首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

函数连续性论文题目

发布时间:

函数连续性论文题目

1 x大于1或者小于1的时候是连续的2 5带进函数就是93 0 cos(1-x)是有界的函数,1+x是无界的所以相除等于0

美赛论文题目有如下:

1、A题是指连续型(continuous),具体可以理解为是连续函数建立一类模型。常用方法是微分方程,并多为“数值分析”领域的内容,需要熟练掌握偏微分方程以及精通将连续性方程离散化求解的编程能力。

2、B题是离散型(discrete)具体需要在编程上比较熟悉计算机的 “算法与数据结构”。

3、C题是数据分析型(data insights),最好是有统计学、数理金融、量化分析相关背景的知识。C题除了MATLAB、Python还可以是用无需编程的SPSS,也可能会用到R、STATS、SAS等统计软件。

4、D题一般为运筹学或网络科学(operations research/network science),近几年网络科学是一个热门研究领域,算法、软件包括可视化的软件都很多。

5、E题是环境科学题(sustainability),大体上会集中在环境污染、资源短缺、可持续发展、生态保护等几个方面。

6、F题是政策研究题(policy),EF题的数据一般需要自己搜集。

黎曼函数的连续性研究论文

证明如下:

对任意X属于(0,1),任给正数w,考虑除X以外所有黎曼函数的函数值大于等于w的点,因为黎曼函数的正数值都是1/q的形式,且对每个q,函数值等于1/q的点都是有限的。

所以除X以外所有函数值大于等于w的点也是有限的。设这些点,连同0、1,与X的最小距离为w ,则X 的半径为w的去心邻域中所有点函数值均在(0,w)中,从而黎曼函数在

时的极限为0。

扩展资料

解析延拓之后的ζ函数具有零点,他们分别是分布有序的平凡零点(所有负偶数),以及临界带

内的非平凡零点。以

表示虚部介于0与T之间的非平凡零点数量,则

遵循黎曼 - 冯·曼戈尔特公式: [3]

参考资料来源:百度百科-黎曼函数

规定x=0可写成0/1,因为x=1可写成1/1,x=2可写成2/1,....,x=k可写成k/1,此时R(x)=1,即x=0,1,2,...k,周期为1,所以黎曼函数又可写成:

证明:∀x0∈(-∞,+∞),lim(x→x0)R(x)=0,即R(x)在一切无理点连续,在有理点不连续.

证:由R(x)周期性,只考虑[0,1]中的点,即证x0∈[0,1],lim(x→x0)R(x)=0.

在[0,1]中,分母为1的数:0/1,1/1

分母为2的数:1/2

分母为3的数:1/3,2/3

分母为k的数:至多k个,k是正整数

对任意正整数k,[0,1]上分母≤k的有理数有限个

由函数极限定义:

∀ε>0,找δ>0,记k=[1/ε],在[0,1]中分母≤k的有理数记为r1,r2,…,rn

令δ=min{|ri-x0|} (1≤i≤n,ri≠x0)

∀x∈[0,1](0<|x-x0|<δ):

(i)x无理数,R(x)=0

(ii)x有理数,分母>k  (前面规定k有限,这里分母>k理所当然)

k=[1/ε],x的分母≥[1/ε]+1,则R(x)≤1/([1/ε]+1)<1/1/ε=ε

合起来就有

|R(x)-0|<ε

∴lim(x→x0)R(x)=0.

结论:黎曼函数在无理数连续,在很小一部分有理数不连续.

∀ε>0,在[0,1]上R(x)≥ε的点至多有限个.

由德国数学家黎曼发现提出,黎曼函数定义在[0,1]上,其基本定义是:R(x)=1/q,当x=p/q(p,q都属于正整数,p/q为既约真分数);R(x)=0,当x=0,1和(0,1)内的无理数。

黎曼函数在高等数学中被广泛应用,在很多情况下可以作为反例来验证某些函数方面的待证命题。

函数可积性的勒贝格判据指出,一个有界函数是黎曼可积的,当且仅当它的所有不连续点组成的集合测度为0。黎曼函数的不连续点集合即为有理数集,是可数的,故其测度为0,所以由勒贝格判据,它是黎曼可积的。

相关信息:

