.1气藏配产方法 333.1.1经验法 333.1.2系统分析方法 333.2各种方法剖析 343.2.1经验法剖析 343.3.1.1单点法 353.2.1.2指数式 373.2.1.3二项式 393.2.2节点分析法剖析 423.2.3在节点分析基础上引入时间变量的配产方法 423.3优化配产方法 434 实例计算 445 结论及建议 495.1结论 495.2建议 49谢 辞 50参考文献 51
兄弟有觉悟啊,找到这来了,
浅谈煤田地质勘探前沿发展趋势摘要:本文根据中国煤炭生产方针、煤田地质特点及世界先进技术发展现状,讨论了中国煤田地质勘探前沿问题,从提高勘探精度,开展动态地质研究等方面加以论述。并且展望了煤田地质勘探技术发展的趋势。关键词:地质勘探勘探技术发展趋势0引言20世纪,煤炭在世界能源中占主要地位,进入21世纪,煤炭在世界一次能源中仍将占主要地位,在我国尤其如此。在我国,1500m左右的煤炭总资源量约4万亿吨,已探明保有储量达1万亿吨。而石油、天然气,由于资源赋存条件与勘探、开发困难等原因,一个时期内难于大幅度增产。但是,随着开放与市场经济发展,煤炭要有竟争力才能在市场上站住脚,经济、安全、高效采煤就成为煤炭工业发展的关键。因此,世界上所有采煤国家都需要继续开展煤田地质勘探工作,而且,煤田勘探技术要迅速发展才能满足生产要求。1我国煤田地质勘探前沿问题从我国煤田地质特点及世界先进技术的发展现状来看,我们可以看出,近年来我国煤田地质勘探前沿问题可概括为以下几个方面。1.1从完善矿井水防治与保水采煤研究方面来看我国东部一些矿井,随着采深增大,突水事故经常出现,突水量也日益增大。由于这些煤田水文地质条件特别复杂,加之采深不断增大,浅部矿井水治理获得的一些认识往往不适应深部矿井水动力条件。因此,我国煤矿水害防治技术的发展趋势是:深入研究矿区深部岩溶水形成与运移特征,深部矿井底板岩溶水突出机理,开发突水预测预报技术;开发适应现代机械化开采的采掘区无水险水害防治技术。1.2从开展动态地质研究方面来看常见的岩煤突出、瓦斯突出、冲击地压、突水、井筒破裂等井下灾害,实际上是一种动力地质现象。这些现象均与岩体应力场有关。主要起因于岩煤采掘后,原有自然条件下各种地质因素之间的平衡遭受破坏,岩体应力再分配,从而引发或诱发出这类灾害性地质现象。通过研究这些现象形成的地质机理,事先测定出采掘阶段岩体应力随时空的动态变化,就有可能预测上述动力地质现象是否会形成,确定并采取消除或减弱这些灾害的措施。1.3从加强环境地质勘查与灾害地质防治方面来看由于矿区在天然条件下以及因开发而使地质体系遭受破坏,从而可能形成一系列环境问题,如耕地破坏、水源污染、沙化,粉尘、一氧化碳、二氧化硫造成的大气污染等以及更具破坏性的灾害地质现象,如地裂、地表塌陷、滑坡乃至诱发地震。由于历史原因及煤矿不断开发,旧帐未清,新帐纷至,所产生的问题相当严重,煤矿环境问题是制约煤炭工业可持续发展的关键因素之一,今后矿区环境评价与治理将成为开发部门重要的工作内容。1.4从提高勘探精度来看连续作业是煤炭工业现代化或采掘机械化和自动化的特点。这要求开发前查明所采煤层的细微变化,如煤层厚度、结构和灰分的局部细小变化。煤层及其顶底板岩石物理力学性质的局部变化等。但是,世界各国的煤炭证实储量及我国的探明储量均只主要说明煤炭的原地埋藏数量,并未充分甚至没有提供满足现代开采技术要求的开采地质信息,为适应现代机械化开采,普遍需要补充勘探。1.5从攻克煤层气开发难关来看近年来许多国家正在把煤层气作为一种能源进行研究,已有20多个国家开展了煤层气研究、勘探和开发活动。在煤层气试验开发中,目前所遇到的问题是:多数井煤层气产率低、衰减快,钻井冲洗液污染煤层,完井后坍塌堵孔,水力压裂效果不明显,裂缝短,所占比例低,完井后采气效果差等。