根据定义可知,黎曼函数的函数图象应该是一系列松散的点,而非连续曲线,这是因为它一方面处处极限为0,另一方面在任意的小区间中,都包含着无数个值不为0的点。通常来说,黎曼函数的图像是由它在函数值最大的有限个有理点的值组成的散点图来逼近的。

从黎曼函数的图像中可以看出,函数值比较大的点是很稀疏的,随着函数值的减小,点在横向和纵向上都变得越来越密集。

根据图像的特点,黎曼函数有时也被称为爆米花函数、雨滴函数。

函数一致连续的判定毕业论文

还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法

对定义域中的每一点,若左右极限都存在且相等则函数连续.所有初等函数及其复合都是连续的.可微函数是连续的.希望对你有帮助,祝你学习愉快!!亲,你的点赞或者采纳是我们回答的动力哦!

记级数的和函数为S(x),部分和为Sn(x),则|S(x)-Sn(x)|=Σ(k>n)[(x^2)/(1+x^2)^k]=…=1/(1+x^2)^n,因此,可以证明(i)此级数在R上非一致收敛;(ii)对任意q>0

文渊是连续性电子期刊吗

不是。 《文渊(高中版)》(月刊)创刊于2018年,是由中国出版传媒股份有限公司主管、中国大百科全书出版社有限公司主办的国内外公开发行的国家级连续型电子期刊。由中国大百科全书出版社有限公司出版的面向广大教育、科技工作者以及各大企事业单位成果研究人员的优秀期刊(国家新闻出版广电总局批准国内统一刊号:CN11—9275/G, 国际标准刊号:ISSN2096–627X)。本刊旨在为其提供一个具有较高学术水平的论文交流平台,为教师及科研人员职称评定提供重要依据。为此,本刊开设如下栏目,欢迎广大领域的人士向本刊踊跃投稿。栏目设置:高教研究、职教论坛、德育教育、文学教育、企业管理、文体艺术、网络科技、阅读写作、图书档案、教育天地、教育研究、理论研究等。

文渊电子期刊与书的区别在于出版方式与融入功能不同。1、期刊出版方式是以纸质书出版,而电子期刊是以电子形式存在的期刊,并且在网络上出版。2、期刊只具有文字,图像,而电子期刊兼具了平面与互联网两者的特点。学术刊物领域电子刊往往指的是连续型电子期刊,是国家在审批、通过刊号时候的不同类型刊号。任何以电子形式存在的期刊都可称为电子期刊,涵盖通过联机网络可检索到的期刊和以CD-ROM形式发行的期刊。还有一个就是纸质的期刊有期刊周期,比如说周刊、半月刊、月刊、季刊、半年刊、年刊等。发表论文是比较认可纸质版期刊的,必须是正规的,并且能在新闻出版署查询到的。

双线性函数性质论文开题报告

定义:V是数域P上一个线性空间, 是V上一个二元函数,即 ,由 都唯一对应于P中一个数 ,若 有性质: 1. 2. 则称 为V上的一个双线性函数 注:双线性函数在一个变元固定时,是另一个变元的线性函数 例: 1.欧氏空间V的内积是V上双线性函数 2.设 都是线性空间V上的线性函数, 则 是V上的一个双线性函数 3.设 是数域P上n维列向量构成的线性空间, , 是P上一个n级方阵,令 ,则 是 上的一个双线性函数 若设 则 是数域P上任意n维线性空间V上的双线性函数 的一般形式 取V的一组基 设 则 令 则 成为 定义:设 是数域P上n维线性空间V上的一个双线性函数, 是V的一组基,则矩阵称为 在 下的度量矩阵 注:取定V的一组基后,每个双线性函数都对应于一个n级矩阵,即这个双线性函数在基下的度量矩阵,度量矩阵被双线性函数及基唯一确定,且不同的双线性函数在同一组基下的度量矩阵不同 反之,任给数域P上一个n级矩阵对V中任意向量 ,及 其中 用 定义的函数是V上一个双线性函数 易知 在 下的度量矩阵即A 故在给定的基下,V上全体双线性函数与P上全体n级矩阵之间有一个双射 不同基下的双线性函数的度量矩阵 设 及 是线性空间V的两组基是V中两个向量则 若双线性函数 在 及 下的度量矩阵分别为A,B,则又 故 注:说明同一双线性函数在不同基下的度量矩阵合同 定义:设 是线性空间V上一个双线性函数,若 , ,有 ,则称f非退化 可用度量矩阵判断一个双线性函数是否非退化 设双线性函数 在基 下的度量矩阵为A,则对 , 有 若向量 满足 ,则 ,有 故 而有非零向量 使之成立的充要条件为A退化 故易证双线性函数 是非退化的充要条件为其度量矩阵A为非退化矩阵

非退化双线性函数定义是线性空间V上的双线性函数,如果它在某组基下的度量矩阵A是可逆矩阵,则称是非退化的双线性函数,否则称为退化的双线性函数。是非退化的双线性函数的充分必要条件是:如果存在向量,使得是非退化的双线性函数,则A是可逆矩阵,并且假定存在向量22211211AX只有零解,所以矩阵A可逆。

课 程 设 计课程设计名称: 数字信号处理 数字信号处理 专业课程设计任务书题 目 用双线性变换法设计原型低通为巴特沃兹型的数字IIR带通滤波器主要内容 用双线性变换法设计原型低通为巴特沃兹型的数字IIR带通滤波器,要求通带边界频率为400Hz,500Hz,阻带边界频率分别为350Hz,550Hz,通带最大衰减1dB,阻带最小衰减40dB,抽样频率为2000Hz,用MATLAB画出幅频特性,画出并分析滤波器传输函数的零极点;信号 经过该滤波器,其中 450Hz, 600Hz,滤波器的输出 是什么?用Matlab验证你的结论并给出 的图形。任务要求 1、掌握用双线性变换法设计原型低通为巴特沃兹型的数字IIR带通滤波器的原理和设计方法。2、求出所设计滤波器的Z变换。3、用MATLAB画出幅频特性图。4、验证所设计的滤波器。参考文献 1、程佩青著,《数字信号处理教程》,清华大学出版社,20012、Sanjit K. Mitra著,孙洪,余翔宇译,《数字信号处理实验指导书(MATLAB版)》,电子工业出版社,2005年1月3、郭仕剑等,《MATLAB 7.x数字信号处理》,人民邮电出版社,2006年4、胡广书,《数字信号处理 理论算法与实现》,清华大学出版社,2003年审查意见 指导教师签字:说明:本表由指导教师填写,由教研室主任审核后下达给选题学生,装订在设计(论文)首页填 表 说 明1.“课题性质”一栏:A.工程设计;B.工程技术研究;C.软件工程(如CAI课题等);D.文献型综述;E.其它。2.“课题来源”一栏:A.自然科学基金与部、省、市级以上科研课题;B.企、事业单位委托课题;C.校、院(系、部)级基金课题;D.自拟课题。1 需求分析本课程设计要求用双线性变换法设计原型低通为巴特沃兹型的数字IIR带通滤波器,给定的设计参数为通带边界频率为400Hz,500Hz,阻带边界频率分别为350Hz,550Hz,通带最大衰减1dB,阻带最小衰减40dB,抽样频率为2000Hz。要求采用双线性变换法,使得s平面与z平面是单值的一一对应关系,不存在频谱混淆的问题。由于数字频域和模拟频域的频率不是线性关系,这种非线性关系使得通带截止频率、过渡带的边缘频率的相对位置都发生了非线性畸变。设计出巴特沃兹型的带通滤波器之后,让信号 经过该滤波器,其中 450Hz, 600Hz,分析滤波器的输出 是什么,用Matlab验证结论并给出 的图形。2 概要设计1>用双线性变换法设计IIR数字滤波器脉冲响应不变法的主要缺点是产生频率响应的混叠失真。这是因为从S平面到Z平面是多值的映射关系所造成的。为了克服这一缺点,可以采用非线性频率压缩方法,将整个频率轴上的频率范围压缩到-π/T~π/T之间,再用z=esT转换到Z平面上。也就是说,第一步先将整个S平面压缩映射到S1平面的-π/T~π/T一条横带里;第二步再通过标准变换关系z=es1T将此横带变换到整个Z平面上去。这样就使S平面与Z平面建立了一一对应的单值关系,消除了多值变换性,也就消除了频谱混叠现象,映射关系如图1-3所示。图1-3双线性变换的映射关系为了将S平面的整个虚轴jΩ压缩到S1平面jΩ1轴上的-π/T到π/T段上,可以通过以下的正切变换实现(1-5)式中,T仍是采样间隔。当Ω1由-π/T经过0变化到π/T时,Ω由-∞经过0变化到+∞,也即映射了整个jΩ轴。将式(1-5)写成将此关系解析延拓到整个S平面和S1平面,令jΩ=s,jΩ1=s1,则得再将S1平面通过以下标准变换关系映射到Z平面z=es1T从而得到S平面和Z平面的单值映射关系为:(1-6)(1-7)式(1-6)与式(1-7)是S平面与Z平面之间的单值映射关系,这种变换都是两个线性函数之比,因此称为双线性变换式(1-5)与式(1-6)的双线性变换符合映射变换应满足的两点要求。首先,把z=ejω,可得(1-8)即S平面的虚轴映射到Z平面的单位圆。其次,将s=σ+jΩ代入式(1-8),得因此由此看出,当σ<0时,|z|<1;当σ>0时,|z|>1。