显然,研究我国煤层渗透率低的原因、渗透率变化规律、煤层气富集和高产因素、煤层力学稳定性和破坏规律,开发适于我国低渗率煤层的钻井、完井、采气和增产实用技术,探索我国煤层气开发有利区段的评价选择模式就成为技术攻关的重点。2煤田地质勘探技术发展趋势用发展眼光看,近年来钻探仍将成为获取“第一性”地质资料的重要手段。物探仪器日新月异,性能改进与更新迅速,向高灵敏度、高分辨率、高精确度、遥控、计算机实时控制、处理、数据分析和三维图形显示方向发展;物探方法向多维、多参数测量、多方法组合发展;计算机和信息技术将普及到地质勘探的各个专业、各个作业单元,乃至管理整个勘探系统。近年来,值得注意的煤田地质勘探技术发展趋势如下。2.1开发井下勘探技术根据国内外资料,落差小于5m、长度小于150m的小断层及小型褶曲,近期不可能用地面勘探方法查明。因此,国内外普遍认为,应在采区开采前,在井下开展采区勘探或工作面勘探,其方法包括矿井物探和沿煤层钻进。基于煤层密度比上下围岩小,煤层是一个明显的低速槽,国外在70年代末首先采用槽波地震勘探技术在井下探测煤层构造。近年来,探地雷达技术发展迅速。最近南非开发出一种Rock雷达系统,能定量研究岩体,准确确定断裂带深度、巷道周围裂隙带特征。显然,煤矿井下物探技术将大有作为,是一重要发展方向。2.2发展水平钻进技术20世纪80年代以来,技术先进的采煤国家愈来愈重视采用水平钻进方法沿煤层钻进,并采用与之相配合的随钻测斜技术。水平钻进技术是由受控定向钻进发展而来的。近年来,这种钻进技术发展迅速,不仅能在井下沿煤层钻进,还能在地面沿垂直一圆弧一水平线轨迹进入煤层钻进。地面水平钻进,在煤炭部门是80年代后期才从石油部门引进的。2.3加强综合勘探据有关材料说明,英国煤矿区尽管用三维地震勘探曾解释出小至煤厚落差的断层,但英国深部煤矿公司仍然重视钻孔研究。近年来,他们在已经评价的赋存经济可采储量的井田,按400一500m网度布无心孔,用组合测井方法勘探。他们开发了一种岩层显微扫描仪,通过人机联作能解释几十厘米落差的断层、裂隙、沉积和构造特征,以及应力方向。借助专用软件,用组合测井可确定出岩石类型、岩石强度、孔隙度或渗透率、倾角、孔径、分析水和烃等。据说,通过这一综合勘探方法,“可提供一份详细、实用的构造及应力场图”“,从而使矿山设计切实可行”,可提供最佳施工方向和合理地选定开采方法。这表明,选用合适手段、采用多手段综合勘探,是深部煤矿勘探的发展方向。2.4研究动态地质勘探技术如前所述,危害矿井安全的动力地质现象由采掘活动诱发而形成。它们具有动态特性。因此,预测动力地质现象的形成及其强度,不能简单地只凭反映原始地质条件的静止数据,而应主要分析基于岩煤层应力或其物性随时间变化的动态特征资料。高产高效采煤推进速度快,进行动态勘探,即在采掘期间连续多次勘探采区的应力或物性随时间变化很有必要。2.5加快发展信息技术计算机和信息技术现已在煤田地质勘探各个专业推广应用,发展较快。由于引入了许多高新技术,如并行分布式处理、大容量存储、工作站、多媒体、人工智能和神经网络技术等,目前已能用人机对话方式处理、分析、解释和显示地质勘探数据,一些物探仪器自动化程度高,能在现场作预处理,控制各项操作和质量,选择有关参数。3结语根据相关资料分析表明,除少数几个发展中国家外,各主要产煤国家的煤田地质勘探工作量自80年代以来均明显减少,但用于开发勘探、工作面勘探的工作内容和工作量却明显增多,勘探精度大大提高。从煤炭现代化生产要求角度看,我国煤田地质勘探技术与世界先进技术相比尚存在较大差距,因此,必须把握时机,加快我国煤田地质勘探技术的发展,才能满足我国高产高效采煤的需求。参考文献:[1]储绍良.矿井物探应用.北京:煤炭工业出版社.1995.[2]李夫忠.走向精确勘探的道路[M].北京:石油工业出版社.1993.146~153.