也就是说,S平面的左半平面映射到Z平面的单位圆内,S平面的右半平面映射到Z平面的单位圆外,S平面的虚轴映射到Z平面的单位圆上。因此,稳定的模拟滤波器经双线性变换后所得的数字滤波器也一定是稳定的。2>双线性变换法优缺点双线性变换法与脉冲响应不变法相比,其主要的优点是避免了频率响应的混叠现象。这是因为S平面与Z平面是单值的一一对应关系。S平面整个jΩ轴单值地对应于Z平面单位圆一周,即频率轴是单值变换关系。这个关系如式(1-8)所示,重写如下:上式表明,S平面上Ω与Z平面的ω成非线性的正切关系,如图7-7所示。由图7-7看出,在零频率附近,模拟角频率Ω与数字频率ω之间的变换关系接近于线性关系;但当Ω进一步增加时,ω增长得越来越慢,最后当Ω→∞时,ω终止在折叠频率ω=π处,因而双线性变换就不会出现由于高频部分超过折叠频率而混淆到低频部分去的现象,从而消除了频率混叠现象。图1-4双线性变换法的频率变换关系但是双线性变换的这个特点是靠频率的严重非线性关系而得到的,如式(1-8)及图1-4所示。由于这种频率之间的非线性变换关系,就产生了新的问题。首先,一个线性相位的模拟滤波器经双线性变换后得到非线性相位的数字滤波器,不再保持原有的线性相位了;其次,这种非线性关系要求模拟滤波器的幅频响应必须是分段常数型的,即某一频率段的幅频响应近似等于某一常数(这正是一般典型的低通、高通、带通、带阻型滤波器的响应特性),不然变换所产生的数字滤波器幅频响应相对于原模拟滤波器的幅频响应会有畸变,如图1-5所示。图1-5双线性变换法幅度和相位特性的非线性映射对于分段常数的滤波器,双线性变换后,仍得到幅频特性为分段常数的滤波器,但是各个分段边缘的临界频率点产生了畸变,这种频率的畸变,可以通过频率的预畸来加以校正。也就是将临界模拟频率事先加以畸变,然后经变换后正好映射到所需要的数字频率上。根据以上IIR数字滤波器设计方法,下面运用双线性变换法基于MATLAB设计一个IIR带通滤波器,通带截止频率fp1=500HZ,fp2=400HZ;阻带截止频率fs1=350HZ,fs2=550HZ;通带最大衰减αp=1dB;阻带最小衰减αs=40dB,抽样频率为2000HZ。I.设计步骤:(1)根据任务,确定性能指标:通带截止频率fp1=500HZ,fp2=400HZ;阻带截止频率fs1=350HZ,fs2=550HZ;通带最大衰减αp=1dB;阻带最小衰减αs=40dB;抽样频率为2000HZ。 (2)用Ω=(2/T)tan(w/2)对带通数字滤波器H(z)的数字边界频率预畸变,得到带通模拟滤波器H(s)的边界频率主要是通带截止频率fp1,fp2;阻带截止频率fs1,fs2的转换。为了计算简便,对双线性变换法一般T=2s通带截止频率fc1=(2/T)*tan(2*pi*fp1/2)fc2=(2/T)*tan(2*pi*fp2/2)阻带截止频率fr1=(2/T)*tan(2*pi*fs1/2)fr2=(2/T)*tan(2*pi*fs2/2)阻带最小衰减αs=1dB和通带最大衰减αp=40dB;(3)运用低通到带通频率变换公式λ=(((f^2)-(f0^2))/ f)将模拟带通滤波器指标转换为模拟低通滤波器指标。B=fc2-fc1normwr1=(((fc1*fc2)-(fc1^2))/fc1) normwr2=(((fc1*fc2)-(fc2^2))/fc2)normwc1=(((fc1*fc2)-(fr1^2))/fr1)normwc2=(((fc1*fc2)-(fr1^2))/fr1)模拟低通滤波器指标:normfc,normfr,αp,αs(4)设计模拟低通原型滤波器。借助巴特沃斯(Butterworth)滤波器,用模拟低通滤波器设计方法得到模拟低通滤波器的传输函数H(s);(5)调用lp2bp函数将模拟低通滤波器转化为模拟带通滤波器。(6)利用双线性变换法将模拟带通滤波器H(s)转换成数字带通滤波器H(z).II.程序流程框图:开始↓读入数字滤波器技术指标↓将指标转换成归一化模拟低通滤波器的指标↓设计归一化的模拟低通滤波器阶数N和1db截止频率↓模拟域频率变换,将G(P)变换成模拟带通滤波器H(s)↓用双线性变换法将H(s)转换成数字带通滤波器H(z)↓输入信号后显示相关结果↓结束3 运行环境PC机 MATLAB4 开发工具和编程语言MATLAB语言5 详细设计clc;clear all;%设计滤波器%所需设计的带通滤波器的参数设置Fres=2000;Ts=1/Fres;Omgap1=500Omgap2=400Omgas1=350Omgas2=550%进行双线性变换,使得s平面与z平面是单值的一一对应关系Omgap=(Omgap1-Omgap2)*TsOmgap3=tan(Omgap1*Ts*2*pi/2)Omgap4=tan(Omgap2*Ts*2*pi/2)Omgas3=tan(Omgas1*Ts*2*pi/2)Omgas4=tan(Omgas2*Ts*2*pi/2)%对参数归一化ap1=Omgap3/Omgapap2=Omgap4/Omgapas1=Omgas3/Omgapas2=Omgas4/Omgap%将模拟带通滤波器指标转化成模拟低通滤波器指标I1=(ap1*ap2-as1*as1)/as1I2=(ap1*ap2-as2*as2)/as2I3=(ap1*ap2-ap1*ap1)/ap1I4=(ap1*ap2-ap2*ap2)/ap2I5=min(I1,-I2)alfpp=1;alfps=40;%设计巴特沃兹型低通滤波器HL(s)[N,Wn]=buttord(I4,I5,alfpp,alfps,'s')[Num,Den]=butter(N,Wn,'s')%将设计的模拟低通滤波器传递函数HL(s)转化成模拟带通滤波器H(s)[Num2,Den2]=lp2bp(Num,Den,sqrt(Omgap3*Omgap4),Omgap);%将设计的模拟带通滤波器H(s)转化成数字带通滤波器H(Z)[Num3,Den3]=bilinear(Num2,Den2,0.5);%画出H(Z)幅频特性曲线w=0:pi/255:pi;h=freqz(Num3,Den3,w);H=20*log10(abs(h));plot(w,H);%设计信号函数f1=450;f2=600;t=0:1/2000:40/f2;f=sin(2*pi*f1*t)+sin(2*pi*f2*t);plot(f);%信号通过带通滤波器g=invfreqz(h,w,40,50)g1=conv(g,f)plot(g1)6 调试分析在设计滤波器的时候,计算的是幅频特性。而相频特性没有进行频谱分析。而信号和信号通过滤波器的图形分析都为时与分析,没有进行频域分析,是不知道该用哪个函数对其进行傅里叶变换。试过freqz,fft等函数,但是都没有出来结果。说明调用格式不正确。本次试验用的是巴特沃兹型低通滤波器设计的方法,还可以利用切比雪夫型低通滤波器设计,或者椭圆型等。在本次试验中,我们只用了两种频率简单的叠加作为输入信号,但实际信号是多种频率的组合,可以再增加一些频率。现实中还应该有噪声的影响,本实验中没有考虑。可以再加上噪声信号。7 测试结果Fres = 2000Ts = 5.0000e-004Omgap1 = 500Omgap2 = 400Omgas1 = 350Omgas2 = 550Omgap = 0.0500Omgap3 = 1.0000Omgap4 = 0.7265Omgas3 =0.6128Omgas4 = 1.1708ap1 = 20.0000ap2 = 14.5309as1 = 12.2560as2 = 23.4170I1 = 11.4562I2 = -11.0065I3 = -5.4691I4 = 5.4691I5 = 11.0065alfpp = 1alfps = 40N = 8Wn = 6.1894Num = 1.0e+006 * Columns 1 through 8 0 0 0 0 0 0 0 0 Column 9 2.1538Den = 1.0e+006 * Columns 1 through 8 0.0000 0.0000 0.0005 0.0052 0.0377 0.1984 0.7386 1.7837 Column 9 2.1538Num2 = 1.0e-004 * Columns 1 through 8 0.8413 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 Column 9 -0.0000Den2 = Columns 1 through 8 1.0000 1.5863 7.0705 8.7151 20.5005 19.9985 32.1353 24.8474 Columns 9 through 16 