工程地质勘查论文
工程地质勘查为调查工作,进行是为了研究影响建筑的地质因素,水文条件、一些天然的地质现象、岩土的力学性质及地质构造为地质勘查的主要因素。以下是我整理的工程地质勘查论文,欢迎阅读。
1 岩土工程地质勘察技术应用现状
1.1 地质勘察的技术问题
岩土工程地质勘察工作是确保岩土工程能够实施的关键所在。
目前在地质勘察技术应用过程中还存在着一些问题。地质勘察人员在勘察过程中,需要根据岩土的各种性质来对界面进行划分,从而区别性进行对待,但在实际工作中,界面划分上缺乏针对性。在对岩土进行取样时全面性,特别是在取样时某些原状岩土样本极易被忽视,这就导致岩土室内试验缺乏全面性, 其所得出来的各项参数触及面狭窄。
部分岩土地质勘察人员由于自身勘察能力不高,这就导致野外作业和资料整理分析的能力有限, 使其无法有效的胜任勘察工作的实际需求。另外在勘察工作中,与建筑结构的结合缺乏,往往造成勘察工作存在较强的片面性。
1.2 导致地质勘察技术问题存在的原因
首先,地质勘察过程中勘察依据不足,在勘察报告中缺乏对建筑项目相关资料的分析,这就导致在勘察工作中不能有针对性的进行勘测点的布置, 从而所勘察出来的结果会无法满足建筑工程施工的要求。 而且工程所处范围内的最大限度荷载也没有进行综合考虑,这就导致勘察工作不到位情况的发生。 特别是在工程桩基施工过程中,如果某地段如果有特殊的岩土结构出来,则在桩基施工过程中需要改用水桩,这就需要对建筑物结构设计进行重新修改,导致大量的人力、物力和财力资源浪费发生。
其次,勘察工作缺乏合理性。 在勘察过程中,由于不同建筑物的在勘察工作中其勘察间距及勘察点布置都具有较大的差别性,但在勘察工作具体操作过程中,由于作业不按规范要求进行,从而导致孔深不足及勘察点超范围等现象时常发生。 在地质勘察工作中,由于对勘察等级缺乏考虑,这就导致往往按普通标准进行的地质勘察时,在测试过程中发现地基条件良好,但在后期剪切波速测试过程中往往会发现在钻孔深度内存在特殊结构的岩层。 最后,当前地质勘察水平较为落后,在碎石土层时,往往采用静力触探法进行,这就导致触控试验过程中缺乏连贯性, 在对岩层进行钻进过程中,由于对岩心采取率较为忽略,从而导致钻探效果缺乏全面性。
2 岩土工程地质勘察技术
2.1 地质勘察测绘
岩土工程地质勘测测绘,是对岩土的地貌地形、变化情况和地质条件等情况进行测绘,具体内容包括:在岩土工程勘察界限内外的一定宽度内,调查是否存在滑坡、土洞和坍塌等不良地质现象,以及岩石、软弱层地质体的出露部位、范围和分布,按照一定比例将这些调查内容标示在图纸之上;岩土所在地的气候等水文气象,以及周边生活和生产建筑物对岩土的破坏程度等的调查,并对岩石的特征、风化程度,所在位置的地貌与岩土层关系进行分析,初步划分地貌单元;调查岩土位置的地下水情况,包括地下水的类型、水位情况和流量等,并按照一定比例标示在测绘图纸上。 以上的调查内容除了标示在图纸之上,还要进行调查情况的野外照相或者素描,作为编制地质勘查报告的基本资料。
2.2 钻探技术
在岩土工程地质勘察工作中, 需要通过岩土钻探来掌握第一手资料,而且在钻探过程中对其技术性要求较高,所以在钻探过程中需要有效的掌握一些切实可行的方法,确保钻探技术水平能够更好的发挥出来。
1)钻探技术的选择。在不同的地质环境下,所选择的钻探技术也会有所不同。 当钻探在地下水以上的地层进行时,采用勺型钻锤击干法掏土钻进法为宜,这种钻探方法具有简单和便捷的特点,但利用这种方法进行钻探过程中会给土层带来较大的干扰,所以当钻探深度具有较高要求时,这种方法则不宜使用。 当针对多种岩土工程勘察的深度时,则可以利用岩芯回转泥浆护壁钻进法进行钻探。 在普通地质勘察工作中,往往会选择双管单动个别进、冲击钻探等钻进方法进行工作。
2)钻进深度的控制。在对岩土层的分层深度进行测量时,需要严格控制误差,确保其测量误差在小于 5cm. 在利用岩芯回转泥浆护壁钻进法进行钻进过程中, 为了能够更好的实现对分层精度的控制,则需要严格控制非连续取芯钻进的回次进尺,通常情况下是需要将其控制在 2m之内。
3)针对不同性质的'岩土,控制取芯率。当岩土性质不同时,则需要针对不同性质来对其取芯率进行控制。 对于土层其取芯率需要达到 100%, 在对岩石风化的残积土进行钻探时, 其取芯率则以85%为宜。而半岩半土的取芯率控制在 90%,破碎岩控制在 65%,软质岩控制在 65%,而完整岩则将其取芯率控制在 80%为最佳。
4)在钻进过程中,需要根据钻进的回次来对钻探记录进行填写,这些记录可以作为钻探技术进行应用时的必要依据。
2.3 取样和试验技术
首先,取样技术。 取样需要根据工程地基的情况进行采取,一般采集中风化和微风化岩的上部位置, 因为这些风化带具有过渡的特点,而上部位置就具有代表意义,其他位置超风化带实验值过于离散。
采集后的样本做及时蜡封处理,用胶带包括岩样,以防止其水分流失,并分类妥善保存,每种样本都要有标签清楚记录孔段的深度,然后送到土木试验地点进行土样和岩样的分析和试验。其次,原位试验,即在保证检测对象不被扰动和破坏的天然状态下,通过各种试验手法进行指标测定。 原位试验是岩土工程地质勘察的重要部分,获取岩土的设计参数,也是岩土工程施工质量检验的重要手段。 原位试验的方法很多,包括荷载、静力触探和标准贯入试验等。
试验方法具体根据工程条件和需求而定,常用的试验方法是标准贯入试验法。根据《 建筑地基基础设计规范》规定,标准贯入试验是自动落锤的试验法。该法应根据地基的条件,以 1~1.5m为一次钻进单元深度,如果地质为松土,则钻进深度应该结合实际而定, 风化残积土和全风化带钻进以 1.5m为一次钻进单元深度,强风化带以 2~2.5m为一次钻进单元深度。 最后,编写地质勘察报告。 严格按照相关规定要求进行编写,编写的前应该将各类勘察资料进行汇总整理,结合实际拟定大纲后再进行编写,内容包括勘察基本内容、地质条件、工程分析评价以及相关的结论和建议。
3 结论
岩土工程地质勘察属于综合型的工作,不仅具有复杂性,而且还具有较强的多变性特点,当前岩土工程地质勘察技术在应用过程中还存在一些不足之处, 所以需要针对产生这些问题存在的原因进行分析,从综合运用各种勘察技术来提高地质勘察的技术含量,综合、客观的对地质环境进行判断和评价,确保为建筑工程的施工提供科学的各项岩土工程地质勘察数据,确保施工的顺利进行。
参考文献
[1] 刘湛省。岩溶地区铁路工程地质勘察浅探[J].西部探矿工程,2010( 7) :15.
[2] 刘群。对堤防工程地质勘察规程中若干问题的探讨[J].人民长江,2015( 1) :14.
[3] 张淑杰。岩土工程地质勘察中控制质量的因素分析[J].黑龙江科学,2014( 10) :15.