29.9185 18.0527 16.9631 7.6698 5.7123 1.7643 1.0400 0.1695 Column 17 0.0776Num3 = 1.0e-004 * Columns 1 through 8 0.0043 0.0000 -0.0341 0.0000 0.1194 0.0000 -0.2389 0.0000 Columns 9 through 16 0.2986 0.0000 -0.2389 0.0000 0.1194 0.0000 -0.0341 0.0000 Column 17 0.0043Den3 = Columns 1 through 8 1.0000 -2.2463 8.3946 -13.4519 27.6744 -33.6694 48.3386 -45.7295 Columns 9 through 16 49.5687 -36.4140 30.6576 -16.9904 11.1207 -4.2944 2.1332 -0.4524 Column 17 0.1603h = Columns 1 through 5 -0.0000 -0.0000 + 0.0000i -0.0000 + 0.0000i -0.0000 + 0.0000i -0.0000 + 0.0000i …… Columns 251 through 256 -0.0000 - 0.0000i -0.0000 - 0.0000i -0.0000 - 0.0000i -0.0000 - 0.0000i -0.0000 - 0.0000i -0.0000 - 0.0000iH = Columns 1 through 8 -279.2737 -279.2732 -279.2723 -279.2813 -279.3855 -280.0020 -283.0382 -292.4507…… Columns 249 through 256 -281.0032 -280.3352 -280.1410 -280.0979 -280.0943 -280.0973 -280.0996 -280.1004f1 = 450f2 = 600t = Columns 1 through 8 0 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 0.0035 …… Columns 129 through 134 0.0640 0.0645 0.0650 0.0655 0.0660 0.0665f = Columns 1 through 8 0 1.9387 -0.2788 -1.4788 0.3633 0.7071 -0.1420 0.1338…… Columns 129 through 134 -0.3633 -0.7946 1.0000 1.1075 -1.5388 -1.0418g = Columns 1 through 8 0.0000 0.0000 -0.0000 -0.0000 0.0000 0.0000 -0.0001 -0.0002…… Columns 33 through 41 -0.0002 0.0000 0.0001 -0.0000 -0.0000 -0.0000 0.0000 0.0000 0.0000g1 = Columns 1 through 8 0 0.0000 0.0000 -0.0000 -0.0000 0.0001 0.0001 -0.0003…… Columns 169 through 174 0.0000 0.0000 -0.0000 -0.0000 -0.0000 -0.0000综合上述分析,数据基本正确。上图为带通滤波器幅频响应 、上图为传输函数零极点分析 上图为输入信号时域上图为输出波形的时域分析参考文献 [1] 吴大正 《信号与线性系统分析》第四版 高等教育出版社[2] 郑君里 《信号与系统》第二版 高等教育出版社[3] Sanjit K. Mitra 《数字信号处理—基于计算机的方法》第三版 清华大学出版社[4] 余成波 《数字信号处理及MATLAB实现》清华大学出版社[5] 周利清 《数字信号处理基础》 北京邮电大学出版社[6] 美国莱昂 《数字信号处理》英文第二版 机械工业出版社心得体会................0.0

相关百科

热门百科

首页
发表服务